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Abstract 

 

Functional Magnetic Resonance Imaging (fMRI) is an essential method to measure brain activity non-

invasively. While fMRI almost systematically relies on the blood oxygenation level-dependent (BOLD) 

contrast, there is an increasing interest in alternative methods that would not rely on neurovascular 

coupling. A promising but controversial such alternative is diffusion fMRI (dfMRI), which relies instead 

on dynamic fluctuations in apparent diffusion coefficient (ADC) due to microstructural changes 

underlying neuronal activity. However, it is unclear whether genuine dfMRI contrast, distinct from 

BOLD contamination, can be detected in the human brain in physiological conditions. Here, we present 

the first dfMRI study in humans attempting to minimize all BOLD contamination sources and comparing 

functional responses at two field strengths (3T and 7T), both for task and resting-state (RS) fMRI. Our 

study benefits from unprecedented high spatiotemporal resolution and harnesses novel denoising 

strategies. We report task-induced decrease in ADC with temporal and spatial features distinct from the 

BOLD response and yielding more specific activation maps. Furthermore, we report dfMRI RS 

connectivity which, compared to its BOLD counterpart, is essentially free from physiological artifacts 

and preserves positive correlations but preferentially suppresses anti-correlations, which are likely of 

vascular origin. A careful acquisition and processing design thus enable the detection of genuine dfMRI 

contrast on clinical MRI systems. As opposed to BOLD, diffusion functional contrast could be 

particularly well suited for low-field MRI.  
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Introduction 

 

Functional MRI (fMRI) has become an invaluable tool for neuroscience and is nearly omnipresent in 

studies of healthy and diseased brain. The most widely used fMRI contrast originates from changes in 

venous blood oxygenation underlying neuronal activity, also known as BOLD (blood oxygenation level-

dependent) signal (Ogawa et al., 1992), to the extent that “fMRI” and “BOLD fMRI” have become near-

synonyms. However, within the BOLD mechanism also lies the major drawback of this contrast: it relies 

on neurovascular coupling instead of direct neuronal activity. This additional convolution layer has 

several dramatic implications (Turner, 2016): loss in spatial and temporal specificity, since neuronal 

activity is convolved with a slow hemodynamic response function, and strong BOLD signal stems not 

from the locus of neuronal firing, but from nearby venules and veins (Shmuel et al., 2007), a challenging 

distinction between neuronal and vascular alterations, of relevance to healthy aging or pathology such 

as tumors and multiple sclerosis (West et al., 2019; Pak et al., 2017; Caprio et al., 2016) and low 

sensitivity in white matter (Gore et al., 2019; Grajauskas et al., 2019), where vasculature and metabolism 

are reduced. In addition, BOLD is by design sensitive to fluctuations in local magnetic field 

homogeneity, which can have numerous sources other than blood oxygenation changes. In other words, 

BOLD fMRI is also notoriously corrupted by physiological noise. Although a battery of processing tools 

has been developed to correct for these effects, BOLD functional connectivity studies are still mainly 

used to inform about population differences and exhibit very limited diagnostic performance at the 

single-subject level (Dubois and Adolphs, 2016). 

Diffusion functional MRI (dfMRI) was proposed as a functional contrast which does not rely on 

neurovascular coupling (Le Bihan et al., 2006) but instead on the sensitivity of the apparent diffusion 

coefficient (ADC) of water to dynamic microstructure fluctuations that typically occur in neurons and 

astrocytes (including their processes) as a result of neuronal activity (Andrew and Macvicar, 1994; Lang 

et al., 1998; Sherpa et al., 2016). Indeed, diffusion MRI (dMRI) encodes the mean displacement of water 

molecules, which is on the order of a few microns and is largely governed by the layout of cellular 

membranes, compartment sizes and other features of tissue microarchitecture. Since the initial work by 

Le Bihan et al., a body of conflicting evidence has been published. Several studies have reported 

improved temporal and spatial specificity of the dfMRI signal compared to BOLD (Darquie et al., 2001; 

Tsurugizawa et al., 2013; Nunes et al., 2019) and specificity to neuronal activity rather than vascular 

response (Flint et al., 2009; Tirosh and Nevo, 2013; Abe et al., 2017). Other works have argued on the 

contrary that the so-called dfMRI signal is based on residual vascular rather than neuronal contrast and 

that the method is otherwise not sensitive enough to detect physiological levels of brain activity on an 

individual basis (Miller et al., 2007; Jin and Kim, 2008; Autio et al., 2011; Bai et al., 2016). The 

conflicting literature suggests that achieving genuine dfMRI contrast constitutes a true methodological 

challenge (Figure 1). 

Briefly, there are three main mechanisms by which the hemodynamic response to neuronal activity can 

interfere with the dfMRI contrast, with careful solutions to mitigate them (Figure 1, Table 1). First, the 

diffusion-weighted MRI signal is, by design of the spin-echo sequence, also T2-weighted (or T2*-

weighted, for gradient-echo sequences). Changes in tissue T2* due to blood oxygenation differences 

between rest and active states are the very mechanism behind the BOLD contrast. Thus, a plain 

diffusion-weighted signal is also heavily affected by the same mechanism. This confound was present, 

among others, in Le Bihan et al., 2006; Miller et al., 2007; Autio et al., 2011; Tsurugizawa et al., 2013. 

