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SUMMARY 21 

The demographic history is a foundation of human evolutionary studies. However, the 22 

ancient demographic history during the Mid-Pleistocene is poorly investigated while 23 

it is essential for understanding the early origin of humankind. Here we present the 24 

fast infinitesimal time coalescent (FitCoal) process, which allows the analytical 25 

calculation of the composite likelihood of a site frequency spectrum and provides the 26 

precise inference of demographic history. We apply it to analyze 3,154 present-day 27 

human genomic sequences. We find that African populations have passed through a 28 

population super bottleneck, a small effective size of approximately 1,280 breeding 29 

individuals between 930 and 813 thousand years ago. Further analyses confirm the 30 

existence of the super bottleneck on non-African populations although it cannot be 31 

directly inferred. This observation, together with simulation results, indicates that 32 

confounding factors, such as population structure and selection, are unlikely to affect 33 

the inference of the super bottleneck. The time interval of the super bottleneck 34 

coincides with a gap in the human fossil record in Africa and possibly marks the 35 

origin of Homo heidelbergensis. Our results provide new insights into human 36 

evolution during the Mid-Pleistocene. 37 

 38 
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INTRODUCTION 45 

With African hominid fossils, the origin of anatomically modern humans has 46 

been determined to be approximately 200 thousand years (kyr) ago (White et al., 47 

2003). Based on present-day human genomes, the recent demographic history of 48 

humans has been intensively studied which reveals the world-wide spread of our 49 

ancestors (Li and Durbin, 2011; Liu and Fu, 2015; Manica et al., 2007; Nielsen et al., 50 

2017; Ramachandran et al., 2005; Stoneking and Krause, 2011; Terhorst et al., 2017). 51 

However, the ancient demographic history during the Mid-Pleistocene is still poorly 52 

investigated while it is essential for understanding the early origin of humankind. It is 53 

mainly due to limitations of existed methods since this task requires a precise estimate 54 

for the ancient demographic history. Thus a novel approach is needed to improve the 55 

inference accuracy of demographic history. 56 

As site frequency spectrum (SFS) plays an essential role in demographic 57 

inference (Excoffier et al., 2013; Griffiths and Tavaré, 1996; Gutenkunst et al., 2009; 58 

Li and Stephan, 2006; Liu and Fu, 2020; Liu and Fu, 2015; Terhorst et al., 2017), 59 

many efforts have been made to derive its analytical formula under a predefined 60 

demographic model (Fu, 1995; Jouganous et al., 2017; Zivković and Wiehe, 2008). 61 

Therefore, to precisely infer recent and ancient demography, we developed the fast 62 

infinitesimal time coalescent (FitCoal) process (Figure 1) that analytically derives 63 

expected branch length for each SFS type under arbitrary demographic models. It is 64 

effective for a wide range of sample sizes in the analytical calculation of the 65 

composite likelihood of a given SFS. FitCoal first maximizes the likelihood with the 66 

constant size model and then increases the number of inference time intervals and 67 

re-maximizes the likelihood until the best model is found. FitCoal does not need prior 68 

information on demography, and its accuracy is confirmed by simulation. The 69 

demographic inference of FitCoal is more precise than that of PSMC (Li and Durbin, 70 

2011) and stairway plot (Liu and Fu, 2015), and the effects of positive selection and 71 

sequencing error can be easily excluded. 72 

We then used FitCoal to analyze large sets of present-day human genomic 73 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted June 28, 2021. ; https://doi.org/10.1101/2021.05.16.444351doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.444351
http://creativecommons.org/licenses/by-nc-nd/4.0/


sequences sampled from 10 African and 40 non-African populations. The inferred 74 

recent demographic histories, including recent population size expansion/reduction 75 

and the out-of-African bottleneck, are consistent with previous studies (Altshuler et 76 

al., 2015; Bergstrom et al., 2020; Li and Durbin, 2011; Prugnolle et al., 2005; 77 

Ramachandran et al., 2005; Schiffels and Durbin, 2014; Terhorst et al., 2017). 78 

However, we found that our ancestors experienced a super bottleneck and the 79 

effective size of our ancestors remained small (about 1,280 breeding individuals) 80 

between 930 and 813 thousand years ago. The super bottleneck was directly inferred 81 

on African populations but only indirectly detected on non-African populations, 82 

which is expected by the coalescent theory. This observation, together with simulation 83 

results, indicates that confounding factors, such as population structure and selection, 84 

are unlikely to affect the inference of the super bottleneck during the Mid-Pleistocene. 85 

