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Background: Microbiome and omics datasets are, by their in-
trinsic biological nature, of high dimensionality, characterized
by counts of large numbers of components (microbial genes, op-
erational taxonomic units, RNA transcripts, etc...). These data
are generally regarded as compositional since the total num-
ber of counts identified within a sample are irrelevant. The
central concept in compositional data analysis is the logratio
transformation, the simplest being the additive logratios with
respect to a fixed reference component. A full set of additive
logratios is not isometric in the sense of reproducing the geom-
etry of all pairwise logratios exactly, but their lack of isometry
can be measured by the Procrustes correlation. The reference
component can be chosen to maximize the Procrustes correla-
tion between the additive logratio geometry and the exact lo-
gratio geometry, and for high-dimensional data there are many
potential references. As a secondary criterion, minimizing the
variance of the reference component’s log-transformed relative
abundance values makes the subsequent interpretation of the
logratios even easier. Finally, it is preferable that the reference
component not be a rare component but well populated, and
substantive biological reasons might also guide the choice if sev-
eral reference candidates are identified. Results: On each of
three high-dimensional datasets the additive logratio transfor-
mation was performed, using references that were identified ac-
cording to the abovementioned criteria. For each dataset the
compositional data structure was successfully reproduced, that
is the additive logratios were very close to being isometric. The
Procrustes correlations achieved for these datasets were 0.9991,
0.9977 and 0.9997, respectively. In the third case, where the ob-
jective was to distinguish between three groups of samples, the
approximation was made to the restricted logratio space of the
between-group variance. Conclusions: We show that for high-
dimensional compositional data additive logratios can provide a
valid choice as transformed variables that are (1) subcomposi-
tionally coherent, (2) explaining 100% of the total logratio vari-
ance and (3) coming measurably very close to being isometric,
that is approximating almost perfectly the exact logratio geome-
try. The interpretation of additive logratios is simple and, when
the variance of the log-transformed reference is very low, it is
made even simpler since each additive logratio can be identified
with a corresponding compositional component.

Compositional data; logratio transformation; logratio geometry; logratio vari-
ance; Procrustes correlation

Correspondence: michael.greenacre@upf.edu

Introduction
The article (1) is emphatically titled: “Microbiome datasets
are compositional: and this is not optional”. We agree. For
example, the number of so-called reads obtained by high
throughput sequencing varies from sample to sample and is
of no relevance to the investigation, much the same as the size
of a rock is irrelevant to the study of its geochemical compo-
sition. It is the relative values of the read counts that are the
data of interest, thus making the data strictly compositional
(2). The same is true for other assay methods such as liq-
uid chromatography–mass spectrometry where identification
of metabolites is achieved by intensity values or areas under
peaks.
It is convenient to eliminate the effect of the sample totals by
normalizing, or closing, the data, so that sample values sum
to 1 — these vectors of non-negative sample values with con-
stant sums are called compositions. Once this initial step is
made, the question remains how to analyze, relate and inter-
pret the components of the compositions, be they microbial
genes, operational taxonomic units, transcripts or metabo-
lites.
It has long been appreciated, since the pioneering work of
John Aitchison (3–5), that a valid, (subcompositionally) co-
herent way to tackle compositional data is by considering
pairwise ratios of the components and by analyzing these ra-
tios after logarithmic transformation. Notice that these ratios
are invariant with respect to the normalization (closure) of the
data. Coherence means that, if the set of components is ex-
tended or reduced, the ratios of the common components re-
main constant whereas the values of their relative abundances
do change. In fact, the set of components under considera-
tion, imposed by the measuring instrument, research objec-
tive and practical considerations, is almost always a subcom-
position of a potentially much larger set.
The basic concept and data transformation in compositional
data analysis is thus the logratio, the logarithm of pairwise
ratios, with the log-transformation serving to change the ra-
tio scale to an interval one: log(A/B) = log(A)− log(B).
The challenge is to choose a data transformation that replaces
the compositional dataset with a set of logratios that are sub-
stantively meaningful to the practitioner as well as having a
clear interpretation. Once the transformation to logratios is
performed, analysis, visualization and inference carries on as
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before, but always taking into account the interpretation in
terms of ratios.
In Aitchison’s earliest work he proposed the additive logratio
transformation (ALR), where one component is chosen as the
denominator, or reference, with all the other components as
numerators. Thus, if there are J components, with values
X1,X2, . . . ,XJ , there are J−1 logratios in the ALR set with
respect to the selected reference component, denoted by ref,
of the form:

