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Abstract 
 

Dramatic alterations in brain morphology, such as cortical thickness and sulcal folding, 

occur during the 3rd trimester of gestation which overlaps with the period of premature 

births. Here, we investigated the ability of the graph convolutional network (GCN) to 

predict brain age for preterm neonates by accounting for morphometrics measured on the 

cortical surface and the surface mesh topology as a sparse graph. Our findings demonstrate 

that GCN-based age prediction of preterm neonates (n=170; mean absolute error [MAE]: 

1.06 weeks) outperformed conventional machine learning algorithms and deep learning 

methods that did not use topological information. We further evaluated how predicted brain 

age (PBA) emerges as a biologically meaningful index that characterizes the current status 

of brain development at the time of imaging. We hypothesized that the relative brain age 

(RBA; PBA minus chronological age) at scan reflects a combination of perinatal clinical 

factors, including preterm birth, birthweight, perinatal brain injuries, exposure to postnatal 

steroids, etc. We also hypothesized that RBA of neonatal scans may be associated with 

brain functional development in the future. To validate these hypotheses, we used general 

linear models. Furthermore, we established structural equation models (SEM) to determine 

the structural relationship between preterm birth (as a latent variable of birthweight and 

birth age), perinatal injuries (as a latent variable of three leading brain injuries), postnatal 

factors (as a latent variable of six clinical conditions), RBA at scan, and 

neurodevelopmental scores at 30 months. Our results suggest that low birthweight, chronic 

lung disease, and exposure to postnatal steroids impair cortical growth, as low RBA was 

significantly associated with these risks. Furthermore, RBA was associated with cognitive 

and language scores at 30 months. SEM analysis indicated that RBA mediated the 

influences of preterm birth and postnatal clinical factors, but not perinatal brain injuries, 

toward brain functional development at 30 months. The left middle cingulate cortex 

showed the most accurate prediction of brain age (MAE: 1.19 weeks), followed by left 

posterior and right middle cingulate cortices (1.21 weeks). These cingulate regions 

presented faster growth than others. RBAs of several frontal cortices significantly 

correlated with cognitive abilities at 30 months of age (n=50). Whereas, RBA of left 

Broca’s area, which is important for language production and comprehension, was 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.15.444320doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.15.444320


associated with language functional scores. Overall, our results demonstrate the potential 

of the GCN in both predicting brain age and localizing regional growth that relates to 

postnatal factors and future neurodevelopmental outcome. 

 

Key Words: brain age prediction, Graph convolutional network, neonates, relative brain 

age, structural equation modeling 
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Introduction 

 

Predicting brain age using neuroimaging data and machine learning approaches has 

emerged as a biologically meaningful index that assesses the status of brain development 

or aging at the time of imaging (Jónsson et al., 2019). Particularly, in early development, 

estimating the age of neonatal brains using the predicted brain age (PBA) measurement 

may be clinically useful in evaluating neurodevelopment and possible impaired brain 

growth led by perinatal factors. Indeed, a growing body of evidence has demonstrated that 

brain structural and functional maturation is impaired in preterm infants, including 

decreased cerebral volume (Ajayi-Obe et al., 2000; Kapellou et al., 2006), altered cortical 

surface area and microstructural organization (Ball et al., 2013) as well as aberrant 

functional and structural connectivity (Pandit et al., 2014; Smyser et al., 2016). Moreover, 

various perinatal factors, such as birthweight, brain injuries, gestational age, and chronic 

lung disease of prematurity (CLD), also termed bronchopulmonary dysplasia, have been 

confirmed to alter brain development and outcomes of preterm neonates (Thompson et al., 

2007). Thus, it remains clinically imperative to identify robust metrics that assess how 

various perinatal factors affect neurodevelopment and outcome. PBA, with its increasing 

recognition in biological relevance, may provide such clinical utility in assessing preterm 

brain development throughout the third trimester of gestation.   

 To study brain aging using PBA, studies to date particularly focused on using machine 

learning and deep learning (DL) methods (LeCun et al., 2015; Peng et al., 2019) that learn 

important features without priori information or hypotheses. For instance, in aging brains, 

the PBA has been investigated using standard deep learning approaches (Ning et al., 2020) 

where an image volume is inputted into a convolutional neural network (CNN) and a 

number representing the whole brain age is outputted (Huang et al., 2017). Notably, Cole 

et al. (Cole et al., 2017) implemented a deep learning model trained by T1-weighted MRIs 

to predict brain age and achieved promising results in PBA’s association with biological 

variables of aging. Similar approaches have been executed in neonatal data, but the PBA 

models have been applied only to connectivity data (Kawahara et al., 2017), structural 

connectivity data (Brown et al., 2017), and myelin-based brain features (Ouyang et al., 

2019), and showed lack of sensitivity in predicting neurodevelopmental outcome (He et al., 
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2018).  

