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SUMMARY 1 

Proliferation is a fundamental trait of cancer cells but is poorly characterized in tumors by classical 2 

histologic methods. We use multiplexed tissue imaging to quantify the abundance of multiple cell 3 

cycle regulating proteins at single-cell level and develop robust multivariate proliferation metrics. 4 

Across cancers, the proliferative architecture is organized at two distinct spatial scales: large 5 

domains, and local niches enriched for specific immune lineages. A subset of tumor cells express cell 6 

cycle regulators in canonical patterns consistent with unrestrained proliferation, a phenomenon we 7 

refer to as “cell cycle coherence”. By contrast, the cell cycles of other tumor cell populations are 8 

skewed toward a specific phase or characterized by non-canonical (incoherent) marker combinations. 9 

Coherence varies across space, with changes in oncogene activity, and with therapeutic intervention, 10 

and is associated with aggressive behavior. Multivariate measures capture clinically significant 11 

features of cancer proliferation, a fundamental step in enabling more precise use of anti-cancer 12 

therapies. 13 

 14 
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proliferation; cell cycle; multiplexed imaging; cancer systems biology; temporal inference; spatial 16 
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INTRODUCTION 18 

Although uncontrolled cell proliferation is a defining feature of cancer (Hanahan and Weinberg, 2011) 19 

much of our understanding of the cell cycle comes from the in vitro study of cell monocultures grown 20 

in an abundance of nutrients, supporting doubling times of 24 to 48 hours (Duval et al., 2017). By 21 

contrast, in patients the median doubling time of tumors is substantially longer; even aggressive 22 

tumors such as colorectal metastases to the lung have a median doubling time of over 90 days 23 

(Collins et al., 1956). While it has been long appreciated that most solid tumors do not uniformly grow 24 

according to exponential kinetics (Norton, 1988; Norton et al., 1976), the molecular and cellular 25 

determinants of proliferation in the microenvironment of a tumor are incompletely understood (Norton, 26 

2014).  27 

 28 

While mutations in oncogenes and tumor suppressors are a prerequisite for cancer growth, cell-29 

intrinsic growth signals arising from these genetic changes are only one component of a rich network 30 

that influences whether or not cancer cells divide in vivo (Black and McGranahan, 2021). The levels 31 

of nutrients, oxygen, and metabolites, as well as the physical properties of the tumor (Nia et al., 2020) 32 

vary dramatically between different tumors and spatially within single lesions, each potentially 33 

imposing restrictions on cell proliferation (Frieboes et al., 2006; Randall et al., 2020). Thus, in both 34 
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primary and metastatic tumors, cancer cells exist in proliferative, non-proliferative, and arrested states 35 

(Aguirre-Ghiso, 2007). In addition, many cells in tumor masses are not neoplastic, but rather are 36 

immune and stromal cells (Quail and Joyce, 2013) that are non-uniformly distributed across the tumor 37 

(Lin et al., 2021). The extensive crosstalk between these distinct cellular components of a tumor 38 

ecosystem creates local conditions that may either promote or inhibit cell proliferation (Bejarano et al., 39 

2021). 40 

 41 

Tumors that are removed during clinical care contain valuable information about the tumor cell 42 

proliferation and how it is influenced by resource limitation and the physical constraints imposed by 43 

surrounding tissues. In the past, autoradiography measurements of 3H- thymidine incorporation into 44 

DNA from resected tumors provided information about cell cycle kinetics and demonstrated that only 45 

a fraction of cells were actively proliferating (Baserga, 1965; Johnson et al., 1960; Mauer and Fisher, 46 

1962). Today, in both research and clinical diagnosis, tumor cell proliferation is primarily assessed 47 

using two features detectable by tissue imaging: the frequency of mitotic figures as judged visually in 48 

hematoxylin and eosin (H&E) stained tissue sections or the fraction of Ki-67-positive cells as 49 

measured using immunohistochemistry (IHC) (Inwald et al., 2013). Both measures have substantial 50 

limitations. Mitotic figures reflect one brief phase of the cell cycle, and do not always represent active 51 

proliferation as they can also accumulate during mitotic arrest; their detection is also highly 52 

dependent on staining and fixation quality (Lehr et al., 2013). Ki-67 is not an essential cell cycle 53 

regulator but rather a protein that organizes chromatin during mitosis and whose levels correlate with 54 

proliferation (Cuylen-Haering et al., 2020; Sobecki et al., 2016). Studies in cultured cells show that Ki-55 

67 levels change in a graded manner throughout the cell cycle, rising gradually during S phase, 56 

peaking during mitosis, and falling during anaphase and G1 (Bruno and Darzynkiewicz, 1992; Miller 57 

et al., 2018). Nonetheless, in clinical practice the proliferative index of tumors is scored as the 58 

percentage of Ki-67 positive cells, requiring each cell to be assigned a dichotomous score as Ki-67 59 

positive (proliferating) or Ki-67 negative (non-proliferating). The imprecision of this approach 60 

underestimates the proportion of cells that are actually proliferating (Gerdes et al., 1983; Miller et al., 61 

2018). Multiple studies have demonstrated the potential of proliferative index to serve as both a 62 

prognostic and predictive biomarker, but the analytic and pre-analytic variability of Ki-67 staining has 63 

made it difficult to realize this promise (Denkert et al., 2015; Nielsen et al., 2020). A more accurate 64 

and comprehensive means to assay proliferation that accounts for the complexities of cell cycle 65 

dynamics is therefore essential for applications as diverse as basic and translational research, clinical 66 

trials, patient management, and tissue and tumor atlas construction (HuBMAP Consortium, 2019; 67 

Rajewsky et al., 2020; Rozenblatt-Rosen et al., 2020). 68 

 69 
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The multiplexed measurements necessary to deeply characterize cell proliferation in clinical 70 

specimens have only recently become possible. Over the past several years, a range of multiplexed 71 

tissue imaging methods have been introduced to deeply phenotype fixed tissues (Angelo et al., 2014; 72 

Giesen et al., 2014; Goltsev et al., 2018; Lin et al., 2018; Saka et al., 2019; Tsujikawa et al., 2017). 73 

These methods measure the levels of 10-60 antigens at single cell resolution and permit the 74 

identification and quantification of cell types and cell states as well as the description of cell-cell 75 

interactions and higher-order relationships in space (Bodenmiller, 2016). Collaborative projects such 76 

as the NCI Human Tumor Atlas Network (HTAN) are using these technologies to create spatial maps 77 

of human cancer in which architectural and cell state features are related to clinical outcomes 78 

(Rozenblatt-Rosen et al., 2020). Multiplexed protein imaging is well-suited to studying processes such 79 

as cell cycle progression, which are regulated by oscillatory proteolysis of cell cycle phase-specific 80 

proteins, and can therefore be monitored using protein level measurement alone (Gookin et al., 2017; 81 

Mahdessian et al., 2021). For example, the inverse oscillations of DNA licensing factors CDT1 82 

(Nishitani et al., 2000) and Geminin (McGarry and Kirschner, 1998) through G1/S/G2 have been used 83 

to delineate cell cycle phase transitions in vitro and in vivo (Sakaue-Sawano et al., 2008). Imaging at 84 

sub-cellular resolution makes it possible to quantify the translocation of proteins between cellular 85 

compartments, as well as the breakdown in nuclear structure at mitosis. The translocation of cyclin 86 

B1 from the cytoplasm to nucleus, for example, is a reliable way to monitor the G2 to M transition in 87 

mammalian cells (Jin et al., 1998). One complication in this approach is that cancers frequently carry 88 

mutations or copy number changes in cell cycle regulators, such as RB1 (pRB) and CKDN2A (p16) 89 

(Priestley et al., 2019; Robinson et al., 2017). This causes disruption of normal cell cycle progression 90 

and impacts protein expression patterns. For example, loss of pRB results in hyperexpression of p16 91 

as feedback mechanisms unsuccessfully attempt to block aberrant cell cycle progression (Romagosa 92 

et al., 2011; Shapiro et al., 1995). With information on many different proteins provided by multiplexed 93 

measurements, single cell patterns of correlation and decorrelation among cell cycle regulators can 94 

be probed for insight into the fidelity of cell division. Multiplexed single cell measurements also reveal 95 

connections between the levels of expression or activities of oncogenic proteins (e.g., the HER2 96 

receptor in breast cancer) and cell cycle dynamics (Wolf-Yadlin et al., 2006).  97 

 98 

In this study we use multiplexed measurements of cell cycle regulators from fixed tissues in two ways. 99 

First, we develop a multivariate proliferation index (MPI) that incorporates information from multiple 100 

markers to categorize tumor cells as proliferative, non-proliferative or arrested. This corrects for 101 

biases arising from the use of Ki-67 alone as a measure of proliferation. Second, we create a 102 

framework for studying cell cycle dynamics from fixed cell images based on time inference, a 103 

computational method to model dynamic processes in the absence of temporal data. Several time 104 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.443704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.443704
http://creativecommons.org/licenses/by-nc-nd/4.0/


inference methods have been developed for inferring dynamics from fixed time images acquired from 105 

cells grown in culture (Gut et al., 2015; Kafri et al., 2013) and from single-cell RNA sequencing data 106 

(Cannoodt et al., 2016; Liang et al., 2020; Setty et al., 2019; Trapnell et al., 2014). To develop an 107 

analogous approach for multiplexed images acquired from fixed tumor tissues we made the following 108 

assumptions: 1) measured markers provide coverage of multiple cell cycle transitions, 2) sampling is 109 

sufficiently uniform and dense for ergodic theory to be applicable, and 3) there exists a dynamical 110 

system (not necessarily known) governing changes in expression of measured cell cycle proteins. 111 

Similar assumptions are needed to apply any time inference framework to static data. When these 112 

assumptions are met, the time inference method approximates time series data and can be used to 113 

order cells in ‘pseudotime.’ 114 

 115 

Using these two approaches, we address fundamental questions about cell proliferation in cancer 116 

tissues. We identify general properties about the organization of proliferating cells across major tumor 117 

types and demonstrate short-range tightly organized niches and long-range zones having graded 118 

features. Locally, proliferative and non-proliferative niches are enriched for distinct types of immune 119 

cells. Using an interpretable visualization of the multidimensional space of cell cycle markers we 120 

identify three distinct types of cell cycle dynamics: coherent, skewed, and non-canonical. Coherent 121 

dynamics in tissues reflect the pattern seen in freely cycling cells grown in culture. Studies in HER2 122 

breast cancer tissues reveal an unexpected relationship between oncogene expression levels and 123 

cell cycle progression: optimal coherence is observed at intermediate HER2 levels, not with the 124 

highest receptor expression, consistent with the existence of optimum oncogene expression. In 125 

patient samples acquired before, on, and after treatment, adaptive changes in cell cycle dynamics are 126 

observed, showing that imaging cell cycle regulatory proteins can be applied to understand the 127 

effects of anti-cancer drugs and to potentially guide their use. Finally, we show that cell cycle 128 

coherence is associated with tumor recurrence in two highly aggressive malignancies, glioblastoma 129 

and mesothelioma. Thus, our results show how the correlation structure of multi-parameter single cell 130 

protein expression data can be used to study temporal processes that can only be assayed in 131 

humans at a single point in time. When combined with the spatial and morphological data available in 132 

images, this provides a new means to investigate the complexities of human disease. 133 

 134 

RESULTS 135 

A Multivariate Proliferation Index (MPI) derived from multiplexed immunofluorescence images 136 

We used 20 to 30-plex cyclic immunofluorescence (CyCIF) to image sections from formalin fixed 137 
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paraffin embedded (FFPE) human epithelial cancers (i.e., breast, lung, colon, ovarian carcinomas), 138 

mesothelioma, and gliomas, in each case recording the intensities of each immunofluorescence 139 

signal on a per-cell basis (~21.3 million cells in total, from >500 individual specimens; Table S1). We 140 

used lineage-specific markers (e.g., e-cadherin, pan-cytokeratin, SOX2, CD45, vimentin), to 141 

distinguish tumor cells from immune and stromal cells and characterized the proliferative states of the 142 

tumor cells (Figures 1-2). We then investigated cell cycle properties in multi-dimensional marker 143 

space, before and after perturbation, by interpreting marker combinations in light of known protein 144 

expression patterns across the cell cycle (Figures 3-7). 145 

 146 

As a robust means to aggregate information on cell proliferation we generated a Multivariate 147 

Proliferation Index (MPI). This categorical index is based on staining intensities for three proliferation 148 

markers (Ki-67, PCNA, MCM2) (Bravo et al., 1987; Chong et al., 1995; Madine et al., 1995; Takasaki 149 

et al., 1981) and two cell cycle arrest markers (p21, p27) (Cayrol et al., 1998; Sherr and Roberts, 150 

1999) (Figures 1A, 1B, and S1A-S1D). An MPI value was assigned to each tumor cell based on the 151 

following rule: cells were scored as proliferative (MPI +1) if they expressed a positive balance of 152 

proliferation markers; non-proliferative (MPI 0) if they lacked expression of proliferation markers; and 153 

arrested (MPI -1) if they expressed high levels of one or both of the arrest markers, even if 154 

proliferation markers were also expressed. The frequency of proliferative cells (MPI +1) varied 155 

between tumor samples (Figures 1C and 1D), but MPI calculations from adjacent sections of the 156 

same samples were reproducible, demonstrating technical robustness (linear fit coefficient = 1.004, 157 