Therefore, the ADC time-course should be considered instead – estimated, for instance, from 

consecutive measurements with two different b-values, assuming T2 to be constant during these two 

measurements. Second, blood oxygenation dependent field homogeneity implies background field 
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gradients Gs vary with the hemodynamic response. These gradients can contribute to the effective 

diffusion-weighting imparted in the sequence, most notably via cross-terms with the diffusion gradients 

Gd. Contributions from background gradients may have challenged the interpretation in Darquie et al., 

2001; Autio et al., 2011; Luca et al., 2019. A sequence design that minimizes cross-terms should be 

preferred, e.g. a twice-refocused spin-echo. Third, the ADC at the voxel level is a combination of 

diffusivities from all voxel constituents: compartments of interest (intra- and extra-neuronal space), but 

also blood. The hemodynamic response translates into an increase in blood volume and flow (pseudo-

diffusion coefficient Dbl*). Blood water contributions to the MRI signal should therefore be eliminated 

to access changes in tissue ADC only. The inclusion of b=0 in the ADC estimation may result in BOLD-

like response functions as, for instance, reported in Luca et al., 2019 and Nunes et al., 2019. It is 

noteworthy that techniques to suppress the blood signal by injection of magnetic particles (Jin and Kim, 

2008) may also introduce an indirect vascular contribution, as they generate susceptibility gradients 

around vessels that fluctuate with changes in vessel size. 

Encouragingly, studies of perfused tissues without vasculature have clearly demonstrated that neuronal 

activity decreases the overall diffusion coefficient (Flint et al., 2009; Tirosh and Nevo, 2013; Spees et 

al., 2018), although the sensitivity to physiological levels of activity has been questioned (Bai et al., 

2016). New approaches of ultra-high temporal resolution to separate early dfMRI from later BOLD 

effects have nonetheless singled out genuine dfMRI contrast in the rodent (Nunes et al., 2021, 2019). 

We adopt a dfMRI study design that minimizes the aforementioned sources of vascular contamination 

to determine whether genuine diffusion fMRI contrast is detectable in the human brain at the individual 

level. A bipolar gradient diffusion sequence was used to mitigate cross-terms between diffusion and 

susceptibility gradients, and apparent diffusion coefficient (ADC) time-courses were computed using b- 

 

Figure 1. Vascular confounds in dfMRI. Pathways for wanted dfMRI contrast (green font) and for unwanted “contamination” 

of dfMRI neuronal contrast by the same changes in blood oxygenation underlying the BOLD contrast (red font) and solutions 

to minimize them. Top panels adjusted from Miller and Jezzard, 2008 (Copyright © 2008 Wiley‐Liss, Inc.). 
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values ≥ 0.2 ms/μm2 to suppress T2-weighting and blood pool contributions. We explore different 

approaches to assessing residual vascular contributions by comparing the dfMRI signal properties at two 

field strengths, 3T and 7T. From a biophysical standpoint, the dfMRI response should be field-

independent while the BOLD magnitude increases with field strength. Finally, we evaluate dfMRI 

properties not only in response to a task but also, for the first time, in terms of resting-state functional 

connectivity (RS-FC) compared to T2-BOLD. The notoriously low sensitivity of dfMRI is balanced by 

recent improvements in spatio-temporal resolution of the acquisition (e.g. stronger gradients on clinical 

systems and multi-slice acceleration) and in image pre-processing, in particular Marchenko-Pastur PCA 

(MP-PCA) denoising (Veraart et al., 2016; Ades-Aron et al., 2021; Diao et al., 2021) to boost the 

temporal signal-to-noise ratio (tSNR). 

 

 

Methods 

 

Experimental 

The study was examined and approved by the ethics committee of the canton of Vaud (CER-Vaud). 

Data were acquired on Siemens Magnetom 7T and Prisma 3T scanners, on 22 subjects (7 males, age 25 

± 5). All subjects gave informed written consent after the experimental procedures were explained and 

prior to enrollment. Four scanning protocols were used: (1) SE-EPI yielding T2-BOLD contrast, (2) DW-

TRSE-EPI with pairs of b-values 0.2 and 1 ms/μm2, (3) DW-TRSE-EPI but with b-values 0 and 1, and 

(4) DW-SE-EPI (monopolar gradient pulses) with b-values 0.2 and 1. Sequences were obtained from 

the Center for Magnetic Resonance Research of the University of Minnesota 

(https://www.cmrr.umn.edu/multiband/, Uğurbil et al., 2013). All scanning was performed with 

GRAPPA=2 and Multiband=2 acceleration. Sequence parameters and the numbers of datasets are 

collected in Table 2 for each protocol, field strength and scan type (task or resting-state). Due to specific 

absorption rate limits at 7T, images for some volunteers were acquired with fewer slices than the default 

of 16. While most of the task datasets were acquired at an isotropic resolution of 2.5 mm, the first 

datasets had an isotropic resolution of 2 mm. The voxel size was increased in order to improve the SNR. 

 Sources of vascular contamination Solution 

1 

Intrinsic T2-weighting in diffusion-weighted signal: 

 

𝑆 = 𝑀0𝑒
−𝑇𝐸 𝑇2⁄ 𝑒−𝑏∙𝐴𝐷𝐶  

Calculate ADC time-courses from interleaved acquisition of two 

b-values to cancel out T2 weighting: 

𝐴𝐷𝐶(𝑡) = 𝑙𝑛 (
𝑆2(𝑡 + 𝛿𝑡)

𝑆1(𝑡)
)

1

𝑏1 − 𝑏2
 

2 

Modulation of effective b-value by cross-terms between venous 

background field gradients 𝐺𝑠(𝑡) and diffusion gradients 𝐺𝐷: 

𝑏 = 𝑥𝐺𝐷
2 + 𝑦𝐺𝐷 ∙ 𝐺𝑠(𝑡) + 𝑧𝐺𝑠

2(𝑡) 

Coefficients x, y, z are sequence-dependent. 

Typically 𝐺𝐷 ≫ 𝐺𝑠. 

