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 Abstract  : 
 Psychedelics like lysergic acid diethylamide (LSD) and psilocybin offer a powerful window into the 
 function of the human brain and mind, by temporarily altering subjective experience through their 
 neurochemical effects. A recent model postulates that serotonin 2a (5-HT2a) receptor agonism allows 
 the brain to explore its dynamic landscape more readily, as reflected by more diverse (entropic) brain 
 activity. We postulate that this increase in entropy may arise in part from a flattening of the brain’s 
 control energy landscape, which can be observed using network control theory to quantify the energy 
 required to transition between recurrent brain states measured using functional magnetic resonance 
 imaging (fMRI) in individuals under LSD, psilocybin, and placebo conditions. . We show that LSD and 
 psilocybin reduce the amount of control energy required for brain state transitions, and, furthermore, 
 that, across individuals, LSD’s reduction in control energy correlates with more frequent state 
 transitions and increased entropy of brain state dynamics. Through network control analysis that 
 incorporates the spatial distribution of 5-HT2a receptors from publicly available (non-drug) positron 
 emission tomography (PET) maps, we demonstrate the specific role of this receptor in reducing control 
 energy. Our findings provide evidence that 5-HT2a receptor agonist compounds allow for more facile 
 state transitions and more temporally diverse brain activity. More broadly, by combining 
 receptor-informed network control theory with pharmacological modulation, our work highlights the 
 potential of this approach in studying the impacts of targeted neuropharmacological manipulation on 
 brain activity dynamics. 

 Significance Statement  : 
 We present a multi-modal framework for quantifying the effects of two psychedelic drugs (LSD and 
 psilocybin) on brain dynamics by combining functional magnetic resonance imaging (fMRI), diffusion 
 MRI (dMRI), positron emission tomography (PET) and network control theory. Our findings provide 
 evidence that psychedelics flatten the brain’s control energy landscape, allowing for more facile state 
 transitions and more temporally diverse brain activity. We also demonstrate that the spatial distribution 
 of serotonin 2a receptors - the main target of LSD and psilocybin - is optimized for generating these 
 effects. This approach could be used to understand how drugs act on different receptors in the brain to 
 influence brain activity dynamics. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 4, 2022. ; https://doi.org/10.1101/2021.05.14.444193doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.14.444193
http://creativecommons.org/licenses/by-nc-nd/4.0/


 Introduction  : 
 Serotonergic psychedelics like lysergic acid diethylamide (LSD) and psilocybin induce a profound but 
 temporary alteration of perception and subjective experience  1  . Combined with non-invasive 
 neuroimaging such as functional MRI, these drugs offer a unique window into the function of the human 
 mind and brain, making it possible to relate mental phenomena to their neural underpinnings. 

 A decade of neuroimaging studies has informed novel insights regarding psychedelic action in the 
 brain  2  . One model, known as RElaxed Beliefs Under Psychedelics (REBUS)  3  ,integrates previous 
 accounts of psychedelic action (the Entropic Brain Hypothesis)  4,5  with the view of the brain as a 
 prediction engine, whereby perception and belief are shaped by both prior knowledge and incoming 
 information. The REBUS model postulates that psychedelics alter conscious experience via their 
 agonist action at serotonin 2a (5-HT2a) receptors, which have especially high expression in 
 higher-order cortical regions. Agonist-induced dysregulation of spontaneous activity in these regions is 
 postulated to translate into decreased precision-weighting on prior beliefs - which has reciprocal 
 (enabling) implications for bottom-up information flow. It is theorized that the observed increase in 
 entropy of brain activity under psychedelics is reflective of reduced energetic demands or barriers for 
 the brain to navigate its dynamic landscape. However, this hypothesis remains thus far untested. 

 Understanding and being able to objectively measure the mechanism(s) of psychedelics is paramount if 
 we aim for  their therapeutic use in psychiatric or neurologic disorders. Imaging the brains of healthy 
 individuals under the effects of psychedelics offers data from which we can begin to build and test 
 computational, neurobiologically informed models of psychedelic action.  Recent work using such 
 approaches has shown that the effects of serotonergic psychedelics on the dynamics of human brain 
 activity are critically dependent on their action at 5HT2a receptors. Whole-brain neural-mass models 
 have implicated the 5-HT2a receptor distribution across the cortex in shaping brain dynamics under the 
 effects of LSD and psilocybin  7,8  , as well as demonstrating a role for 5-HT2a receptor agonism in 
 increasing the temporal diversity (entropy) of brain activity in a way that is consistent with empirical 
 observations  9  . 

 An alternative computational approach to modeling brain dynamics is network control theory, which 
 focuses on quantifying and controlling how a dynamical system moves through its state space. It is 
 well-known that even at rest the brain is not static, but rather it dynamically alternates between a 
 number of recurrent states  10–17  . Such recurrent brain states may be relevant for cognition  18–21  and even 
 consciousness  22–28  , and have been shown to undergo prominent reorganization during the psychedelic 
 state induced by LSD  6,7  and psilocybin  8,29  . Crucially, network control theory approaches enable mapping 
 of the brain’s energy landscape by quantifying the energy required to transition between these recurrent 
 states (Figure 1a/b). This type of energy can be referred to as ‘control’ or ‘transition’ energy. Recent 
 work utilized these tools to demonstrate that although the resting human brain has a spontaneous 
 tendency to prefer certain brain state transitions over others, cognitive demands can overcome this 
 tendency in a way that is associated with age and cognitive performance. This work demonstrates that 
 network control theory approaches can reveal neurobiologically and cognitively relevant brain activity 
 dynamics  30–32  . 
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 Figure 1. Mapping the energy landscape of the human brain with network control theory. (a)  We 
 concatenated all fMRI time series together (all subjects, all conditions) and employed the  k  -means clustering 
 algorithm to identify common activation patterns, or states.  (b)  Using network control theory and a representative 
 structural connectome  33  , we calculated the minimum energy required to transition between states (or maintain the 
 same state) using each individual’s brain states derived from the psychedelic and placebo conditions separately. 
 Our calculations reveal an energy landscape that is flattened by LSD and psilocybin.  (c)  Weighting the energy 
 calculations of the placebo brain states with inputs from PET-derived receptor density maps of the serotonin 2a 
 receptor  34  also resulted in a flattened energy landscape, providing a mechanistic explanation for these drug’s 
 flattening effects. 