R2 = 0.89; Figure S1E). No single marker appeared sufficient for identifying all proliferative cells 158 

(Figure 1A,B; Note S1). For example, although Ki-67 is the most widely used measure of 159 

proliferation in diagnostic and research settings (Allegra et al., 2003; Viale et al., 2008), we found that 160 

39-72% of MPI +1 cells were Ki-67 negative but positive for PCNA or MCM2, depending on the tumor 161 

type; this is consistent with data from cultured cells showing that high Ki-67 expression occurs in the 162 

G2 phase of the cell cycle (Bruno and Darzynkiewicz, 1992; Miller et al., 2018) (Figures S1B and 163 

S1C). Results from MPI classification were consistent with those obtained by dimensionality reduction 164 

followed by clustering of single cell data (e.g., with t-SNE in Figure 1E; and with k-means in Figure 165 

S1D), but computing MPI is advantageous because supervised labelling and parameter tuning are 166 

not required to identify the proliferative subpopulations (Note S2). MPI is likely to be a more reliable 167 

measure of proliferation than Ki-67 staining alone because MPI encompasses multiple cell cycle 168 

states (e.g., G1/S and G2/M) and involves redundant measurements, making it less sensitive to 169 

staining artifacts. 170 

 171 
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To determine whether the variation in MPI across patient samples is associated with clinically 172 

relevant features of tumor behavior, we focused on breast cancer in which tumor subtype (DeSantis 173 

et al., 2019), histological grade (Rakha et al., 2010), and p53 status (Allred et al., 1993) are known 174 

predictors of outcome. In samples from 75 patients, the fraction of MPI +1 cells varied from 0 to 1 175 

(Figure 1F) and was highest in aggressive molecular subtypes such as HER2-amplified and triple-176 

negative breast cancer (KS test, p < 0.035), Figure 1G). The fraction of cells scored as MPI +1 also 177 

increased significantly with tumor grade and p53 status (KS test, p-value < 0.035, Figures 1D and 178 

S1F), but this was not true of the Ki-67 positive fraction (Figure 1G). 179 

 180 

Spatial analysis of MPI reveals two length scales of proliferative architecture of human cancer  181 

To determine whether proliferating and non-proliferating tumor cells are organized into distinct spatial 182 

domains, we quantified the spatial correlation within MPI categories (“self-correlation”) and between 183 

MPI categories (“cross-correlation”) across 513 tumor specimens including carcinomas, 184 

mesothelioma and gliomas. Visual inspection of multiplexed image data and corresponding single cell 185 

maps of MPI values revealed a variety of spatial patterns (Figures 2A and S2A-S2C). Cross-186 

correlations were found to be weak and variable, but proliferative (MPI +1) and non-proliferative (MPI 187 

0) states were strongly and significantly positively self-correlated across tumor types (Figures 2B and 188 

S2D-S2F). Spatial self-correlation decreased with distance and was well fit by a two-exponential 189 

decay model (Figures 2C and S2G). From the fitting, we estimated two characteristic length scales 190 

corresponding to ~10-30 µm and ~100-300 µm (Figures 2D). Thus, proliferating (MPI +1) cells are 191 

clustered together with other proliferating cells and away from non-proliferating and arrested cells. 192 

Further, the proliferative architecture is organized in two physical scales; small niches within larger 193 

structured neighborhoods. 194 

 195 

When we calculated characteristic length scales for MPI data in tissues from three breast cancer 196 

patients biopsied before, on and after treatment, both short and long correlation lengths increased 197 

following therapy (Figure 2E). At short length scales in breast tissue from 75 patients (from Figures 198 

1D, 1F and 1G above), MPI 0 tumor cells clustered away from T lymphocytes and were more 199 

frequently found in proximity to CD68-expressing macrophages, whereas MPI +1 tumor cells were 200 

associated with CD163-expressing macrophages (correlation p-value <10-8) (Figures 2F and 2G). In 201 

ER+ breast cancer, MPI +1 cells were significantly associated with cytotoxic T cells (correlation p-202 

value <10-8) (Figures 2F and 2G); this strong association was also observed in ovarian cancer 203 

(Figures 2H and 2I) but was absent in HER2+ and triple negative breast cancers (Figures 2F and 204 

2G). We speculate that the short length scales observed in MPI data correspond to small clusters of 205 

sister cells arising from common parents that are also influenced by interaction with immune cells. 206 
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Large proliferative neighborhoods may be organized by environmental conditions e.g., hypoxia 207 

(Tannock, 1968; Zaidi et al., 2019), nutrient availability, and tissue structure (Muthuswamy, 2021).  208 

 209 

Cell cycle coherence metrics derived from multiplexed images of human cancer 210 

In addition to allowing us to visualize the spatial distribution of proliferation in cancer, MPI identified 211 

actively proliferating cells for further characterization. We therefore stained tissues using antibodies 212 

against 10 well-established cell cycle regulators including cyclins A1/A2, B1, D1 and E1, CDK 213 

inhibitors p21 and p27 and DNA replication regulators CDT1, Geminin, and phospho-RB (see Table 214 

S2 for details on markers used in each experiment). Single cell intensity data revealed a wide range 215 

of marker combinations (Figures 3A and S3A), but most markers did not have clearly separated high 216 

and low states (Figures 3B and S3B-S3C). Neither multidimensional gating nor dimensionality 217 

reduction methods such as t-SNE provided insight into the likely order of cell cycle events (Figures 218 

1E and S3D; Notes S2-S4). We therefore sought an alternative approach informed by knowledge of 219 

cell cycle dynamics. 220 

 221 

The molecular events driving the cell cycle are interconnected at the protein level such that 222 

fluctuations in cell cycle regulators are coordinated, and therefore correlated or anti-correlated in 223 

patterns characteristic of each cell cycle stage. To study this correlation structure we focused on 224 

epithelial cells that scored MPI +1 (i.e., proliferative tumor cells) and calculated a pairwise cell-cell 225 

correlation distance matrix in cell cycle marker space (the “cell cycle Difference” matrix; ccD; Figure 226 

3C). We then transformed the data using classical multidimensional scaling (CMD) to enable 227 

visualization of the ccD in two dimensions (see Methods and Supplemental Experimental Procedures 228 

for technical details). In the resulting “ccD-CMD'' representation, proliferating cells from a breast 229 

tumor sample formed a structure resembling a torus (Figure 3D). Mapping single markers on the 230 

ccD-CMD representation showed that the toroidal topography of ccD-CMD space was driven by 231 

fluctuations in the expression of cell cycle regulators (Figure 3D). 232 

 233 

As a test of this approach for studying cell cycle dynamics, we applied the ccD-CMD algorithm to data 234 

generated in silico with a mathematical model of the cell cycle (Figures S3E-S3H). We used a 235 

previously described dynamical model of the mammalian cell cycle (Csikász-Nagy et al., 2006) to 236 

generate synthetic time series data, and added uncorrelated noise to simulate errors introduced 237 

during imaging of tissues. The time dynamics reconstruction by the ccD-CMD algorithm were found to 238 

be accurate, with 93% of cells being placed within 1% of their correct ordering along a canonical cell 239 

cycle trajectory (Figure S3H). When we compared the performance of ccD-CMD time inference with 240 

other published time inference algorithms (Cannoodt et al., 2016; Gut et al., 2015; Liang et al., 2020; 241 
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Setty et al., 2019) on synthetic data and on real data from multiplexed imaging of a breast cancer cell 242 

line we found that the ccD-CMD algorithm outperformed the other inference algorithms in all settings 243 

(Figures S3H and S4A-S4C; see Notes S5 and S6 for details on algorithm testing and comparison). 244 

 245 

The organization of the ccD-CMD space is determined by fluctuations in the levels of cell cycle 246 

regulators, which we assume can be described by a deterministic dynamical system. If we 247 

additionally assume that our sampling is sufficient to apply the ergodic principle, we can conclude that 248 

the distance between two cells in ccD-CMD space is proportional to their difference in cell cycle 249 

position (as derived from the differential expression of the measured cell cycle regulators). A circular 250 

trajectory through the toroidal landscape of the ccD-CMD (Figure 3D) therefore corresponds to a 251 

prototypical progression from G1 to S to M and then back to G1. To parametrize the accuracy of this 252 

correspondence, we fit a circle to the data and derived two parameters: the uniformity of the 253 

distribution along the circumference of the ccD-CMD landscape (the inter-octile variation - IOV - in the 254 

angle θ) and the average distance of data points from the best-fit circle (circle fit distance, CFD) 255 

(Figure 3E). The IOV is the coefficient of variation of cell distribution in each pi/4 section of the circle. 256 

Hence, a low IOV indicates an even distribution of cells in the cell cycle. The CFD measures the 257 

dispersion of cells in ccD-CMD space: when the value is low, data from individual cells lie on or close 258 

to the best-fit circle. An even distribution of cells in ccD-CMD space is typical of unrestrained cell 259 

proliferation and corresponds to low IOV and low CFD values; we refer to this state as “cell cycle 260 

coherent” (Figure 3E). In coherent populations of cells, individual cells are ordered along a circle 261 

trajectory in the ccD-CMD landscape in a manner consistent with current understanding of cell cycle 262 

dynamics (Gookin et al., 2017) (Figures 3F and S3I-S3K). 263 

 264 

To confirm our interpretation of IOV and CFD we characterized non-transformed MCF10A mammary 265 

epithelial cells grown in culture and exposed for 24 or 48 hours to the CDK4/6 inhibitor palbociclib, the 266 

microtubule inhibitor nocodazole, or serum starvation (Figures 3G and S3I-S3K). Palbociclib is 267 

expected to cause G1/S arrest, nocodazole to cause G2/M arrest and serum starvation to drive cells 268 

into quiescence. Control, untreated MCF10a cells were found to have a IOVlow CFDlow (coherent) 269 

state (Figures 3G-3J), the expected temporal order of cell cycle events (Figures S3I-S3K). Data 270 

from cells treated with palbociclib or nocodazole was skewed toward specific quadrants of the ccD-271 

CMD landscape, representing IOVhigh CFDlow states (Figures 3G-3J). In contrast, when cells were 272 

serum starved, data fell in a point cloud corresponding to an incoherent IOVhigh CFDhigh state. Thus, 273 

the higher the value of IOV and CFD the greater the deviation from freely cycling coherent 274 

proliferation (Figures 3H-3J). 275 

 276 
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We applied coherence metrics to cell cycle dynamics in breast cancer tissues overexpressing the 277 

HER2 growth factor receptor (Moasser, 2007). HER2 expression defines one of the major subclasses 278 

of breast cancer and is routinely assessed using immunohistochemistry (Wolff et al., 2018) as both 279 

the magnitude and heterogeneity of HER2 protein expression predict response to HER2-directed 280 

therapy (Slamon et al., 1987; Moasser, 2007; Filho et al., 2019; Katayama et al., 2021). We 281 

performed CyCIF on a cohort of 26 breast cancer specimens (TMA1, TMA2), identified MPI +1 282 

epithelial cells and used the ccD-CMD algorithm to quantify IOV and CFD for individual patients 283 

(Figures 4A and 4B). A subset of tumors were found to be in an IOVlow CFDlow state (e.g., Sample 1 284 

in Figure 4C) and inspection of time-ordered cell cycle markers confirmed prototypical “coherent” cell 285 

cycle dynamics with a balanced distribution of proliferative tumor cells in both G1 and G2 phases 286 

(Figures 4C-4E). However, other samples deviated substantially from this pattern such as IOVhigh 287 

Sample 2 in which cells were ‘skewed’ towards G1 and CFDhigh Sample 3 (Figures 4C and 4D). In 288 

Sample 3, cells expressed combinations of cell cycle proteins that are not found in normally cycling 289 

cells (Figure 4E) such as CDT1 and Geminin without detectable Ki-67, or high p21, Cyclin A, Cyclin 290 

D and phospho-Rb. Across all specimens we observed a continuum of IOV and CFD values and, 291 

within a single specimen, values also varied with gradual transitions occurring over length scales of 292 

several millimeters (Figures 4F and S4G-S4K). We combined the proliferative cells from four regions 293 

of interest (ROIs) within a single tissue and used the ccD-CMD algorithm to order cells by their cell 294 

cycle positions, thereby obtaining insight into relative cell cycle distributions in each ROI (Figure 4G). 295 

In ROI1, which had the highest coherence, cells were evenly distributed through the cell cycle 296 

whereas in ROI2-4, IOV was higher and cells were concentrated in different parts of the cell cycle 297 

(Figure 4G). Thus, proliferating breast cancers expressing the same oncogenic driver (HER2) can 298 

exhibit different cell cycle dynamics (Figure 4A) within a single specimen ranging from a canonical: 299 

IOVlow CFDlow state to skewed distributions consistent with cell cycle phase disruption (skewed: 300 

IOVhigh CFDlow) and states not normally encountered in normally growing cells (non-canonical: IOVlow 301 