ALR(j |ref ) = log(Xj/Xref ), j = 1, . . . ,J, j 6= ref
(1)

Since then a variety of logratio transformations have been
proposed: for example, centered logratios (used in (6)), iso-
metric logratios and pivot logratios (for example, (7, 8)). All
of these involve ratios of geometric means of components
and, as a result, have complicated interpretations (9, 10),
lacking the simplicity of the pairwise logratio between two
components. Isometric and pivot logratios are particularly
problematic when the numbers of components in the geo-
metric means are high. They do have the property of isom-
etry, however, which means that they engender exactly the
same multivariate geometric structure of the sample points as
that of all the pairwise logratios, called the logratio geome-
try (sometimes referred to as the “Aitchison geometry”). The
proponents of these complex transformations take isometry
as a type of “gold standard” for the analysis of compositional
data, and the strict adherence to this mathematical ideal has
been to the detriment of using simpler transformations such
as the ALRs, or a subset of pairwise logratios. In a series of
papers (11–13) it is shown in a variety of contexts that a set
of simple pairwise logratios can satisfactorily approximate
the logratio geometry, coming close to being isometric for all
practical purposes. A small loss of isometry is thus traded off
in favour of the benefit of a simpler and clearer interpretation
of the logratio variables. In these above-mentioned studies
any set of pairwise logratios can be selected, whereas ALRs
are restricted to pairwise logratios with respect to a fixed ref-
erence component.
Apart from the fact that ALRs are not strictly isometric, var-
ious other criticisms have been levelled at the ALR transfor-
mation, such as its sacrificing a component to serve as the
reference and the doubt about which component to choose
as reference. We hope to show that none of the above are
disadvantages, but rather that, especially in the case of high-
dimensional compositional data, the ALRs are the logratio
transformations of choice and that their involving a fixed ref-
erence is actually a benefit. In this way we return to the ori-
gins of compositional data analysis and re-establish the addi-
tive logratio in all fields of omics research, thereby vindicat-
ing Aitchison’s original claim as enounced in the following
quotation from his keynote address (14) at the biennial Com-
positional Data Analysis workshop in 2008 (Section 5.1):

"The ALR transformation methodology has, in
my view, withstood all attacks on its validity
as a statistical modelling tool. Indeed, it is an
approach to practical compositional data anal-

ysis which I recommend particularly for non-
mathematicians. The advantage of its logra-
tios involving only two components, in contrast
to CLR and ILR (isometric transformations ...),
which use logratios involving more than two and
often many components, makes for simple inter-
pretation and far outweighs any criticism, more
imagined than real, that the transformation is not
isometric."

Aitchison’s phrasing above that the criticism of the ALR
transformation not being isometric is “more imagined than
real”, is particularly pertinent to what we will show here. We
will demonstrate that a set of ALRs can be so close to be-
ing isometric that, for all practical purposes, they are isomet-
ric. We will also show that there are clearly defined criteria
for choosing a reference and it is advantageous that there are
very many potential choices in high-dimensional data when
the number of components is large.
Three high-dimensional omics datasets will be used to show
that the ALR transformation can validly provide a set of sim-
ple variables to represent the whole compositional dataset,
the essential step being the choice of the reference compo-
nent. Section 2 gives some background theoretical material.
Section 3 details the computational steps involved in deter-
mining and validating the ALRs chosen for each of three
datasets, and Section 4 gives the results. Section 5 closes
with a discussion and conclusion.

Logratio variance, logratio geometry and se-
lection of additive logratio transformation

Logratio-based compositional data analysis, often called
CoDA (7), has mainly developed in fields where the number
of components J is less, often much less, than the number
of samples I , i.e. J < I , with geochemistry being the area
of most applications. A short, yet comprehensive, review of
CoDA is given by (15), with recent books aimed at practi-
tioners by (16) and (8). The relevant theoretical results for
our purpose are summarized in this section, as well as how
they apply to ALRs.