 The analysis of specific morphological features may enhance PBA accuracy, given that 

the third trimester involves highly coordinated  morphological alterations (Kim et al., 

2020). During the perinatal and the postnatal period, brain morphology undergoes a 

doubling of whole brain volume (Sherer et al., 2007; Salmaso et al., 2014), a fourfold 

increase of cortical gray matter volume. By the first postnatal year, cerebral cortical surface 

area expands approximately 80% and cortical thickness increases about 42% (Li et al., 

2015a). Thus, unlike prior approaches relying on deep learning models to output potentially 

useful features from brain MR images, we specifically focused on highly age-related 

features within the third trimester, such as increases in cortical folding or volume, to 

enhance neonatal brain age prediction. However, these morphological properties, including 

sulcal depth, cortical thickness, and cortical gray matter/superficial white matter intensity 

ratios (Lewis et al., 2018), are conventionally difficult to characterize through  the direct 

analysis of the voxel-wise MR images, since these features are usually extracted onto a 

form of manifolds comprising cortical surfaces. Thus, obtaining cortical surfaces by 

tessellating the brain surface into triangulated brain meshes of vertices (Fischl, 2012) is a 

prerequisite.  

 Additionally, a large number of edges linking between the neighboring vertices (i.e., 

points on the cortical surface) involve important topological information, representing the 

location and adjacency among neighboring vertices. In this context, conventional CNN 

methods may not be suited for the analysis of cortical morphological features, and 

traditional machine learning models applied to cortical features have not taken into account 

the topological relationship of vertices. Thus, we investigated the ability of a graph 

convolutional network (GCN) (Defferrard et al., 2016) to predict preterm neonatal brain 

age when accounting for the mesh topology as a sparse graph using surface-wise cortical 

morphometrics, i.e., cortical thickness, sulcal depth and gray/white intensity ratio.  

PBA presents values older or younger than the true chronological age. While a positive 

value in relative brain age (RBA; PBA minus chronological age) is indicative of 

compromised health status in adults (Franke and Gaser, 2019), where RBA has been 

reported to be positively correlated with neurological diseases and impaired functional 

outcomes in adult brain studies, a negative RBA in the neonatal cohort may indicate 
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impaired or delayed neurodevelopment. We hypothesize that the RBA at neonatal scan 

reflects the collective effects of pre-scan (pre- and postnatal) clinical factors, including the 

severity of preterm birth, perinatal brain injuries, postnatal treatments, neonatal infections, 

and postnatal cardiorespiratory complications. We furthermore hypothesized that an RBA 

could be a predictor of neurodevelopmental outcome in preterm survivors.  Taking these 

hypotheses into account, we explored the accuracy and clinical utility of PBA using a 

graph-based CNN (GCN) model that enables the convolutional filtering of input features 

through surface topology in the context of spectral graph theory (Shuman et al., 2013). 

Cortical thickness, sulcal depth, and GM/WM intensity ratio maps were extracted from the 

cortical mesh and inputted to the GCN. To evaluate the GCN-based PBA, we assessed: 1) 

whether the GCN approach outperforms other machine learning algorithms that do not 

consider surface topology in learning vertex-wise features and predicting brain ages; 2) 

whether the PBA using GCN reflects the influence of pre-scan clinical factors on 

neurodevelopment; 3) whether RBA of neonatal MRI is a sensitive predictor of 

neurodevelopmental outcome in 30 months for preterm survivors; 4) whether RBA at scan 

mediates the relationship between preterm birth-related clinical factors and 

neurodevelopmental behavioral performance at 30 months; and 5) whether the GCN can 

be expanded to predict regional brain ages (i.e., identifying which regions specifically are 

affected by injuries; determining whether certain regions mature at different rates relative 

to other regions).  

 

Materials and Methods 

 

Subjects  

Our dataset comprised of 129 preterm neonates (mean postmenstrual age at birth 

[PMA] = 28.2±1.9 weeks; range 24–33 weeks) admitted to UCSF Benioff Children's 

Hospital San Francisco between June 2008 and May 2017 (Table 1). Most subjects were 

scanned twice, but some scans were excluded due to a large amount of motion artifact, 

providing a total of 170 MRI scans (PMA at 1st scan: 31.4±1.9 weeks; range 26.7–

35.7 weeks; 2nd scan: 36.0±1.9 weeks; range 32.1–43.4 weeks). Parental consent was 

obtained for all cases following a protocol approved by the Institutional Committee on 
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Human Research.  

 

 
Table 1. Demographic and clinical characteristics for preterm neonates 

Demographic   

Subjects (n)  129 

MRI scans (n)  170 

Sex: male (n)  70 

GA at birth (weeks, mean ± SD)  28.2 ± 1.9 

Weight at birth (gram, mean ± SD)  1080 ± 311.2 

PMA at MRI   

  1st scans (n=129)  31.4 ± 1.9 

  2nd scans (n=41)  36.0 ± 1.9 

Characteristica Number, (%) 

Maternal/Antenatal factors  

Maternal age, yrs 29.8 ± 6.5 

Placenta previa 11 (8.5) 

Drug Abuseb 11 (8.5) 

Magnesium sulfate 80 (62.0) 

Exposure to prenatal steroids 109 (84.5) 

Chorioamnionitis 13 (14.0) 

Delivery / Perinatal factors  

Twin  58 (44.9) 

Caesarean section delivery 78 (60.5) 

Postnatal factors  

Exposure to postnatal steroids 13 (14.0) 

Hypotension 76 (58.9) 

Infant infection 70 (54.2) 

Patent ductus arteriosus 65 (50.4) 

Necrotizing enterocolitisc 5 (3.9) 

Duration of intubation, days 9.1 ± 13.6 

Chronic lung disease 36 (27.9) 

     Neurodevelopmental outcome (Bayley scales III) in 30 monthsd  

     Cognitive score 103.0 ± 15.45 
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     Language score 92.6 ± 14.0 

     Motor score 93.7 ± 13.2 

a Data presented as number (%), or mean ± standard deviation. b All subjects with maternal smoking (based 

on self-report) were exposed to marijuana, two were also exposed to tobacco. c It was diagnosed based on 

Bell’s stage II criteria (Kliegman et al., 1982);  d Scores were derived from 38 preterm subjects revisit the center 

at 30 months after their birth. PMA: postmenstrual age. 