CFDhigh). 302 

 303 

HER2 overexpression promotes proliferation of mammary epithelial cells via receptor-mediated 304 

mitogenic signaling (Goel et al., 2016; Moasser, 2007). In two independent cohorts of HER2-amplified 305 

breast tumors, we binned single cells by their HER2 protein level and assessed cell cycle dynamics 306 

using coherence metrics (TMA1 and TMA2, Figure 5A). Cells with the lowest HER2 levels were 307 

typically CFDhigh. Optimal coherence (IOVlow, CFDlow) was observed in cells expressing intermediate 308 

levels of HER2. In contrast, cells with the highest HER2 levels were also CFDlow; their cell cycle 309 

dynamics were skewed to late G1 and IOV was high (IOVhigh, CFDlow) (Figures 5A and S5A). Similar 310 
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results were observed in individual biopsies from patients enrolled in a clinical trial (NCT02326974) of 311 

neoadjuvant dual HER2 therapy (n = 5, Figures 5B and 5C). 312 

 313 

HER2 expression modulates cell cycle coherence in breast cancer 314 

To determine if modulating HER2 expression alters cell cycle coherence, we used a genetically 315 

engineered mouse model (GEMM) of breast cancer in which HER2 expression can be induced (~100-316 

fold) and then silenced using a doxycycline-regulated breast tissue specific expression construct 317 

(MMTV-rtTA/ tetO-HER2; Figure 5D) (Goel et al., 2016). HER2-expressing mice develop ductal 318 

carcinoma in situ (DCIS) after three weeks, and palpable invasive carcinoma after a median latency 319 

of 53 days. Upon doxycycline withdrawal for 3 days (Dox-Off), tumor regression is apparent with 320 

100% penetrance. However, more than two-thirds of mice exhibit mammary tumor recurrence within 321 

120 days (Goel et al., 2016). As such, this model mimics important aspects of tumor dynamics in 322 

response to HER2-targeted therapy in patients, although on a faster time scale. Diverse mechanisms 323 

including upregulation of the Notch pathway, potentiation of c-Met signaling and amplification of 324 

Cyclin D1, all of which have been implicated in the development of recurrent disease in similar 325 

HER2/Neu-driven murine models (Abravanel et al., 2015; Feng et al., 2014; Goel et al., 2016).  326 

 327 

We collected tissue samples over a nine week period of HER2 induction and seven days of 328 

subsequent HER2 repression (Figures 5D-5G); 27-plex CyCIF was then performed to assay tumor 329 

cell cycle dynamics. Tumors induced following nine weeks of HER2 overexpression adopted a 330 

proliferative state with a skewed cell cycle (IOVhigh CFDlow, Figures 5H and 5I). This state resembles 331 

that of established human tumors expressing high HER2 (Figure 5A). Within 2 days of HER2 332 

withdrawal, cell cycle dynamics changed to an incoherent state (IOVlow CFDhigh; Figures 5H and 5I), 333 

even though neither proliferation (MPI +1 fraction) nor tumor cellularity had yet decreased (Figures 334 

5F and 5G). Seven days after HER2 silencing, only ~2.5% of tumor cells remained and they exhibited 335 

skewed IOVhigh CFDlow cell cycle dynamics (Figures 5H and 5I). In comparison, in specimens 336 

acquired from patients enrolled in a clinical trial (NCT02326974) of neoadjuvant dual HER2 therapy, 337 

only one sample had a detectable population of proliferating cells following treatment (Figure 5B). In 338 

this specimen, HER2 levels were lower than in any pre-treatment sample and the state was IOVhigh 339 

CFDlow (Figure 5C). These data suggest that the relationship between HER2 levels and cell cycle 340 

coherence is bell shaped, with the highest coherence observed at intermediate receptor levels. In 341 

both humans and mice, HER2-independent residual disease adopted the skewed cell cycle dynamics 342 

observed in pre-treatment tissues having high HER2 expression. 343 

 344 
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Coherence metrics change with treatment and are associated with clinical outcome 345 

As an additional means of studying how therapy impacts coherence, we assayed specimens from 346 

three patients with localized breast cancer who were biopsied before, during and after treatment 347 

(patient samples also analyzed in Figure 2E). In one patient with triple negative breast cancer 348 

(TNBC) biopsied prior to treatment (pre), following 12 weeks of neoadjuvant paclitaxel (on), and then 349 

again after 20 additional weeks of treatment with doxorubicin-cyclophosphamide (post) (Figure 6A), 350 

we found that either paclitaxel or doxorubicin-cyclophosphamide induced only small changes in the 351 

MPI +1 fraction (Figure 6B), even though the Ki-67+ fraction fell ~50% in the on-paclitaxel specimen 352 

(Figure 6C). ccD-CMD analysis of the three longitudinal TNBC samples showed that the cell cycle 353 

dynamics were mostly coherent throughout the treatment (CFD < 40, IOV < 0.6, Figure 6D). 354 

However, the dynamics of the “on” sample skewed towards the G1 phase of the cell cycle (Figures 355 

6E-6G), consistent with data from intravital imaging of xenograft models treated with paclitaxel 356 

(Chittajallu et al., 2015). G1 accumulation in the presence of paclitaxel explains why Ki-67 staining 357 

alone underestimated the proliferative fraction (Figure 6C). In another type of breast cancer (ER+ 358 

cancer) two other “pre-on-post” sample sets collected longitudinally over time showed drastic 359 

changes in coherence metrics induced by therapy (Figures 6H and 6I), even when treatment lasted 360 

for as little as two weeks (“pre” to “on” samples). Changes in coherence were independent of 361 

changes in the fraction of proliferating cells (MPI +1 fraction; Figure 6H). We conclude that cell cycle 362 

coherence is a plastic phenotype that provides a sensitive measure of therapy-induced changes 363 

independent of significant reductions in proliferative index. 364 

 365 

To determine if differences in cell cycle coherence are associated with differences in disease 366 

outcome we assayed specimens from patients cohorts diagnosed with two different lethal 367 

malignancies (mesothelioma and glioblastoma). Patients were stratified into a coherent IOVlow, 368 

CFDlow group and an incoherent group encompassing either IOVhigh or CFDhigh states (Figures 7A 369 

and 7B). We found that patients whose tumors exhibited coherent cell cycle dynamics had 370 

significantly worse outcomes (logrank p-value <0.02). Similar results were obtained if tumors were 371 

stratified into three groups (coherent, skewed and non-canonical; Figure S6). We conclude that cycle 372 

coherence in mesothelioma and glioblastoma is associated with aggressive tumor behavior and 373 

worse progression free survival. 374 

DISCUSSION 375 

Experimental models of cancer have shown that cell cycle progression and tumor cell 376 

proliferation are dynamically regulated processes, influenced by both cell autonomous and non-377 

autonomous factors (Mahdessian et al., 2021; Hanahan and Weinberg, 2011, 2000). These 378 
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properties are largely unexplored in the setting of intact human tissue and tumors. Instead, 379 

proliferative fraction is usually captured via a dichotomous assessment of the levels of a single 380 

marker (Ki-67). This approach incorrectly makes some dividing cells appear non-proliferative and fails 381 

to capture the cell cycle heterogeneity of proliferating cells. Here we provide a more informative and 382 

potentially more robust molecular characterization of proliferation that lays a foundation for 383 

understanding how tumors integrate microenvironmental and cell-intrinsic signals to grow in different 384 

niches.  385 

 386 

Specifically, a multivariate proliferation index (MPI) provides a means to quantity proliferative index 387 

based on the expression of multiple marker proteins – not just Ki-67 – and cell cycle coherence 388 

measures how closely cell cycle dynamics conform to those of the well understood cell cycles in 389 

freely dividing cancer cells. Through the lens of coherence, we show that only a subset of tumors 390 

grow with ”canonical” dynamics while others are skewed towards specific cell cycle phases or 391 

express unanticipated combinations of regulators. In both humans and mice, we find that intermediate 392 

levels of HER2 expression promote coherent cell cycle dynamics, whereas higher levels of oncogene 393 

overexpression lead to skewed dynamics, potentially resulting from phase-specific deceleration or 394 

acceleration involving skipped restriction points (Min et al., 2020; Moser et al., 2018). High coherence 395 

may not necessarily translate into faster growth, but both skewed and non-canonical dynamics are 396 

associated with less aggressive tumors in two highly lethal malignancies.  397 

 398 

We observe diverse cell cycle states within and across specimens. By contrast, the spatial 399 

organization of cells into proliferative and non-proliferative domains of two characteristic lengths 400 

appears to be conserved across cancers of diverse histology. We speculate that small-scale 401 

proliferative structures correspond to cells and their daughters following a few divisions (and perhaps 402 

also mitogenic cell-cell interactions) whereas large neighborhoods arise from differences in 403 

environmental conditions and structural constraints. These neighborhoods contain thousands of 404 

either proliferating or non-proliferating cells, reminiscent of developmental patterning by morphogen 405 

gradients (Briscoe and Small, 2015).  406 

 407 

Basic research, clinical trials, and precision cancer medicine require new quantitative measurements 408 

and computational approaches to correctly quantify cancer cell states and phenotypes, and their 409 

spatial organization in tissues (HuBMAP Consortium, 2019; Rajewsky et al., 2020; Rozenblatt-Rosen 410 

et al., 2020). This information is orthogonal but complementary to the characterization of genomic 411 

heterogeneity in tumors, and is expected to provide new means to understand response to treatment 412 
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and the evolution of drug resistance (Caswell-Jin et al., 2019; Lomakin et al., 2021; Rueda et al., 413 

2019; Zahir et al., 2020).   414 
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FIGURE LEGENDS 448 
Figure 1. Multivariate Proliferation Index (MPI) is linked to clinical parameters 449 
(A) Top, clustered heat map of normalized log2 fluorescence signal intensities of cell lineage markers 450 
from CyCIF images (one cell per column, breast tumor tissues n = 2.5 million cells). Bottom, clustered 451 
heat map of signal intensities of five markers in epithelial/tumor population (n = 1.4 million cells), 452 
sorted by MPI categories: +1 (proliferative, green), 0 (non-proliferative, blue), or -1 (arrested, red).  453 
(B) Representative immunofluorescence images of individual tumor cells from breast cancer showing 454 
MPI marker expression and corresponding MPI category.  455 
(C) Stacked bar graph of epithelial/tumor cells of MPI categories from samples of tissues from three 456 
types of carcinomas (n = 3 breast, 4 lung and 4 ovarian cases)  457 
(D) Stacked bar graph of epithelial/tumor cells of MPI categories from 142 samples of tissues from 75 458 
patients (Pantomics BRC15010). The receptor status for each tumor is indicated according to the 459 
vendor (‘path’) and from direct CyCIF measurements.  460 
(E) t-SNE plots for the three breast carcinoma tissues from panel C. with proliferation and cell cycle 461 
markers mapped to color (MPI categories were not used as t-SNE variables, n = 2,500 cells).  462 
(F) Comparison between MPI +1 fraction and Ki-67+ fraction per core in breast tissue microarray (n = 463 
142 cores from panel D, ordered independently by metric).  464 
(G) Comparison of MPI+1 and Ki-67 positive fraction in epithelial/tumor cells across different 465 
classifiers of breast cancer (n = 142 cases from panel D, KS p-values *p<0.035, ** p<0.006).  466 
 467 
Figure 2. MPI reveals two proliferative domains of cancer proliferative architecture  468 
(A) Spatial maps of MPI categories (whole slide and inset 1 were smoothed over 40 neighboring cells, 469 
for visualization purposes only) and corresponding composite CyCIF images from a HER2-positive 470 
breast tumor (white = E-Cadherin, green = MCM2, red = p27, blue = DNA).  471 
(B) Heat map of spatial correlations within and across MPI categories (“self corr” and “cross corr” 472 
respectively, k = 5th neighbor, n = 513 samples). 473 
(C) Spatial correlation plot and two-exponential fit. Inset depicts the two exponential curves that 474 
composed the fit (“short “and “long” scales).  475 
(D) Spatial correlation decay lengths for four tissue microarrays (median +/- 25th percentile, 53 476 
breast, 73 colon, 122 glioma, 32 mesothelioma samples) and 15 whole slide cancer tissues (7 breast, 477 
4 lung and 4 ovarian).  478 
(E) Spatial correlation lengths through treatment (see Table S5 for treatment details).  479 
(F-I) Spatial correlation between epithelial tumor cells and immune cells and corresponding p-values 480 
for (F-G) breast sample cohort (ER+ n = 46, HER2+ n = 37, TNBC n = 18 samples, Pantomics 481 
BRC15010) and (H-I) individual ovarian whole tumor slides (n = 4). Pearson correlation p-values are 482 
displayed in log10 color scale.  483 
 484 
Figure 3. A framework for inferring cell cycle dynamics from multiplexed imaging data  485 
(A) Composite fluorescence image of a subset of cell cycle markers and e-cadherin (breast tumor, 486 
scalebar, 50 µm).  487 
(B-E) Computational steps of the ccD-CMD algorithm to order cells along the cell cycle pseudotime (n 488 
= 10,000 cells from a HER2+ breast cancer tissue sample). (B) Histograms of the fluorescence signal 489 
of cell cycle markers measured at single-cell level. (C) Hierarchical clustering of pairwise cell cycle 490 
Difference (ccD). (D) Plot of cell cycle Difference with classical multidimensional scaling to two 491 
dimensions (ccD-CMD, left, n = 10,000 cells) with expression of cell cycle markers mapped to color 492 
(right). (E) Schematic of best-fit circle of ccD-CMD scatter (red dashed line, top) and derivation of 493 
coherence metric Inter-Octile Variation (IOV) and Circle Fit Distance (CFD). 494 
(F) Time ordering of cell cycle from ccD-CMD from G1 start (approximate G1 cell cycle start inferred 495 
from marker expression). Heat map and time plot of single-cell signal intensity measurements of cell 496 
cycle markers from the time-ordered cells (n = 10,000 cells; normalized log2 fluorescent arbitrary 497 
units, moving mean with 200 cells window). 498 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.443704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.443704
http://creativecommons.org/licenses/by-nc-nd/4.0/