Diffusion gradient waveform design 

that minimizes cross-terms 

e.g. twice-refocused spin-echo 

3 Contribution of blood water pool 
Operate at b-values ≥ 0.2 ms/μm2 

to suppress fast moving spins (blood signal) 

4 CSF volume shrinkage to compensate for blood volume increase Selectively null CSF signal using inversion module 

Table 1. Explicit mechanisms for vascular contamination of dfMRI contrast, either via the diffusion-weighted signal (Items 1 

– 2) or the compartment contributions to the voxel ADC (Items 3 – 4) and technical solutions to address them. 
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Table 2. Acquisition parameters for the four protocols. 

 

All resting-state datasets were acquired at an isotropic resolution of 2 mm. A few dfMRI task datasets 

were acquired with separate runs to increase the temporal resolution, so that each b-value was employed 

in a separate run. ADC was then calculated from the two separate acquisition runs. Such acquisition 

enables the temporal resolution of the ADC map to be the same as in the original DW-SE-EPI map. 

However, this design was found to be rather detrimental in terms of large-scale fluctuations that did not 

enable the time-courses to be used for an ADC computation, with little benefit/insight brought by higher 

temporal resolution. For most of the dfMRI acquisitions (13 out of 22 subjects), the b-values were 

alternating within one acquisition run. This way, the temporal resolution of the ADC map was half the 

temporal resolution of the original DW-SE-EPI map – the repetition time (TR) in the ADC map was 

twice the TR in the original map. The scanning time for each protocol was approximately 10 minutes. 

For task datasets, the imaging slab was chosen such that both the visual and motor cortices would be 

covered. For resting-state datasets, the imaging slab covered the prefrontal cortex and the posterior 

cingulate cortex, which are crucial elements of the default mode network (Raichle et al., 2001). To be 

able to later correct the susceptibility distortions using topup (Andersson et al., 2003), EPI images with 

opposite phase encoding directions were acquired. Besides the functional scans, for each subject and at 

each scanner, an anatomical 1 mm isotropic T1-weighted image was acquired using an MPRAGE 

sequence. 

For the task runs, subjects were viewing a flashing checkerboard (8 Hz) and concurrently finger-tapping 

with both hands for 12s following 18s of rest. This boxcar paradigm was implemented using PsychoPy 

(Peirce et al., 2019). For the resting-state runs, subjects were told to fixate on the cross in the middle of 

the screen and to relax. 

Processing 

The processing pipeline is sketched in Figure 2.  

Outlier detection and removal: Signal drop-outs were observed for some volumes along the time-

course, either due to scanner instabilities or motion. To minimize their effect, we implemented a method 

to automatically detect volume outliers and to replace the signal in such volume outliers with a linearly 

  (1) SE BOLD (2) ADC from 

b=0.2/1, bipolar 

(3) ADC from 

b=0/1, bipolar 

(4) ADC from 

b=0.2/1, monopolar 

  3T 7T 3T 7T 3T 7T 3T 7T 

T
as

k
 

# Datasets 5 8 19 13 1 2 8 8 

TE (ms) 73 65 72 62 72 65 72 62 

TR (s) 1 

Matrix 94x94 116x116 94x94 

Resolution (mm2) 2.5x2.5 2x2 2.5x2.5 

Slices 16 

Thickness (mm) 2.5 2 2.5 

Total volumes 600 

R
es

ti
n

g
-s

ta
te

 

# Datasets 10 10 12 11 0 2 5 5 

TE (ms) 73 65 73 65  65 73 65 

TR (s) 1 

Matrix 116x116 

Resolution (mm2) 2x2 

Slices 16 

Thickness (mm) 2 

Total volumes 600 
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interpolated signal. A volume was considered an outlier if its detrended average signal over the entire 

brain was away from the median across all the volumes by more than a pre-specified fraction of this 

median. This threshold fraction was set at 1% and 3% for 3T and 7T, respectively. It should be noted 

that after whole-brain averaging, 1 – 3% deviations are much larger than any BOLD fluctuations within 

this range at the individual voxel level. As low-frequency drifts could affect the detection of volume 

outliers, the signal was first linearly detrended to identify outliers. For further pre-processing, however, 

the non-detrended data with outlier exclusion were used. In most cases, the fraction of outliers did not 

exceed 5%. If this fraction was above 20%, the entire dataset was excluded from further analyses. For 

the diffusion datasets, the above procedure was employed on volume series corresponding to the two b-

values separately. Supplementary Figure 1 presents the above procedure for an exemplary dataset. 

Denoising: Data were then denoised using the MP-PCA method (Veraart et al., 2016; Ades-Aron et al., 

2021) with a sliding window kernel of 5x5x5 voxels. For the diffusion datasets, the denoising procedure 

was performed on volume series corresponding to the two b-values separately. The residuals were 

inspected for Gaussianity to verify that the denoising procedure did not alter data distribution properties.  

Artifact corrections: Corrections were applied for the Gibbs ringing artifact (Kellner et al., 2016) and 

the susceptibility distortions (Andersson et al., 2003). For the latter, FSL’s tool topup was run with 

settings taken from the UK BioBank study (Alfaro-Almagro et al., 2018). Motion correction was 

performed with SPM (Friston et al., 1995; Friston, 2007). For the diffusion datasets, motion correction 

Figure 2. The employed processing pipeline. Data pre-processing included denoising (Veraart et al., 2016; Ades-Aron et al., 

2021), Gibbs unringing (Kellner et al., 2016) and corrections for susceptibility distortion (Andersson et al., 2003) and motion. 

For the apparent diffusion coefficient (ADC) calculation, Si is the signal level measured with diffusion-weighting bi. 
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was performed on volume series corresponding to the two b-values separately. Afterwards, the two 

series were aligned with each other using ANTs rigid transformation (Avants et al., 2011, 2010). 

