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ABSTRACT 

Objectives: The advent of deep-learning has set new standards in an array of image translation 

applications. At present, the use of these methods often requires computer programming 

experience. Non-commercial programs with graphical interface usually do not allow users to 

fully customize their deep-learning pipeline. Therefore, our primary objective is to provide a 

simple graphical interface that allows students and researchers with no programming experience 

to easily create, train, and evaluate custom deep-learning models for image translation. We also 

aimed to test the applicability of our tool (the DeepImageTranslator) in two different tasks: 

semantic segmentation and noise reduction of CT images.  

Methods: The DeepImageTranslator was implemented using the Tkinter library; backend 

computations were implemented using Pillow, Numpy, OpenCV, Augmentor, Tensorflow, and 

Keras libraries. Convolutional neural networks (CNNs) were trained using DeepImageTranslator 

and assessed with three-way cross-validation. The effects of data augmentation, deep-

supervision, and sample size on model accuracy were also systematically assessed.  

Results: The DeepImageTranslator a simple tool that allows users to customize all aspects of 

their deep-learning pipeline, including the CNN, the training optimizer, the loss function, and the 

types of training image augmentation scheme. We showed that DeepImageTranslator can be 

used to achieve state-of-the-art accuracy and generalizability in semantic segmentation and noise 

reduction. Highly accurate 3D segmentation models for body composition can be obtained using 

training sample sizes as small as 17 images. Therefore, for studies with small datasets, 

researchers can randomly select a very small subset of images for manual labeling, which can 

then be used to train a specialized CNN model with DeepImageTranslator to fully automate 

segmentation of the entire dataset, thereby saving tremendous time and effort.  
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Conclusions: An open-source deep-learning tool for accurate image translation with a user-

friendly graphical interface was presented and evaluated. This standalone software can be 

downloaded for Windows 10 at: https://sourceforge.net/projects/deepimagetranslator/  
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INTRODUCTION 

Image translation or transformation is an important and challenging task in many areas of clinical 

and fundamental sciences. Since the introduction of convolutional neural networks (CNN), 

generations of CNN architectures have been designed and have achieved state-of-the-art 

performance in image translation tasks, such as semantic segmentation [1-8], noise reduction [9-

11], and image synthesis [12, 13].  

Nevertheless, the application of deep-learning methods for image translation can be difficult for 

scientists with no computer programming experience. In general, deep-learning pipelines are 

created using custom-implemented codes. Existing software programs for deep-learning-based 

image analysis that allow users to build, train, and evaluate custom CNNs, such as Niftynet [14], 

are mostly accessed through a command-line interface. On the contrary, non-commercial open-

source programs that interacts with users with a graphical interface, such as the ImageJ 

implementation of U-net [15] or ilastik [16], do not allow users to customize their CNN (e.g. 

adjusting the number of channel/layers, specifying input image resolution), the training 

optimizer, the loss function, and the use of different training image augmentation scheme. 

Therefore, our primary objective is to create a user-friendly graphical interface that allow 

students and researchers to easily implement, train, and test custom deep-learning pipelines for 

image translation. Our secondary objective is to verify the applicability of our tool in two 

different image translation tasks using CT images.  

One specific use of the CNNs is in semantic segmentation of CT images for assessment of body 

composition. For example, CT segmentation is critical for precise quantification of different 

adipose tissue compartments to provide useful information for fundamental research in metabolic 

syndrome. However, most of existing implementations of deep-learning methods in abdominal 
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CT segmentation were made for clinical research using 2D single-slice images from cohorts of 

thousands of patients, which is not applicable in small scale studies. Furthermore, studies of 3D 

volumetric segmentation for body composition are also scarce. Therefore, we also aimed to 

evaluate the practical application of the DeepImageTranslator in our small dataset of 524 

volumetric CT images from 5 subjects, while also assessing the effects of data augmentation, 

deep-supervision, and sample size on model accuracy.  

Here, we present the various features of DeepImageTranslator and used CT images to evaluate 

the performance of our software in two image translation tasks, namely semantic image 

segmentation and noise reduction. This open-source tool is freely available to the general 

scientific community and can be installed on a Windows computer and used without any prior 

knowledge of computer programming.  