(G) ccD-CMD plot of single-cell multiplexed data of cell cycle markers from plate-based CyCIF from 499 
fixed untreated MCF10A cells (Control), serum starved for 48 hours (Starv), and exposed for 24 and 500 
48 hours to nocodazole (Noco) or palbociclib (Palbo). Colors represent 3 distinct biological replicates, 501 
n = 1000 cells each. 502 
(H-I) Bar graph of (H) Inter-octile Variation IOV and (J) mean +/- 25th percentile Circle Fit Distance 503 
CFD (KS p-value). 504 
(J) Scatterplot of cell cycle coherence metrics Inter-Octile angular Variation (IOV) and Circle Fit 505 
Distance (CFD) plots for each treatment (lines connect mean treatment values). 506 
 507 
Figure 4. Extraction of cell cycle coherence metrics from multiplexed images of human cancer 508 
tissues 509 
(A) Scheme to classify tumor cell populations using the MPI and characterize cell cycle coherence 510 
states. 511 
(B) Scatterplot of cell cycle coherence metrics IOV and CFD for 25 HER2+ breast samples.  512 
(C) Examples of ccD-CMD plots for the 3 indicated samples with cell cycle markers (+/-95th 513 
percentile range in sample, log2 normalized FAU).  514 
(D) Distribution of cell density and heat maps of cell cycle markers with cells binned by the circle fit 515 
angle for the 3 samples in panel C. (color, median bin intensity, normalized maximum to minimum)  516 
(E) Representative immunofluorescence images of individual tumor cells from Sample 1 (Ordered 517 
Coherent Cells) and Sample 3 (Non-Canonical Cells). Scale bar 2 µm.  518 
(F) Scanned image of hematoxylin and eosin (H&E) stained section from a HER2+ positive breast 519 
tumor with pathology annotations. Composite CyCIF images of fluorescence of tissues with annotated 520 
regions of interest (ROI) used for analysis. Spatial ROI maps of MPI and coherence metrics IOV and 521 
CFD. 522 
(G) Comparison of selected ROIs from panel F. Left, Pearson correlation matrix of cell cycle markers. 523 
Middle, cell cycle Difference and classical multidimensional scaling (ccD-CMD) plot per individual 524 
ROI. Right, plot of distribution of cells along cell cycle time from ccD-CMD performed on data from the 525 
4 combined ROIs. 526 
 527 
Figure 5. Coherence metrics are modulated by HER2 expression in human breast cancer 528 
tissues and HER2-driven mouse model of breast cancer 529 
(A) Coherence metrics Circle Fit Distance (CFD) and Inter-Octile angular Variation (IOV) for HER2+ 530 
TMA1 and TMA2 cells (MPI +1 cells only) binned by HER2 levels (CFD mean +/- 25th percentile, n = 531 
5000 cells per bin). Bottom, CFD versus IOV per HER2 bin, lines connect data from increasing HER2 532 
mean levels.  533 
(B) Single-cell data summary for a 5-patient HER2+ breast cancer cohort enrolled in an anti-HER2+ 534 
clinical trial (grey markers are 2 pre-treatment biopsies, red markers are two areas of post-treatment 535 
resections). Top, percent HER2 positive cells in MPI +1 set per sample. Middle, total number of 536 
epithelial/tumor cells per sample. Bottom, fraction of cells in each MPI category. Cases 4 and 5 had a 537 
pathological complete response (pCR) to neoadjuvant therapy and did not have matched resection 538 
samples.  539 
(C) CFD and IOV versus average HER2 levels for HER2+ clinical trial samples, and plot of CFD 540 
versus IOV with HER2 level in color scale (mean log2 normalized FAU). Shapes represent patients (n 541 
= 2 biopsies per patients). Red diamond is a post-therapy resection sample.  542 
(D) Schematic diagram of HER2 induction (dox ON) and repression (dox OFF) and tissue harvest 543 
times from MMTV-rtTA tetO-HER2 genetically engineered mouse model (GEMM).  544 
(E) Plot of the median +/- 25th percentile per cell HER2 protein fluorescence in regions of normal 545 
epithelium, and in situ and invasive breast carcinoma of HER2 GEMM as defined by histology review.  546 
(F) Plot of the cell number and fraction of total cells present as benign duct epithelium, and in situ or 547 
invasive breast carcinoma in the HER2 GEMM tissues in time.  548 
(G) Plot of the fraction of tumor cells (in situ and invasive) in time in the three MPI categories.  549 
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(H) ccD-CMD plot of the MPI +1 proliferative tumor cells for each time point (n = 5,000 cells per 550 
sample, day 4 did not have enough MPI +1 tumor cells).  551 
(I) CFD versus IOV for time points of the GEMM experiment. 552 
 553 
Figure 6. Coherence metrics change with treatment  554 
(A) Clinical and pathologic features of biopsy/resection tissues from a patient with triple negative 555 
breast cancer (TNBC) characterized by CyCIF imaging. Three samples include the diagnostic biopsy 556 
(pre) and two samples after indicated treatments (on, post).  557 
(B-C) Plot of (B) fraction of cells in the three MPI categories and (C) Ki-67 positive fraction, through 558 
the treatment course for samples in panel A.  559 
(D) Scatterplot of coherence metrics Circle Fit Distance (CFD) versus Inter-Octile angular Variation 560 
(IOV) for triple-negative breast cancer (TNBC) patient (pre n = 5,000, on n=2,250, post n = 5,000 561 
single MPI +1 cells).  562 
(E-F) ccD-CMD plot of combined data from TNBC pre, on, and post samples with data (E) 563 
corresponding to time of biopsy indicated by color, and (F) with single marker normalized intensities 564 
mapped to color (n = 5,000 cells per plot, pH-H3 was not used by the ccD-CMD algorithm).  565 
(G) Distribution of cells along cell cycle time in the three samples and heat map of marker expression 566 
for single cells across cell cycle time combined for the three samples (moving mean over 100 cells). 567 
Upper panels, single time point cell frequency distribution.  568 
(H) Plot of fraction of cells in the three MPI categories through the treatment course for samples from 569 
two ER+ breast cancer patients pre-, on-, and post-treatment (see Table S5 for treatment details).  570 
(I) Scatterplot of coherence metrics Circle Fit Distance (CFD) versus Inter-Octile angular Variation 571 
(IOV) for two ER+ breast cancer patients pre-, on-, and post-treatment from panel H. 572 
 573 
 574 
Figure 7. Coherence metrics are associated with clinical outcome 575 
(A) Left, scatterplot of CFD versus IOV from a mesothelioma sample cohort (n = 22 patients). Colors 576 
represent binning into coherence groups according IOV and CFD metrics. Right, corresponding 577 
Kaplan Meier estimation of progression-free survival (PFS) for the patients (logrank p-value). 578 
(B) Left, scatterplot of CFD versus IOV from a glioblastoma sample cohort (n = 32 patients). Colors 579 
represent binning into coherence groups according IOV and CFD metrics. Right, corresponding 580 
Kaplan Meier estimation of progression-free survival (PFS) for the patients (logrank p-value). 581 
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METHODS 582 
 583 
RESOURCE AVAILABILITY 584 
 585 
Lead contact 586 
Further information and requests for resources and reagents should be directed to and will be fulfilled 587 
by the lead contacts, Sandro Santagata (ssantagata@bics.bwh.harvard.edu) and Sheheryar Kabraji 588 
(sheheryar_kabraji@dfci.harvard.edu). 589 
 590 
Materials availability 591 
This study did not generate any unique reagents. 592 
 593 
Data and code availability 594 
Datasets generated and the corresponding analysis used in all figures are available upon request. 595 
 596 
EXPERIMENTAL MODEL AND SUBJECT DETAILS 597 
 598 
Cell Lines 599 
MCF10A (female mammary epithelial) cells were purchased from ATCC and grown in DMEM/F12 600 
Medium (Gibco, 11330-032) with 5% horse serum (Gibco, 16050-122), 1% penicillin/streptomycin 601 
(Gibco, 15070-063), 0.1% Insulin (Sigma, #I1882), 0.05% hydrocortisone (Sigma, #H0888), 0.02% 602 
human-EGF (Sigma, E5036), and 0.01% cholera toxin (Sigma, #C8052). Cells were incubated at 603 
37˚C and 5% CO2 until fixation. 604 
 605 
Human Tissue Sections 606 
Whole slide tissue sections of breast carcinoma, ovarian carcinoma, and squamous cell lung 607 
carcinoma, and sections of tissue microarrays (TMAs) of breast carcinoma (HTMA 226, 227; triplicate 608 
0.6 mm diameter cores per case; courtesy of the DFCI Breast Oncology Group), glioma (HTMA 399; 609 
quadruplicate 0.6 mm cores per case), colorectal carcinoma (HTMA402; triplicate 0.6 mm cores per 610 
case), and mesothelioma (HTMA403, triplicate 1.0 mm cores per case) were prepared from formalin 611 
fixed, paraffin embedded (FFPE) tissue blocks from sample retrieved from archives of the 612 
Department of Pathology at Brigham and Women’s Hospital (BWH) in accordance with Institutional 613 
Review Board (IRB) approved protocols at BWH and the Dana Farber Cancer Institute. See Table S3 614 
for sample clinical information of cases analyzed as whole tissue sections. A outcome analysis of 615 
progression free survival was performed on a subset of the cases retrospectively collected from 616 
HTMA399 and HTMA403 and included only patients with clinical follow up following resection of 617 
primary tumors that were treated using standard of care regimens (therapy information in Tables S6-618 
S7) and in the case of gliomas (HTMA399), only IDH wild type glioblastoma were included in the 619 
analysis. FFPE tissue sections of breast carcinoma tissue microarray BRC15010 were purchased 620 
from Pantomics, Inc. Clinical data such as gender, age, therapy, and diagnosis for the over 700 621 
patients whose samples are used in this paper can be found in the Tables S8-S10. 622 
 623 
Animal experiments 624 
MMTV-rtTA/tetO-HER2 mice were previously generated (Goel et al., 2016). The transgenic construct 625 
was induced by introducing a doxycycline containing diet to 8 week-old female FVB MMTV-rtTA/tetO-626 
HER2 mice as previously described (Goel et al., 2016). Two mice were sacrificed at 3, 6, and 9 627 
weeks following introduction of the doxycycline diet and 2, 4, and 7 days after withdrawal of the 628 
doxycycline by switching to a standard diet. Mice were euthanized using CO2 inhalation, and all 629 
mouse experiments were performed in accordance with protocol 06-034 approved by the Institutional 630 
Animal Care and Use Committees of Dana-Farber Cancer Institute and Harvard Medical School. 631 
Multiple primary tumors were excised from each mouse and processed into FFPE tissue blocks. 632 
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 633 
 634 