As the last stage of the pre-processing of the diffusion data, ADC maps were calculated as: 

ADC = 
ln(

𝑆2
𝑆1
)

𝑏1−𝑏2
 

where Si is the signal level measured with diffusion-weighting bi. The later dfMRI task and resting-state 

analyses employed the quantitative ADC maps. However, the dfMRI volumes acquired at the lower b-

value (0.2 ms/μm2) were also used independently as an approximation for SE BOLD – in the following, 

these datasets are called “pseudo SE BOLD”. These pseudo SE BOLD time-courses had the advantage 

of being directly comparable to the matching ADC time-courses due to their concomitance in time, with 

identical physiological conditions and brain activity in the volunteer. 

For task datasets, our main goal was to compare response functions across the modalities and field 

strengths. For resting-state datasets, our main goal was to compare functional connectivity matrices, also 

both across the modalities and field strengths. 

Both task and resting-state analyses were performed in subject’s spaces to minimize the effect of 

interpolations on the results. All the associated registration was done with ANTs (Avants et al., 2011, 

2010). Following brain extraction, the subject’s anatomical image was registered to the Montreal 

Neurological Institute (MNI) template at 1 mm isotropic resolution using symmetric normalization 

(SyN). The mean functional image was registered to the subject’s anatomical image using rigid 

transformation. For diffusion data, the mean functional image was calculated for the lower b-value 

volumes only, as these correspond to higher SNR. No spatial smoothing was applied to the maps to 

enable the investigation of fine spatial differences (Polimeni et al., 2018). 

The visual and motor cortices in MNI space were defined using the 1.5 mm isotropic 

Neuromorphometrics atlas (Neuromorphometrics, Inc.). The visual cortex was the sum of the calcarine 

cortex, occipital pole, superior occipital gyrus, inferior occipital gyrus, cuneus, lingual gyrus, middle 

occipital gyrus and occipital fusiform gyrus. The motor cortex was the sum of the precentral gyrus 

medial segment, precentral gyrus and supplementary motor cortex. All the regions were considered 

bilaterally. Using the above-obtained transformations, the two MNI-defined regions of interest (ROIs) 

were brought to subject’s functional spaces. 

For task images, whole-brain general linear model (GLM) analyses were performed in FSL (Jenkinson 

et al., 2012), using the Finite Impulse Response (FIR) method (Henson et al., 2001) to find activations 

without making assumptions about the shape of the responses. Both for the SE BOLD and dfMRI 

analyses, FIR was used with seven basis functions covering 30s of the post-stimulus-onset time. To 

account for possible low-frequency drifts in the data, a high-pass filter with a cutoff of 1/100 Hz was 

applied, both on the data and the model. F-tests were run on the FIR basis functions and F-statistics 

were transformed into z-statistics. For each fMRI dataset and each of the two ROIs, the response function 

was estimated as the average signal across the trials and the voxels with z-statistic > 3.1. If at least 20 

voxels in the ROI had a z-statistic > 3.1, the estimated response function was taken to the group analysis. 

For the calculation of group averages, subject-level estimates were normalized to their baseline levels. 

For each resting-state dataset, the available ROIs from the Neuromorphometrics atlas were considered. 

As the acquisitions covered only part of the brain, only some ROIs from the atlas were covered. ROIs 

for which a coverage of ten or fewer voxels was available were omitted. Pair-wise Pearson correlation 

coefficients were calculated between the mean time-courses across each ROI. The correlation 
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coefficients were calculated following global signal regression (GSR), manual independent component 

analysis (ICA) cleaning (Beckmann and Smith, 2004; Griffanti et al., 2017; Diao et al., 2021) or both. 

Group analyses were done averaging the resting-state functional connectivity matrices across the 

subjects. Only ROIs covered by all subjects were considered at the group level. 

 

 

Results 

 

The outlier ratio was exceeded for six datasets, which were excluded from the analyses. Two resting-

state datasets were excluded due to inconsistent positioning of the imaging slab. Data from one subject 

was excluded entirely because of poor task compliance. Finally, five datasets were excluded because of 

image artifacts. Table 2 specifies the numbers of datasets retained for the analyses (N=64 total for task, 

and N=55 total for resting-state, all protocols combined). 

The relatively short TR of 1 second, chosen in the interest of high temporal resolution, yielded limited 

steady-state signal and SNR. However, the MP-PCA denoising procedure nearly doubled the tSNR 

(Supplementary Figure 2). 

Task fMRI 

Figure 3 shows group-level activation maps resulting from Protocols (1) and (2) at each field strength. 

Activation in the visual and motor cortices was observed, both with SE BOLD and with dfMRI, at 3T 

Figure 3. Whole-brain group-averaged z-statistic maps for SE BOLD and dfMRI, at 3T and 7T. To find task-induced activation 

without making assumptions about the shape of the response functions, a Finite Impulse Response (FIR) set was used. 

Significance was assessed with F-tests. The F-statistics were converted to z-statistics, which these group average maps refer 

to. Activation both in the visual and motor cortices was observed, both with SE BOLD and with dfMRI, at both fields. 
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and 7T. While the sensitivity of dfMRI is expectedly lower, its activation patterns point towards 

improved specificity: the voxels consistently active at the group-level delineate cortical ribbons in the 

visual area, interhemispheric supplementary motor area and bilateral motor/somatosensory cortices. 