METHODS 

DeepImageTranslator software development 

DeepImageTranslator is a user-friendly tool freely available at: 

https://sourceforge.net/projects/deepimagetranslator/ for Windows. It is written in Python 3.8 and 

distributed under the GNU General Public License (version 3.0). Its graphical user interface was 

developed using the Tkinter library and allows one to easily load images into the software, 

customize hyperparameters, and save trained models and predicted target images on the user’s 

hard drive. Image generation and augmentation prior to training were achieved using codes 

implemented with Pillow, Numpy, OpenCV, and Augmentor libraries. Model training and image 

prediction were implemented using Tensorflow and Keras.  
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CT image acquisition 

We evaluated our pipeline using data from 5 subjects who underwent PET/CT examinations as 

part of a different study in our laboratory, which will be published elsewhere. Whole body CT 

scans (16 mAs) were performed with a 16-slice PET/CT scanner (Philips Gemini GXL; Philips, 

Eindhoven, The Netherlands); image reconstruction was done with a row action maximum 

likelihood algorithm without sinogram rebinning. Final scans had a diameter of 60 cm, axial field 

of view of 18 cm, and isotropic voxel size of 4 mm. From each subject, approximately 50 

consecutive axial images were selected from the level of the sacroiliac joint to the level of the 

portal hepatic vein bifurcation, which all contained a visceral adipose tissue compartment. From 

the 5 study participants (263 images), we selected the most obese (53 images) and the leanest 

individual (42 images) as our test subjects, leaving the other 3 subjects (165 images) for model 

training and validation. For the protocol involving human subjects, which received approval 

from the Human Ethics Committee of Centre de recherche du CHUS, informed written consent 

was obtained from all participants in accordance with the Declaration of Helsinki. 

Manual CT image segmentation 

Manual segmentation of CT images was done using a semi-automatic approach with the GIMP 

software (GNU Image Manipulation Program). Segmentation maps were independently 

examined and validated by one of the co-authors. Briefly, the subcutaneous adipose tissue 

(ScAT) compartment was first delineated and colored in red (RGB (red, green, blue) = 

(255,0,0)). Then, the visceral adipose tissue (VAT) compartment was singled out (using pixel 

intensity thresholding) and colored in green (RGB = (0,255,0)). The rest of the tissues (including 

muscles, bones, and intraabdominal organs) were labelled in blue (RGB = (0,0,255)), while the 
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background was labelled in black (RGB = (0,0,0)). Thus, segmentation maps for each of the 

three compartments were stored in distinct channels of the RGB color space.  

Model training and assessment 

Convolutional neural networks were constructed with the DeepImageTranslator pipeline. For 

model hyperparameters, we used 5 U-net layers, 16 channels following the first convolution, and 

a batch number of 1.  

Pixel values of the input CT images and of their corresponding segmentation maps were 

automatically normalized to values between 0 and 1 by the DeepImageTranslator before feeding 

them to the model for training. Therefore, the semantic segmentation task becomes a simple 

classification task whereby for each pixel in the input image, the model must determine whether 

the underlining region belongs to the subcutaneous adipose tissue, visceral adipose tissue, or lean 

tissue compartment by assigning a value of 1 to the red, green, or blue channel, respectively and, 

alternatively, a value of 0 to all channels if the pixel belongs to the background.  

We employed the Adaptive Moment Estimation (Adam) optimizer with a learning rate set at 

0.001. Binary cross-entropy loss was computed and used as the loss function. For assessment of 

model performance, we used the Dice coefficient, sensitivity, specificity, and pixel area 

difference. For a given channel c, the Dice coefficient (DC) between the true target (T) and the 

model predicted target (P) was calculated for a given volumetric scan using the following 

formula: 
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Tijk and Pijk represent the value of the pixel located on row i and column j of slice k of the true 

target and the model predicted target, respectively, which is, after normalization, wither 0 or 1. M 

and N are the height and width of the segmentation map, in pixels; L represents the total number 

of slices. Similarly, the sensitivity (Sn), specificity (Sp), and area difference (AD) were 

determined using the following three equations, respectively:  

 

 

 

The structural similarity index measure (SSIM) [17], the peak signal-to-noise ratio (PSNR), 

mean average error (MAE) and mean squared error (MSE) were calculated using Tensorflow 

2.4.0.  
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Data augmentation 

Training image and target augmentation was performed using random perspective scaling, 

rotation, translation, and flipping. Perspective scaling was accomplished by randomly choosing 

new image vertices in a square area with side length of 60 pixels centered at the vertices of the 

original image. The new image formed by these new vertices was then scaled back to the 

dimension of the original image. Rotation was done by randomly rotating the original image by a 

maximum of 70 degrees; translation was performed by random translation along the x- and the y- 

axes by a maximum of 30 pixels; finally, images were randomly flipped along the x- and the y- 

axes.  