 

MRI acquisition 

Newborns enrolled between 2008 and 2011 (n = 56) were scanned on a 1.5-Tesla General 

Electric Signa HDxt system using a specialized high-sensitivity neonatal head coil built 

within a custom-built MRI-compatible incubator. T1-weighted images were acquired using 

sagittal 3-dimensional inversion recovery spoiled gradient echo (3D SPGR) (TR = 35; 

TE = 6; FOV = 256×192 mm2; number of excitations [NEX] = 1; and FA = 35°), yielding 

images with 1×1×1 mm3 resolution. Newborns enrolled between 2011 and 2017 (n = 73) 

were scanned on a 3-Tesla General Electric Discovery MR750 system. T1-weighted 

images were acquired using sagittal 3D IR-SPGR (inversion time of 450 ms; 

FOV = 180×180 mm2; NEX = 1; FA = 15°), yielding images with 0.7×0.7×1 mm3 

resolution. 

 

Clinical factors 

Neonatal demographic and clinical variables were collected by a trained clinical research 

nurse (Table 1).  Newborns with culture-positive sepsis, clinical signs of sepsis with 

negative blood culture, or meningitis were classified as having infection. Newborns with 

clinical signs of patent ductus arteriosus (PDA; prolonged systolic murmur, bounding 

pulses, and hyperdynamic precordium), and evidence of left-to-right flow through the PDA 

on echocardiogram were classified as having a PDA. Necrotizing enterocolitis (NEC) was 

diagnosed according to Bell stage II criteria or higher. 

For diagnostic of neonatal brain injuries, a pediatric neuroradiologist (A.J.B.) blinded to 

patient history reviewed patient MRI scans, including 3-D T1 and axial T2- weighted 

sequences, as well as SWI when available. Presence and severity of three leading drivers 

of neurodevelopmental deficits, i.e. intraventricular hemorrhage (IVH), ventriculomegaly 

(VM), and periventricular leukomalacia (PVL) or white matter injury, were visually scored. 

The severity scores were generated for IVH using the scoring system of Papile (0: absent; 
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1: germinal matrix hemorrhage; 2: IVH; 3: IVH with hydrocephalus; 4: parenchymal 

hemorrhage, usually periventricular hemorrhagic infarction) (Papile et al., 1978) and WMI 

(0: absent; 1: 2 mm; 3: >5% hemisphere) using established criteria (Papile et al., 1978; 

Miller et al., 2003). Subsequently, IVH scores were binarized with “mild” representing 

grades 1– 2, and “severe” representing grades 3–4; WMI and VM were categorized as 

“mild” for grade 1 and “severe” for grades 2– 3. For subjects with multiple MR 

examinations, the highest (most severe) score in each category was used for analysis. In 

the current study, we merged infants with mild injuries and those with no injury into one 

none-mild injury group since the two groups exhibited no significant differences in the 

following analyses. 

 

Neurodevelopmental assessment  

All the infants in our analysis were referred to the UCSF Intensive Care Nursery Follow-

Up Program upon discharge for routine neurodevelopmental follow-up. 

Neurodevelopment was assessed using the Bayley-III, which was performed by unblinded 

clinicians at 30 months’ corrected age. We assessed cognitive, verbal/language and 

neuromotor performance. Follow-up was available in 38 of the 129 infants who survived 

to hospital discharge.  

 

Image processing and cortical surface extraction 

The cortical surfaces were constructed using the NEOCIVET pipeline (Kim et al., 2016; 

Liu et al., 2019; Liu et al., 2021). The pipeline began with general MR image pre-

processing, including denoising and intensity nonuniformity correction. Then, the brain is 

extracted using a patch-based brain extraction algorithm (BEaST) (Eskildsen et al., 2012) 

and registered to the MNI-NIH neonatal brain template 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/NIHPD-obj2). Different types of brain 

tissue (GM, WM, and CSF) were thereafter segmented by a label fusion based on a joint 

probability between selected templates (Wang et al., 2013). Next, the corpus callosum was 

segmented on the midline-plane and used to divide the WM into hemispheres. A marching-

cube based framework was adopted to generate a triangulated mesh WM surface attached 

to the boundary between the GM and WM. After resampling to a fixed number of 81,920 
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surface meshes using the icosahedron spherical fitting, this surface was further fitted to the 

sharp edge of the GM-WM interface based on the image intensity gradient information. 

This allowed for the deformation while preserving the spherical topology of the cortical 

mantle. A CSF skeleton was then generated from the union of WM and CSFs. Pial surface 

was constructed by expanding the WM surface towards the skeleton as an intermediate pial 

surface. The intermediate pial surface further underwent a fine deformation to identify 

actual edges of sulcal CSF volumes using an intensity gradient feature model. Finally, the 

cortical thickness was estimated based on the Euclidean distance between the white matter 

and pial surface.  