Analysis of the group-averaged response functions (Figure 4) revealed, as expected, a positive SE 

BOLD response with an amplitude larger at 7T than at 3T (2% vs. 1% in the visual cortex), as well as a 

delayed BOLD onset with respect to stimulus and even more delayed return to baseline after stimulus 

end. It should be noted that these BOLD amplitudes are expectedly lower for T2-BOLD than for the 

more familiar T2*-BOLD. Our optimized dfMRI protocol revealed a task-induced ADC decrease by 

around 1%. At 3T, the decrease was gradual from stimulus onset and peaked around 8 – 9 s into the 

paradigm before increasing back to baseline. The return to baseline was complete at the end of the 

paradigm block in the motor cortex and slower in the visual cortex, up to 8 seconds from the stimulus 

end. At 7T, the response function in the motor cortex was qualitatively similar to 3T but with a larger 

amplitude. In the visual cortex, the response was non-monotonic with an initial decrease in ADC, 

similarly to 3T, followed by a very rapid return to baseline and post-stimulus over-shoot in ADC. These 

main time-courses are overlaid in Figure 5 for better comparison. For the other acquisition protocols 

(Figure 4), the qualitative trends of the response functions were similar to BOLD, pointing to the 

importance of each step in our optimized dfMRI (Column B) to minimize vascular contributions. For 

example, b=0.2 time-courses analyzed independently as a pseudo T2-BOLD with small diffusion-

weighting – likely suppressing the contribution from blood spins – still revealed BOLD-like response 

due to T2-weighting, particularly clear in the visual cortex (Column C). Few datasets are available for 

b=0/1 ADC, but they show nonetheless an increase in ADC during task in the visual cortex, similarly to 

BOLD, but a decrease in the motor cortex (Column D). Finally, the protocol with monopolar diffusion 

gradient pulses resulted in a nearly flat response in the visual cortex and an increase in ADC in the motor 

cortex (Column E). 

 

 

Figure 4. Group-averaged response functions for SE BOLD (A), dfMRI from b=0.2/1 pairs bipolar (B), pseudo SE BOLD (C), 

dfMRI from b=0/1 pairs bipolar (D), and dfMRI from b=0.2/1 pairs monopolar (E), at 3T and 7T. For each subject, the average 

time-course of voxels with z-statistic > 3.1 in each of the ROIs was first averaged across trials. Subject-level estimates were 

then normalized to their baseline level and averaged across the cohort. The shaded area represents the standard error of the 

mean: SEM, calculated across subject-level estimates. 
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Figure 5. Group average response functions for SE BOLD and dfMRI at 3T and 7T in the visual and motor cortices. 

 

Illustrative examples of individual responses to task for Protocol (2) (ADC b=0.2/1 bipolar) are shown 

in Supplementary Figure 3.  

Resting-state functional connectivity 

Group averages of FC matrices following manual ICA cleaning and GSR were dominated by strong 

positive correlations, which agreed remarkably well between T2-BOLD and dfMRI methods, at both 

field strengths (Figure 6). However, our dfMRI protocol attenuated anti-correlations preferentially 

compared to T2-BOLD, particularly at 3T. Indeed, the slope of the linear regression of dfMRI to T2-

BOLD positive correlations was 0. 93 at 3T and 0.9  at 7T, while for T2-BOLD negative correlations, 

the slope dropped to 0. 8 at 3T and 0. 51 at 7T, respectively. t-tests of FC strength between the two 

protocols showed that the majority of edges with significantly different connectivity had either a low or 

negative correlation in BOLD, which was further attenuated in dfMRI (Supplementary Table 1). 

Remarkably, FC patterns were very similar between our dfMRI protocol and the blood-attenuated 

pseudo SE BOLD (Supplementary Figure 4). As in dfMRI, the anti-correlations were reduced in 

pseudo SE BOLD and both positive and negative correlations agreed between the two methods. It should 

be underlined that the FC comparison is all the more powerful between these protocols as the underlying 

data were acquired during the same run, and thus for identical brain activity and physiological conditions 

in the volunteer. 

Finally, the comparison of how various processing steps impact functional connectivity as estimated 

from the different protocols (SE BOLD, pseudo SE BOLD and ADC 0.2/1 bipolar) suggests that, while 

ICA cleaning affects SE BOLD connectivity – by removing unwanted physiological artifacts, it has little 

impact on ADC-derived connectivity (see Figure 7 for 3T and Supplementary Figure 5 for 7T). By 

intrinsically removing large field fluctuation contributions to functional contrast, such as those of 

vascular origin, ADC dfMRI also has a valuable attribute of yielding data that is “clean” by design. 
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Figure 6. Resting-state analysis following manual ICA cleaning and GSR. Group averages of FC matrices from SE BOLD (A) 

and b=0.2/1 ADC (B) at 3T and 7T. C: Correlation of FC strength derived from SE BOLD vs. dfMRI. The positive edges in 

BOLD fMRI agree exceptionally well with dfMRI FC (slope of the linear regression ~1 at both field strengths). However, 

BOLD anti-correlations are largely suppressed in dfMRI, particularly at the lower field. 

 

Discussion 

 

This is the first dfMRI study in humans attempting to minimize BOLD contamination sources and 

compare functional responses at two field strengths, both for task and resting-state fMRI. Our study 

further benefits from unprecedented high spatial and temporal resolution of 2 – 2.5 mm isotropic and 1 

– 2 s. 

 

Task fMRI 

The optimized dfMRI protocol was the only one to yield a consistent decrease in ADC during task, as 

expected from biophysical mechanisms and previously reported in experiments on tissue samples 

without vasculature (Flint et al., 2009; Tirosh and Nevo, 2013; Spees et al., 2018). All other “dfMRI” 

protocols yielded BOLD-like response functions (from T2-weighting or direct blood pool contributions), 

with a directionality not fully consistent across ROIs or field strengths. This inconsistency (e.g. for ADC 

time-course from b=0/1, between the visual and motor cortices) could be related to spatially varying 

SNR levels, field homogeneity, magnitude of the neuronal response and of a competing BOLD response. 