The super bottleneck not only explains a gap of the human fossil record in Africa 86 

between roughly 900 and 600 kyr ago (Profico et al., 2016), but also may represent a 87 

major transition in human evolution, possibly leading to the origin of H. 88 

heidelbergensis: the alleged ancestral species of modern humans (Profico et al., 2016; 89 

Stringer, 2016).  90 

 91 

RESULTS 92 

Fast Infinitesimal Time Coalescent Process 93 

As analytical result of expected branch length for each SFS type is essential for 94 

theoretical population genetics and demographic inference (Excoffier et al., 2013; Fu, 95 

1995; Li and Stephan, 2006; Zivković and Wiehe, 2008), we developed the fast 96 

infinitesimal time coalescent (FitCoal) process to accomplish the task (Figure 1). The 97 

analytical result of expected branch length for each SFS type was presented in the 98 

STAR★METHODS. For FitCoal calculation, each of millions of time intervals ∆t 99 

was set extremely small, and the population size was assumed to be constant within 100 

each infinitesimal time interval. The probabilities of all states were calculated 101 

backward in time. During each ∆t, the branches were categorized according to their 102 

state. For each state, the branch length was multiplied by its probability and 103 

population size and then transformed to calculate the expected branch length of each 104 
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SFS type. Because the expected branch length of a SFS type is equal to the sum of the 105 

expected branch length of this type during each time interval, the latter can be 106 

rescaled and tabulated, making the calculation of the expected branch lengths 107 

extremely fast under arbitrary demographic histories. Hereafter, tabulated FitCoal is 108 

referred to as FitCoal for short, unless otherwise indicated. 109 

 110 

FitCoal Demographic Inference 111 

After the expected branch lengths were obtained, the composite likelihood of the 112 

SFS observed in a sample was calculated (Excoffier et al., 2013; Hudson, 2001; Li 113 

and Stephan, 2006; Liu and Fu, 2015). As each single nucleotide polymorphism (SNP) 114 

was treated independently, FitCoal did not need phased haplotype data. When 115 

inferring demography, the likelihood was maximized in a wide range of demographic 116 

scenarios. The FitCoal likelihood surface is smooth (Figure S1), so it is efficient to 117 

maximize the likelihood. FitCoal considered both instantaneous populations size 118 

changes (Li and Durbin, 2011; Liu and Fu, 2015; Schiffels and Durbin, 2014) and 119 

long-term exponential changes of population in order to generate various 120 

demographic scenarios.  121 

 122 

Demographic Inference on Simulated Data 123 

The accuracy of FitCoal was validated by simulation and comparing its 124 

demographic inferences with those of PSMC (Li and Durbin, 2011) and stairway plot 125 

(Liu and Fu, 2015) (Figure 2). Six demographic models, examined in the former study 126 

(Liu and Fu, 2015), were considered by simulating 200 independent data sets under 127 

each model. The medians and 95% confidence intervals of demography were then 128 

determined by FitCoal with the assumption that a generation time is 24 years (Liu and 129 

Fu, 2015; Scally and Durbin, 2012) and the mutation rate is 1.2 × 10−8 per site per 130 

generation for human populations (Campbell et al., 2012; Conrad et al., 2011; Kong et 131 

al., 2012; Liu and Fu, 2015).  132 

FitCoal was found to precisely infer demographic histories (Figure 2). In general, 133 

the confidence intervals of FitCoal-inferred histories were narrower than those of 134 

PSMC and stairway plot, indicating a better FitCoal-demographic inference. The 135 

inference accuracy can be improved by increasing sample size and length of sequence 136 

(Figure S2). Our results confirmed that SFS allows precise recovery of the 137 
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demographic history (Bhaskar and Song, 2014). The proportion of the most recent 138 

change type inferred from six models above showed that FitCoal can distinguish 139 

instantaneous and exponential changes (Table S1). 140 

Since a demographic event may affect every SFS type, demographic history can 141 

be inferred using a subset of SFS. Results of simulation confirmed that FitCoal 142 

accurately determined demographic history based on truncated SFSs (Figures S3 and 143 