 Here, we leverage recent advances in network control theory to probe the relationship between 
 energetic demands and entropy in the psychedelic state: we combine functional MRI data from two 
 experiments comparing drug (LSD or psilocybin) to placebo, with separately obtained (under non-drug 
 conditions) structural (white matter) connectivity from diffusion MRI (dMRI)  33  and receptor density maps 
 from positron emission tomography (PET)  34  . We hypothesized that the energy required to transition 
 between brain states would decrease under LSD and psilocybin compared to placebo and, furthermore, 
 that the amount of control energy reduction would correlate with increases in entropy on an individual 
 level. Finally, we tested the mechanistic hypothesis that serotonergic action at 5-HT2a receptors is 
 responsible for this reduction in transition energy by demonstrating that the specific spatial pattern of 
 5-HT2a receptor expression flattens the energy landscape more than any other receptor distribution 
 tested (Figure 1c). 

 Results  : 
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 We analyzed 30 minutes of resting-state data acquired from 15 subjects over two sessions, either 
 under the influence of LSD or a placebo  35  . To test the generalizability of our findings across datasets 
 and with a different psychedelic compound, we replicated the analysis using 10 minutes of resting-state 
 data acquired from 9 volunteers over two sessions, either under the influence of psilocybin or a 
 placebo  36  . Importantly, the LSD scans were acquired approximately 2 hours following drug/placebo 
 infusion in order to measure the “peak effects” of the drug, whereas the psilocybin participants were 
 scanned immediately after infusion. 

 Data-driven clustering of brain activity patterns reveals recurrent states of opposing network 
 activation 
 Our first step was to identify recurrent states of brain activity. One commonly used approach to 
 identifying recurrent brain states is through the k-means clustering algorithm  7,8,30,37  , whereby brain 
 activation patterns from each individuals’ scans are grouped into a pre-specified number of clusters  k  . 
 Here, data-driven clustering of regional activity patterns identified  k  =4 stable clusters that achieved 
 optimal division of the data (see  Materials and Methods: Extraction of brain states  for choice of  k  ). The 
 four clusters can be divided into two meta-states (Meta-State 1 and Meta-State 2, Figure 2), each 
 composed of two sub-states that represent opposing activation patterns (MS-1a/b and MS-2a/b, Figure 
 2). Dichotomy of the brain’s dynamic states has previously been observed  30,38  and is consistent with 
 hierarchical organization  39,40  . 

 Figure 2. Recurrent states of brain activity.  Group average recurrent brain states are represented by the mean 
 activation pattern across all subjects and conditions for each of the 4 clusters (brain representations at the bottom 
 of the figure). For each brain state, we separately calculated the cosine similarity (radial plots) of its 
 high-amplitude (supra-mean) activity and low-amplitude (sub-mean) activity to a priori resting-state networks  41 
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 (RSNs); resulting similarity measures are represented via radial plots  30  . Meta-State 1 (MS-1) is composed of two 
 sub-states (MS-1a and MS-1b) which are characterized by the contraposition of the somatomotor and ventral 
 attention/salience networks with the default-mode network, whereas the Meta-State 2 (MS-2; MS-2a and MS-2b) 
 is characterized by the contraposition of the default-mode, somatomotor and visual networks with the 
 frontoparietal network. The dichotomy of these states can be observed visually in the radial plots and on the 
 rendered brain volumes, and is confirmed via their negative, significant Pearson correlation (SI Figure 3, ii). 
 States shown here are from the LSD dataset. States derived from the psilocybin dataset are highly similar (SI 
 Figure 4). DAT dorsal attention network, DMN default mode network, FPN frontoparietal network, LIM limbic 
 network, SOM somatomotor network, VAT ventral attention network, and VIS visual network. 

 Psychedelics modulate brain dynamics by increasing occupancy in MS-1 and decreasing 
 occupancy in MS-2 
 To identify the effects of LSD on brain state dynamics, each subject’s fMRI data were characterized in 
 terms of the four identified brain states. From each subject’s temporal sequence of brain states (Figure 
 3a) we obtained a systematic characterization of the temporal dynamics of the 4 states, namely, their 
 fractional occupancies, or the probability of occurrence of each state (Figure 3b/c, i), dwell times, or the 
 mean duration that a given state was maintained, in seconds (Figure 3b/c, ii), appearance rates, or how 
 often each state appeared per minute (Figure 3b/c, iii), and transition probabilities, or the probability of 
 switching from each state to every other state (Figure 4a/b, i). 

 We found that for both psychedelic and placebo conditions, the brain most frequently occupies MS-1 
 (higher fractional occupancy) whose constituent sub-states are also visited for the longest periods of 
 time (highest dwell times) (Figure 3b). LSD modifies the fractional occupancy of these states by 
 decreasing the dwell times of MS-2 and further increasing dwell times of the already dominant MS-1 
 (Figure 3b). No differences in appearance rate for the 4 sub-states were found when comparing the 
 LSD and placebo conditions. In psilocybin, we found that fractional occupancy shifted in the same 
 direction as LSD, however these changes were not significant. Interestingly, there were no significant 
 changes in the dwell times under psilocybin, but there were significant increases in the appearance 
 rates of two of the states (Figure 3c). Possibly, this highlights a subtle difference in the two compounds’ 
 impact on brain dynamics or a difference in dynamics under drug onset versus peak effects. 
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 Figure 3: Temporal brain dynamics shift under psychedelics. (a)  k  -means clustering of the BOLD time series 
 resulted in a brain state time series for each of the individuals’ two scans  30  . We then calculated each brain states’ 
 (i) fractional occupancy, (ii) average dwell time, and (iii) average number of appearances per minute for each 
 individual and condition in the  (b)  LSD and  (c)  psilocybin datasets. *significant before multiple comparisons 
 correction, ** significant after multiple comparisons correction. 