The ADC time-course from b=0.2/1 pairs with monopolar gradient pulses showed a weak, nearly flat 

response at 3T, potentially resulting from competing dfMRI and BOLD mechanisms balancing out the 

net effect. 
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A close comparison between T2-BOLD and “optimized” dfMRI characteristics suggests different 

contrast mechanisms between the two. Indeed, the BOLD response was delayed with respect to the 

stimulus onset and, once established, the plateau lasted at least until the stimulus end (motor cortex) or 

beyond (visual cortex) before gradually decreasing to baseline. Return to baseline was reached within 

eight seconds from the stimulus end. The differences in BOLD response between cortical areas may be 

due to a difference in stimulus strength and persistency as well as in hemodynamic response (West et 

al., 2019). In contrast, for both ROIs and at both field strengths, the ADC decrease started upon stimulus 

onset and time to trough was 8 – 9 seconds into the stimulus. In the motor cortex at 3T, the ADC 

increased back towards baseline at the end of the stimulus, while the BOLD plateau was maintained 

beyond. In the visual cortex at 7T, there was a more rapid return of ADC to baseline and a positive 

overshoot after the stimulus period. The first component might reflect rapid microstructural changes, 

and the latter slower but notable BOLD contamination, in full agreement with a recent dfMRI study at 

9.4T in rats (Nunes et al., 2021). 

The difference in dfMRI qualitative trend between 3T and 7T suggests vascular contributions may be 

more challenging to mitigate at higher fields due to stronger susceptibility, despite a careful sequence 

design. In the motor cortex, the dfMRI responses were qualitatively more consistent between 3T and 

7T, with a gradual decrease initiated without delay from stimulus onset and 8-second time to trough, 

followed by a gradual return to baseline after stimulus end. BOLD effects may be brain-region 

Figure 7. Average functional connectivity matrices at 3T, derived from either “raw” signal (A), after GSR (B) or after manual 

ICA cleaning followed by GSR (C). Rows correspond to RS-FC derived from various protocols: SE BOLD, pseudo SE BOLD 

(b=0.2 time-courses) and ADC (from pairs b=0.2/1 – Protocol (2)). 
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dependent and less pronounced in the motor vs. the visual cortex. It is worth noting, for instance, that 

BOLD amplitude difference between 7T and 3T was very pronounced in the visual cortex, but not so 

marked in the motor cortex. However, the magnitude of the dfMRI effect (via the ADC decrease) does 

appear to be field-dependent also in the motor cortex, whereby vascular contributions to dfMRI cannot 

be ruled out in this ROI at 7T. 

The relatively smooth and persistent ADC decrease during task is consistent with previous dfMRI 

studies (Darquie et al., 2001; Spees et al., 2018) and also with expected gradual changes in the overall 

volume of neuronal, glial and extracellular compartments upon sustained firing, as highlighted by the 

electrodiffusive neuron-extracellular-glia model (Sætra et al., 2020). 

We report an amplitude of ADC decrease on the order of 1% in physiological conditions of sensory and 

motor stimulation. This magnitude of the effect is weak but nonetheless detectable, and sensible when 

compared to preclinical dfMRI studies using chemical or electrical stimulation above physiological 

thresholds, and which reported ADC drops of 6 – 50% (Flint et al., 2009; Spees et al., 2018). It is also 

important to note that our estimated response functions were somewhat noisier than in some of the 

previous literature, where the time-courses were filtered – either with a median filter (Nunes et al., 2021) 

or with a moving average filter (Darquie et al., 2001; Luca et al., 2019). We preferred not to use a filter, 

as a filter could have hidden subtle ADC dynamics. 

As for the temporal characteristics, the spatial distribution of activated voxels was also very different 

between BOLD and dfMRI. As expected, the smaller dfMRI effect size resulted in a more limited 

activation pattern and weaker statistics at the group level. Nevertheless, the activated voxels consistently 

followed cortical ribbons in the active areas, yielding more specific information than large BOLD 

clusters. While cortical layer-specific activation patterns can be achieved with BOLD or VASO fMRI 

at ultra-high fields while scanning at very high spatial resolution, particularly strikingly with laminar 

fMRI (Huber et al., 2017), with dfMRI such patterns were accessible using much less demanding 

settings: a 3T field strength and a spatial resolution of 2.5 mm (which corresponds to the average human 

cortical thickness).  Furthermore, the BOLD cluster peaks did not coincide spatially with dfMRI peaks, 

suggesting dfMRI contrast is distinct from a residual strong BOLD contamination. We note that our 

implementation of BOLD corresponded to T2-BOLD, which has improved sensitivity towards capillaries 

than the more common T2*-BOLD, where the largest signals stem from draining veins. 

The analysis of the spatial location of active voxels with either method also highlighted a larger 

proportion of active voxels in major white matter tracts – as labelled in the Johns Hopkins University 

atlas (Mori, 2005) – with dfMRI (5 – 7%) vs. SE BOLD (1%). It is well established that BOLD 

sensitivity in white matter is much reduced due to lower blood volume and flow as well as energy 

requirements compared to gray matter. As a result, most resting-state and some task BOLD fMRI studies 

still use the white matter signal as a nuisance regressor. Although white matter BOLD is regaining 

interest (Gore et al., 2019; Grajauskas et al., 2019) – possibly thanks to higher field strengths and spatial 

resolution boosting sensitivity and specificity – the positive findings in this field remain limited. DfMRI 

has been singled out as a promising technique to detect white matter activity, and a decrease in ADC 

upon sustained stimulation was measurable in ex vivo nerve sample or mouse optic nerve (Lin et al., 

2014; Spees et al., 2018, 2013). Our results support the stronger potential of dfMRI vs. BOLD to detect 

white matter activity. This potential requires, however, further investigation given the more limited 

sensitivity of dfMRI overall. 
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Resting-state functional connectivity 

Based on resting-state data that underwent ICA cleaning and GSR, or GSR alone, we found primarily 

reduced anti-correlations and maintained positive correlations in dfMRI RS-FC vs. BOLD, which 

supports two hypotheses.  