S4), thus reducing the impact of other factors, such as positive selection (Figure S5) 144 

and sequencing error, on FitCoal analysis. 145 

 146 

Demographic Inference of African Populations 147 

To infer the demographic histories of African populations, seven African 148 

populations in the 1000 Genomes Project (1000GP) (Altshuler et al., 2015) were 149 

analyzed by FitCoal. Only non-coding regions, defined by GENCODE (Frankish et al., 150 

2019), were used in order to avoid the effect of purifying selection. To avoid the 151 

potential effect of positive selection (Fay and Wu, 2000), high-frequency mutations 152 

were excluded from the analysis. 153 

Results showed that all seven African populations passed through a super 154 

bottleneck around 914 (854–1,003) kyr ago and that this bottleneck was relieved 155 

about 793 (772–815) kyr ago (Figures 3A-C and S6; Table S2). The average effective 156 

population size of African populations during the bottleneck period was determined to 157 

be 1,270 (770–2,030). Although traces of the bottleneck were observed in previous 158 

studies, the bottleneck was ignored because its signatures were too weak to be noticed 159 

(Altshuler et al., 2015; Bergstrom et al., 2020; Li and Durbin, 2011; Schiffels and 160 

Durbin, 2014; Terhorst et al., 2017). After the bottleneck was relieved, the population 161 

size was increased to 27,080 (25,300–29,180), a 20-fold increase, around 800 kyr ago. 162 

This population size remained relatively constant until the recent expansion. 163 

To avoid the potential effects of low sequencing depth (~ 5x) of non-coding 164 

regions in the 1000GP on the analysis, the autosomal non-coding genomic 165 

polymorphism of Human Genome Diversity Project – Centre d’Etude du 166 

Polymorphisme Humain panel (HGDP-CEPH) with high sequencing coverage (~35x) 167 

was analyzed (Bergstrom et al., 2020). Populations with more than 15 individuals 168 

each were examined. Results showed that the super bottleneck occurred on all three 169 

African populations in HGDP-CEPH between 1,257 (1,042–1,527) and 859 (856–864) 170 
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kyr ago (Figures 3D-F and S7; Table S3), and the average population size during the 171 

bottleneck period was 1,300 (908–1,670). This number was very similar to that (1,270) 172 

estimated from the data of 1000GP.  173 

After the bottleneck was relieved, the population sizes of the two HGDP-CEPH 174 

agriculturalist populations were increased to 27,300 and 27,570 (Figures 3E and S7; 175 

Table S3), consistent with the 1000GP estimate of 27,280. The Biaka, a 176 

hunter-gatherer population, had a larger population size of 35,330, suggesting a deep 177 

divergence between this and other agriculturalist populations (Hsieh et al., 2016; 178 

Schlebusch and Jakobsson, 2018; Skoglund et al., 2017). The Biaka population was 179 

found to have a recent population decline (Figures 3D and S7), as previously observed 180 

(Bergstrom et al., 2020). These results suggest that hunter-gatherer populations were 181 

widely spread and decreased when agriculturalist populations were expanded. 182 

To provide a precise inference of the super bottleneck, the results from the two 183 

data sets were combined. After analyzing the inferred time of instantaneous change of 184 

10 populations, the super bottleneck was inferred to last for about 117,000 years, from 185 

930 (854–1,042; s.e.m.: 23.52) to 813 (772–864; s.e.m.: 11.02) kyr ago. The effective 186 

size during the bottleneck period was precisely determined to be 1,280 (767–2,031; 187 

s.e.m.: 131). A loss of 65.85% in current genetic diversity of human populations was 188 

estimated because of the bottleneck. 189 

 190 

Demographic Inference of Non-African Populations 191 

No super bottleneck was directly observed on all 19 non-African populations in 192 

1000GP (Figures 3A-C and S6; Table S4). The ancestral population size of these 193 

populations was determined to be 20,260 (18,850–22,220), similar to that determined 194 

in previous studies (Bergstrom et al., 2020; Li and Durbin, 2011; Schiffels and Durbin, 195 

2014; Terhorst et al., 2017). The population size of 1000GP non-African populations 196 

started to decline around 368 (175–756) kyr ago, suggesting that African and 197 

non-African divergence occurred much earlier than the out-of-Africa migration 198 

(Altshuler et al., 2015; Bergstrom et al., 2020; Li and Durbin, 2011; Nielsen et al., 199 

2017; Schiffels and Durbin, 2014; Terhorst et al., 2017). European and South Asian 200 

populations were found to have a relatively weaker out-of-Africa bottleneck than East 201 