Gaussian noise was introduced by randomly adding noise signals to pixels of the original image. 

The intensity of the noise signal was randomly selected and follows a standard normal 

distribution (i.e. Gaussian distribution centered at 0 with a standard deviation of 1). For a given 

image, the probability of applying Gaussian noise to a given pixel was randomly chosen between 

0 and a user-determined probability threshold. This threshold was set to 30% for our image 

denoising training experiments. For some of the experiments designed to test model 

generalizability (see Results), we increased this threshold to 50% (a 60% increase).  

Statistical analyses 

Statistical analyses were carried out using GraphPad Prism version 9. Three-way and two-way 

ANOVAs were carried out to determine the effects of various techniques on model accuracy. P-

values smaller than 0.05 were considered significant and were corrected for multiple testing 

when applicable. 
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Data availability 

The source code for the DeepImageTranslator is publicly available at:  

https://github.com/runzhouye/DeepImageTranslator 

The compiled standalone software is available for Window10 at:  

https://sourceforge.net/projects/deepimagetranslator/  

The datasets generated during and/or analyzed during the current study are available at:  

https://figshare.com/s/b9caed5d78f9debdcd21  

RESULTS 

DeepImageTranslator 

All the features of DeepImageTranslator can be accessed through its graphical user interface 

(Fig.1), which includes: a main window for the visualization of input, target, and network-

predicted images in the training, validation, and test/translation sets (Fig.1a); a window for 

selecting the type of model optimizer (i.e. Adam, RMSprop, SDG, Adagrad, and Adadelta), loss 

function (i.e. binary cross-entropy, categorical cross-entropy, MSE, MAE, and sparse categorical 

cross-entropy), and training metrics, as well as the number of training epochs and batch size 

(Fig.1b); a window for neural network construction, which allows full customization of input and 

target dimensions, number of layers, number of channels at the end of the first convolution, and 

the inclusion of a deep-supervision layer (Fig.1c); a window to monitor the training process 

(Fig.1d). A window for the selection of data augmentation schemes gives users the options to 

perform random perspective scaling, rotation, translation, flips, elastic transforms, gaussian blur, 

rectangular dropout, brightness/contrast adjustments, and addition of random gaussian noise 
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(Fig.1e). The training and prediction processes take place locally using the central processing 

unit (CPU) and, where available, the graphics processing unit (GPU) of the host computer.  

 

Fig. 1: Different features of DeepImageTranslator. a, The main window for image viewing. b, 

Training hyperparameter selection window. c, Neural network model builder. d, Command 

prompt window for training monitoring. e, Image augmentation toolbox. 

The general workflow when using DeepImageTranslator begins with the preparation of input and 

target images for model training, which, in the case of CT image segmentation, would consist of 

the original CT images and hand-labelled segmentation masks. These images are subsequently 

split into a training set (for model training) and a smaller validation set (to monitor the 

performance of the model throughout the training process). The sample size of the training set 

can be artificially increased through image augmentation techniques implemented in the image 

generator of the DeepImageTranslator. The CNN follows the general structure of U-net [18] with 
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a few adjustments to allow for easier customization (Fig.2a). Notably, the number of layers (or 

depth) of the network can be specified to any value; the number of feature maps (or channels) 

extracted at each layer can also be changed in accordance with the complexity of the image 

translation task. Furthermore, instead of prescribing a predetermined and fixed image size 

(traditionally 128x128, 256x256, or 512x512), we implemented appropriate resizing procedures 

(after the 2x2 up-sampling layer and before concatenation, Fig.2a) within a CNN such that the 

DeepImageTranslator is compatible with input and target images of any size or dimension. 

Moreover, our CNN can also be deeply supervised by concatenating the output of the 

antepenultimate layer with the final output.  

Fig. 2: The pipeline for using the DeepImageTranslator. a, The construction of a custom U-
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net-like convolutional neural network and model training. b, The use of the trained neural 

network to make predictions based on new input data. ch: number of convolution maps 

(channels) after the first 3x3 convolution; Conv.: convolution; hin: input image height; ht: target 

image height; ReLU: rectified linear activation function; win: input image width; wt: target image 

width. 