 Empirical transition probabilities were calculated independently for each individual and each condition 
 (Figure 4a/b, i). We note changes during LSD and psilocybin that are consistent with the results 
 observed in Figure 3. In the LSD data we observe significant increases in the probability of persistence 
 for MS-1 and corresponding decreases in MS-2 (Figure 4a, i, diagonal). Under psilocybin we observe 
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 decreased persistence of MS-2 but not a corresponding increased persistence of MS-1 (Figure 4b, i, 
 diagonal). Possibly this indicates a difference in the compounds or timeline of administration. In both 
 cases, we see an increased probability of transitioning from states in MS-2 to MS-1 states (Figure 4a/b, 
 i, off-diagonal). 

 Network control theory reveals psychedelic-induced flattening of the brain’s control energy 
 landscape. 
 We next sought to provide a direct test of our hypothesis about decreased control energy requirements 
 to transition between different states under psychedelics. To this end, we turned to network control 
 theory  30,31,42–44  , which offers a framework to quantify the ease of state transitions in a dynamical system. 
 Specifically, we calculated the transition energy (TE), which is the minimum amount of energy that 
 would need to be injected into a network (here, the structural connectome  33  ) to induce transitions 
 between the possible states of its functional dynamics. Note that the transition energy from a given 
 state to itself is the energy required to remain in that state, sometimes referred to as “persistence 
 energy”. For each subject and condition, we calculated the energy needed to transition between each 
 pair of brain states. On an individual level, brain states were defined as the centroid of all TRs assigned 
 to each state during that individual’s psychedelic or placebo scans. Comparing the two conditions, we 
 found that both LSD and psilocybin lowered the TE (Figure 4a/b, ii) between all possible combinations 
 of initial and final brain states. 

 Importantly, network control theory requires a specification of a set of “control points” where energy is 
 injected into the system to induce the desired transition. For the previous analysis, we chose uniform 
 inputs over all brain regions. However, one can also ask whether this effect may be driven by a specific 
 set of regions  30  . This is relevant because the changes in brain function under investigation in the 
 present study arise from either the administration of LSD or psilocybin. The serotonin 2a (5-HT2a) 
 receptor is well established as the site responsible for the key characteristic subjective  45–48  and 
 neural  7–9,49  effects of LSD, psilocybin, and other classic serotonergic psychedelics, and this receptor is 
 not uniformly distributed across the brain  34  . Therefore, we sought to determine if the specific regional 
 distribution of 5HT2a receptors in the brain could correspond to especially suitable control points for 
 inducing a reduction in transition energy. 

 To test this hypothesis, we utilized a high resolution  in vivo  atlas of the serotonin receptor 5HT2a 
 derived from PET imaging to extract biologically relevant weights for our model  34  . First, we recalculated 
 the energy matrices for each placebo condition, this time weighting the energy injected into every 
 region in proportion to its amount of 5-HT2a expression. In every possible transition, we observed that 
 the 5-HT2a-weighted inputs provided lower TE than the uniform inputs (Figure 4a/b, iii). 

 However, it could be argued that giving additional control to some regions will result in a lower control 
 energy, regardless of their particular spatial arrangement. To demonstrate that our results are specific to 
 5-HT2a receptors’ spatial distribution across brain regions, we compared the TEs obtained from the 
 true 5-HT2a distribution, versus 10,000 spin permutations that preserve the set of weights and their 
 spatial autocorrelations but not the regions they correspond to  50,51  . The true distribution of 5-HT2a still 
 resulted in significantly lower energies (Figure 4a/b, iv), demonstrating the critical role of the specific 
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 regional distribution of 5HT2a receptors for inducing low-energy state transitions such as those 
 empirically observed under the effects of LSD and psilocybin. 

 Figure 4: The control energy needed to transition between brain states is reduced by LSD, psilocybin and 
 the spatial distribution of 5-HT2a receptor maps. (a)  LSD comparisons (n = 15)  (b)  Psilocybin comparisons (n 
 = 9)  (a/b, i)  Comparison of the empirically observed transition probabilities between states, derived from the brain 
 state time series, e.g. Figure 3a.  (a/b, ii)  Comparison of the transition energies calculated from placebo brain 
 states versus those calculated from LSD or psilocybin brain states using uniformly-weighted whole-brain inputs. 
 LSD and psilocybin brain states both had significantly lower energy required for every transition.  (a/b, iii) 
 Weighting the control vector by the 5-HT2a receptor density map  34  results in significantly lower energies for the 
 placebo centroids (brain states) compared to uniformly-weighted control vector inputs.  (a/b, iv)  To probe the 
 spatial specificity of part (iii), we repeated the calculations using 10,000 spin-permuted receptor maps  50  . We found 
 that the control vector constructed using the true 5-HT2a receptor map resulted in significantly lower energy 
 required for nearly every transition compared to the control vector constructed using the shuffled receptor maps. 
 (  See SI for choice of the time-span T over which the transition energy was computed  ). *significant before multiple 
 comparisons correction, ** significant after multiple comparisons correction. 

 In a final demonstration of the specific importance of the 5-HT2a receptor, we investigated the shift in 
 TEs provided by three additional serotonin receptors (5-HT1a, 5-HT1b, 5-HT4) and the serotonin 
 transporter, 5-HTT, all obtained from the same high-resolution PET atlas  34  . We compared the overall 
 mean of the energy matrix for each individual’s 2a-weighted calculations versus all others and found 
 that 5-HT2a was the most effective at lowering the overall energy to transition between empirically 
 defined brain states (Figure 5). This is especially noteworthy because serotonin 2a receptor agonism 
 plays a prominent role in how LSD, psilocybin, and other classic psychedelics influence neural activity 
 and subjective experience  7–9,45–49  . Together, these results demonstrate that the 5-HT2a receptor is 
 neurobiologically and spatially well-suited for control energy landscape flattening. 
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 Figure 5: The serotonin 2a receptor flattens the control energy landscape more than any other receptor 
 tested.  We weighted our model with expression maps of other serotonin receptors (5-HT1a, 5-HT1b, and 5-HT4), 
 and the serotonin transporter (5-HTT), and found that 5-HT2a resulted in significantly lower transition energy 
 (averaged across all pairs of states) than all others.  (i)  Energies calculated from each subject’s placebo centroids 
 in the LSD dataset (n = 15).  (ii)  Energies calculated from each subject’s placebo centroids in the psilocybin 
 dataset (n = 9) . • outlier, ** significant after multiple comparisons correction. 