The cortical morphology was quantitatively characterized by measuring cortical 

thickness, sulcal depth, and gray/white intensity ratio (Lewis et al., 2018) on the cortical 

surface at 81,924 vertices (163,840 polygons). These features were further re-sampled to 

the surface template using the transformation obtained in the surface registration, to allow 

for inter-subject comparisons.  

 
Figure 1.  The proposed graph-based convolutional network for brain age prediction. 

 

Graph convolutional neural network (GCN) based brain age prediction 

The proposed PBA model using GCN is illustrated in Figure 1. GCNs (Defferrard et al., 

2016) are designed to exploit the underlying graph structure of the data. To this end, GCNs 

consider spectral convolutions on graphs defined as the multiplication of a signal with a 

filter in the Fourier domain (Shuman et al., 2013). The signal ℎ on the graph nodes is 

filtered by 𝑔 as:  

𝑔 ∗ ℎ = 𝑼(𝑼𝑇𝑔⊙𝑼𝑇ℎ)                                                                                         (1)   

where U is the Fourier basis of the graph Laplacian L, given by the eigendecomposition 

of L i.e., 𝐋 = 𝑼𝚲𝑼𝑇, 𝚲 is the ordered real nonnegative eigenvalue values vector of graph 
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Fourier transform,  ∗  is the convolution operator and ⊙  denotes element-wise 

multiplication. The graph Laplacian L is defined as L: = D – W where the degree matrix D 

is a diagonal matrix whose 𝑖th diagonal element 𝑑𝑖 is equal to the sum of the weights of all 

the edges connected to vertex i as 𝐷𝑖𝑖 = ∑ 𝑊𝑖𝑗𝑗 . W is a binarized adjacency matrix 

encoding the connection between vertices, where 1 represents a connection between two 

vertices in brain mesh and 0 otherwise. After normalization, the graph Laplacian is defined 

as 𝐋 = 𝐼𝑛 − 𝐃−1/2𝐖𝐃−1/2 where 𝐼𝑛 is the identity matrix.  

Vertices on graph are re-arranged such that a graph pooling operation becomes as 

efficient as 1D pooling. Fake nodes, or disconnected nodes, are added to construct a 

balanced binary tree from the coarsest to finest level to make the pooling operation very 

efficient without losing information. 

We down-sampled 81,924 vertices on cortical surfaces using the icosahedron 

downsampling to investigate the accuracy of the GCN-based brain age prediction while 

saving computational time in the training of GCN. We thus feed each of the brain meshes 

that were down-sampled with 324, 1,284, 5k and 20k vertices to the GCN model 

respectively. The number of 1,284 was chosen to use in the following analysis by a 

compromise of the computational accuracy and computational time (Figure S1). 

In the current study, the input graphs combined cortical thickness, sulcal depth, and 

GM/WM intensity ratio mapped on the surface meshes with an adjacency matrix 

representing the mesh topology. The feature maps were inputted as vector valued signals 

on the graph nodes and the sparse binary adjacency matrix by which the connections 

between each vertex and its neighbor vertices are defined. Mean squared error (MSE) was 

used as the loss function with an Adam optimizer, the empirically determined set of 

parameters with a learning rate of 10-6, an L2 regularization parameter of 10-8, and a batch 

size of 2 were applied.  

 

Relative brain age 

After calculating predicted brain age for each subject, we further calculated a metric that 

reflected a subject's relative brain health status, called relative brain age (RBA). RBA was 

initially measured by subtracting true brain age from predicted brain age (Cole et al., 2017). 

Due to regression dilution (Ning et al., 2020), however, it is also possible that regression 
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models bias the predicted brain age toward the mean, underestimating the age of older 

infants and overestimating the age of younger infants (Brown et al., 2017). When deriving 

the RBA, this bias thus needs to be corrected using a strategy that was introduced in (Smith 

et al., 2019; Ning et al., 2020). We defined the new RBA as the difference between the 

individual RBA and the expected RBA (measurement fitted over the entire sample set by 

the regression model and leave-one-out cross-validation). The RBA was corrected in this 

way such that the RBAs of the whole dataset analyzed became unbiased across all age 

ranges (Figure S2). 

To validate our hypothesis that perinatal clinical factors negatively affect brain growth 

(lower RBA), each variable was dichotomized using clinically defined categorization or 

median if arbitrary (Table S1). Necrotizing enterocolitis (NEC) was not included in the 

analysis due to the very small number of subjects (n=5). We then tested the group 

difference in RBA for each variable separately in a univariate fashion while correcting for 

postmenstrual age (PMA) at scan and other clinical factors. To this end, we used a general 

linear mixed-effect model that addressed changes of within- and between-subject effects, 

and to remove the effects from clinical covariates other than the main variable. In this 

analysis, only images with all clinical information available were kept (n = 121). 

 

Structural Equation Modelling 

We built structural equation models (SEM) that impute relationships between latent 

variables. Based on the hypothesized latent risk variables and timeline in Figure 2, we 

analyzed multiple relationships/paths between severity of preterm birth (as a latent variable 

of birthweight and birth age), perinatal injuries (as a latent variable of three main types of 

brain injuries related to preterm birth), pre-scan post-natal factors (as a latent variable of 6 

clinical conditions/procedures), RBA at postnatal scan (as a manifest variable) and 

neurodevelopmental outcome scores at 30 months (as a latent variable of 3 brain functional 

scores). Fifty neonatal MR images including baseline and follow-up scans were available 

from 38 preterm survivors who revisited the center 30 months. This analysis, which was 

designed to identify the clinical variables and their paths leading to adverse 

neurodevelopmental outcomes, was conducted on the 50 MRI images. 