Total logratio variance. The total logratio variance is a ba-
sic statistic that quantifies how dispersed the samples are in
the multivariate logratio space. A compositional data vec-
tor with J components, X1,X2, . . . ,XJ , can be expanded
into 1

2J(J − 1) pairwise ratios, and then log-transformed.
Thus, an I ×J compositional data matrix can be expanded,
notionally at least, to an I × 1

2J(J − 1) matrix of logra-
tios. In the most general case, there are positive weights
c1, c2, . . . , cJ associated with the components (17–20), where
c1 + c2 + · · ·+ cJ = 1, in which case it can be shown that the
(j,k)-th logratio log(Xj/Xk) has weight equal to the prod-
uct cjck (15, 16). The total logratio variance is then defined
as:

TotVar =
∑∑
j<k

cjckVarjk (2)
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where Varjk is the variance of the (j,k)-th logratio (15, 16).
The weights have a normalizing function to balance out the
contributions of the different components, since rarer com-
ponents often engender excessively large logratio variances
(2, 16, 21), or they might be used to downweight compo-
nents with high measurement error. However, in many ap-
plications, including the ones in this article, this aspect is ig-
nored and the components are equally weighted by cj = 1/J ,
j = 1, . . . ,J . Consequently, (2) simplifies as the sum of the
1
2J(J−1) variances of the unique pairwise logratios divided
by J2.
For a dataset with thousands of components this would be
a laborious calculation, but fortunately there is a shortcut
thanks to the centred logratio (CLR) transformation:

CLR(j) = log
(

Xj

g(X)

)
, j = 1, . . . ,J (3)

where g(X) is the weighted geometric mean
Xc1

1 Xc2
2 · · ·X

cJ
J (16), i.e.

CLR(j) = log(Xj)−
J∑
k=1

ck log(Xk) (weighted case)

= log(Xj)−
1
J

J∑
k=1

log(Xk) (unweighted case)

(4)

The total variance in (2) is then equivalently computed using
the variances of the CLRs, Varj , weighted respectively by
cj , j = 1, . . . ,J , or by constant 1/J when equally weighted:

TotVar =
J∑
j=1

cjVarj (weighted case)

= 1
J

J∑
j=1

Varj (unweighted case)

(5)

Notice that in the weighted or unweighted cases the CLRs
have to be computed according to one of the respective defi-
nitions in (4). Notice too that the weighting in (2) or (5), with
either differential or equal weights, are weighted averages of
the part variances, ensuring that total logratio variances can
be compared between data sets of different sizes.
The computation is completely symmetric with respect to
rows and columns, so when J > I , as will generally be the
case for omics data, the computation can be further simpli-
fied. The data matrix is first transposed and relative abun-
dances are expressed with respect to component totals, fol-
lowing which the above computation is repeated as if the
samples were the components.

Logratio geometry. A compositional dataset has a certain
exact geometry defined by the logratio distances between ev-
ery pair of samples. These are Euclidean distances that can be
defined in two equivalent ways: either on the I× 1

2J(J −1)
matrix of all pairwise logratios, again a very wide matrix due

to the large number of pairs of components, or more effi-
ciently on the I×J matrix of CLRs (4). As before, there are
weighted and unweighted versions — for the exact defini-
tions see (15, 16)). If J < I (i.e. the dataset is “narrow”) the
sample points are exactly in a (J−1)-dimensional Euclidean
space, otherwise if J > I (i.e. the dataset is “wide”) they are
exactly contained in a (I − 1)-dimensional Euclidean space
— hence, the dimensionality is K = min{I−1,J −1}.
In both weighted and unweighted cases the total logratio vari-
ance can be decomposed along principal axes to give a low-
dimensional reduced view of the samples, called logratio
analysis (LRA) (22). LRA is the principal component anal-
ysis of all the pairwise logratios, which is equivalent to the
PCA of all the CLRs, in weighted (20) or unweighted (23)
forms.
Notice that for a compositional data set of dimensionality
J − 1, say (for the case J <= I), then any set of J − 1 lin-
early independent logratios, including any set of J−1 ALRs,
explains the total logratio variance in 2 or 5 completely. This
set clearly does not contain the total variance, but explains
it totally in a regression sense (11). If J > I , as in many
high-dimensional datasets, only I − 1 linearly independent
logratios are required to explain the total logratio variance.