At the end of each training epoch, model weights are automatically saved if they resulted in an 

improvement in model accuracy. This allows the user to reload weights of a specific epoch to 

either translate new images and save model predictions (Fig.2b), to continue training using the 

same training set, or to perform transfer learning based on a different set of training images. 

Applications of DeepImageTranslator – semantic segmentation of abdominal CT images 

Subject characteristics and training sample 

The performance of CNNs in CT segmentation has already been demonstrated in large datasets. 

Therefore, in this study, we tested the accuracy and generalization ability of the 

DeepImageTranslator using a small dataset. Our training subjects consisted of 2 females and 1 

male aged from 57 to 66 years (Table 1). A total of 165 abdominal axial images (512x512 pixels) 

were selected from whole-body CT scans (see Methods). These images were manually labelled 

using a semi-automatic approach. The bone, muscles, and other visceral organs (labelled in blue) 

were separated from adipose tissue, which was further segregated into the visceral (labelled in 

green) and the subcutaneous (labelled in red) compartments.  
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Table 1: Subject characteristics 

 Subject Number of 

images 

Sex Weight 

(kg) 

BMI 

(kg/m2) 

Waist 

circumference 

(cm) 

Three-fold cross-

validation set 

1 52 F 74.7 32.3 97.5 

2 56 F 70.0 25.7 90.3 

3 57 M 75.5 26.1 101.0 

Testing set  1 53 M 110.9 35.0 122.5 

2 42 F 58.4 25.3 81.0 

BMI: body mass index; F: female; M: male. 

Model performance and effects of data augmentation with/without deep supervision 

We used a three-fold cross-validation scheme to assess the accuracy of our trained models. 

Briefly, model training was replicated three times, each time using the images from a different 

subject as the validation set, leaving the images of the other two subjects in the training set. 

Therefore, the CNN was trained each time on data from 2 subjects, while images from the 

remaining subject was used for model assessment only. As expected, binary cross-entropy loss 

was generally lower in the training dataset than in the validation dataset and achieved a plateau 

by 20-40 epochs (Fig.3a and 3b).  
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Fig. 3: Evaluation of the effects of data augmentation with or without deep-supervision on 

training and validation cross-entropy loss for image segmentation. a, Binary cross-entropy 

loss across training epochs for the training split. b, Binary cross-entropy loss across training 

epochs for the validation split. Aug-/+: with/without data augmentation; DS-/+: with/without 

deep-supervision; NS: not significant. P-values are for 3-way ANOVA. 

We first systematically evaluated the effects of data augmentation with/without deep supervision 

on model performance throughout the training process, both in the training set and the validation 

set. With data augmentation, the training cross-entropy loss was higher (three-way ANOVA P < 

0.0001, with epoch number and deep-supervision as covariates, Fig.3a) and became closer to the 

validation loss. In the training dataset, deep supervision (DS) increased training speed only in the 

augmented (Aug) data over the first 30 epochs (Fig.3a). This differential effect of deep-

supervision on training acceleration and loss reduction in augmented vs. non-augmented data 

was markedly more significant in the validation loss curves (Aug x DS interaction P < 0.0001). 

In the validation set (Fig.3b), loss curves before data augmentation were nearly superimposable 

whether deep-supervision was performed (Fig.3b, orange curve) or not (Fig.3b, black curve). 

These curves gradually increased beginning from epoch 20, again suggesting model overfitting 

without data augmentation after 20 epochs. However, when data augmentation was introduced, 

validation loss continued to decrease even after epoch 80. As expected, when augmentation was 

performed without simultaneous deep-supervision (Fig.3b, blue curve), training speed was 

significantly slowed down; as a result, by the end of 100 epochs, validation loss was similar to 

that without augmentation. Nonetheless, when augmentation was done concomitantly with deep 

supervision (Fig.3b, green curve), training speed was restored, and validation loss was then 

significantly lower by epoch 100.  
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We then used the model with the lowest validation cross-entropy loss to generate predicted 

targets for the validation set. The predicted segmentation map was subsequently compared with 

the ground truth target to calculate the Dice coefficient, model sensitivity and specificity, as well 

as the fractional area difference for each of the three tissue compartments (see Methods). As 