METHOD DETAILS  635 
 636 
Experimental methods 637 
Plate-based Cyclic Immunofluorescence (p-CyCIF) 638 
MCF10A cells were grown and plated in flat bottom polystyrene 96-well plates at approximately 1E6 639 
cells/mL. Two plates were seeded at once for the two treatment times, and 12 wells were seeded to 640 
account for triplicates of each of 4 treatments. After 24 hours, cells were either given fresh media or 641 
treated with serum-free media, 1 µM palbociclib (Sigma, #PZ0383), or 5 µM nocodazole (Cell 642 
Signaling Technology, 2190S) and incubated at 37˚C for 24 or 48 hours. After treatment, Click-iT™ 643 
EdU Alexa Fluor™ 488 solution (Molecular Probes, PZ0383) was added to all the wells to a final 644 
concentration of 10 µM and incubated at 37˚C for 2 hours. The cells were washed in Dulbecco's 645 
phosphate-buffered saline (DPBS; Gibco, 14190-250) and fixed with 3.7% paraformaldehyde 646 
(Electron Microscopy Science, C993M23) for 30 minutes. Cells were washed and permeabilized with 647 
0.5% Triton® X-100 (Sigma, X100) in PBS (Gibco, 10010023) for 15 minutes.  648 
 649 
Plate-based Cyclic Immunofluorescence (p-CyCIF) was performed as previously described in detail 650 
(Lin et al., 2015). Briefly, fixed wells underwent multiple cycles of incubation with primary-labeled 651 
antibody, imaging, and fluorophore inactivation. Three primary conjugated antibodies and Hoechst 652 
33342 (Thermo Fisher Scientific, 62249) were diluted in Odyssey Blocking Buffer (LI-Cor, cat. no. P/N 653 
927–40003) and incubated at 4˚C overnight protected from light. See Table S4 for a complete list of 654 
antibodies used in each experiment and their dilutions; antibody dilutions range from 1:10 to 1:500 655 
with 1:100 being the most common. Cells were washed and placed in PBS for imaging using DAPI, 656 
FITC, Cy3, and Cy5 channels on a GE IN Cell Analyzer 6000. The fluorophores were inactivated with 657 
200 µL of bleaching solution (4.5% H2O2 and 20 mM NaOH in PBS; Sigma, 216763, Sigma, 221465) 658 
for 1 hour under LED lights (Amazon, cat. no. B078JCBW9S) and washed before a new cycle of 659 
antibodies was added. After completing all rounds of p-CyCIF, the EdU Click-iT Reaction (Molecular 660 
Probes, PZ0383) was performed according to the manufacturer’s protocol and imaged as the 661 
previous rounds. 662 
 663 
Tissue Cyclic Immunofluorescence (t-CyCIF) 664 
Tissue Cyclic Immunofluorescence (t-CyCIF) was conducted as previously described (Du et al., 2019; 665 
Lin et al., 2018) on the full slide tissues and tissue microarrays. In preparation for t-CyCIF, the FFPE 666 
slides were baked at 60˚C for 30 minutes, dewaxed using Bond Dewax solution at 72˚C, and antigen 667 
retrieval was performed with Epitope Retrieval 1 solution at 100°C for 20 minutes using the BOND RX 668 
Automated IHC/ISH Stainer. Each round’s antibodies were diluted in Odyssey Blocking Buffer and 669 
incubated overnight at 4°C in the dark. See Table S4 for the complete list of antibodies. After 670 
antibody incubation, slides were stained with Hoechst 33342 for 10 minutes at room temperature. 671 
Slides were coverslipped using 20-50% glycerol solution (Sigma, G5516) in PBS. Images were taken 672 
using DAPI, FITC, Cy3, and Cy5 channels either on the GE IN Cell Analyzer 6000 (20x/0.75NA 673 
objective lens) or on the RareCyte CyteFinder (20x/0.75NA objective lens). After imaging, the 674 
fluorophores were inactivated with bleaching solution (4.5% H2O2 and 20 mM NaOH in PBS) for 45 675 
minutes under LED lights, and the cycle was repeated. 676 
 677 
Image processing 678 
The image processing of both plate-based and tissue cyclic immunofluorescence is organized in the 679 
following steps, each of which is described in detail below: 680 

i. the software ASHLAR is used to stitch, register, and correct for image acquisition artifacts 681 
(using the BaSiC algorithm). The output of ASHLAR is a single pyramid ome.tiff file for each 682 
region imaged; 683 
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ii. the ome.tiff file is re-cut into tiles (typically 5000 x 5000 pixels) containing only the highest 684 
resolution image for all channels. One random cropped image (250 x 250 pixels) per tile is 685 
outputted for segmentation training (using Fiji); 686 

a. note that for plate-based experiments that steps i-ii) are optional 687 
iii. the ilastik software is trained on the cropped images to label, nuclear, cytoplasmic, and 688 

background areas. The output of the Ilastik processing is a 3-color RGB image with label 689 
probabilities; 690 

iv. the RBG probability images are thresholded and watershed in MATLAB to segment the 691 
nuclear area. The cytoplasmic measurements are derived by dilating the nuclear mask; 692 

v. single-cell measurements are extracted for each channel (cell pixel median and mean for both 693 
nuclear and cytoplasmic area) as well as morphological measurements of area, solidity, and 694 
cell coordinates location. 695 

BaSiC 696 
The BaSiC ImageJ plugin tool was used to perform background and shading correction of the original 697 
images (Peng et al., 2017). The BaSiC algorithm calculates the flatfield, the change in effective 698 
illumination across an image, and the darkfield, which captures the camera offset and thermal noise. 699 
The dark field correction image is subtracted from the original image, and the result is divided by the 700 
flatfield image correction to obtain the final image.  701 
 702 
ASHLAR 703 
Alignment by Simultaneous Harmonization of Layer/Adjacency Registration (ASHLAR) is used to 704 
stitch together image tiles and register image tiles in subsequent layers to those in the first layer 705 
(Muhlich et al., 2021). For the first image layer, neighboring image tiles are aligned to one another via 706 
a phase correlation algorithm that corrected for local state positioning error. A similar method is 707 
applied for subsequent layers to align tiles to their corresponding tile in the first layer. ASHLAR 708 
outputs an OME-TIFF file containing a multi-channel mosaic of the full image across all imaging 709 
cycles. Full codes available at: https://github.com/labsyspharm/ashlar. 710 
 711 
ilastik 712 
ilastik is a machine learning based bioimage analysis tool that is used to obtain nuclear and 713 
cytoplasmic segmentation masks from OME-TIFF files (Berg et al., 2019). For increased processing 714 
speed, randomly selected 250 x 250 pixel regions from the original OME-TIFF are used as training 715 
data. ilastik’s interactive user interface allows the user to provide training annotations on the cropped 716 
regions. Users are presented with a subset of the channels stacked images and label pixels as either 717 
nuclear area, cytoplasmic area, or background area. The annotations are used to train non-linear 718 
classifiers that are applied to the entire image to obtain probability masks describing the probabilities 719 
of each pixel belonging to the nuclear, cytoplasmic, or background area. A MATLAB (version 2018a) 720 
script uses these masks to construct binary masks for nuclear and cytoplasmic area. 721 
 722 
Data analysis workflow 723 
The data analysis is divided in a set of pre-processing steps in which data from different tissues is i) 724 
log2-transformed and aggregated together, ii) filtered for image analysis errors, and iii) normalized on 725 
a channel-by-channel basis across the entire data from a single experiment. All the steps are 726 
performed in MATLAB. 727 
 728 
Data aggregation 729 
The image processing workflow outputs one ome.tiff image and one data file (.mat) for each tissue 730 
area imaged. The data matrices from each .mat file are concatenated into a single matrix for each 731 
metric measured (median/mean, nuclear/cytoplasmic) into a single structure (“AggrResults”). The 732 
morphological data (i.e., area, solidity, and centroid coordinates) is concatenated into a single 733 
structure (“MorpResults”), which also contains the indexing vector to keep track of the tissue of origin 734 
within the dataset. 735 
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 736 
Data filtering 737 
Single cells are filtered to identify and potentially exclude from subsequent analysis errors in 738 
segmentation and cells lost through the rounds of imaging. Two types of criteria are used to filter 739 
cells: morphological criteria based on cell object segmented area, which are applied to all the rounds 740 
for the cell object, and DAPI-based criteria which are applied to the DAPI measurement for each 741 
imaging round. The latter corrects for cell loss during cycling and computational misalignment, which 742 
are both round specific. 743 
Morphological filtering criteria are: 744 

• nuclear area within a user-input range; 745 
• cytoplasmic area within a user-input range; 746 
• nuclear object solidity above a user-input threshold. 747 

DAPI-based criteria are: 748 
• nuclear DAPI measurement above a user-input threshold; 749 
• ratio between nuclear and cytoplasmic DAPI measurement above a user-input threshold; 750 

The filter information for the criteria is allocated to a logical (0-1) structure ‘Filter’, which is used to 751 
select the cells to analyze in the further analysis by indexing. The threshold selection is dataset 752 
dependent and is performed by data inspection. The values used in each dataset are available upon 753 
request. 754 
 755 
Data normalization 756 
Each channel distribution is normalized by probability density function (pdf) centering and rescaling. 757 
The aim is to center the distribution of the log2 fluorescent signal at 0 and rescale the width of the 758 
distribution to be able to compare across channels. The data is first log-transformed (base 2). The 759 
standard normalization is performed using a 2-component Gaussian mixture model, each model 760 
capturing the negative and the positive cell population. If the 2-component model fails to approximate 761 
the channel distribution, two other strategies are attempted: i) a 3-component model is used 762 
assuming the components with the two highest means are the negative and positive distribution (i.e., 763 
discarding the lowest component) or ii) the user selects a percentage ‘x’ of assumed positive cells 764 
and a single Gaussian distribution fit is performed on the remainder of the data to capture the 765 
negative distribution. The single Gaussian fit is then used as the lower component in a 2-component 766 
model to estimate the distribution of the positive population. The “add_coeff” is defined as the 767 
intersection of the negative and positive distributions. The “mult_coeff” is defined as the difference 768 
between the mean of the negative and positive distributions. The full distribution is normalized by 769 
subtracting the add_coeff and dividing by the mult_coeff. The normalization is performed on the 770 
nuclear and cytoplasmic single-cell, single-channel distributions individually. 771 
 772 
The data preprocessing workflow is performed on all datasets. The individual analyses used in the 773 
paper are performed only in selected datasets as follows. 774 
 775 
Cell type calling strategy 776 
Cells from tissue based experiments are separated into lineage compartment by cell type markers. 777 
Cells are scored based on the sign of the normalized value using the following criteria: 778 

• epithelial cells, positive for e-cadherin OR pan-cytokeratin; 779 
• immune cells, positive for one of CD45, CD3D, CD4, CD68, CD163, CD8a; 780 
• stromal cells, positive for αSMA and negative for epithelial markers OR positive for Vimentin 781 

and negative for immune markers; 782 
• others/not classifiable, negative for all the markers in the categories above 783 

Note that not all markers were imaged in all datasets, hence only the available ones were used. 784 
If a cell was called as more than one single cell-type, this is defined as a conflict. The conflicts are 785 
resolved by comparing the markers that triggered each of the cell type calls and assign the cell type 786 
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with the highest marker level. If the markers are within 10% of each other the cell is deemed “no787 
classifiable”. 788 
 789 
Multivariate proliferative index (MPI) calculation 790 
The multivariate proliferation index, or MPI, is a based on the normalized measurement of 5 ma791 
that are used in all the tissue-derived datasets in this work: three markers of proliferation, Ki-67,792 
MCM2, and PCNA and two markers of cell cycle arrest, p21 and p27. The aim was to capture 793 
proliferation robustly, avoiding relying on a single marker, while also separating cells expressing794 
levels of arrest markers (even if they express markers of proliferation). The logic for the MPI 795 
determination is: 796 