By constructing the SEM, we tested our hypothesized model (Figure 2) using the 
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aforementioned data and determined the strength and significance of each hypothesized 

path in our model. We estimated all parameters using weighted least squares with standard 

errors and mean- and variance-adjusted test statistics with a full weight matrix (WLSMV), 

which yields parameter estimates and standard errors that are robust to violations of 

multivariate normality (Power et al., 2018). We used the χ2 statistic fit indices to evaluate 

whether the model fit to data well. We reported standardized parameter estimates computed 

using the WLSMV estimation to enable more direct comparisons of the effects for different 

pathways to neurodevelopmental outcomes.  

To begin, we used the confirmatory factor analysis (CFA) to model latent variables 

summarizing a subset of pathologies. As a priori, we hypothesized a latent variable for 1) 

preterm birth measures, informed by birth age and birthweight; 2) perinatal injuries, 

informed by the presence of intraventricular hemorrhage (IVH),  periventricular 

leukomalacia (PVL) or white matter injury (WMI),  ventriculomegaly (VM); 3) postnatal 

conditions/treatments, informed by exposure to steroids (steroid), hypotension, infection, 

patent ductus arteriosus (PDA), days intubated (binarized), and chronic lung disease (CLD); 

4) neurodevelopmental outcome scores in 30 months, informed by cognitive, language, 

and motor scores.  

 

 

 
Figure 2.  Hypothesized clinical risk factors and timeline after birth in relation to brain development in 

preterm infants. Orange: different stages when the given conditions, procedures, or measures (blue) occur.  

 

Regional brain age prediction 

We further applied the GCN for regional brain age prediction. To do this, the cortical 

surface was first parcellated into 76 cortical regions (ROIs) using the AAL atlas (Tzourio-
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Mazoyer et al., 2002) that has been adapted and mapped onto the neonatal surface template. 

We used the original NOCIVET output surfaces that were extracted from each individual 

image with 81,924 vertices and partitioned these vertices and the related surface meshes 

into each ROI. Features mapped on the partitioned vertices together with the surface 

meshes as the topological graph within each cortical ROI (meanSD: 1,012542 vertices 

per ROI) were fed to separate GCN models to predict the regional brain age (tested using 

5-fold cross-validation). For each individual, we then computed an RBA per ROI.  

To validate our hypothesis that RBA is associated with the brain development in future, 

we conducted linear regressions between each regional RBA and three 

neurodevelopmental scores at 30 months respectively. This analysis was performed on the 

50 MR images of baseline and follow-up scans from 38 preterm neonates who revisited the 

center 30 months after their birth.  

 

Data availability 

Anonymized data will be shared for reasonable requests from qualified investigators. 

 

Results 

 

Validation of GCN-based age prediction performance 

We compared the prediction performance of each model on the entire dataset via 5-fold 

cross-validation. We found that the GCN fed with the true brain mesh achieved an accuracy 

of prediction with a mean absolute error (MAE) of 1.056 weeks (7.7% of the total age 

range) and absolute standard deviation (SDAE) of 0.943 weeks, which were smaller than 

the errors of the other two classic predictive models, i.e., random forest (RF) and general 

linear model (GLM) using the same number of vertices and features. Furthermore, to prove 

that the connections between vertices also contribute to the prediction of brain age, we 

conducted GCN-based prediction on randomized brain mesh structures (by disconnecting 

existing connections between random pairs of nodes and setting new connections between 

random pairs of nodes). Results indicated that the GCN model outperforms the other three 

models (Figure 3A, Table S2). Predicted brain age using GCN was also more accurate than 

the neonatal brain age predictions reported in the literature (MAE relative to total age range: 
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8.6-11.1%)(Brown et al., 2017; Kawahara et al., 2017). The brain age predicted using GCN 

strongly correlated with PMA (r = 0.87; Figure 3B). 

To understand the relationship between cortical morphological features and the true age, 

we correlated the three features with PMA, and found that correlation coefficient r-values 

were 0.76 for cortical thickness, 0.80 for sulcal depth and -0.57 for GM/WM intensity ratio.  

 

 
Figure 3.  A) Brain age prediction error comparison among regression models. The height of each bar 

indicates mean MAE, and the black line indicates the standard deviation of MAE per model. GCN 

demonstrates the best prediction results. B) Scatter plot displaying brain age predicted using GCN model vs. 

chronological brain age. 

 

 

RBA reflects the influence of perinatal clinical factors on brain growth in preterm 

neonates 

We used relative brain age (RBA) measurements after bias correction described in the 

Methods. The univariate analysis showed that various clinical variables were associated 

with lower RBA (t>3.1; p<0.05, all p-values reported here and in the following sections 

were adjusted by the false discovery rate; Figure 4). Postnatal steroid exposure (p = 0.007) 

presented the strongest association with lower RBA.  Chronic lung disease (CLD) (p = 

0.031) and birthweight lower than 1000g (p = 0.021) were also significantly associated 

with lower RBA. These patterns were not found when using conventional RBA without 

bias correction (p’s > 0.05). 
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Figure 4.  lower RBA representing impaired brain development was related to clinical factors.  