shown in Fig.4, data augmentation resulted in statistically significant gains in Dice coefficient, 

model sensitivity, and specificity. Here, color channels 1 (red), 2 (green), and 3 (blue) represent 

the subcutaneous adipose tissue (ScAT), visceral adipose tissue (VAT), and lean tissues, 

respectively. Median Dice coefficient increased by 2 to 3 percentage points in the three-fold 

cross-validation assessment performed with data augmentation and deep supervision compared 

to that without (Table 2). The best model achieved Dice coefficients of 0.99, 0.95, and 0.97 in 

segmenting the ScAT, VAT, and lean tissues in the validation set, which contained only images 

that were not used to train the model.  

Table 2: Model performance in semantic segmentation of different validation datasets in 

three-fold cross-validation 

 Channel Dice coefficient Sensitivity Specificity Area difference 

Aug+ DS+ Channel 1 (ScAT) 0.98 (0.95-0.99) 0.98 (0.98-0.99) 0.999 (0.995-0.999) 0.008 (0.006-0.096) 

 Channel 2 (VAT) 0.93 (0.88-0.95) 0.94 (0.85-0.95) 0.998 (0.995-0.998) 0.043 (0.0004-0.074) 

 Channel 3 (Lean tissues) 0.96 (0.95-0.97) 0.97 (0.92-0.97) 0.997 (0.996-0.998) 0.016 (0.0005-0.060) 

Aug- DS - Channel 1 (ScAT) 0.96 (0.94-0.98) 0.97 (0.95-0.98) 0.997 (0.994-0.999) 0.020 (0.014-0.095) 

 Channel 2 (VAT) 0.90 (0.89-0.91) 0.89 (0.89-0.91) 0.994 (0.994-0.997) 0.012 (0.003-0.044) 

 Channel 3 (Lean tissues) 0.94 (0.93-0.96) 0.95 (0.92-0.97) 0.994 (0.993-0.996) 0.020 (0.008-0.036) 

Values are represented as median (range). Aug+/-: with/without data augmentation; DS+/-: with/without 

deep-supervision; ScAT: subcutaneous adipose tissue; VAT: visceral adipose tissue.  
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Fig. 4: Evaluation of the effects of data augmentation with or without deep-supervision on 

accuracy metrics for image segmentation of the best models. a, Dice coefficient between 

ground truth maps and model predictions for each of the segmentation channels (i.e. tissue 

compartments). b, Sensitivity of models to detect body compartments. c, Specificity of models to 

detect tissue compartments. d, Fractional area difference between ground truth maps and model 

predictions. Aug-/+: with/without data augmentation; Channel 1: subcutaneous adipose tissue; 

Channel 2: visceral adipose tissue; Channel 3: other tissues; DS-/+: with/without deep-

supervision; NS: not significant. P-values are for 3-way ANOVA. 

Fig. 5a shows 3 randomly chosen CT images from the validation dataset used in each of the three 

cross-validation assessments, their corresponding ground truth segmentation maps, and the 

model predictions. White arrows point to examples of disagreement between the manually 

labeled map and the model prediction. Fig.5b illustrates rare occasions in which the trained 

neural network made obvious segmentation mistakes; many of these were due to ambiguous 

.CC-BY-NC 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.15.444315doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.15.444315
http://creativecommons.org/licenses/by-nc/4.0/


18 

 

delineation of the abdominal wall, causing the model to label intra-abdominal compartments as 

extra-abdominal and vice versa.  

 

Fig. 5: Comparison between hand-labelled segmentation maps and model predictions. a, 

left panel: input images randomly selected from the validation split for inclusion in the figure; 

middle panel: ground truth segmentation maps; right panel: model predictions based on images 

in the left panel. b, left panel: input images manually selected from the validation split to show 

rare instances of model error; middle panel: ground truth segmentation maps; right panel: model 

predictions based on images in the left panel. White arrows indicate area of disagreement 

between hand-labelled maps and model predictions.  

Generalizability and effect of sample size 

Since the 165 images in our training and validation sets all came from a homogenous set of 

subjects that are overweight to slightly obese, we wanted to assess the generalizability of our 

CNN regardless of body weight and composition. Therefore, we selected 53 CT images from a 
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male subject suffering from more severe, class II obesity, with body weight, BMI, and waist 

circumference of 110.9 kg, 35 kg/m2, and 122.5 cm, respectively. We trained a new model with 

the complete original training set of 165 images for 100 epochs and obtained a network capable 

of segmenting images from the obese subject with Dice coefficients of 0.99, 0.94, and 0.97 for 

ScAT, VAT, and lean tissues, respectively (Table 3 and Fig.6a).  