 797 
The determination of the threshold values for the proliferation and arrest is dataset dependent. 798 
However due to our marker normalization strategy the values were comparable between datase799 
(threshprolif = 0 and thresharrest ~ 0.25-0.75, tuned based on Ki-67 levels). 800 
 801 
Clustering and t-SNE 802 
Clustering was performed using the k-means algorithm. The cluster arrangement was determine803 
hierarchical clustering of k-means clustering mean value per cluster. Both clustering were perfo804 
in MATLAB using in-built functions “kmeans” and “clustergram”. The t-distributed stochastic neig805 
embedding (t-SNE) was performed on a subset of cells (specified in figure legends) with perplex806 
parameter set at 500. 807 
 808 
Spatial Correlation Analysis 809 
Spatial correlations Cxy(r) were computed as the Pearson correlation between a cell of group X 810 
its kth nearest neighbor of group Y, for their respective variables x and y. A value of Cxy (r) was 811 
computed for each k up to 100, and a distance r was assigned to each k as the average distanc812 
between kth nearest neighbors. For the MPI spatial correlation cell groups X and Y were both 813 
epithelial/tumor cells, and variables x and y were logical, whether the cell belonged to the speci814 
MPI category or not. For the correlation between the MPI categories and the tumor 815 
microenvironment, group X was the epithelial/tumor cells and group Y was the immune 816 
compartments. The variable x and y were logical, x = MPI category, y = subtype of immune cells817 
calculate the characteristic lengths l1 and l2, the Cxy data was fitted with a two exponential fit y =818 
a1*exp(-x/l1) + a2*exp(-x/l2) by least-square fitting with all parameters constrained to be positive 819 
(MATLAB in-built function lsqcurvefit). The estimates derived from tissue microarrays (TMA) cor820 
were filtered for fits with residuals below 0.05 as calculated by lsqcurvefit function. The long ran821 
estimates were also filtered for values below the core size (1.1 mm for mesothelioma cores and822 
microns for all other TMAs). 823 
 824 
Upset plot 825 
The Upset plots were computed using the R-package available at https://caleydo.org/tools/upse826 
developed by the Visual Science Data, Institute of Computer Graphics at Johannes Kepler Univ827 
Linz, Austria. 828 
 829 
Pairwise cell cycle difference (ccD) and classical multidimensional scaling reduction (CMD) 830 
The ccD is calculated by taking the absolute value of the pairwise Pearson correlation between 831 
cell cycle marker vector of normalized values of each cell. The CMD was performed with a MAT832 
built-in function cmdscale. The ccD was reshaped to fit the requirements expected by the cmdsc833 
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algorithm, ccD’ = 0.5-ccD/2. The first two dimensions of the CMD scaling are plotted and used for 834 
further analysis. 835 
 836 
Circular fit, cell cycle dynamics reconstruction, and cell cycle coherence summary metrics 837 
For both the simulation data and the plate-based and tissue CyCIF data the same algorithm was 838 
followed. The CMD scaled two-dimensional data is fit by least-squares minimization to a circle. For 839 
each point in the data two parameters are calculated, i) the distance to the closest point of the circle 840 
(circle fit distance, CFD) and ii) the angle of the point to the origin of the fitted circle. The angle is 841 
used to order the cells in what is referred to as the “cell cycle ordering”. Given the cyclical structure of 842 
the ordering, the origin (i.e., time 0) is arbitrary and was set to separate the M phase marker pattern 843 
from the early G1 phase pattern. The cell cycle distribution plots (Figure S5) are computed by 844 
aggregating cells from the ROI listed (5000 cells max for each ROI), running the ccD-CMD algorithm 845 
to order cells along the cell cycle, quantifying the histogram of cells belonging to each ROI and 846 
normalizing the frequency to the cell number of the specific ROI. 847 
 848 
The cell cycle coherence distance is the circular fit distance detailed above. The angular distribution 849 
coefficient of variation is calculated by binning the angle measurements (ii) above into 8 bins and 850 
calculating the proportion of cells in each bin. The proportion calculation is repeated by shifting the 851 
bin position by π/8 to ensure lack of positional bias in the bin definition. We hence refer to this metric 852 
as the inter-octile angular variation (IOV). The IOV is the coefficient of variation of the bin proportions 853 
(which is equal to 0 in a uniformly distributed population). 854 
 855 
A comparison between the ccD-CMD pseudotime cell cycle ordering and three previously published 856 
time inference algorithms is detailed in the Note S6 and in Figure S3 and S4. 857 
 858 
Outcome analysis 859 
The outcome analysis was performed using Kaplan-Meyer estimation and logrank test. The analysis 860 
was computed in MATLAB using the MatSurv function (Creed et al., 2020). The cutoffs were chosen 861 
based on cell line observation (IOV = 0.62, CFD = 42) or using the median value for Ki-67 cutoff. The 862 
CFD threshold for the mesothelioma cohort was lowered to 37 in order for the “non-canonical” 863 
category to have a minimum of 5 patients. Analysis was restricted to cases with >500 MPI+1 cells. 864 
The treatment received is listed in Tables S6-S7. Only patients that received chemotherapy were 865 
included in the outcome analyses. 866 
 867 
Cell cycle modeling 868 
The cell cycle was modeled in silico using a system of ordinary differential equations (ODEs) based 869 
on the model by Csikász-Nagy and Tyson (Csikász-Nagy et al., 2006). A Python script utilizing 870 
Euler’s method was used to solve the ODEs. Measurement noise sampled from a Poisson distribution 871 
was introduced to reproduce background from microscopy experimental settings, to include both the 872 
shot noise and measurement fluctuations. For the “untreated” conditions, the ODEs, kinetic 873 
constants, and initial values were based on published parameters (Csikász-Nagy et al., 2006), with 874 
the only variation being the lowering of the “maxmass” parameter to 1.8. The “G1 arrest” condition 875 
was simulated in the model by setting the values of the active CDK/cyclinD complexes to zero. This is 876 
used to model the molecular mechanism of the drug palbociclib. 877 
 878 
QUANTIFICATION AND STATISTICAL ANALYSIS 879 
Information on the sample size, the number of independent repeats that were used to derive 880 
statistics, the statistics used to summarize the data for each experiment is presented in Table S1. 881 
Curve fitting was performed using MATLAB (except for linear fit in Figure S1E which was performed 882 
in MS Excel). Statistical tests used are Pearson correlation, two-sided t-test, Kolmogorov–Smirnov 883 
(KS) and logrank as specified in the figure legends (Figures 1G, 2G and 2I, 3H-3I, 7A-7B, S1F, S2D-884 
S2G, and S6) and are performed with MATLAB built-in functions. Only samples with a minimum of 885 
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100 single cells (after quality control filtering) were included in the analyses. Significance was defined 886 
as a p-value of less than 0.05.  887 
 888 

ADDITIONAL RESOURCES 889 
Multiplexed images of human HER2 breast cancer used in Figure 3A can be viewed in Minerva Story 890 
(Hoffer et al., 2020; Rashid et al., 2020) an interpretive guide for interacting with multiplexed tissue 891 
imaging data https://tinyurl.com/minerva-proliferation 892 
 893 

SUPPLEMENTAL INFORMATION 894 
 895 
Supplemental Information includes seven figures, ten tables, and six notes, and can be found with 896 
this article online. 897 
 898 
Figure S1. Multivariate Proliferation Index (MPI) in human cancer tissues 899 
(A) Clustered heat map of log2 normalized cell lineage marker signal intensities on a per-cell basis 900 
derived from t-CyCIF images of 4 whole slides of lung squamous cell carcinoma (SCC) and ovarian 901 
carcinoma, and tissue microarrays (TMAs) from glioma, colorectal carcinoma (CRC) and 902 
mesothelioma.  903 
(B-C) Clustered heat map of single-cell signal intensities of cell cycle markers for epithelial/tumor cells 904 
in Figure 1A (breast carcinoma) and panel S1A above. Ki-67+ cells were identified by normalization 905 
using Gaussian mixture modeling with 2 components. Multivariate Proliferative Index (MPI) indicated: 906 
+1 (proliferative, green), 0 (non-proliferative, blue), or -1 (arrested, red).  907 
(D) K-means clustering heat map of five MPI markers for epithelial/tumor cells of three HER2+ breast 908 
cancer samples (k = 20 clusters), and heat map of single-cell normalized log2 intensities. In both, the 909 
corresponding MPI category is depicted for comparison (in k-mean clustering fraction of MPI category 910 
is depicted).  911 
(E) MPI robustness comparison between two sets of serially cut tissue sections on the 3 breast 912 
HER2-positive cases from Figure 1. Each dot is the fraction of cells in one MPI category in both sets 913 
of tissue section (linear least-square fit with fixed origin at y=x=0). 914 
(F) Comparison of MPI 0, and MPI -1 fractions in epithelial/tumor cells across different classifiers of 915 
breast cancer in Figure 1D (KS p-values with 0.05 significance cutoff). 916 
 917 
Figure S2. Multivariate proliferation index (MPI) short- and long-range correlations in human 918 
cancer tissues 919 
(A-B) Composite t-CyCIF image from (A) lung squamous cell carcinoma, and (B) ovarian carcinoma 920 
(scale bar 1mm) and corresponding image of long-range spatial maps of MPI categories (smoothed 921 
over 40 neighboring cells for visualization purposes only). Inset panel showing both smoothed and 922 
single-cell MPI calling. Further inset panel of single-cell MPI calling and corresponding composite t-923 
CyCIF image (scale bar 100 µM, white = pan-cytokeratin, green = MCM2, red = p27, blue = DNA).  924 
(C) Spatial maps of MPI categories smoothed over 40 neighboring cells and non-smoothed (single-925 
cell calling) for inset from Figure 2A.  926 
(D) Red lines, sample distribution of spatial correlations within and across (“self corr” and “cross corr”) 927 
MPI categories for mesothelioma, glioma, colorectal carcinoma (CRC) and three breast tissue 928 
microarrays (n = 52, 163, 89, 69, 85, 57 samples respectively, k = 5th neighbor approximation, KS 929 
density approximation). Blue lines, bootstrap distribution comparison obtained by randomly shuffling 930 
of MPI labels (10 independent shuffles).  931 
(E) Heat map of spatial correlations within and across randomly shuffled MPI labels (“self corr” and 932 
“cross corr”, k = 5th neighbor, n = 513 samples).  933 
(F) t-test p-values for red line distributions in panel D (log10 scale used for visualization purposes).  934 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.443704doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.443704
http://creativecommons.org/licenses/by-nc-nd/4.0/


(G) Spatial correlation plots with two exponential fit for the three MPI categories across breast, lung, 935 
and ovarian tumors (whole slide imaging, Figure 2D). Each column represents an individual and 936 
independent tissue.  937 
 938 
Figure S3. Cell cycle marker single cell distributions, multi-channel gating and testing of ccD-939 
CMD framework 940 
(A) Representative single-channel cell cycle marker images from t-CyCIF imaging with e-cadherin 941 
from tissue in Figure 3A (scalebar 100 µm).  942 
(B) Single-channel distributions and two-dimensional scatter plots of a subset of cell cycle markers 943 
from HER2 positive breast cancer tissue case 2 in Figures 1C and 1E (n = 1,000 epithelial/tumor 944 
cells, log2 signal per cell prior to normalization).  945 
(C) Single channel distributions for cell lineage, proliferation, and cell cycle markers from three 946 
HER2+ breast cancer samples (KS density approximation). For proliferation and cell cycle markers 947 
only epithelial/tumor cells were used.  948 
(D) Upset plot of three HER2+ breast cancer samples (n = 0.52 million cells) showing frequency of 949 
cell cycle marker positivity and their combinations sorted by frequency.  950 
(E) Traces from generalized model of mammalian cell cycle (Csikász-Nagy et al., 2006). Top panels, 951 
no noise added. Middle panels, Gaussian measurement noise added (additive and multiplicative). 952 
Bottom panels, simulation switch to G1 arrest parameters (CDK/CyclinD complex set to 0) after one 953 
cell cycle. Grey areas are the time frame used for plots in panels F and G.  954 
(F) Classical multidimensional scaling of cell cycle difference (ccD-CMD) of mathematical model 955 
results in shaded areas of panel E. Color is the time variable in the mathematical model (n = 10,000 956 
points).  957 
(G) Comparison of model’s cell cycle time (blue dots) and time reconstructed (orange dots) by fitting a 958 
circle to the ccD-CMD plot in panel F.  959 
(H) Comparison of time inference methods ccD-CMD, SCORPIUS, Palantir and Cyclum applied to 960 
synthetic data generated by the mathematical model in panel E (n = 10,000 observations). 961 
(I) Histograms of the fluorescence signal of cell cycle markers measured at single-cell level using 962 
plate-based CyCIF from untreated (blue) and 24 hours palbociclib treated (orange) MCF10A cells 963 
grown in culture (n = 10,000 cells per condition). 964 
(J) Classical multidimensional scaling of ccD reduced to 2 dimensions. Scatter plot for cells in panel I 965 
(red, circle fit, n = 10,000 cells per condition). 966 
(K) Heat map and time plot of single-cell signal intensity measurements of cell cycle markers ordered 967 
from left to right in cell cycle time (normalized log2 fluorescent arbitrary units moving mean over 200 968 
cells).  969 
 970 
Figure S4. Temporal inference of cell cycle dynamics from ccD-CMD from human cancer 971 
tissues. 972 
(A-B) Comparison of time inference methods ccD-CMD, SCORPIUS, Palantir and Cyclum from (A) 973 
HER2+ breast cancer tissue data from Figures 3A-3F and (B) MCF10A untreated cells from Figure 974 
3G (n = 5,000 cells, same cells used for all algorithms). Left, two dimensional visualization output. 975 
Right, pseudotime ordering output (normalized log2 fluorescent arbitrary units, moving mean with 200 976 
cells window). 977 
(C) Comparison between two dimensional reduced space visualization from three time inference 978 
algorithms with data from HER2+ breast patient samples 1,2, and 3 from Figures 4B-4D. 979 
(D) Coefficient of variation of Inter-Octile angular Variation (IOV) and circle fit distance (CFD) in 5 980 
tissues using increasing number of cells (n > 20,000 cells per tissue, CV calculated over 40 981 
independent sub-samplings). 982 
(E) Comparison of coherence metrics IOV and CFD when one or two markers are removed from ccD-983 
CMD algorithm. Data from untreated MCF10A cells used in panel b. Green dot is original 984 
representation. Orange, one marker removed. Blue, two markers removed. 985 
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(F) Scatterplot of Circle Fit Distance (CFD) against Inter-Octile angular variation (IOV) for each ROI 986 
from Figure 4F. 987 
(G) K-means clustering of cell cycle markers from selected ROIs used in Figure 4G (n = 3600 cells 988 
per ROI, k = 15 clusters). Left, single cell clustering with ROI annotation (log2 normalized FAU). 989 
Middle, cluster median. Right, ROI composition for each cluster. 990 
(H) Scanned image of hematoxylin and eosin (H&E) stained section from three HER2 positive breast 991 
tissues with pathology annotations.  992 
(I) Composite t-CyCIF images of fluorescence of tissues from panel H. 993 
(J) Inter-Octile Variation IOV, (K) Circle Fit Distance (CFD), and (L) MPI +1 fraction for each ROI 994 
noted in panel I. 995 
 996 
Figure S5. HER2 expression and cell cycle dynamics in human breast cancer tissues and 997 
HER2 driven mouse model of breast cancer. 998 
(A) ccD-CMD plots for two HER2+ breast cancer tissue microarrays (TMA # 1 and #2) for increasing 999 
levels for HER2 protein. Single cells were binned by normalized HER2 levels (n = 5,000 cells per bin 000 
were used). Right, ccD-CMD scatter plots of highest HER2 bin for both TMA1 and 2 with single 001 
marker normalized intensities mapped to color (n = 5,000 cells). Left, single marker normalized 002 
intensities mapped to color for highest HER2 bin. 003 
(B) ccD-CMD scatter plots of the single-cell data from MPI +1 cells from time course of HER2 004 
induction and repression in GEMM with single marker normalized intensities mapped to color (n = 005 
5,000 cells per plot, p27 was not used by the ccD-CMD algorithm). 006 
(C) Mean +/- 25th percentile of circle fit distance of cell cycle markers in tumor cells (in situ and 007 
invasive) from Figure 5H.  008 
 009 
Figure S6. Association between with clinical outcome and cell proliferation metrics. 010 
(A) Scatterplot of CFD versus IOV from a mesothelioma and glioblastoma sample cohorts (n = 22 and 011 
32 patients). Colors represent binning into coherence groups according IOV and CFD metrics. 012 
(B-C) Kaplan Meier estimation and logrank p-value of progression-free survival (PFS) for the two 013 
patient cohorts in Figure 7. (B) Patients binned in three groups “coherent”, IOVhigh “skewed” and 014 
IOVlow CFDhigh “non-canonical” groups from panel A). (C) Patients binned in two groups based on the 015 
median Ki-67+ fraction. 016 
 017 
Figure S7. Example of 27-plex t-CyCIF experiment with tumor sample and tonsil control 018 
tissues 019 
Example of positive and negative staining for all markers in t-CyCIF experiment through rounds of 020 
cyclic imaging. Three independent samples are shown, Ctrl is a non-malignant tonsil tissue sample, 021 
#1 and #2 are glioma samples. Plots are single-cell kernel density estimation for patient samples from 022 
respective images (median per pixels within the cell area, log2 FAU, not normalized, black=control 023 
tonsil, yellow = sample #1, magenta = sample #2, n = 4278, 2629 and 2609 cells respectively). Each 024 
row of images and data is a successive round of t-CyCIF in the same tissue area (Rx is the xth round 025 
of imaging). All images from antibody channels were linearly contrasted between 0 and 2000 026 
fluorescence units for ease of comparison. Scale bar 50 µm. 027 
 028 
Table S1: summary and statistics of CyCIF datasets. 029 