Procrustes analysis. For any particular set of logratio
transformations, the samples in the transformed space can
be “fitted" to the exact logratio geometry, using Procrustes
analysis (24, 25), to see how close they come to the exact
geometry. Suppose the coordinates of the samples in their
exact logratio geometry are in the matrix X (I ×K), where
K is the dimensionality of the space, as explained above. The
coordinates are established using LRA and the inter-sample
distances in this geometry are exactly the logratio distances.
Similarly, suppose the coordinates of the samples in a partic-
ular ALR geometry are in the matrix X (I ×K), the same
dimensionality as the exact one — for example, if J > I (as
in the present case) then the dimensionality of the logratio
space is K = I − 1 (one less than the number of samples),
and that of the J −1 ALRs, also involving I samples, is also
I− 1. The sample coordinates in the ALR geometry are es-
tablished using PCA and the inter-sample distances in this
ALR geometry will not be the same as the exact logratio dis-
tances, partly due to differences in scale and rotation between
the two matrices, which are irrelevant to summarizing their
distance structure. So Procrustes analysis aims to match the
configurations by least-squares as closely as possible by three
simple operations: centering, scaling and rotation.
The first two operations are trivial: the columns of X and
Y are already centered by the LRA and PCA respectively,
and scaling is achieved by dividing each matrix by the square
roots of their respective sum-of-squares. Suppose X∗ and
Y∗ are the matrices standardized in this way, then com-
pute the singular value decomposition of their cross-product
(X∗)TY∗ = UDVT. The fitting of Y∗ to X∗ by least-
squares fitting is achieved by applying the rotation matrix
Q = VUT to Y∗: Y∗Q. Equivalently, X∗ could be fitted
to Y∗ by applying the inverse rotation QT : X∗QT.
The final step is to compute the Procrustes correlation, which
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measures how close the two configurations are to being ex-
actly matched. The sum-of-squares E of the differences be-
tween X∗ and Y∗Q lies between 0 and 1, where 0 implies
perfect matching and 1 implies total absence of matching.
The quantity E can be considered a residual sum-of-squares
if one thinks of Y∗ being fitted to X∗, and since E has a
maximum of 1, then 1−E is analogous to a coefficient of
determination (R2) in a least-squares regression. The Pro-
crustes correlation is thus defined as R =

√
1−E, so that a

value near 1 would mean that the ALR geometry is very close
to the exact logratio geometry, that is it is almost isometric.
The Procrustes correlation R can be equivalently computed
as the correlation between the elements of the matrices X∗

and Y∗Q strung out as IK×1 vectors.
In short, the goal is to measure the deviation of the ALR-
transformed data from the ideal of isometry. This way of
measuring the proximity between two configurations in mul-
tidimensional space by the Procrustes correlation has already
been used to select a subset of pairwise logratios that engen-
ders a Euclidean geometry close to the exact one (11–13).
This idea was inspired by the selection of variables in PCA
(26), and the same idea will be used here to select a reference
in order to define a set of ALRs.

Criteria for selecting reference for additive logratios.
The ALR transformation converts the original I×J compo-
sitional data matrix to an I × (J − 1) matix of ALRs, with
respect to a particular reference component. There are J po-
tential reference components to choose from, which in the
usual geo- and biochemical applications can be a relatively
low number. However, in the case of most omics data, J is
very large and usually very much larger than I , the number
of samples. This gives a large set of possibilities for choos-
ing a set of ALRs that comes as close as possible to repro-
ducing the exact logratio geometry by achieving a very high
Procrustes correlation.
The matching of the geometries is the most important crite-
rion for choosing the reference, but there are other proper-
ties that would be desirable.. For example, it would be very
convenient if the reference’s relative abundances across the
samples is as constant as possible. From (1) ALR(j |ref ) =
log(Xj)− log(Xref ), hence we should look for low variance
in log(Xref ). Since dividing each component by an almost
constant reference value just shifts all the logratios by an al-
most constant amount, the logratio can then be interpreted in
practice as its numerator on a logarithmic scale. An addi-
tional benefit of choosing a low variance component is that it
is unlikely to be correlated with any continuous or categorical
covariate whose relationship with the compositions is being
investigated — the actual relationship with such covariates
can be checked where applicable.
A further criterion would be to avoid choosing a reference
with low occupancy across individuals, where low occupancy
is related to low overall abundance (27). Zeros need to be re-
placed before making the logratio transformation, by adding
one to all the counts or using one of the many zero replace-
ment methods, and using such a component as the denomina-
tor would affect the interpretation of all the ALRs.