Table 3: Model performance in semantic segmentation of out-of-sample CT images from an 

obese subject 

Channel Dice coefficient Sensitivity Specificity Area difference 

Channel 1 (ScAT) 0.99 0.97 0.9998 0.024 

Channel 2 (VAT) 0.94 0.93 0.9976 0.034 

Channel 3 (Lean tissues) 0.97 0.98 0.9932 0.030 

ScAT: subcutaneous adipose tissue; VAT: visceral adipose tissue. 

 

Fig. 6: Assessment of out-of-sample model generalizability based on scans from a severely 

obese male subject and a very lean female subject. a, Model generalizability in the obese male 

subject. left panel: input images randomly selected for inclusion in the figure; middle panel: 
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ground truth segmentation maps; right panel: model predictions based on images in the left 

panel. b, Model generalizability in the obese male subject.  first row: image randomly chosen to 

from the leg area (left panel) and accompanying model segmentation (right panel); second row: 

image randomly chosen to from the thoracic area (left panel) and accompanying model 

segmentation (right panel), showing accurate model segmentation of the lungs; third row: image 

randomly chosen to form the shoulder area (left panel) and accompanying model segmentation 

(right panel). c, Model generalizability in the lean female subject. left panel: input images 

randomly selected for inclusion in the figure; right panel: model predictions based on images in 

the left panel. 

To illustrate the generalizability of the CNN trained using DeepImageTranslator, we used our 

model (which was trained using only scans of the abdominal region) to segment CT images of 

the legs, thorax, and the upper-shoulder region of the same obese subject. Fig.6b shows 

randomly selected images from each of these regions and the associated model prediction. 

Despite never having seen images from these body areas, the model achieved remarkable 

generalizability by accurately labelling ScAT, and intra-thoracic adipose tissue.  

Furthermore, we also tested the generalizability of our model with a very lean, female subject, 

with body weight, BMI, and waist circumference of 58.4 kg, 25.3 kg/m2, and 81.0 cm. Fig.6c 

shows randomly selected slices and corresponding model predictions, demonstrating excellent 

automatic segmentation results.  

Next, we systematically determined the effect of training sample size on the generalizability of 

our pipeline by training distinct models with the original training set and with different fractions 

thereof (84 (50%), 42 (25%), 17 (10%), 10 (6%), or 5 (3%) training images). For each of these 

different sample sizes, we trained 3 different models, each time using a different subset of the 
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complete training set. As shown in Fig.7a-d, the use of reduced training sets did not result in 

statistically significant performance loss even when sample size reached a remarkable minimum 

of only 17 training images (Tukey’s multiple comparisons test P = NS). For reference purposes, 

previous reports using significantly larger training datasets [3-7] showed ScAT segmentation 

accuracy scores that were mostly inferior to that of our model (Table 4). Furthermore, these 

models were trained and tested on single-slice axial abdominal CTs images centered at the L3 

vertebra level only. Therefore, intraabdominal composition should be roughly similar across 

these training images; Dice scores for VAT segmentation were thus higher than that achieved by 

our volumetric models, as expected. In addition, studies using volumetric abdominal CT scans 

(Table 4) showed similar or inferior results for ScAT and VAT segmentation [2, 8].  

Table 4: Previously reported Dice scores for ScAT and VAT segmentation 

Number of training 

images 

Dice score for ScAT 

segmentation 

Dice score for VAT 

segmentation 

Reference 

40 volumetric CTs (32 

slices x 256 pixels x 

256 pixels) with 3D U-

net 

0.95-0.96  [2] 

2430 single-slice axial 

abdominal CTs 

centered at the L3 

vertebra level 

0.98 0.97 [3] 

3774 single-slice L3 

abdominal images 

0.99 0.98 [4] 

800 single-slice images 

at the L3/L4 level 

0.98 0.96 [5] 

180 axial CT images at 

the supra-acetabular 

level 

0.97  [6] 

883 images at the 

inferior endplate level 

of the 3rd lumbar 

vertebra 

0.97 0.97 [7] 