Asian populations, and the bottleneck severity was found to correlate with their 202 

geographic distance to Africa, consistent with the observed correlation between 203 
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heterozygosity and geographic distance (Prugnolle et al., 2005; Ramachandran et al., 204 

2005). A weak bottleneck was observed on American populations, probably because 205 

of recent admixture (Altshuler et al., 2015). All 1000GP non-African populations 206 

were found to increase in size recently. 207 

The super bottleneck was also not directly detected in all 21 HGDP-CEPH 208 

non-African populations (Figures 3D-F and S7; Table S5). The ancestral population 209 

size of these populations was determined to be 20,030 (19,060–21,850), very similar 210 

to that (20,260) estimated from 1000GP. These populations started to decline 367 211 

(167–628) kyr ago. A positive correlation was also observed between the severity of 212 

out-of-Africa bottleneck and their geographic distance to Africa. The Middle East 213 

populations had the weakest bottleneck, while the Maya, an American population, had 214 

the strongest bottleneck. Similar to 1000GP non-African populations, most 215 

HGDP-CEPH non-African populations were found to increase in size recently, except 216 

an isolated Kalash population, consistent with previous studies (Ayub et al., 2015; 217 

Bergstrom et al., 2020). 218 

 219 

Super Bottleneck in the Early Middle Pleistocene 220 

The super bottleneck was directly inferred on all 10 African populations, but not 221 

on all 40 non-African populations. To investigate this observation, simulations were 222 

performed with three 1000GP demographic models, designated Bottleneck I, II, and 223 

III (Figure 4). Bottleneck I simulated the average inferred demographic history of 224 

African populations with the super bottleneck, and Bottleneck II and III simulated the 225 

demography of non-African populations without and with the super bottleneck. Both 226 

Bottleneck I and II were inferred correctly in all simulated data sets (Table S6). 227 

However, no super bottleneck was detected in Bottleneck III simulations. The super 228 

bottleneck was found to cause a population size gap between the true model and 229 

inferred demographic history after the bottleneck was relieved, suggesting a hidden 230 

effect of the super bottleneck on non-African populations. Simulations were then 231 

extended to HGDP-CEHP populations with Bottleneck models IV–VI, and similar 232 

results were obtained (Figure S8; Table S7). When simulations were performed on 233 

three artificial models (Bottleneck VII–IX) with various demographic parameters, the 234 

population size gap was still detected (Figure S9; Table S8). These results suggest a 235 

hidden effect of the super bottleneck on non-African populations. 236 
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The population size gap was found in both 1000GP and HGDP-CEPH data sets 237 

(Figure 3A, D). After the bottleneck was relieved, the average population sizes of 238 

non-African populations were determined to be 20,260 and 20,030, respectively, 239 

while those of African agriculturalist populations were 27,080 and 27,440, 240 

respectively in these two data sets. The observed population size gap was 7,020, 241 

probably due to the hidden effect of the super bottleneck on non-African populations. 242 

The reasons were then investigated why the super bottleneck had different effects 243 

on African and non-African populations. Results showed that non-African populations 244 

had the out-of-Africa bottleneck, but African populations lacked such bottleneck. 245 

Therefore, the standard coalescent time of non-African populations was larger than 246 

that of African populations (Figure 3C, F). As African populations had more 247 

coalescent events occurred during the bottleneck period, the bottleneck was more 248 

readily inferred. The mathematical proof on this issue was described in the STAR★249 

METHODS. 250 

 251 

DISCUSSION 252 

In this study, we develop FitCoal, a novel model-flexible method for 253 

demographic inference. One key characteristic feature of FitCoal is that the analytical 254 

result of expected branch length is obtained for each SFS type under arbitrary 255 

demographic models. This enables us to calculate precisely the likelihood. Second, 256 

the tabulated FitCoal is used to calculate rapidly the likelihood, making FitCoal 257 

economical of inference time. Third, the confounding effects of sequencing error and 258 

positive selection can be easily avoided by discarding rare and high-frequency 259 

mutations without losing inference accuracy. Fourth, exponential change is allowed 260 

within each inference time interval which represents a long-term continuous 261 

population change. This feature provides a better approximation to the demographic 262 

history of real populations while PSMC (Li and Durbin, 2011) and stairway plot (Liu 263 

and Fu, 2015) need multiple instantaneous changes to fit an exponential change. Last 264 

but not least, inference time intervals are variable during the demographic inference, 265 

leading to a better inference of ancient demographic events. Since coalescent events 266 

become rare when tracing backward in time, the length of time interval is usually set 267 

to increase progressively (Li and Durbin, 2011; Liu and Fu, 2015; Schiffels and 268 