 Notably, the 5-HT1b receptor resulted in the second largest energy reduction in our model. This is of 
 particular interest as recent animal models have implicated this receptor as the the potential site of 
 antidepressant action of selective serotonin reuptake inhibitors (SSRIs)  52  and may be a route through 
 which serotonergic psychedelics like psilocybin enact their synaptogenesis and potential antidepressant 
 effects  53,54  . 

 Increased flattening of the control energy landscape is associated with more entropic brain 
 dynamics 
 Crucially, the results demonstrating the specific role of 5HT2a receptors in flattening the control energy 
 landscape were based exclusively on calculations using placebo data. Therefore, we next sought to 
 test how the average TE reduction (Figure 4a/b, ii) may affect empirical transition energies and 
 corresponding brain dynamics. Specifically, we show that, across the 15 individuals, the relative change 
 in control energy induced by LSD was significantly correlated with the empirically observed changes in 
 state dwell times (Figure 6, i) and appearance rates (Figure 6, ii), p<0.05, uncorrected. 

 Our results show that the more LSD lowered the average transition energy of a given subject, the more 
 the empirically observed dwell times decreased and the more the empirically observed appearance 
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 rates increased. This is particularly interesting, as there were no group-level differences in appearance 
 rates between the two conditions, and a mix of increased and decreased dwell times depending on the 
 state. While the correlations identified are consistent with our hypothesis of a flattened control energy 
 landscape wherein lower barriers between brain states result in increased frequency of state transitions 
 and shorter state dwell times, it seems this individual-level effect does not translate to a group 
 difference in dwell time or appearance rate (SI Figure 5a). Interestingly, the psilocybin data had the 
 same directionality of correlation between control energy reductions and decreased dwell time (  r = 
 0.444, p = 0.271; n = 9  ) and increased appearance rate (  r = -0.453, p = 0.259, n = 9  ) (SI Figure 4c). 
 However, these data had the additional characteristic of group-level reductions in dwell time and 
 increases in appearance rate under psilocybin compared to placebo that are more straightforward to 
 interpret under the REBUS hypothesis (SI FIgure 5b). Future work with a larger number of subjects 
 may allow further interrogation of this phenomena. 

 Ratings of the drug’s subjective effects were also obtained from each individual (  see SI for details  ) and 
 we hypothesized that transition energy reduction by LSD or psilocybin would also predict a more 
 intense subjective experience. We did not find any significant correlations between energy flattening 
 and subjective ratings; extending the present modeling framework to subjective measures may be a 
 fruitful avenue for future research. 

 Figure 6: Larger reduction of average transition energy by LSD correlates with more dynamic brain 
 activity across individuals.  Significant Pearson correlations exist between an individual’s amount of energy 
 reduction by LSD and the relative change in state (i) dwell times, (ii) appearance rates, and (iii) entropy of the 
 brain state time series. Relative difference was calculated as (LSD - PL)/(LSD + PL). Partial correlations were 
 calculated while controlling for an individual’s head motion (mean framewise displacement). (n = 15, uncorrected 
 p-values). Psilocybin exhibited the same directionality of correlation in each case, however none were significant 
 (SI Figure 4c). 

 Lastly, we asked whether control energy reduction induced by LSD or psilocybin would correlate with 
 more complex (entropic) brain state time series. This analysis aimed to test the theoretical link between 
 a flatter control energy landscape and more entropic brain activity. One could imagine a scenario where 
 shorter dwell times and larger appearance rates result in a sequence that is highly predictable (e.g. [1 2 
 1 2 1 2]). We wanted to test the hypothesis that the true scenario would be the opposite - namely, that a 
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 flatter control energy landscape would in fact correspond to an increase in the diversity of brain 
 dynamics. Numerous studies have linked changes in the entropy of neuroimaging signals to the 
 psychedelic state  5,55–59  and the ability for these compounds to increase neural entropy via 5-HT2a 
 agonism is thought to be a key process in the breakdown of the functional hierarchy of the brain and a 
 central component of REBUS  3,4,60  . To test this hypothesis, we used Lempel-Ziv compressibility to 
 compute the entropy rate of the temporal sequence of brain meta-states (MS-1 and MS-2). Supporting 
 our hypothesis, we found that the more a subject’s energy landscape was flattened by LSD, the more 
 entropic their brain state time series became (Figure 6, iii). Once again, this correlation was not 
 significant in the psilocybin data (SI Figure 4c); however, we note that the complexity measure 
 deployed here needs particularly large effect sizes to detect differences in such short scans, with few 
 TRs. This result directly and quantitatively links a flatter control energy landscape with more entropic 
 brain activity. 

 Replication studies 
 We provide replication of the main findings using data from the LSD study in several ways: a) analyzing 
 another fMRI scan in which subjects were listening to music (SI Figure 7), b) using a different brain 
 atlas (SI Figure 8c, ii), c) preprocessing the fMRI data with global signal regression (GSR) (SI Figures 
 10c, ii), d) using a different clustering algorithm (SI Figure 12b), e) using a wide range of number of 
 clusters k (SI Figure 14), f) when clustering each condition (LSD and placebo) separately (SI Figure 15, 
 ii), g) and when clustering individuals separately (SI Figure 15, iv). All results support the main findings. 