Validating the ALR transformation on three
datasets
Three datasets with high numbers of components are consid-
ered here:

• a wide functional microbe dataset of secum samples of
I = 89 rabbits, in a study of J = 3937 microbial genes
(28), which we will refer to as the Rabbits data;

• a wide dataset of I = 28 people in a study of J = 3147
mRNA transcripts from mouse bone marrow dendritic
cells (29), re-analysed by (21), which we will refer to
as the RNAseq data;

• a narrower dataset, from the stool samples of I =
490 patients in a study of colono-rectal cancer, on
which J = 335 microbiota operational taxonomic units
(OTUs) were identified, referred to as the Cancer data
(30); the individuals in this dataset were classified as
normal, adenoma (benign tumor) or cancer and the ob-
jective was to identify OTUs that discriminated be-
tween these groups, especially to predict the cancer
group.

The third dataset is included because it involves much fewer
components than the others and problematically has more
than 50% data zeros. It also allows investigating how
well ALRs can reproduce the geometry of the subspace of
the between-group variance, since variance unrelated to the
group discrimination is not of interest in the study.
For each dataset the following statistics are computed:
(a) The total logratio variance, which is a statistic that sum-
marizes how dispersed the sample points are in multidimen-
sional space (equal weighting of components will be used
throughout). For the first two wide examples, the total vari-
ance can be more efficiently computed by transposing the
matrix of abundances (or relative abundances) and then com-
puting the total variance on the CLRs of the samples, as
if they were the components. The exact logratio geometric
structure is then determined, that is the coordinates of all the
sample points in the full space of all the dimensions (for first
two datasets), or in the constrained space (third dataset).
And then, for each component used as a reference for defin-
ing ALRs:
(b) The Procrustes correlations between the exact logratio ge-
ometry and the approximate geometry of the set of ALRs en-
gendered by each choice of reference.
(c) The variance of the log-transformed relative abundances
of each reference candidate across the samples;
The components with the highest correlations in (b) and, of
those, the lowest variances in (c) will be candidates for the
choice of reference. In practice, of course, domain knowl-
edge should also play a role in selecting the reference, espe-
cially when there are several competing candidates.
Finally, we will show the reduced-dimension LRA of the
exact sample configuration based on all pairwise logratios
alongside the reduced-dimension configuration of the chosen
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set of ALRs to demonstrate that the configurations are prac-
tically identical.

Results

The Rabbits data. This is a 89×3937 dataset of counts and
there are no zeros.

(a) Total logratio variance = 0.1601, computed on the 3937
CLRs of the components (microbial genes). Equivalently, a
faster way is to transpose the dataset and then treat the sam-
ples as components — the same result is obtained on the 89
CLRs of the samples.

(b) The highest Procrustes correlation is equal to 0.9991, cor-
responding to the same gene number 856. This gene has the
201st highest abundance among the 3937 genes.

(c) The lowest variance of the log-transformed relative abun-
dance of the reference components is equal to 0.00117, cor-
responding to gene number 856. Its five-point summary on
the log-scale is:

minimum = -6.97 first quartile = -6.89 median = -6.87
third quartile = -6.84 maximum = -6.76

showing a high constancy in the values, with interquartile
range of 0.05.
To visualize how close the ALR variables are being to isomet-
ric, Figure 1 shows the all between-sample distances com-
puted on the ALRs plottted against the exact logratio dis-
tances based on either all pairwise logratios or, equivalently,
the CLRs.
The LRA of the full dataset, showing just the samples, is
shown in Figure 2a, while the corresponding PCA of the
ALRs with reference gene 856 is shown in Figure 2b. They
are practically identical, with very slight differences, as ex-
pected. The letters S and F stand for the two laboratories
that did the sequencing, showing a clear separation. This se-
quencer effect was subsequently eliminated in the data anal-
ysis.
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Fig. 1. Between-sample distances for the Rabbits dataset based on the ALRs with
reference microbial gene 856 versus the exact logratio distances, corresponding
to the Procrustes correlation of 0.9991. The number of pairs of distances plotted
= 89 × 88/2 = 3916.
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Fig. 2. (a) Logratio analysis of the Rabbits data, aiming to explain the total logratio
variance. (b) Principal component analysis of the additive logratios with reference
component microbial gene number 856, showing a geometry practically identical to
the exact logratio geometry. The two groups of points are due to two sequencing
laboratories, indicated here by F and S.