First, that GSR does not result in a plain mathematical demeaning of FC matrices but contributes to 

highlighting genuine (anti-)correlations across the brain, should they exist. This finding is in agreement 

with recent studies – both in humans and rodents – showing that ICA cleaning + GSR also improves the 

differentiation between populations based on resting-state patterns compared to ICA cleaning alone (Li 

et al., 2019; Diao et al., 2021). While GSR is known to mathematically favor anti-correlations, there is 

also evidence of genuine anti-correlations in BOLD resting-state functional connectivity, which are 

reportedly related to certain brain networks being specifically inactivated while other networks are 

active, for accrued efficiency (Fox et al., 2005), e.g. default-mode vs. executive control networks (Fox 

et al., 2009; Nalci et al., 2017). Thus, they could have the same vascular origin as negative BOLD, 

related to arteriolar vasoconstriction and reduced oxygenation in areas of suppressed neuronal firing 

(Devor et al., 2007; Bianciardi et al., 2011). 

Second, and most importantly for our purposes, this difference in RS-FC patterns between BOLD and 

dfMRI suggests that there is no twin of negative BOLD in dfMRI and that the sources of dfMRI signal 

are distinct from those of BOLD and largely free of vascular contributions, in agreement with previous 

findings in the rat brain (Abe et al., 2020; Jelescu, I.O., 2019). Indeed, from the perspective of neuron 

microstructural fluctuations, inhibitory activity leading to membrane hyperpolarization is not expected 

to alter the cell volume and/or morphology significantly relative to baseline – i.e. the change in 

membrane potential between resting and hyperpolarized states is small compared to the dramatic change 

in membrane potential incurred during firing (Fraser and Huang, 2004). 

We note that the pseudo SE BOLD data (based on b=0.2 ms/μm2 time-courses) yielded RS-FC with 

attenuated anti-correlations and that agreed remarkably well with dfMRI RS-FC coefficients. Therefore, 

it would appear that BOLD anti-correlations could be driven by signal contributions from the blood 

pool, which are already largely attenuated using mild diffusion-weighting. 

Finally, while ICA cleaning had a significant impact on BOLD RS-FC, the effect was lesser on dfMRI 

RS-FC. This is consistent with the fact that ICA components typically identified as artifacts are largely 

of physiological origin, be it variations in heart rate, breathing rate, or motion that affect the field 

homogeneity and contribute to non-BOLD T2(*) fluctuations. From this perspective, dfMRI time-

courses can be considered “self-cleaned”, which represents a major advantage in limiting pre-

processing steps and reducing within- and between-subject confounding variability. 

Limitations 

In the interest of temporal resolution, this study used a short TR of 1 s, atypical for multi-slice SE-EPI 

and which only allowed limited T1 recovery – especially at 7T – resulting in limited SNR. Furthermore, 

the B1 transmit field inhomogeneity is notoriously pronounced at high field, further causing signal loss 

for a spin-echo and all the more for a double spin-echo sequence design. The relatively low SNR was, 

however, mitigated by the MP-PCA denoising approach. 

The relatively high temporal resolution also prevented whole-brain coverage. Thus, the analysis of 

dfMRI responses was confined to a slab covering the areas anticipated as most relevant for either task 

or resting-state. However, the achievable brain coverage was doubled using multiband acceleration of 

factor 2, with some further penalty in SNR. Additional brain regions may be of interest, particularly 
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given the spatial mismatch between BOLD and dfMRI cluster peaks (i.e. voxels with the strongest 

activation in either case) and between RS-FC patterns. Overall, our acquisition protocol achieved a 

sensible trade-off between temporal resolution, spatial resolution, SNR and brain coverage. Still, 

ongoing efforts in acquisition strategies, acceleration and efficiency may allow to further optimize these 

parameters concomitantly. 

Both the task and resting-state results showed that the dfMRI signal at 7T shared combined features of 

dfMRI at 3T and BOLD. This suggests that despite a careful experimental design, vascular contributions 

to dfMRI cannot be suppressed entirely, especially at higher field strengths, where susceptibility effects 

are more pronounced. 

All of the above limitations point towards dfMRI being perhaps better suited for lower field strengths. 

Interestingly, now in the MRI community, there is an increasing interest in low-field systems (Campbell-

Washburn et al., 2019; Wang et al., 2021). While lower fields are detrimental to SNR and CNR in BOLD 

fMRI, and laminar fMRI in particular, for dfMRI, low-fields may yield acceptable SNR (via shorter T1 

and more homogeneous B1), larger brain coverage (via reduced radio-frequency power deposition and 

heating) and cleaner, more specific contrast (via reduced BOLD contributions). 

One potential indirect BOLD contribution that our protocol did not account for is a decrease in CSF 

volume as a compensation mechanism for an increase in blood volume during the hemodynamic 

response (Jin and Kim, 2010; Thomas et al., 2013). However, diffusion-weighting is expected to also 

attenuate the contribution from the fast-diffusing CSF compartment quite substantially, reducing the 

impact of this effect. Future dfMRI protocols could nonetheless include an initial CSF-nulling inversion 

pulse (Chou et al., 2005) to address this confound directly. 