 Discussion  : 
 Here, we combined fMRI data with separately obtained PET and diffusion MRI data under the 
 framework of network control theory to test our hypothesis that serotonergic psychedelics like LSD and 
 psilocybin induce more entropic brain activity in a manner related to a “flattening” of the control energy 
 landscape in the human brain. A flatter energy landscape corresponds to lower barriers to transition 
 between different states of brain activity. This is theorized to correspond to a flattening of the functional 
 hierarchy as well  60  , i.e. a relaxation of the weighting of high-level priors - thought to be a pivotal 
 component of psychedelics’ therapeutic mechanism  3  . Our results demonstrate: (a) a flattening of the 
 brain’s energy landscape, indicated by lower control energy being required to transition between brain 
 states under both LSD and psilocybin, and (b) a correlation between flattening of the energy landscape 
 (reduced energy required for state transitions) and more diverse (entropic) sequences of brain activity 
 under LSD. Combining fMRI with publicly available diffusion MRI and PET information, we were further 
 able to provide computational evidence that (c) the serotonin 2a receptor is especially well-positioned to 
 bring about this flattening of the energy landscape, over and above other 5-HT receptors. 

 Compared with placebo, subjects in the psychedelic condition spent a larger fraction of time occupying 
 states characterized by the contraposition of the DMN with bottom-up sensorimotor and salience 
 networks (MS-1), and less time in states dominated by the contraposition between DMN and top-down 
 fronto-parietal control network (MS-2) (Figure 3b). Since our analysis was carried out on resting-state 
 data, it is not surprising that the DMN was prominent across all four brain states  61–64  . It should be noted 
 that this regional-level, activation-based study is not expected to capture the previously reported DMN 
 disintegration  35  (a functional connectivity measure), nor the reduced voxel-level blood flow or BOLD 
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 signal indexed ‘activity’ level of some DMN nodes  36  under psychedelics. Additionally, our quantification 
 of the brain’s energy landscape through network control theory revealed that LSD and psilocybin lower 
 the transition energy between all states (Figure 4a, ii). These results are supported by replications 
 using several variations of data, processing and analysis choices. 

 Given the well-known involvement of 5-HT2a receptors with the neurobiological and subjective effects 
 of classic psychedelics, we next sought to determine if the spatial distribution of 5-HT2a receptors 
 across the human cortex could provide a mechanistic explanation for our results. Weighting the model 
 in proportion to the empirical regional density of 5-HT2a receptors obtained from  in vivo  PET imaging  34  , 
 we found that the resulting transition energies were greatly reduced, mirroring those of the psychedelic 
 condition (Figure 4a/b, iii). Further, to demonstrate the importance of this receptor’s spatial distribution, 
 we tested the true 5-HT2a receptor distribution against a spatial autocorrelation preserving null model 
 (i.e. spin test)  50  and found that the original map consistently resulted in lower energies than the shuffled 
 maps (Figure 4a/b, iv). The calculations were also repeated with other subsets of the 5-HT receptor 
 class, and 5-HT2a receptor was the most effective at reducing energy (Figure 5), consistent with the 
 known specificity of LSD and psilocybin for this receptor. 

 The Entropic Brain Hypothesis (EBH)  4,5  proposes that increased neural entropy brought forth by 
 psychedelics is reflected in subjective experience as an increase in the richness or depth of conscious 
 content  65  . We found that at an individual subject level, increased LSD-induced transition energy 
 reductions correlated with more dynamic brain activity (Figure 6, i,ii), thereby relating the theoretical 
 interpretation of transition energy with its role in the empirical de-stabilization of brain state dynamics. 
 We also found that the entropy rate of an individual's sequence of meta-states increased in proportion 
 to the LSD-induced energy reduction (Figure 6, iii), thereby relating the energy landscape of the brain to 
 its entropy. 

 More broadly, these results demonstrate that the combination of network control theory and specific 
 information about neurobiology (here exemplified by receptor distributions from PET) can offer powerful 
 insights about brain function and how pharmacology may modulate it - opening the avenue for 
 analogous studies on the effects of pharmacological interventions in clinical populations (e.g. 
 depression, schizophrenia)  31,32  . While other recent computational approaches have successfully 
 modeled the effects of serotonergic compounds on dynamic brain states  7,8  and the entropy of 
 spontaneous neural activity  9  , the present approach is the first to do both while also quantitatively 
 evaluating the energy landscape of the psychedelic state. 

 Limitations and Future Work  : 
 Although small sample size is common in neuroimaging studies of psychedelics and other states of 
 altered consciousness due to the inherent difficulties of collecting such data, future replications with 
 larger samples would be appropriate. We also acknowledge that these datasets have been studied 
 extensively before  6–9,35,36,59,60,67–71  and replications in different datasets will be warranted to ensure the 
 generalizability of these results. Although the LSD dataset is more suitable for obtaining robust 
 measurements of brain dynamics using the methods presented here, primarily because of the longer 
 scans, and, in addition, the larger sample size, we still found that psilocybin modified the brain’s energy 
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 landscape and dynamics in a similar fashion to LSD. Future experiments will be necessary to determine 
 if the subtle differences in results found between LSD and psilocybin are a result of sample size, scan 
 length, or pharmacodynamics (different receptor profiles, metabolism, or “peak” versus onset effects). 

 One other consideration is the objective quality of the clustering - because fMRI measures the smoothly 
 varying hemodynamic response to neuronal activation (BOLD)  72,73  , there may be suboptimal separation 
 of clusters. For example, even if neuronal activity does switch between states near-instantaneously, 
 there will still be a smoothing of the measured activity in the fMRI which would result in some TRs 
 occurring at the boundaries of the states. Despite this potential limitation, our current work and previous 
 studies on dynamic states from fMRI have revealed physiologically and behaviorally meaningful 
 cluster-based metrics  6,8,18,29,30,74–76  . 

 As used here, the term “energy” denotes the magnitude of the input that needs to be injected into the 
 system (the brain’s structural connectome) in order to obtain the desired state transition. It should not 
 be confused with metabolic energy of ATP molecules, nor with the energy quantified through 
 connectome harmonic decomposition, which has also been investigated in the context of the LSD 
 dataset  67,70  and other states of altered consciousness  68  . It is also not a direct measure of the brain’s 
 variational free energy landscape  66  , an information theoretic topic foundational to REBUS. We 
 hypothesize that the empirical changes in control energy demonstrated here indicate a flattening of the 
 posterior, which may or may not arise from a relaxation of prior beliefs and a flattening of the free 
 energy landscape as posited by REBUS. Future work will be required to determine if any direct 
 relationship exists between free energy and control energy. 