The low variance of the reference gene means that in the orig-
inal table of counts this gene’s counts are closely proportional
to the total counts — Figure 3 shows this conclusively.
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Fig. 3. Proportionality between counts of reference gene number 856 and sum of
counts, for the 89 samples. The dashed red line goes through the origin (0,0).

It is interesting that the top candidates in this data set coming
up as reference microbial genes are associated with the ge-
netic machinery of the microbes (28), which are intrinsic in
all microbial ecosystems. The same pattern has been found
for other functional microbiome datasets (31).
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The RNAseq data. This is a 28× 3147 dataset of counts.
There are 32 zeros in this dataset, which have been replaced
using the function cmultRepl in R package zCompositions
(32).

(a) Total logratio variance = 0.2099, computed on the 3147
CLRs of the components (transcripts). Equivalently, a faster
way is to transpose the dataset and then, after treating the
samples as components, the same result is obtained on the 28
CLRs of the samples.

(b) The highest Procrustes correlation is equal to 0.9977, cor-
responding to the mRNA transcript number 1318.

(c) The lowest variance of the log-transformed relative abun-
dance of the reference components is equal to 0.00415, cor-
responding to mRNA transcript number 1557. Its five-point
summary on the log-scale is

minimum = -8.32 first quartile = -8.22 median = -8.18
third quartile = -8.14 maximum = -8.03

showing again a high constancy in the values, with interquar-
tile range of 0.08.

In this case the reference that maximizes the correlation is
different from the one that minimizes the variance. One tran-
script, number 1179, comes second on both criteria and is the
one that was chosen, with Procrustes correlation = 0.997 and
variance = 0.00626. It has the 1617th highest relative abun-
dance among the 3147 transcripts, and its five-point summary
is:

minimum = -9.69 first quartile = -9.62 median = -9.57
third quartile = -9.50 maximum = -9.37

with interquartile range 0.12.

To visualize how close the ALR variables are being to iso-
metric, Figure 4 shows the between-sample distances com-
puted on the ALRs plotted against the exact logratio distances
based on either all pairwise logratios or, equivalently, the
CLRs. The agreement is again excellent, with slightly less
congruence in the high distances (commented below).

The LRA of the full dataset, showing just the samples, is
shown in Figure 5a, while the PCA of the ALRs with refer-
ence transcript 1179 is shown in Figure 5b. They are practi-
cally identical, with only very slight differences, again as ex-
pected from the very high Procrustes correlation. The labels
stand for two different treatments (L and M) and 7 different
times (0, 1, 2, 4, 6, 9 and 12 hours). The slight discrepancies
in the higher distances of Figure 4 would correspond to the
distances between samples of the different treatment groups,
which are the most separated in Figure 5.
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Fig. 4. Between-sample distances for the RNAseq data based on the ALRs with
reference transcript 1179 versus the exact logratio distances, corresponding to the
Procrustes correlation of 0.9977. The number of pairs of distances plotted = 28 ×
27/2 = 378.
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The Cancer data. This is a 490×335 dataset of counts. This
dataset has a large number of zero counts (58% of the whole
dataset) — a one was added to all the counts in the dataset be-
fore closing and taking logarithms. One OTU was removed
due to a very large outlying value, which might be incorrect,
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reducing the dataset to 334 OTUs. The samples were divided
into three groups: adenoma (benign tumor), cancer and nor-
mal.
This is a more problematic example because of the fewer
components and the presence of so many zeros. In a prelim-
inary analysis, the best Procrustes correlation obtained with
the full-space geometry (of dimension 333, one less than the
number of ALRs) was 0.936, lower than those of the first two
examples. Since the objective of the data is to find the OTUs
that discriminate between the groups, agreement in the ge-
ometry is not required in the full space but rather in the two-
dimensional reduced space of the group means, excluding the
dimensions not related to group differences. So, in the search
for maximum agreement, a constrained (or restricted) LRA
is performed on the complete set of CLRs, constrained to the
three group means, and compared with the series of similarly
constrained PCAs of ALR-transformed data using the differ-
ent reference components. In all cases we are not interested
here in variance that it is not related to the separation of the
three sample groups.
(a) Total logratio variance = 1.5301 computed on the 334
CLRs of the components, which in this example are less than
the number of samples. Notice that this value is much higher
than that of the previous two datasets, which is typical of taxa
datasets, with many zeros and larger contrasts in the data.
However, the restricted between-group variance that we fo-
cus on here is small, equal to 0.0125, only 0.82% of the to-
tal. Nevertheless, the group differences are highly significant
(p < 0.0001), using the multivariate permutation test in the
vegan package (33).
(b) The highest Procrustes correlation is equal to 0.9997, cor-
responding to the OTU number 312 (labelled in the original
dataset as Otu000363).
(c) The lowest variance of the log-transformed reference
components is equal to 0.308, corresponding to OTU num-
ber 320 (labelled in the original dataset as Otu000372). Its
five-point summary on the log-scale is