120 volumetric CT 

images 

0.98 0.92 [8] 

 ScAT: subcutaneous adipose tissue; VAT: visceral adipose tissue 
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Fig. 7: Evaluation of sample size. a, Dice coefficient between ground truth maps and model 

predictions for each of the segmentation channels (i.e. tissue compartments). b, Sensitivity of 

models to detect tissue compartments. c, Specificity of models to detect tissue compartments. d, 

Fractional area difference between ground truth maps and model predictions. ScAT: 

subcutaneous adipose tissue (red circle ●); VAT: visceral adipose tissue (green square ■); Other 

tissues (blue triangle ▲). P-values between different sample sizes are for Tukey’s multiple 

comparisons tests.  

Applications of DeepImageTranslator – noise reduction for thoracic CT images 

To further demonstrate the versatility of DeepImageTranslator in entirely different image 

translation tasks, we evaluated the software’s performance in thoracic CT image noise reduction.  

During CT examinations, noise can be introduced at various stages of acquisition and 

transmission. Here, we created noisy CT images using additive Gaussian noise model [9, 19, 20]. 

To train neural networks for noise removal, we first extracted CT slices from the thoracic area of 
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our 3 original subjects. We proceeded with the same three-fold cross validation scheme as 

described above in the image segmentation section.  

Our models achieved excellent noise-removal results even with only 100 epochs of training 

using the mean average error (MAE) as the loss function (Fig.8). However, since the validation 

curves for MAE, mean squared error (MSE), structural similarity index measure (SSIM), and 

peak signal-to-noise ratio (PSNR) were still improving at epoch 100, we randomly selected one 

of the three models and continued training for 200 epochs. This allowed our final model to reach 

MAE, MSE, SSIM, and PSNR values of 0.002, 0.000004, 0.993, and 44.8 on validation images.  

 

Fig. 8: Model efficiency for noise reduction. a, Evolution of training (solid lines) and 

validation (dashed lines) mean square error (MSE) and mean average error (MAE) across the 

first 100 epochs with three-fold cross-validation. b, Evolution of training and validation 
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structural similarity index measure (SSIM) and peak signal-to-noise ratio (PSNR) across the first 

100 epochs with three-fold cross-validation. c, Evolution of training and validation MSE and 

MAE across the last 200 epochs with one randomly selected model. d, Evolution of training and 

validation SSIM and PSNR across the last 200 epochs with one randomly selected model. MAE: 

mean average error; MSE: mean square error; PSNR: peak signal-to-noise ratio; SSIM: structural 

similarity index measure.  

As shown in Fig.9a, our model was able to considerably reduce the noise introduced in the 

validation images (left panels) to produce predictions (right panels) that were almost 

indistinguishable from the original (noiseless) images (middle panels). Fig.9b shows 

enlargements at the right and left lungs and demonstrates our CNN’s ability to accurately recover 

detailed pulmonary vasculature invisible on the noisy images.  
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Fig. 9: Assessment of model performance and generalizability for noise reduction. a, 

Randomly chosen slides from the validation split showing model performance in noise reduction 

comparing the noisy input images (left panel), original (noiseless) images, and image generated 

by the model (right panel) based on the noisy input images. b, Details of the right and left lungs 

of the images shown in panel a, demonstrating our model’s ability to recover fine details of the 

pulmonary vasculature. c, Randomly selected slices at the level of the legs, abdomen, and 

shoulder from the out-of-sample obese subject, showing generalizability of our trained model. 

Left panel: noisy CT images; middle panel: original (noiseless) images; right panel: model 

prediction based on images from the left panel.  

Generalizability  

To establish the generalizability of our neural network, we used the model to denoise whole-

body scans from our obese subject. Fig.9c shows randomly selected slices from the leg, 

abdominal, and the shoulder areas and illustrate our network’s ability to generalize in different 

regions of the body despite being trained only on thoracic scans. Furthermore, we also increased 

the noise level by approximately 60%, using thoracic scans of the same obese subject, to the 

point of rendering the CT images completely unreadable; we then demonstrated that our trained 

model was capable of removing all the noise (Fig.10a) and of recovering fine pulmonary 

vascular markings (Fig.10b).  
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Fig. 10: Assessment of model generalizability for increased noise level. a, Randomly chosen 

thoracic CT slices from the obese subject with an increase of approximately 60% in noise 

intensity, demonstrating the efficiency of our model for noise reduction. b, Enlargement at the 

right and left lungs of the images shown in panel a, demonstrating our model’s ability to recover 

fine details of the pulmonary vasculature. Left panel: noisy CT images; middle panel: original 

(noiseless) images; right panel: model prediction based on images from the left panel.  