 Additionally, we had hypothesized that the transition energy modifications by LSD would correlate with 
 our participants’ subjective experience as captured by intra-scanner visual analog scale ratings, and the 
 11-factor states of consciousness (ASC) questionnaire  77,78  taken at the end of the day. There may be 
 numerous factors that limit our ability to model these effects. Psychedelics have been found to impair 
 some aspects of memory recollection in humans  79  (though not autobiographical memory recollection  80  ), 
 which may arguably impact on the fidelity of post-hoc subjective ratings and how they correlate with 
 acute, objective brain measures.  In addition, both subjective experience ratings and the relative energy 
 landscape (baseline or drug) may be impacted by each individual’s prior psychedelic use, individual 
 differences in pharmacological dose response, as well as their own unique structural connectome and 
 5-HT2a receptor distribution. Indeed, the structural connectome and the PET data used in our analysis 
 were representative examples obtained from population averages (not under drug conditions), rather 
 than unique data derived from each individual in our study. Although these measures are thought to be 
 less variable across individuals than brain activity dynamics, future work could explore how individual 
 differences in the structural connectome or receptor maps influence the energy landscape - and 
 possibly subjective experiences. 

 Finally, our approach is based on network control theory, which differs from other recent computational 
 investigations using e.g. whole-brain simulation through dynamic mean-field modeling of brain 
 activity  7–9,24  . These latter approaches employ a neurobiologically realistic model of brain activity based 
 on mean-field reduction of spiking neurons into excitatory and inhibitory populations, and have been 
 used to account for non-linear effects of 5HT2a receptor neuromodulation induced by psychedelics. In 
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 contrast, network control theory relies on a simpler linear model, which we employed due to its ability to 
 address our prediction that transition (control) energies would be reduced under psychedelics. 
 Additionally, recent evidence suggests that most of the fMRI signal may be treated as linear  81,82  . By 
 using the same linear equation for modeling both the psychedelic and placebo states, we quantify 
 relative changes in the energy landscape while keeping the dynamics of the model the same for each 
 case; implicitly, this also means that we assume that the underlying structural connectivity is providing 
 the same contribution in both conditions. However, using different models for the two cases may 
 represent an avenue for future research. Combining both approaches to capitalize on the strengths of 
 each will be a fruitful avenue for future work. 

 Conclusion  : 
 For the first time, we apply a framework for receptor-informed network control theory to understand how 
 the serotonergic psychedelics LSD and psilocybin influence human brain function. Combining fMRI, 
 diffusion MRI, PET and network control theory, we present evidence supporting the hypothesis that 
 psychedelics flatten the brain’s energy landscape and, furthermore, provide a mechanistic explanation 
 for this observed energy reduction by demonstrating that the empirical spatial distribution of 5-HT2a 
 receptor expression is particularly well-suited to flatten the brain activity landscape. This work highlights 
 the potential of receptor-informed network control theory to allow insights into pharmacological 
 modulation of brain function. 

 Materials and Methods  : 

 Data collection: LSD 
 Data acquisition is described in detail previously  35  . In brief, twenty healthy volunteers underwent two 
 MRI scanning sessions at least 14 days apart. A fully randomized, double-blind design is often 
 considered the gold standard; however, experimental blinding is known to be ineffective in studies with 
 conspicuous interventions. Thus, a single-blind, balanced-order design with an inert placebo (offering 
 the simplest and “cleanest” possible control condition) was considered an effective compromise. On 
 one day, participants were given placebo (10 mL saline), and on the other day they received LSD (75 
 μg in 10 mL saline), infused over two minutes, approximately 2 hours before resting-state scanning. 
 Post-infusion, subjects had a brief acclamation period in a mock fMRI scanner. On each scanning day, 
 three 7:20 minute eyes-closed resting-state scans were acquired. The first and third scan had no 
 stimulation, while the second scan involved listening to music; this scan was not used in this analysis 
 as we were interested in dynamics in the absence of external stimulation. BOLD fMRI was acquired at 
 3T with TR/TE = 2000/35ms, FoV = 220mm, 64 × 64 acquisition matrix, parallel acceleration factor = 2, 
 90 flip angle. Thirty- five oblique axial slices were acquired in an interleaved fashion, each 3.4mm thick 
 with zero slice gap (3.4mm isotropic voxels). One subject was excluded due to anxiety, and 4 due to 
 excessive head motion, leaving 15 subjects  (four women; mean age, 30.5 ± 8.0) for analysis. 
 Principally, motion was measured using framewise displacement (FD). The criterion for exclusion was 
 subjects with >15% scrubbed volumes when the scrubbing threshold is FD = 0.5. After discarding these 
 subjects we reduced the threshold to FD = 0.4. The between-condition difference in mean FD for the 4 
 subjects that were discarded was 0.323±0.254 and for the 15 subjects that were used in the analysis 
 the difference in mean FD was 0.046 ±0.032 (p = 0.0002). 
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 Data collection: Psilocybin 
 Data acquisition is described in detail previously  36  . In brief, fifteen health volunteers underwent two MRI 
 scanning sessions at least 14 days apart. In each session, subjects were injected. with either psilocybin 
 (2 mg dissolved in 10 mL of saline, 60-s i.v. injection) or a placebo (10 mL of saline, 60-s i.v. injection) 
 in a counterbalanced design. The infusions began exactly 6 min after the start of the 12-min fMRI scans 
 and lasted 60 s. The subjective effects of psilocybin were felt almost immediately after injection and 
 sustained for the remainder of the scanning session. The 5 minutes of post-infusion data were used for 
 the present analysis. BOLD-weighted fMRI data were acquired at 3T using a gradient echo EPI 
 sequence, TR/TE 3000/35 ms, field-of-view = 192 mm, 64 × 64 acquisition matrix, parallel acceleration 
 factor = 2, 90° flip angle. Fifty-three oblique axial slices were acquired in an interleaved fashion, each 3 
 mm thick with zero slice gap (3 × 3 × 3-mm voxels). Following the same exclusion criteria for motion 
 described above, nine subjects were kept for analysis (seven men; age, 32 ± 8.9 SD y of age). 