minimum = -9.24 first quartile = -9.23 median = -9.22
third quartile = -9.18 maximum = -3.20

Since this OTU has only 36 nonzero values out of 490, the
above estimated quartiles relate mostly to the overwhelming
number of zeros, hence the small differences in quartiles up
to the third, with positive skewness up to the maximum cor-
responding to the nonzero values.
It was decided to use this OTU number 312 as the reference
part, with variance of its log-transformed relative abundances
equal to 0.476 and many more nonzero abundances, 213 out
of 490. Its five-number summary is as follows:

minimum = -9.24 first quartile = -9.23 median = -9.18
third quartile = -8.13 maximum = -6.67

Because of the variability in the reference part, the ALRs
should always be interpreted as pairwise logratios with re-
spect to the reference, not as approximating the logarithms of
the numerator components as in the first two examples.
The Procrustes correlation almost equal to 1 again means that
the ALRs are, for all practical purposes, isometric, in this

case isometric for group discrimination.
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Fig. 6. (a) Constrained logratio analysis of the Baxter data, aiming to explain the
between-groups logratio variance. (b) Constrained principal component analysis
(i.e. RDA) of the additive logratios with reference OTU number 312. In each case
the first percentage expresses explained variance relative to the constrained logratio
variance, whereas the second percetnage is relative to the total logratio variance.

Figure 6 shows the constrained solution of the between-group
variance using all the pairwise logratios (i.e. the centred lo-
gratios), and the corresponding solution using the ALRs. Be-
cause of the Procrustes correlation close to 1, there is no no-
ticeable difference between the two solutions. The fact that
the confidence ellipses for the groups means are highly sep-
arated bears testimony to the highly significant differences
between them. For each axis two percentages are given: the
first is the explained variance relative to the two-dimensional
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constrained logratio variance (= 0.0125), the second is the
same explained variance relative to the much larger total lo-
gratio variance (= 1.5301).
In this example there were much fewer components to choose
from, and there were a large number of data zeros, typical of
a microbial taxa dataset. These data zeros force samples onto
the sides of the simplex space of the original compositions,
and in the logratio transformations these become outliers,
hence the difficulty in matching the exact and approximate
geometries in the full space of the dataset. When constraining
the solution to discriminate between the three groups, how-
ever, the outliers are much less important and so the ALRs,
with the reference that was chosen to produce a configuration
close to the constrained solution, has functioned surprisingly
well, as shown in Figure 6.
Having made a selection of a set of ALRs that reproduces the
between-group geometry, these ALRs can be used in a model
for predicting the groups. In (30) a random forest prediction
algorithm is used, combined with a backward elimination of
the components, using the R package AUCRF (34) to get an
optimal subset of OTUs. The classification is aimed at pre-
dicting the cancer and normal groups (hence the ademona
group is omitted). Using the relative abundances as inputs to
the algorithm, this results in 33 OTUs being chosen, and an
overall error rate of 22%, with 52% of the cancers correctly
predicted, and 97% of the normals. As a comparison, using
the ALRs with respect to reference 856, the same algorithm
with the same decision rule results in 34 OTUs being chosen,
and an overall error rate of 20%, with 66% of the cancers
correctly predicted and 90% of the normals. Moreover, the
list of chosen OTUs is very similar (i.e. in the case of the
ALRs, the denominator OTUs), with the top 10 in each se-
lection identical. At least in this example, using ALRs has
performed slightly better, with the added value that logratios
are being used, conforming to good practice in compositional
data analysis.
The use of the relative abundances in (30) seems to be hardly
different than the logratio approach, at least for the vari-
able selection and prediction. Correspondence analysis (CA),
which also operates on the relative abundances, has also been
applied to this dataset (15) and shown to produce similar re-
sults. There is a theoretical reason underpinning CA, how-
ever, and that is the fact that the chi-square normallization
in CA has a close connection to logratio distance, and the
issue of lack of subcompositional coherence is less critical
(35–37). The striking advantage of CA for compositional
data analysis is the fact that it handles zero values naturally,
which is in fact why it is so popular in ecology and other
fields where data can be very sparse, such as archaeology and
linguistics.