Training duration and hardware requirements 

Finally, to test training duration using different types of hardware, we calculated the time to 

complete one epoch of 18 CT segmentation training images and 9 validation images. Training 

time for one epoch was approximately 5 minutes on a Windows laptop with 8 Gb of random-

access memory (RAM) (AMD A4-9125 RADEON R3 processor) and 90 seconds on a MacBook 

Air with 8 Gb of RAM (Intel core i5 processor) from early 2015. This would allow the model to 

achieve the highly accurate segmentation results shown in Fig.7 in 17 hours and 5 hours with 

these two devices, respectively. Using an NVIDIA GeForce RTX 2060 GPU for massively 

parallel computing, training time was reduced to 3 second/epoch; 200 epochs can thus be 

completed under 11 minutes.  

DISCUSSION 

DeepImageTranslator is designed to be a user-friendly graphical interface tool that allows 

researchers with no programming experience to easily build, train, and evaluate CNNs for image 

translation. Compared to existing software programs, our tool also allows users to customize 

their CNN (e.g. number of layers/channels, use of deep-supervision, and input layer resolution), 

the type of model optimizer algorithm, the loss function, and the data augmentation schemes. We 
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showed that using only a standard personal computer, it is possible to train neural networks for 

accurate semantic segmentation of CT images. This free, open-source tool is available at: (will 

be uploaded with the publication of this article) for Windows 10. It is actively maintained by the 

first author of this work and is distributed under the GNU General Public License (version 3.0). 

Future directions for our tool include the addition of new data augmentation methods and of 

different CNN architectures such as cycle consistent generative adversarial networks (cGAN), 

which would allow translation using unpaired images and targets.  

In 3D semantic segmentation of CT images of the abdominal area, our trained models achieved 

accuracy levels comparable or superior to those reported elsewhere using different neural 

networks [2-8] and using traditional methods [21]. Our deep-learning tool analyses CT 

examinations on a slide-by-slide basis. Of course, it is possible to extend 2D inputs into 3D 

inputs whereby the model receives the entire 3D CT dataset or multiple slices from a given 

patient. Nevertheless, we did not implement such an approach since our models have already 

achieved high accuracy without this type of extension. Furthermore, using three-dimensional 

inputs will multiply the computational demands and curtail the flexibility of our deep-learning 

pipeline.  

We performed three-fold cross-validation procedures to systematically assess the effects of data 

augmentation with or without deep-supervision. Our results showed that across the first 100 

training epochs, data augmentation resulted in statistically significant reductions in validation 

loss only when accompanied by deep-supervision, which curbed the effect of data augmentation 

on training speed. Therefore, we would recommend the implementation of image augmentation 

schemes with concomitant increase in training duration and/or techniques to accelerate training.  
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Previous reports on semantic CT segmentation used relatively large training datasets. Therefore, 

we aimed to determine the minimum sample size required to achieve high predictive accuracy 

and model generalizability in a small dataset using the DeepImageTranslator. We found that, 

with appropriate data augmentation, 17 image-target pairs were sufficient to obtain high 

segmentation accuracy in test images. Furthermore, our segmentation model was also able to 

generalize to body areas that they were not trained on and independently of body weight and 

composition. Therefore, for studies with small datasets, researchers can randomly select a very 

small subset of images for manual labeling, which can then be used to train a specialized CNN 

model with DeepImageTranslator to fully automate segmentation of the entire dataset, thereby 

saving tremendous time and labor.  

In the CT image noise reduction task, models trained with DeepImageTranslator also showed 

comparable to superior performance compared to previously reported deep-learning [9-11] and 

non-deep-learning methods [19, 20]. However, it should be noted that direct comparisons of 

MSE, SSIM, and PSNR scores across studies are difficult due to wide methodological 

differences in noise simulation techniques. To simulate very noisy CT scans, we reduced image 

quality to very low levels and showed that our model recovered detailed vasculature of the lungs 

and was able to denoise whole-body scans despite having been trained only on thoracic images.
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