Durbin, 2014; Terhorst et al., 2017). Although this strategy can capture recent 269 
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demographic events, it may miss ancient ones. Therefore, FitCoal can make a fast and 270 

accurate inference for recent and ancient demographic events. 271 

The most important discovery with FitCoal in this study is that human ancestors 272 

passed through a super bottleneck during the Mid-Pleistocene. Strikingly, the super 273 

bottleneck is inferred on all the 10 African populations while only a hidden effect of 274 

the super bottleneck is detected on all the 40 non-African populations. This 275 

observation is not only explained by the coalescent theory (see the section above) but 276 

also exclude the possibility that the super bottleneck is falsely inferred due to positive 277 

selection, population structure, sequencing error, and other confounding factors. If the 278 

inferred demographic histories of non-African populations are affected by those 279 

confounding factors, the super bottleneck should be falsely inferred on non-African 280 

populations. Moreover, large-scale simulations demonstrate that FitCoal did not 281 

falsely infer a bottleneck due to the existence of positive selection (Figure S5) and 282 

population structure (Figures S35 and S36) in African populations. Therefore, the 283 

super bottleneck exists during the Mid-Pleistocene and is shared by African and 284 

non-African populations. 285 

The ancient population size reduction around 930 kyr ago was likely to be driven 286 

by the climatic changes at the transition between the Early and Middle Pleistocene 287 

(Lisiecki and Raymo, 2005). During the transition, low-amplitude 41 kyr 288 

obliquity-dominated glacial cycles shifted to quasi-periodic, low frequency 100 kyr 289 

periodicity, and climate change became more extreme and unpredictably associated 290 

with a longer dry period in Africa and a large faunal turnover in Africa and Eurasia 291 

(Head et al., 2008). Coinciding with this date, archaic humans referable to African 292 

Homo erectus became extinct. Subsequently, from about 900 until 600 kyr ago, there 293 

is a gap in the human fossil record in Africa (Figure S10) (Profico et al., 2016). Only 294 

few fossil specimens have been found in this time span, such as the cranial fragments 295 

from Gombore in Ethiopia and the mandibles from Tighenif in Algeria, all of which 296 

show features linked to later H. heidelbergensis representatives and represent the 297 

evolutionary origin of this species (Stringer, 2016). As a matter of fact, our data 298 

suggest that the ancestors of modern humans had a very small effective size of 299 
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approximately 1,280 breeding individuals during the bottleneck period. This number 300 

is comparable in the same magnitude in the effective size of mammals threatened by 301 

extinction (Li et al., 2016). 302 

A rapid population recovery was inferred on all 10 African populations with a 303 

20-fold population growth during a short time period around 813 kyr ago. The earliest 304 

archaeological evidence for human control of fire was found in Israel 790 kyr ago 305 

(Goren-Inbar et al., 2004). As the control of fire profoundly affected social evolution 306 

(Foley and Gamble, 2009) and brain size (Melchionna et al., 2020), it may be 307 

associated with the big bang in population size at the end of the super bottleneck. 308 

However, climatic changes, as the alternative hypothesis, cannot be ruled out. Thus, 309 

the driving force of the rapid population recovery needs to be further studied. 310 

The super bottleneck, which started about one million years ago, might represent 311 

a speciation event at the origin of H. heidelbergensis and should be strongly related to 312 

the gap in the African human fossil record. The questions about where the small 313 

ancient population dwelt, and how they survived for such a long time, remain to be 314 

investigated. Our findings may also shed light on a debate about the divergence time 315 

between Neanderthals/Denisovans and modern humans (between 440 and 270 vs 316 

1,007 kyr ago) (Green et al., 2010; Ni et al., 2021; Reich et al., 2010; Shao et al., 317 

2021). The two estimates can be verified by detecting whether ancestors of 318 

Neanderthals/Denisovans passed through the super bottleneck. In the future, a more 319 

detailed picture of human evolution during the Pleistocene may be revealed because 320 

more genomic sequences of present populations and those of archaic hominins as well 321 

as more advanced population genomics methods will be available. 322 
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STAR★METHODS 498 