Discussion
Our objective has been to show that the ALR transformation,
the simplest one in the CoDA toolbox, can provide a valid
solution for the analysis of high-dimensional compositional
datasets. The challenge is to find a good reference part.
In the two datasets with more than 3000 components, there

was more chance to find a reference component with the two
desirable properties for constructing a set of ALRs: first and
foremost, the reference has to result in a high Procrustes cor-
relation between the exact logratio geometry and the ALR
geometry, both of which have the same dimensionality. A
secondary criterion is low variance in the log of the relative
abundance, which considerably simplifies the interpretation
of the ALRs. In all three examples we have found that the
ALR transformation has proved to be suitable for represent-
ing the variability of the compositional dataset, either this
variability in the full space of the data, or in a space that is
constrained to the particular objective of the study.
There has been a rejection in the compositional data analy-
sis literature of variables that are not exactly isometric, and
variables that are “oblique” (10). This criticism is difficult
to understand when one can come up with a set of variables
that reproduces almost perfectly the logratio geometry, which
means that the criticism is aimed at the tiny lack of isometry.
With respect to the ALRs, which are of concern here, these
are simple pairwise logratios with respect to a chosen refer-
ence. If one is fortunate to find a reference that is almost
constant in its relative abundance, this means that the pair-
wise logratio in each ALR is, for all practical purposes of
interpretation, the same as the logarithm of the numerator.
This makes the interpretation of the ALRs much easier when
it comes to judging which ALRs are important for explain-
ing variance, relating to covariates or distinguishing between
groups.
For the third example with hundreds of components and
many zeros, it seems that the "best" reference (in the sense
defined here) might not be as successful in reproducing the
logratio geometry as perfectly as when there are thousands
of components, especially when the reference itself contains
many zeros. Thus, one has to carefully evaluate the properties
of the ALRs as a potential set of logratios in any given study.
For this particular dataset, however, with its principal objec-
tive of distinguishing between sample groups, the geometry
of the space constrained to the variance between groups is
very successfully reproduced by a set of ALRs. It appears
that imposing constraints on the geometry according to the
research objective, “regularizes" the space by removing the
many problems of the zeros and consequent outliers.
We have shown that the ALR transformation can validly be
used for high-dimensional datasets, and considerably sim-
plify the life of practitioners. Hron et al. (10) state that “alr
coordinates cannot be simply identified with the individual
original components, as they are in fact logratios, but the link
with these is more clearly stated”. We have shown that this
sweeping statement is in fact not true in some cases. When
the reference is almost constant, then the numerators of the
ALRs are very close to being directly interpretable as the
log-transformed relative abundances of the respective com-
ponents. Then, for all practical purposes, the ALR can be
referred to as the component itself. In addition, variances
and correlations of the ALRs can be identified approximately
with those of the numerator, apart from an overall scale fac-
tor, which makes the interpretation much easier. This has
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been possible for the first two datasets presented here, with
the caveat that for the third set of microbial taxa counts, the
reference part does not have sufficiently low variance for this
simplified interpretation, and thus the ALRs should be inter-
preted as true ratios.
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