Conclusions 

Taken together, our task and resting-state results support the existence and detectability of genuine 

dfMRI contrast distinct from BOLD mechanisms, made possible by a careful study design to minimize 

vascular contributions. DfMRI enables a more specific detection of activation in response to task and 

resting-state functional connectivity mapping directly free from physiological artifacts. Finally, dfMRI 

is ideally suited for low or intermediate magnetic field systems. This will become an important asset in 

the context of increasing interest for low-field systems, and provide a unique functional MRI technique 

in a context where BOLD may lack sensitivity. 
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Supplementary Figure 1. Outlier detection and removal for an exemplary dataset. For each volume, the mean across the 

volume was calculated (gray line). As low-frequency drifts could affect the detection of volume outliers, the signal was then 

linearly detrended (blue line). A volume was considered an outlier if its detrended average signal was away from the median 

across all the volumes by more than a pre-specified fraction of this median. This threshold fraction was set at 1% and 3% for 

3T and 7T, respectively. Finally, the signal for outliers was replaced with linear interpolation (red line). 
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Supplementary Figure 2. tSNR maps before (top panel) and after (bottom panel) MP-PCA denoising for b=0.2 volumes of 

an exemplary subject. The denoising improved tSNR by a factor of almost two.   
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Supplementary Figure 3. Average ADC time-courses and response functions of active voxels (z-statistic > 3.1) in the visual 

and motor cortices for an individual subject, at 3T (top) and 7T (bottom). The individual response characteristics mirror the 

group-level analysis and demonstrate a dfMRI response can be recorded at the single-subject level in physiological conditions. 
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Supplementary Figure 4. Resting-state analysis following manual ICA cleaning and GSR. Group averages of FC matrices 

from pseudo SE BOLD (A) and b=0.2/1 ADC (B) at 3T and 7T. C: Correlation of FC strength derived from pseudo SE BOLD 

vs. dfMRI. FC coefficients derived from both methods agree more strongly than BOLD vs. dfMRI (Figure 6), including 

negative correlations.  
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Supplementary Figure 5. Average functional connectivity matrices at 7T, derived from either “raw” signal (A), after GSR 

(B) or after manual ICA cleaning followed by GSR (C). Rows correspond to RS-FC derived from various protocols: SE BOLD, 

pseudo SE BOLD (b=0.2 time-courses) and ADC (from pairs b=0.2/1 – Protocol (2)). 

 

  

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.444253doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.444253
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

25 

 

Supplementary Table 1. Resting-state functional connectivity edges with most significant differences between SE BOLD and 

ADC b=0.2/1 bipolar, dependent on the field strength, following GSR without manual ICA cleaning. ROIs come from the 

Neuromorphometrics atlas. The edges are sorted after Bonferroni-corrected p-values. “R”/”L” stands for “Right”/”Left”, 

while “G” stands for “Gyrus”. The p-values come from two-sample t-tests on Fisher-transformed Pearson correlation 

coefficients. The last two columns show group averages of the Fisher-transformed Pearson correlation coefficients. The 

majority of edges with significantly different connectivity had either a low or negative correlation in BOLD, which was further 

attenuated in dfMRI. 

 

 Edge Group average conn. 

Corr. p-value ROI 1 ROI 2 SE BOLD ADC 

3T 

0.00116 R frontal pole R Cerebral White Matter    -0.324 0.136 

0.00525 L posterior insula R Hippocampus    0.135 -0.199 

0.00708 L middle frontal G R middle frontal G    0.957 0.439 

0.00899 L posterior insula R anterior insula    0.177 0.009 

0.01487 R central operculum L anterior insula    0.255 -0.036 

0.01584 L triangular part of inferior frontal G R triangular part of inferior frontal G    0.748 0.207 

0.02677 R posterior insula L anterior insula    0.239 -0.116 

0.03775 L frontal pole R Cerebral White Matter    -0.377 0.091 

0.09396 L posterior insula R posterior insula    0.222 -0.086 

0.13664 L triangular part of inferior frontal G R middle frontal G    0.599 0.149 

0.15088 L triangular part of inferior frontal G L Cerebral White Matter    -0.31 0.099 

0.1764 R Hippocampus L Cerebral White Matter    0.048 -0.326 

0.18471 R posterior insula L Cerebral White Matter    -0.034 -0.381 

0.20447 L superior frontal G R posterior insula    -0.309 0.04 

0.26652 R posterior insula R middle frontal G    -0.354 -0.013 

0.38503 R middle frontal G L inferior occipital G    -0.226 0.008 

0.39822 R posterior insula L frontal operculum    0.105 -0.076 

0.39847 R superior frontal G R posterior insula    -0.307 0.039 

0.42543 L planum polare R Hippocampus    0.117 -0.144 

0.50374 R posterior insula L inferior occipital G    0.096 -0.089 

7T 

0.00004 L lingual G R lingual G    1.169 0.485 

0.00403 L middle frontal G R lingual G    -0.483 -0.05 

0.01228 R central operculum L anterior insula    0.152 -0.224 

0.01941 R planum polare L central operculum    0.289 -0.1 

0.01985 R superior frontal G medial segment L Pallidum    -0.367 0.046 

0.03117 R lingual G L frontal operculum    -0.4 -0.086 

0.04015 L opercular part of inferior frontal G R Cerebral White Matter    -0.656 -0.266 

0.04457 R superior frontal G medial segment R lingual G    -0.446 -0.038 

0.06359 L lingual G L frontal operculum    -0.444 -0.125 

0.07286 R triangular part of inferior frontal G L lingual G    -0.505 -0.147 

0.07396 L anterior cingulate G L Pallidum    -0.37 0.057 

0.07722 R triangular part of inferior frontal G L inferior occipital G    -0.36 0.008 

0.09221 L middle frontal G L lingual G    -0.566 -0.141 

0.09886 L posterior insula R central operculum    0.252 -0.116 

0.10686 R inferior occipital G R frontal pole    -0.281 0.065 

0.11826 L frontal operculum R central operculum    0.136 -0.148 

0.12879 R anterior cingulate G L Pallidum    -0.405 0.057 

0.15875 R frontal operculum L anterior insula    0.379 -0.045 

0.17333 R superior frontal G medial segment L lingual G    -0.501 -0.106 

0.17351 R superior frontal G medial segment L Putamen    -0.241 0.07 
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