 Data preprocessing 
 Data pre-processing utilized AFNI, Freesurfer, FSL and in-house code  35,36  . Steps included 1) removal of 
 first three volumes; 2) de-spiking; 3) slice time correction; 4) motion correction (  Please see  SI: Motion 
 for additional steps taken to account for motion  ); 5) brain extraction; 6) rigid body registration to 
 anatomical scans; 7) non-linear registration to 2mm MNI space; 8) scrubbing -  using a frame-wise 
 displacement threshold of 0.4. The maximum number of scrubbed volumes per scan was 7.1%; 
 scrubbed volumes were replaced with the mean of the preceding and following volumes  ; 9) spatial 
 smoothing; 10) band-pass filtering (0.01 to 0.08 Hz); 11) de-trending; 12) regression out of 6 
 motion-related and 3 anatomical-related nuisance regressors. Lastly, time series for 462 gray matter 
 regions  83  were extracted (Lausanne scale 4, sans brain-stem).  Regional time-series were de-meaned 
 prior to analysis. 

 Structural connectivity network construction 
 Since diffusion MRI was not acquired as part of the LSD study, the structural connectome used for 
 network control theory analysis was identical to the one used in prior work  6  . Namely, we relied on 
 diffusion data from the Human Connectome Project (HCP,  http://www.humanconnectome.org/  ), 
 specifically from 1021 subjects in the 1200-subject release  84  . A population-average structural 
 connectome was constructed and made publicly available by Yeh and colleagues in the following way  33  . 
 Multishell diffusion MRI was acquired using b-values of 1000, 2000, 3000 s/mm  2  , each with 90 
 directions and 1.25 mm iso-voxel resolution Following previous work  6,85  , we used the QSDR algorithm  86 

 implemented in DSI Studio (  http://dsi-studio.labsolver.org  ) to coregister the diffusion data to MNI space, 
 using previously adopted parameters  85  . Deterministic tractography with DSI Studio’s modified FACT 
 algorithm  87  then generated 1,000,000 streamlines, using the same parameters as in prior work  6,43,85  , 
 specifically, angular cutoff of 55◦, step size of 1.0 mm, minimum length of 10 mm, maximum length of 
 400mm, spin density function smoothing of 0.0, and a QA threshold determined by DWI signal in the 
 CSF. Each of the streamlines generated was screened for its termination location using an 
 automatically generated white matter mask, to eliminate streamlines with premature termination in the 
 white matter.  Entries in the structural connectome  A  ij  were constructed by counting the number of 
 streamlines connecting every pair of regions  i  and  j  in the Lausanne-463  83  (sans brain-stem) and 
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 augmented Schaefer-232 atlas  88,89  as done previously  6,85  . Lastly, streamline count was normalized by 
 the number of voxels contained in each pair of regions. 

 5-HT receptor mapping 
 Details for obtaining the serotonin receptor density distribution have been previously described  34 

 however we provide a brief summary here. PET data for 210 participants (not under the influence of 
 psychedelics) were acquired on a Siemens HRRT scanner operating in 3D acquisition mode with an 
 approximate in-plane resolution of 2mm (1.4 mm in the center of the field of view and 2.4 mm in 
 cortex)  90  . Scan time and frame length were designed according to the radiotracer characteristics. For 
 details on MRI acquisition parameters, which were used to coregister the data to a common atlas, see 
 Knudsen et al  91  . For details on MRI and PET data processing, see the original reference  34  . 

 Extraction of brain states 
 Following Cornblath et al.  30  , all subjects’ fMRI time series for both conditions were concatenated in time 
 and  k  -means clustering was applied to identify clusters of brain activation patterns, or states. Pearson 
 correlation was used as the distance metric and clustering was repeated 50 times with different random 
 initializations before choosing the solution with the best separation of the data. To further assess the 
 stability of clustering and ensure our partitions were reliable, we independently repeated this process 
 10 times and compared the adjusted mutual information (AMI)  92  between each of the 10 resulting 
 partitions. The partition which shared the greatest total AMI with all other partitions was selected for 
 further analysis. In general, we found that the mutual information shared between partitions was quite 
 high, suggesting consistent clustering across independent runs (  see SI: Assessing the stability of 
 clustering  ). We chose the number of clusters  k  via the elbow criterion, i.e. by plotting the variance 
 explained by clustering for  k  =2 through 14 and identifying the “elbow” of the plot, which was between 
 4-6 across the various partitions. In addition, increasing  k  beyond  k  =5 resulted in a gain of less than 1% 
 of variance explained by clustering, a threshold used previously for determining  k  (  see SI: Choosing 
 k  )  30  . We chose  k  =4 for its straightforward and symmetric interpretation, however the energy landscape 
 findings are replicated with k=2-14 and all findings for  k  =5 are provided in the Supplemental 
 Information. 

 Characterization of brain states and their hierarchy 
 Each cluster centroid was characterized by the cosine similarity between it and binary representations 
 of seven a priori defined RSNs  30,41  as shown in the radial plots of Figure 2. Because the mean signal 
 from each scan’s regional time series was removed during bandpass filtering, positive values in the 
 centroid reflect activation above the mean (high-amplitude) and negative values reflect activation below 
 the mean (low-amplitude). To quantify the hierarchical relationship between centroids observed in the 
 radial plots, we calculated the Pearson correlation values between all centroids (SI Figure 3) and 
 grouped the anti-correlated pairs together, and refer to each individual centroid as a sub-state and the 
 pair collectively as a meta-state  30,38  . For replications with other data or processing choices, the states 
 were ordered and labeled based on their maximum correlation with the original 4 centroids in Figure 2. 