 

Relative brain age is associated with 30 months’ neurodevelopmental outcome in 

preterm neonates 

Correlation of RBA with cognitive, language, or neuromotor scores in Bayley-III Scales 

of Toddler Development (Figure S3) showed that, after bias correction as in Figure 2, a 

lower RBA at neonatal scan was significantly associated with lower cognitive performance 

(r=0.41; p = 0.0025) and lower language performance (r=0.27; p = 0.0419). However, these 

patterns were not found when using conventional RBA without bias correction (p’s > 0.05). 

 

Association of regional brain age with clinical factors and neurodevelopmental 

outcome 

We examined which brain regions predict the age at scan more accurately and whether 

specific regional RBAs are associated with either perinatal clinical factors or 

neurodevelopmental outcomes scored at 30 months of age.  

Based on 5-fold cross-validation, age prediction for regional meshes resulted in a range 

of prediction accuracy with MAE of 1.19-2.42 weeks (Figure 5). We also found that the 9 

smallest ROIs that contained less than 400 vertices (left, right olfactory cortices; left and 

right temporal poles of middle temporal gyrus; left and right Heschl gyri; left and right 

middle frontal gyri – orbital portion, right posterior cingulate cortex) displayed much larger 

MAEs (>1.75 weeks), possibly explaining the lack of fitting in the model due to a small 

number of features. Other 65 ROIs showed more reliable performance with MAEs less 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.15.444320doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.15.444320


than 1.6 weeks. The pattern of prediction accuracy for cortical regions was hemispherically 

symmetric. The left middle cingulate cortex showed the most accurate prediction for NMI 

brains (MAE: 1.19 weeks), followed by left posterior cingulate cortex and right middle 

cingulate cortex (1.21 weeks), which were slightly larger than the prediction error 

computed using the whole brain surface data (1.06 weeks). These three regions also 

presented the highest slopes of brain age over the chronological age, which indicated their 

faster development.  

 

  
Figure 5.  Mean absolute error map for regional RBAs predicted using GCN models. 

 

We then performed the univariate analysis to assess the association between regional 

RBA and each of the clinical variables that showed significant correlations with the global 

RBA. Results after executing the Benjamini & Hochberg procedure for controlling the false 

discovery rate (FDR) showed that postnatal steroid treatment is associated with lower 

RBAs in five brain regions (t>3.1; p < 0.05), including left and right postcingulate cortices, 

right orbitofrontal cortex, left Rolandic operculum cortex, and left cuneus cortex (Figure 

6A). In addition, lower birthweight (less than 1000g) was associated with lower RBAs 

(t>3.4; p < 0.05) in the left paracentral lobule and right postcingulate cortex.  

We then assessed correlations between regional RBAs and neurodevelopmental 

outcomes (Figure 6B). After FDR correction, six regions, including the left precentral, 

superior frontal, left inferior orbitofrontal, left insular, right Rolandic operculum right 
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orbitofrontal, and right dorsal anterior cingulate cortices, displayed significant associations 

between their RBAs and cognitive scores at 30 months (r=0.41-0.53). Three regions, 

including left Broca’s area, right Rolandic operculum and right supramarginal cortex were 

significantly associated with language scores at 30 months (r= 0.46-0.57). No regional 

RBAs were associated with motor scores. No right hemispheric regional RBAs were 

associated with any domain of neurodevelopmental scales.  

 

 

  
Figure 6.  Association of Regional RBAs predicted using GCN models with perinatal clinical variables and 

neurodevelopmental outcome.  A. Regional RBAs reflect the influence of perinatal clinical variables on brain 

growth. Left:  brain regions displaying lower RBA associated with postnatal steroid treatment. Right: regions 

displaying lower RBA associated with extremely low birthweight (< 1000g). B. Regional RBAs are 

positively associated with brain cognitive (left), and language functional (right) scores at 30 months. 

 

 

Structural Equation Modeling  

The outlined structural equation model is shown in Figure 7 (with standardized estimates), 

in which the rectangles represent observed variables, circles represent latent variables and 

error terms (e), single-headed arrows represent the impact of one variable on another, and 

double-headed arrows represent covariances between pairs of variables. The χ2 model-fit 
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statistics indicated a significantly acceptable model fit (p < 0.001).  

 

 

 

 
Figure 7.  Results of path analysis. Rectangles represent manifest variables and ellipses represent latent 

variables. Each single-headed arrow denotes a hypothesized unidirectional effect of one variable on another. 

Numbers associated with effects are standardized regression coefficients. Asterisks refer to the paths that are 

statistically significant. 

 

RBA was found to mediate the pathway from preterm birth to brain functional 

development at 30 months. RBA also mediates the pathway from postnatal factors to brain 

functional development at 30 months (p < 0.05). The relationship between brain injury and 

brain development at 30 months was not significant, for either the direct pathway or the 

pathway mediated by RBA (p < 0.05).  

 

Discussion 

 

Brain age prediction using GCN 

With the capability of capturing the huge age-related morphological alterations during the 

third trimester, we proposed that GCN-based deep learning with surface morphological 

features can better predict individual brain age in this period with greater clinical utility in 

assessing neurodevelopmental status. To date, brain age prediction approaches have used 

machine learning methods fed with volume images directly (Cole et al., 2017) or structural 

connectome metrics (Brown et al., 2017). However, image-fed standard CNNs may not be 

capable of detecting the morphology that varies along the cortical manifold, which appears 
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to be a sensitive gauge of brain growth in early development. Connectome-based deep 

learning approaches, such as the BrainNetCNN (Kawahara et al., 2017), have also not 

performed better than conventional machine learning methods (He et al., 2018). 