Table S2: cell cycle markers used for each sets of data. 030 

Table S3: clinical information about patient samples. 031 

Table S4: list of antibodies used in the study. 032 
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Table S5: clinical information on biopsy samples from breast cancer patients. 033 

Table S6: clinical data on glioblastoma cohort used in outcome studies. 034 

Table S7: clinical data on mesothelioma cohort used in outcome studies. 035 

Table S8: human samples clinical data - Demographics 036 

Table S9: human samples clinical data - Diagnosis 037 

Table S10: human samples clinical data – Therapy 038 

  039 
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SUPPLEMENTAL NOTES 040 
 041 
Supplemental Note S1: Current tissue-based proliferation scoring metrics 042 
In clinical settings and research studies using tissues, cellular proliferation is typically scored by the 043 
expression of a single protein marker assayed by immunohistochemistry (IHC). The most commonly 044 
used markers of proliferation are Ki-67, phospho-RB, Cyclin D, and the “mitotic index”, which is a 045 
count of the number of mitotic figures per defined area from haematoxylin and eosin stains. Clinical 046 
scoring is often performed manually by a pathologist that visually reviews IHC images and assigns an 047 
overall proliferation score per tissue or is occasionally performed using semi-automated assessment.  048 
These approaches have a number of limitations. First, the manual scoring by pathologists is subject 049 
to human bias, and is not quantitative or scalable. Second, single markers are not able to accurately 050 
capture proliferation. The markers currently used are biased toward specific parts of the cell cycle; Ki-051 
67 and phospho-RB preferentially stain cells in the S/G2 phase of the cell cycle, Cyclin D stains cells 052 
in G1 and the mitotic index reports for cells in M phase. These markers have a low false positive rate 053 
- they are unlikely to stain non-proliferating cells - but they are typically expressed in specific phases 054 
of the cell cycle only. Other markers of proliferation, such as PCNA and MCM2 are more ubiquitously 055 
expressed during the cell cycle and are more stable proteins. However, they are co-expressed with 056 
markers of cell cycle arrest (Figures 1A, 1B, S1B, and S1C), and hence have a higher rate of false 057 
positives. Lastly, single stains for proliferation do not allow one to discriminate between the various 058 
cell types present in the tumor areas. Both infiltrating stromal and immune cells proliferate within the 059 
tumor microenvironment and cannot be visually excluded from the scoring and may confound the 060 
measurement of cancer cell proliferation. 061 
 062 
Supplemental Note S2: Comparison between the MPI and other multidimensional 063 
classification strategies 064 
In Figures 1E and S1D we show a direct comparison between MPI calls and both k-means clustering 065 
and t-distributed stochastic neighbor embedding (t-SNE), two commonly used tools to classify 066 
multidimensional dataset from various multiplex techniques (scRNAseq, CyTOF, MIBI, IMC, CODEX). 067 
The concordance between the MPI single cell calls and k-means clustering is evident by the fact that 068 
the majority of clusters identified by the k-means algorithm consist mainly of a single MPI category. K-069 
means clustering still involves manual selection of the number of clusters and manual definition of 070 
each cluster’s identity, which would have to be inspected for each experiment individually. Further, 071 
while the MPI definition is deterministic, clustering has a stochastic component that changes the 072 
cluster assignment every time the algorithm is run, which makes it not fully reproducible and less 073 
scalable. 074 
The t-SNE results are also concordant with the MPI classification, with MPI cells from different 075 
categories segregating away from each other (Figure 1E, the MPI was not used in input for the t-SNE 076 
algorithm). Classifying cells on the t-SNE representation still requires running a clustering algorithm 077 
on the t-SNE output (DBSCAN is often used for this purpose), which leads to similar problems as 078 
mentioned above for k-means clustering. The major drawback of t-SNE and similar dimensionality 079 
reduction algorithms is that they are not computationally scalable and cannot be run on the large 080 
datasets generated in our study (on the order of hundreds of thousands to millions of cells). While 081 
there exist machine learning techniques that allow building classification models from subsets of the 082 
data, these were beyond the scope of this study and did not present clear advantages on the single 083 
cell MPI deterministic classification strategies. 084 
 085 
Supplemental Note S3: Lack of accurate quantification of total DNA and DNA replication  086 
A unique limitation in the study of proliferation in human tissues is the unavailability of two key pieces 087 
of information: the quantification of DNA amount and measurement of active DNA replication. DNA 088 
staining by intercalating agents, such as Hoechst, is routinely performed in tissue imaging, and the 089 
cyclic immunofluorescence methods rely on it to align the rounds of imaging to obtain highly 090 
multiplexed single-cell datasets. However, the DNA quantification from tissue images does not 091 
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appear to be an accurate representation of DNA content. We found that single cell distributions of 092 
DNA content from tissue are not bimodal (Figure S7), unlike those in cell culture (Figure S3I). In 093 
addition, genomic instability and aneuploidy are a common feature in human tumors, making the 094 
interpretation of DNA quantification in solid tumors additionally challenging. Similarly, the detection of 095 
DNA replication - usually performed by EdU incorporation in cell culture - is not technically possible in 096 
fixed human tissues. 097 
 098 
Supplemental Note S4: Limitations of multichannel gating to infer cell cycle distributions 099 
In order to attempt to understand the cell cycle position of cells based on a gating approach, we gated 100 
single channels and looked at the combinatorial patterns of positivity for multiple channels, or 101 
“multichannel gating” (Figure S3D). Binarizing an 8 cell cycle marker panel by gating produces 28 = 102 
256 combinatorial states. In Figure S3D we show a visual representation of the top 50 most 103 
frequently occurring states using same breast tumor tissue that was previously used for the single 104 
distribution and two-channel scatters in Figure S3D). We used the Upset plot package 105 
(https://gehlenborglab.shinyapps.io/upsetr/) to display the combination of positive markers in each of 106 
the 50 states and the relative abundance of each state. While the abundance of these states is 107 
technically quantifiable, it is important to remember that in the absence of bimodal single marker 108 
distributions, the choice of gating threshold is somewhat arbitrary. Small changes in any of the cutoffs 109 
would drastically modify the relative abundances of all the states. 110 
In the absence of information about the ploidy and DNA replication state of the cells, discriminating 111 
the combinatorial states generated by multichannel gating is prohibitive. In cell culture experiments, 112 
both DNA amount and EdU incorporation have bimodal distribution, the combination of which clearly 113 
defines the G1 (2N, EdU-), S (EdU+) and G2/M (4N, EdU-) phases of the cell cycle. This information 114 
is instrumental to define cell cycle states, because the dynamics of cyclin expression (as well as 115 
CDT1, Geminin and phospho-Rb) are much more graded through the cell cycle. In addition, while the 116 
dynamics of single proteins through the cell cycle are well-characterized, it is still unclear how they 117 
relate to each other. For example, the levels of Cyclin D1 decrease from G1 to S/G2, but how does 118 
this quantitatively relate to the increase in Geminin in tissue? Similarly, how does the rise of G2-119 
phase cyclins like Cyclin A1/2 relate to the dynamics of decrease in CDT1? Without firm answers to 120 
these questions we are not able classify the multichannel gating data in Figure S3D. 121 
Overall, the loss of information caused by the gating binarization of the continuous distributions did 122 
not simplify the classification problem; it only changed the nature of the problem from continuous to 123 
discrete. Thus, because of 1) the lack of interpretability and 2) the lack of robustness in state 124 
abundances, we concluded that a gating strategy would not lead to insights in the cell cycle analysis 125 
(specifically in our multiplexed imaging datasets). Instead, we pivoted to methods that use the full 126 
continuum of the markers’ expression values to create unsupervised metrics for cell cycle analysis. 127 
 128 
Supplemental Note S5: Robustness of the ccD-CMD algorithm and coherence metrics 129 
The ccD-CMD algorithm does not have a stochastic component and hence it is an injective function 130 
with one-on-one mapping from input to output. However, its application to estimate the coherence 131 
metrics IOV and CFD is sensitive to two variables: 1) the number of cells from the tissue used in 132 
input, 2) the markers used to calculate the cell cycle difference (ccD). 133 
Because the ccD is a quantification of the binary distances between pairs of cells, the computing time 134 
to calculate the ccD increases non-linearly with the number of cells provided in input. It hence 135 
becomes prohibitive to run the ccD-CMD computation on more than a few tens of thousands of cells. 136 
On the other hand, when using tissue microarray cores, the number of cells available for analysis is 137 
limited. For both these reasons it is important to estimate how sensitive the performance of the 138 
algorithm is to the number of cells in input. In Figure S4D we calculated the CFD and IOV parameters 139 
in 5 tissues using an increasing number of cells (“n” from 50 to 2000, breast cancer tissue ROIs from 140 
Figure 4F with at least 20,000 MPI+1 cells were used for this analysis). For each n, we run the ccD-141 
CMD algorithm 40 times with a different set of n cells from the same tissue and calculate the 142 
coefficient of variation (CV) for the IOV and CFD metrics. For both metrics the CV quickly decreased 143 
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and reached a plateau. This shows that for whole tissue experiments using more than 2000 cells 144 
would not provide a great increase in precision. In addition, when cell numbers are limited, using at 145 
least 500-1000 cells is required for an acceptable estimate. 146 
Further, we tested the dependency on single markers on the coherence metrics, by eliminating one or 147 
two markers from ccD calculation (Figure S4E). For this we used the MCF10A cell line dataset, for 148 
which we have experimental controls obtained by perturbing the cell cycle with palbociclib and 149 
nocodazole (Figures 3G-3J). Eliminating one marker (out of 10 in the panel) had limited effect, 150 
comparable to the biologic variability of the three replicates in Figure 3J. Eliminating two markers did 151 
not produce much larger displacement from the whole-panel estimates (green dot) than the single 152 
marker removal. Furthermore, the direction of the changes is spread in all directions of the IOV-CFD 153 
phase plane, suggesting that addition of markers converges to a central estimate, the green dot. In 154 
conclusion, these results show that the ccD-CMD algorithm is robust to the removal of one or two 155 
markers, especially when compared to experimental perturbations.  156 
 157 
Supplemental Note S6: Comparison between ccD-CMD and published time inference methods. 158 
Many algorithms have been published to computationally infer ordering of cells based 159 
multidimensional data but most of these algorithms have been developed to analyze genomics 160 
datasets, rather than proteomics or imaging ones. We selected a subset of these time inference 161 
algorithms, processed our multiplexing imaging data and compared the results with the ccD-CMD 162 
representation and pseudotime ordering from the same datasets. We used the following three 163 
algorithms, all originally developed to process single cell RNA sequencing data: SCORPIUS 164 
(Cannoodt et al., 2016), Palantir (Setty et al., 2019) and Cyclum (Liang et al., 2020).  165 
We compared the ccD-CMD time inference output with SCORPIUS, Palantir and Cyclum on three 166 
exemplar CyCIF datasets from different experimental sources:  167 
1) on tissue-based CyCIF data from a breast tumor tissue sample from Figures 3A-3F; 168 
2) on plate-based CyCIF data from unperturbed MCF10a cells; 169 
3) on synthetic data generated from a mathematical model of the mammalian cell cycle. 170 
The results of the comparisons are shown in Figures S3H and S4A-S4C. Overall, we found that the 171 
results from Palantir and Cyclum did not recapitulate the cell cycle dynamics in any of the 172 
experimental settings. Palantir is designed to model cell differentiation into terminal states, which 173 
does not describe the trajectory of cell cycle dynamics. Cyclum uses an autoencoder with non-linear 174 
periodic transformation functions to infer a latent circular trajectory. Although Cyclum is designed for 175 
cell cycle dynamics, it does not appear to be able to detect any discernible structure in multiplexed 176 
imaging data. Cyclum’s expected input is scRNA-seq data, which has a) three orders of magnitude 177 
more features than our datasets, and b) extremely different type of noise than imaging data. 178 
Additionally, because Palantir and Cyclum use non-linear dimensionality reduction methods, they are 179 
significantly slower than CMD scaling, which makes them less suitable for the high-throughput 180 
analysis of large datasets.  181 
The time ordering output from SCORPIUS closely resembles the ccD-CMD output. However, the 182 
ccD-CMD reduced dimensionality representation is strikingly different from the SCORPIUS output. 183 
While the data points in the ccD-CMD representation formed a torus, which allowed us to parametrize 184 
the representation and derive the “cell cycle coherence” metrics above, SCORPIUS’s cloud output 185 
could not be similarly parametrized. In the tissue data (Figure S4A), the ordering by Cyclum and 186 
Palantir does not capture the basic tenets of cell cycle protein dynamics. In addition, the t-SNE 187 
representation of the Palantir output shows a branched structure, which is incompatible with the cell 188 
cycle. These observations are true for all the datasets we describe below. SCORPIUS and the ccD-189 
CMD ordering is comparable, but a directly comparison is not possible as the ground truth cell cycle 190 
ordering in tissues is unknown. In the cultured cell line data (Figure S4B), the ccD-CMD cell ordering 191 
appears comparable to the SCORPIUS ordering when run with single cell data from unperturbed cells 192 
(MCF10A). In both orderings, there is a clear inverse relationship between CDT1 and Geminin as well 193 
increasing DNA content as the cell cycle progresses. However, many of the markers show the 194 
drawbacks of SCORPIUS’s non-cyclical path. For example, Geminin, phosphor-RB, and Cyclin B 195 
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show a rise from low to high through time but do not show the drop from high to low that is expected 196 
in the cyclical pattern of cell cycle dynamics. ccD-CMD is able to better capture this cyclical pattern. 197 
To obtain a dataset with a ground truth for cell ordering, we simulated the cell cycle protein dynamics 198 
with a system of ordinary differential equations (ODEs) based on the model by Csikasz-Nagy and 199 
Tyson (Figure S3E, Csikász-Nagy et al., 2006) and generated values of nine cell cycle markers over 200 
time. We ran both ccD-CMD and SCORPIUS and compared the reconstructed orderings with the 201 
known ordering from the differential equation numerical solution. ccD-CMD outperformed 202 
SCORPIUS. In the ccD-CMD ordering, 93% of cells were within 1% of their correct ordering as 203 
opposed to 36% of cells in the SCORPIUS ordering. It is notable that the two-dimensional 204 
representation generated from ccD-CMD has cells tightly distributed along the circle with the 205 
exception of a gap where M phase is expected to be (Figure S3F). The ccD-CMD ordering also 206 
shows the most misordering in M phase/early G1 (Figures S3G and S3H), which reflects the difficulty 207 
of detecting and ordering cells in M phase that is also seen in the multiplexed imaging data. 208 