 499 

KEY RESOURCES TABLE 500 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Deposited data 

1000 Genomes project data, phase 3 1000 Genomes 

project 

http://ftp.1000genomes.ebi.ac.uk/vol

1/ftp/release/20130502/ 

Human Genome Diversity Project – 

Centre d’Etude du Polymorphisme 

Humain (HGDP-CEPH) panel 

HGDP and CEPH ftp://ngs.sanger.ac.uk/production/hg

dp 

Observed SFSs and raw data to prepare 

Figures 

This study https://data.mendeley.com/datasets/x

mf5r8nzrn/draft?a=8e2a5abe-de47-4

ab7-a313-e2e5526cbc55 

Software and algorithms 

FitCoal This study https://www.picb.ac.cn/evolgen/,  

https://zenodo.org/record/4805461#.

YNl61Ey-vuo and 

http://www.egps-software.net/ 

 501 

CONTACT FOR REAGENT AND RESOURCE SHARING 502 

Further information and requests for resource and reagents should be directed to and 503 

will be fulfilled by the Lead Contact, Haipeng Li (lihaipeng@picb.ac.cn). 504 

 505 

METHOD DETAILS 506 

Standard coalescent time and time in generations 507 

The population size is denoted 𝑁(⋅), representing the demographic history. 508 

Time 𝜏 represents one-point scaled time since the time in a generation is scaled by 509 

2𝑁(0). Time 𝑡 is usually scaled by 2𝑁(𝑡) generations (Bhaskar and Song, 2014; 510 

Chen, 2019; Fu, 1995; Myers et al., 2008). To distinguish it from the one-point scaled 511 

time 𝜏, time 𝑡 is designated as the standard coalescent time. 512 

 513 
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Fast infinitesimal time coalescent (FitCoal) process 514 

The FitCoal calculates the expected branch length for each type of site frequency 515 

spectrum (SFS) under arbitrary demographic history 𝑁(⋅). We assume that a sample 516 

is obtained by randomly taken n sequences from the population. The sample is 517 

designated to be state 𝑙 (𝑙 = 2,⋯ , 𝑛) at time 𝑡 if it has exactly 𝑙 ancestral lineages 518 

at this time. The probability of state 𝑙 at time 𝑡 is denoted 𝑝𝑙(𝑡). In a coalescent 519 

tree, a branch is designated to be type 𝑖 if it has exactly 𝑖 descendants. We have  520 

d

d𝑡
𝑝𝑙(𝑡) = {

(𝑙+1
2

)𝑝𝑙+1(𝑡) − (𝑙
2
)𝑝𝑙(𝑡) 𝑙 = 2,⋯ , 𝑛 − 1

−(𝑙
2
)𝑝𝑙(𝑡) 𝑙 = 𝑛

 . 521 

When Δ𝑡 is extremely small (Figure 1), there is at most one coalescent event during 522 

𝑡 and 𝑡 + Δ𝑡, leading to  523 

𝑝𝑙(𝑡 + Δ𝑡) = {
(𝑙+1

2
)Δ𝑡𝑝𝑙+1(𝑡) + (1 − (𝑙

2
)Δ𝑡)𝑝𝑙(𝑡) 𝑙 = 2,⋯ , 𝑛 − 1

(1 − (𝑙
2
)Δ𝑡)𝑝𝑙(𝑡) 𝑙 = 𝑛

. 524 

The branch length is in units of generations. The expected branch length of state 525 

𝑙 during t and 𝑡 + Δ𝑡 is calculated as ∫ 2
𝑡+Δ𝑡

𝑡
𝑁(𝑡)𝑝𝑙(𝑡)𝑙d𝑡. The probability that a 526 

branch of state 𝑙 is of type 𝑖 is 
(𝑛−𝑖−1

𝑙−2 )

(𝑛−1
𝑙−1)

 (Fu, 1995). The expected branch length of 527 

type 𝑖 of state 𝑙 during 𝑡 and 𝑡 + Δ𝑡 is ∫ 2
𝑡+𝛥𝑡

𝑡
𝑁(𝑡)𝑝𝑙(𝑡)𝑙

(𝑛−𝑖−1
𝑙−2 )