To address these limitations, we incorporated morphological features extracted from the 

cortical surface and cortical surface topology into our GCN and found that its prediction 

accuracy is superior to state-of-the-art methods. We also demonstrated that learning of 

surface topological patterns is key to improving accurate prediction of the GCN fed with a 

surface of randomized connections, which have not been considered in other approaches. 

Using the GCN, we found that the morphological maturation of preterm neonatal brains 

can decelerate in the presence of various clinical conditions. The patterns found in regional 

age prediction indicate that the middle cingulate cortex is the best predictor for brain age 

in terms of the MAE. This finding is supported by previous evidence that confirms the 

cingulate area as one of the earliest developing regions and the thickest part of the cortex 

in newborns (Li et al., 2015b).  

 

Clinical Implications and Applications 

Our findings suggest that RBA has potential clinical utility in assessing neurodevelopment 

of preterm infants. Specifically, it is the first time using structural equation modelling 

(SEM) analysis to provide clear evidence of the temporal relationship among three stages 

during the developmental trajectory for neonates: the context the preterm neonates were 

placed in, the brain development and the behavioral patterns years later. That is, RBA at 

scan mediated the pathway from preterm birth and postnatal factors, such as exposure to 

postnatal steroids, CLD, hypotension, PDA, infection, days for intubation, to brain 

functional development at 30 months (Fig. 7). In addition, the significant pathway from 

preterm birth and postnatal factors to brain functional development at 30 months were not 

found. This suggests that brain morphological growth affected by preterm birth and 

postnatal factors is key to understanding neurodevelopmental impairment presented in 

preterm children. SEM did not provide sufficient evidence of a significant relationship 

between perinatal brain injuries and brain development at 30 months. Despite a limited 

sample size used for the analysis, these findings suggest that the effects of preterm birth 

and other postnatal factors on brain functional development may be larger than the effects 
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of preterm birth-related brain injuries.  

Given a close look at the association between single clinical factor and RBA, our GLM 

analysis showed that a lower RBA value, indicating delayed neurodevelopment, is 

significantly associated with several clinical factors, such as birthweight, CLD, and use of 

postnatal steroids (Fig. 4 and 6). The underlying pathophysiology of how these clinical 

factors impair neurodevelopment may be attributed to both exogenous and endogenous 

factors that lead to brain insult from respiratory or circulatory insufficiency, hemorrhagic 

events, hypoxic-ischemic events, and inflammation (Dempsey and Barrington, 2007; van 

Vliet et al., 2013; Lemmers et al., 2016; Galinsky et al., 2018; Zonnenberg et al., 2019). 

 Among the clinical variables analyzed, birthweight, CLD, and steroids demonstrated 

the most significant relationships with RBA impairment. Specifically, lower birthweight 

was associated with impaired RBAs of two specific brain regions, including the left 

paracentral lobe and right post-cingulate cortex (Fig. 6). Reduced RBAs in these regions 

implicate lower birthweight’s adverse impact on related functions of the paracentral lobule 

(i.e., motor and sensory functions of the lower limb as well as autonomic functions) and 

diverse functions of the right post-cingulate cortex (i.e., communication with brain 

networks, working memory, and the default mode network). Impairment of these regions 

are consistent with prior studies establishing associations between low birthweight infants 

and poor neurodevelopmental outcomes, such as developmental delay, movement 

disorders, visual problems, hearing impairment, and intellectual disabilities (de Kieviet et 

al., 2009). 

Our results also demonstrated that CLD has a strong association with impaired RBA. 

CLD primarily affects preterm infants who are exposed to prolonged mechanical 

ventilation and oxygen therapy for pulmonary complications (Kinsella et al., 2006; Gallini 

et al., 2020). An immature lung with chronic exposure to ventilation can result in oxygen 

toxicity and pulmonary inflammation, compromising proper gas exchange and thus 

perfusion and oxygenation to the brain. Consequently, the immature brain, which is 

vulnerable to these fluctuations in perfusion and oxygenation, becomes susceptible to a 

cascade of complications, including hypoxia-ischemia, inflammation, germinal matrix 

injury, diffuse white matter injury, and diffuse gray matter injury (Albertine, 2012; 

Malavolti et al., 2018). These resulting complications, particularly diffuse white and gray 
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matter lesions, contribute to neurodevelopmental delay in motor skills, learning, attention, 

and behavior (Perlman, 2001), consistent with the poor neurodevelopmental outcomes of 

CLD infants, including  motor (Van Marter et al., 2011), cognitive (Singer et al., 2001), 

and language deficits (Singer et al., 1997; Short et al., 2003; Natarajan et al., 2012). Thus, 

our findings further support that systemic complications of CLD contribute to 

neurodevelopmental delay as indicated by its strong association with reduced RBA.  