These comparisons show that the ccD-CMD algorithm orders cells efficiently and that the resulting 209 
dynamics are congruent with literature on cell cycle biology. Both Palantir and Cyclum do not seem 210 
able to recapitulate the basic tenets of cell cycle protein dynamics, especially in the tissue exemplar 211 
dataset. Time inference obtained using SCORPIUS and the ccD-CMD is comparable. In experimental 212 
data (either cell line or tissue data), the ground truth information is not available, and hence 213 
quantifying the improved precision of ccD-CMD over SCORPIUS is not possible. However, on 214 
synthetic data ccD-CMD has a higher ordering precision compared to SCORPIUS. Finally, the main 215 
advantage of the ccD-CMD representation over the other time inference algorithms is the ability to 216 
provide a reduced-dimensional representation of “coherence” in cell cycle dynamics. The ccD-CMD 217 
representation in control systems forms the torus-shaped that inspired the circle fit approximation. 218 
Other algorithms’ reduced representation did not show an actionable topology (Figures S4A and 219 
S4B), either because of a lack of reduced dimension representation (Cyclum), a lack of topological 220 
shape (SCORPIUS), or a disconnected and branched topology (Palantir). In tissues we detected 221 
quantifiable differences in the ccD-CMD representation topology across patients, and we chose three 222 
patient samples to portray the range of topologies observed (Figure 4C). However, the SCORPIUS 223 
and Palantir outputs from the same data show no discernible difference between the three datasets 224 
(Figure S4C). 225 

 226 

 227 
  228 
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SUPPLEMENTAL EXPERIMENTAL PROCEDURES 229 
 230 
Pairwise cell cycle difference and classical multidimensional scaling (ccD-CMD) 231 
Description of input 232 
For this paper, we constructed trajectories of cell cycle progression from single cell 233 
immunofluorescence measurements obtained from fixed tissue images. We utilized the MPI 234 
classification to isolate epithelial proliferating cells (i.e., MPI +1 cells) and used only those as input. 235 
For the cell culture experiments all cells measured were used in input, because the cell composition 236 
is homogeneous and the majority of cells were MPI +1. Each cell was represented by a cell cycle 237 
marker vector of normalized values for markers of cell cycle proliferation (Ki-67, PCNA, MCM2), cell 238 
cycle arrest (p21, p27), and cell cycle progression (phospho-RB Ser807/811, CDT1, Geminin, and 239 
Cyclins A1/2, B1, D1, and E1).  240 
The markers for the ccD-CMD analysis were chosen to represent multiple cell cycle transitions. For 241 
instance, p21, CDT1 and Cyclin D1 cover the transition through G1 and into S-phase. phospho-RB, 242 
Ki-67, Cyclin A1/2 and B1 cover the passage from S-phase into early and then late G2 phase. 243 
Although PCNA and MCM2 are used to calculate the MPI, they were not largely used in the ccD-CMD 244 
trajectory inference because their variability within MPI+1 cells is minimal; therefore, they do not 245 
provide additional information and potentially add spurious noise. This reasoning also holds true for 246 
markers that are highly specific, but are only expressed in a small subset of cells (e.g., phosphor 247 
histone H3). It’s important to note that not all of these markers were usable for every dataset, 248 
especially in tissue-based experiments where the staining variability can be high and where individual 249 
tumors might genetically or epigenetically lose the expression of single proteins (see Table S2 for 250 
details of which markers were used for the ccD-CMD calculations in each experiment). 251 
 252 
Dimensionality reduction 253 
The ccD-CMD starts by calculating the cell cycle difference (ccD) matrix, which is defined as the 254 
absolute value of the pairwise Pearson correlation between the cell cycle marker vector of normalized 255 
values of each cell. An example of a ccD matrix is presented in Figure 3C.  256 
In order to be interpreted the ccD matrix needs to be reduced in dimensions. Classical 257 
multidimensional scaling (CMD) is a linear dimensionality reduction method used to approximate the 258 
pairwise distances between n points (in our case n = number of single cells) to a representation in 259 
lower dimensions. Commonly, reduction to two dimensions is chosen to ease visualization and 260 
interpretation. CMD scaling is a linear algorithm, and although assuming linearity is an 261 
oversimplification, CMD scaling runs significantly faster than non-linear methods, which is important 262 
for scalability as we routinely run the algorithm on hundreds of samples with upwards of 20,000 cells.  263 
Circular fitting: trajectory model and cell ordering 264 
The reduced two-dimension ccD scatter, referred to as the “ccD-CMD” representation, or landscape, 265 
is parametrized by fitting it to a circle by least-squares minimization. This choice was made with the 266 
observation that the two-dimensional representation has an underlying cyclical structure following the 267 
dynamics of the cell cycle. This is in contrast with many other time inference algorithms that search 268 
for non-cyclical paths through the data. 269 
The circular fitting served two purposes: 270 

1. to perform ordering of the cells around the cell cycle position. Notably the ordering is only most 271 
accurate for populations of cells where the ccD-CMD representation forms an evenly 272 
distributed torus (referred to as “cell cycle coherent” in the main text), rather than a skewed 273 
torus or amorphous point cloud (referred to respectively as “skewed cell cycle” and “non-274 
canonical”). 275 

2. to parametrize the ccD-CMD representation and extract quantitative metrics that summarize 276 
the sample’s overall cell cycle temporal organization.  277 

For each data point (i.e., single cell), two parameters are calculated, 1) the shortest distance between 278 
the data point and the fitted circle (d) and 2) the angle relative to the point of origin of the fitted circle 279 
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(θ) as shown in Figure 3E. Using the angle, each data point was projected to the nearest point on the 280 
circle to order the cells in what is referred to as the “cell cycle ordering.” Given the cyclical nature of 281 
the ordering, the point of origin (time = 0 or start time) is arbitrary. For each population of cells being 282 
analyzed, two overall metrics were extracted from the fit:  283 

i) the circle fit distance (CFD), which is the mean d of the population  284 
ii) the inter-octile variation in angle (IOV). To calculate the IOV, the angle measurements were 285 
binned to 8 equally sized bins and the proportion of cells in each bin were calculated. To 286 
ensure lack of positional bias, the proportion calculation was repeated by shifting the bin 287 
position by π/8. The IOV is the coefficient of variation of the bin proportions, which is equal to 0 288 
in a uniformly distributed population. 289 

Measures of cell cycle coherence 290 
The two metrics, CFD and IOV, were used to describe what we call the “cell cycle coherence” of a 291 
sampled cell population. A low CFD indicates that the points in CMD space are distributed along the 292 
circular path (best-fit circle). As more and more cells accumulate in the center of the ccD-CMD 293 
representation (forming a cloud of points) the CFD metric increases. In the ccD-CMD representation, 294 
the 2D distance between two points is a lower-dimensional approximation of their difference in 295 
multidimensional space, in our case the cell cycle space. Therefore, a cloud of points means that the 296 
cell cycle marker vectors of cells in the cloud are similar, because the difference between cell cycle 297 
states is not sufficiently distinct to separate them in ccD-CMD projection i.e. there is no coordination 298 
between cell cycle markers (e.g., Sample 3, Figure 4C). If the measured cells are random samples 299 
from a deterministically oscillating system, the distance between the cells would be proportional to the 300 
time between the positions of the random samplings. In this case, the data points would form a 301 
topological toroidal shape and in turn, a low CFD. In Figure 5, we showed how a sharp drop in HER2 302 
expression led to a shift from a toroidal ccD-CMD representation (9 weeks HER2 “on”) to a point 303 
cloud (2 days HER2 “off”), with a corresponding increase in CFD (from 30 to 50). Our interpretation is 304 
that HER2 expression promotes a strong signal for cells to grow; once this is withdrawn, the system 305 
drifts in multiple directions and the levels of the cell cycle markers lose coordination. 306 
A low IOV indicates that points are distributed evenly around the circle as opposed to clustered at 307 
specific regions. This clustering occurs if cells slow down in a specific part of the cell cycle, hence 308 
accumulating at that location. Notably, a similar clustering would occur if cells were to accelerate 309 
through a specific part of the cell cycle, but in this case, the accumulation of cells would occur away 310 
from the acceleration point. In both instances, the population of cells would be unevenly distributed 311 
and have high IOV, a state that we call “skewed cell cycle” because of the uneven distribution of cells 312 
around the ccD-CMD torus. The extreme case scenario is cell cycle arrest, for instance triggered in 313 
MCF10A by cell cycle inhibitors, palbociclib and nocodazole (Figures 3G-3J). In both treatments, at 314 
both 24 and 48 hours the recorded IOV is up to three-fold higher than freely cycling MCF10A cells. 315 
However, these perturbations are extreme scenarios. In human samples, we focus on the MPI +1 316 
population of cells and eliminate from the analysis the most likely arrested population (MPI -1, with 317 
high levels of p21 or p27). Accordingly, most human tumors we measured had IOV between 0.4 and 318 
1.2, while the fully arrested cells have IOV of 1.5-2. The high IOV state potentially represents 319 
populations of cells moving towards cell cycle arrest. However, as described above, high IOV could 320 
also suggest a more streamlined cell cycle with a shortening in one cell cycle phase and in fact a 321 
faster, albeit still less balanced, completion of the cell cycle. 322 
  323 
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Supplementary Figure 1
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Supplementary Figure 4
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Supplementary Figure 5
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Supplementary Figure 6
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Figure S7
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