 We can extract 1) group-average centroids by taking the mean of all TR’s assigned to each cluster (all 
 subjects, all conditions) (shown in Figure 2), 2) condition-average centroids by taking the mean of all 
 TR’s assigned to each cluster separately for each condition (shown in SI Figure 6; placebo 
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 condition-average centroids were used for Figure 4a/b, iv and Figure 5 calculations), and 3) individual 
 condition-specific centroids by taking the mean of all TRs assigned to each cluster for a single subject 
 and condition (used for Figure 4a, ii & iii calculations). When taking condition-average centroids (LSD 
 and PL), we find that these two sets of centroids are highly correlated with one another (SI Figure 6d), 
 and thus are also very similar to the group-average centroids shown here. 

 Temporal brain state dynamics 
 We then analyzed the temporal dynamics of these brain states to observe how they change after 
 administration of LSD and psilocybin  30  . The fractional occupancy of each state was determined by the 
 number of TRs assigned to each cluster divided by the total number of TRs. Dwell time was calculated 
 by averaging the length of time spent in a cluster once transitioning to it. Appearance rate was 
 calculated as the total number of times a state was transitioned into per minute. Transition probability 
 values were obtained by calculating the probability that any given state  i  was followed by state  j  . 

 Energy calculations 
 Network control theory allows us to probe the constraints of white-matter connectivity on dynamic brain 
 activity, and to calculate the minimum energy required for the brain to transition from one activation 
 pattern to another  30,42,93  .  Here, we utilized network control theory to understand the structural and 
 energetic relationships between these states and the 5-HT2a receptor distribution. While this procedure 
 has been detailed elsewhere  30  , we summarize briefly here and in the Supplemental Information. We 
 obtained a representative NxN structural connectome  A  obtained as described above using 
 deterministic tractography from HCP subjects (  see Methods and Materials; Structural Connectivity 
 Network Construction  ), where N is the number of regions in our atlas. We then employ a linear 
 time-invariant model: 

 𝑥 ˙( 𝑡 ) =  𝐴𝑥 ( 𝑡 )   +     𝐵𝑢 ( 𝑡 )
 where x is a vector of length N containing the regional activity at time  t  .  B  is an NxN matrix that contains 
 the control input weights.  B  is the identity matrix for uniform inputs and contains the regional receptor 
 density information in the diagonal when incorporating the 5-HT receptor maps. For the latter case, the 
 diagonal of  B  was set to 1 plus the normalized regional receptor density value, resulting in a diagonal 
 matrix whose non-zero entries were between 1 and 2. This computational approach allows us to 
 compute the transition energy as the minimum energy required to transition between all pairs of the 
 substates. 

 The energy calculations in Figure 4a (ii) consisted of separate calculations for each individual’s LSD 
 and placebo centroids separately, (iii) utilized each individual’s placebo centroids while varying the 
 control input weights  B  , and (iv) used the group average placebo centroids, and  B  was varied for each 
 random permutation. Figure 4b again used each individual’s placebo centroids, while varying control 
 input weights  B  . 

 Lempel-Ziv complexity 
 In order to quantify the entropy of each subject’s brain state time series, we chose the widely used 
 Lempel-Ziv algorithm  94,95  ; this algorithm assesses the complexity of a binary sequence in terms of the 
 number of unique patterns it contains. A sequence that contains a larger number of unique patterns is 
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 more diverse, making it less predictable and therefore more entropic. The normalized Lempel-Ziv 
 complexity (also known as Lempel-Ziv compressibility) is then the number of patterns found in the 
 sequence, divided by the total length of the sequence. In order to apply this algorithm to our brain state 
 time series, we first had to convert them to binary sequences that returned 0 or 1 for each time point. To 
 do so, we considered the natural grouping of our 4 brain states into two meta-states (Meta-State 1 and 
 Meta-State 2). We consider this simplification to be justified by the fact that direct transitions between 
 sub-states (e.g. MS-1a to MS-1b) were extremely rare (SI Figure 16a), thereby allowing us  to reduce 
 the 4-state time series to a 2-state time series while losing very little information regarding transitions. 

 Statistical comparisons 
 The 5-HT  2a  - weighted inputs from the true receptor distribution were compared to the randomly shuffled 
 distributions via a permutation test where the true receptor distribution was spin-permuted and the 
 energy matrix re-calculated 10,000 times  50  . P-values were calculated as the fraction of times that the 
 randomized distribution resulted in a lower energy than the true distribution. All other metric 
 comparisons were achieved using a paired t-test of group means and were corrected for multiple 
 comparisons with Benjamini-Hochberg where correction is indicated. 

 Code and data availability 
 This project used open-source code cited in the main text, as well as code published by Cornblath et 
 al  30  . A repository for reproducing the analysis is available here: 
 https://github.com/singlesp/energy_landscape  . The data are freely available at 
 https://openneuro.org/datasets/ds003059/versions/1.0.0  . 

 Ethics and approval 
 The original studies were approved by the National Research Ethics Service committee London-West 
 London and conducted in accordance with the revised declaration of Helsinki (2000), the International 
 Committee on Harmonization Good Clinical Practice guidelines, and National Health Service Research 
 Governance Framework. Imperial College London sponsored the research, which was conducted under 
 a Home Office license for research with schedule 1 drugs. 

 Citation and gender diversity statement 
 Recent work in neuroscience and other fields has identified a bias in citation practices such that papers 
 from women and other minorities are under-cited relative to the number of such papers in the field  96–100  . 
 Here, we sought to proactively consider choosing references that reflect the diversity of the field in 
 thought, form of contribution, gender, and other factors. We used classification of gender based on the 
 first names of the first and last authors  97,101  , with possible combinations including male/male, 
 male/female, female/male, and female/female. Excluding self-citations to the first and last authors of 
 our current paper, the references contain 58.82% male/male, 15.29% male/female, 18.82% 
 female/male, and 7.06% female/female. We look forward to future work that could help us to better 
 understand how to support equitable practices in science. 
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