 Furthermore, our results revealed that postnatal exposure to steroids have an association 

with RBA impairment. Specifically, use of postnatal steroids impaired RBAs of five brain 

regions, including the left and right post cingulate cortex, right orbito-frontal cortex, left 

Rolandic operculum cortex, and left cuneus cortex (Fig. 6). Postnatal steroid therapy is 

traditionally provided to preterm neonates with BPD to reduce lung inflammation (Halliday 

et al., 2003). In our previous study, postnatal exposure to clinically routine doses of 

hydrocortisone or dexamethasone were associated with impaired cerebellar but not cerebral 

growth when total volumes were analyzed (Tam et al., 2011). Using RBA based on cortical 

morphometrics and deep learning algorithms, however, we revealed adverse effects of 

postnatal glucocorticoids on cerebral growth. These results are consistent with previous 

findings that poor neurofunctional development following postnatal steroid usage in other 

studies (Watterberg, 2010; Cheong and Doyle, 2019; Van Meurs and Hintz, 2020). 

Finally, the potential clinical utility of RBAs is further supported by their strong 

relationships with cognitive and language scores at 30 months (Fig. 6B). Specifically, 

cognitive scores were significantly associated with RBAs of six brain regions, including 

the left precentral, superior frontal, left inferior orbitofrontal, left insular, right Rolandic 

operculum, right orbitofrontal, and right dorsal anterior cingulate cortices. Furthermore, 

language scores were significantly associated with RBAs of three brain regions, including 

left Broca’s area (important for language production and comprehension), right Rolandic 

operculum, and right supramarginal cortex. These brain regions are involved in specific 

functions of cognition and language process: (1) the post cingulate cortex important for 

memory, emotional regulation, the default mode network, and communication with other 

networks, (2) the orbitofrontal cortex important for cognitive processing and decision-

making, (3) the Rolandic operculum cortex important for somatosensory and motor 

function, and (4) the cuneus important for visual processing. These findings show a broad 
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overlap between affected brain regions and their respective functional roles in cognition 

and language, further supporting the potential of RBAs in accurately predicting 

neurofunctional development. Altogether, our findings are largely consistent with existing 

evidence revealing adverse effects of prematurity-related clinical variables on the 

developing brain’s structure and function (Shah et al., 2008; Brew et al., 2014; Kidokoro 

et al., 2014; Lemmers et al., 2016; Van Meurs and Hintz, 2020). 

We found that our RBA metric was not associated with neuromotor scores at 30 months. 

A possible explanation is that the morphology in the motor cortex, particularly cortical 

folding, was already relatively mature in our cohort, given folding forms earlier than the 

late 3rd trimester of gestation. Therefore, predicted brain age based on cortical morphology 

extracted from these postnatal scans may not be sensitive to neuromotor impairment, while 

previous studies have shown that neuromotor impairment of preterm survivors is rather 

significantly associated with perinatal white matter brain injury (Guo et al., 2017; Saha et 

al., 2020) and postnatal cerebellar growth (Messerschmidt et al., 2008).    

 

Limitations, future directions and conclusions 

The acceleration/deceleration of predicted brain age could be a surrogate for brain 

developmental status, which may reflect a combination of perinatal clinical factors exert 

on preterm neonates before the scan and be associated with brain functional abilities in the 

future. However, the conventional RBA metric is not suitable for gauging the degree of 

brain health due to its bias. We further showed that this metric fails to show significant 

difference for any of the clinical factors and predict preterm survivors’ functional outcomes. 

By correcting this bias, we demonstrated that the adjusted RBA measurement showed 

significant difference for some of the clinical conditions, also it significantly correlates 

with cognitive and language scores evaluated after 30 months. It is worth noting that the 

relative brain age is frequently influenced by various sources that we could not consider 

fully, which may give rise to significant false positives and false negatives when looking 

for associations between RBA and other measures (Le et al., 2018). In this study, we only 

corrected the linear bias from the relative brain age. Suggested by Smith et al. (Smith et al., 

2019), it is necessary to not only remove the linear dependency of relative brain age on age 

but also the nonlinear dependence, especially the quadratic dependency of brain aging (as 
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a function of age). 

There are several other limitations of the current study. Due to the modest sample size 

and high-dimensional feature space, it is possible that some of the reported effect sizes are 

over-fitted. Future studies should focus on replicating the current findings using a larger 

sample size. To better investigate the relative brain age in regard to injuries and clinical 

factors, it is best to have brain age prediction models trained through healthy control 

subjects. However, our preterm neonate dataset includes only a few completely “healthy” 

subjects displaying no clinical conditions: i.e., 7 out of 170 neonates. Hence, our brain age 

prediction model in this current study was not trained solely based on “healthy” preterm 

neonates who presented no clinical conditions, which contributes to a degree of bias from 

existing clinical variables.  

We found that very small cortical regions displayed much larger error in prediction of 

brain age, possibly explained by the lack of morphological features used for the fitting 

process. Yet, it is noteworthy to mention that there were significant associations between 

the RBA of two of those small regions (right posterior cingulate, right orbital portions of 

middle frontal gyrus) and perinatal risk factors, suggesting the importance of these small 

regions in neonatal development under specific conditions. To fully clarify, these cortical 

regions remain to be analyzed more carefully with a larger sample dataset. 

Despite these limitations, however, our study proposes a novel GCN that uniquely uses 

the dramatically altered morphological features and topological patterns to predict brain 

age, which in turn explain the developmental trajectory in preterm neonates by linking to 

pre-scan clinical factors and post-scan behavioral developments. Our study contributes to 

the growing body of literature on early postnatal neurodevelopment. Altogether, these 

findings provide the basis for future investigations aiming to extend the PBA measurement 

to practical clinical application, such as the individualized prediction of 

neurodevelopmental outcome alongside other potential biomarkers of brain development.  
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