(𝑛−1
𝑙−1)

d𝑡. Therefore, 528 

the expected branch length 𝐵𝐿𝑖(𝑁(⋅)) of type 𝑖 is 529 

 ∑ ∫ 2
∞

0
𝑛−𝑖+1
𝑙=2 𝑁(𝑡)𝑝𝑙(𝑡)𝑙d𝑡

(𝑛−𝑖−1
𝑙−2 )

(𝑛−1
𝑙−1)

. 530 

A FitCoal time partition is denoted by {𝑡0, 𝑡1, ⋯ , 𝑡𝑚}, where 0 = 𝑡0 < 𝑡1 <531 

⋯ < 𝑡𝑚. We have 𝑝𝑙(𝑡0) = {
1 𝑙 = 𝑛
0 else

. For a large positive number 𝑚, if 𝑡𝑚 is 532 

large and (𝑡𝑘 − 𝑡𝑘−1) is small for 𝑘 = 1,⋯ ,𝑚, then  533 

𝑝𝑙(𝑡𝑘) = {
(1 − (𝑙

2
)(𝑡𝑘 − 𝑡𝑘−1))𝑝𝑙(𝑡𝑘−1) 𝑙 = 𝑛

(1 − (𝑙
2
)(𝑡𝑘 − 𝑡𝑘−1))𝑝𝑙(𝑡𝑘−1) + (𝑙+1

2
)(𝑡𝑘 − 𝑡𝑘−1)𝑝𝑙+1(𝑡𝑘−1) else

, 534 

where 𝑘 = 1,⋯ ,𝑚.  535 

The expected branch length of type 𝑖 is calculated as 536 

𝐵𝐿𝑖(𝑁(⋅)) = ∑ 𝑙𝑛−𝑖+1
𝑙=2

(𝑛−𝑖−1
𝑙−2 )

(𝑛−1
𝑙−1 )

(∑ 2𝑁(𝑡𝑘−1)𝑝𝑙
𝑚
𝑘=1 (𝑡𝑘−1)(𝑡𝑘 − 𝑡𝑘−1)). 537 

To determine the time partition, we required that the coalescent probability was 538 

less than 10−4 during 𝑡𝑘−1 and 𝑡𝑘 (𝑘 = 1,⋯ ,𝑚), the probability of common 539 
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ancestor (i.e., the probability of state 1) at 𝑡𝑚 was larger than (1 − 10−6). When the 540 

sample size was 10, the number of infinitesimal time intervals was 1,571,200. When 541 

the sample size was 200, the number of infinitesimal time intervals was 7,038,398. 542 

Thus, each Δ𝑡 was extremely small for precise calculation of expected branch length, 543 

and the time was partitioned to obtain 𝑝𝑙(𝑡) in order to calculate the expected branch 544 

length of type 𝑖. 545 

 546 

Tabulated FitCoal 547 

The expected branch length of each type can be calculated for arbitrary time 548 

intervals according to the procedure described above. Considering another tabulated 549 

time partition {𝑡0, 𝑡1, ⋯ , 𝑡𝑚} (0 = 𝑡0 < 𝑡1 < ⋯ < 𝑡𝑚), the expected branch length of 550 

a type is equal to the sum of the expected branch length of this type during each 551 

tabulated time interval, thus the latter can be rescaled and tabulated. 552 

The scaled expected branch length 𝐵𝐿𝑖,𝑡 of type 𝑖 during 0 and 𝑡 is 553 

𝐵𝐿𝑖,𝑡 = ∑ ∫ 𝑝𝑠
𝑡

0
𝑛−𝑖+1
𝑙=2 (𝑙)𝑙

(𝑛−𝑖−1
𝑙−2 )

(𝑛−1
𝑙−1)

d𝑠, where 𝑖 = 1,⋯ , 𝑛 − 1. For the tabulated time 554 

partition {𝑡0, 𝑡1, ⋯ , 𝑡𝑚}, 𝐵𝐿𝑖,𝑡0, 𝐵𝐿𝑖,𝑡1, ⋯, and 𝐵𝐿𝑖,𝑡𝑚  are tabulated. When 𝑛 = 10, 555 

𝑚 = 231. When 𝑛 = 200, 𝑚 = 529. 556 

𝐵𝐿𝑖,𝑡 is used to calculate the expected branch lengths under arbitrary 557 

demographic histories. When �̃� ∈ [𝑡𝑘−1, 𝑡𝑘),  558 

 𝐵𝐿𝑖,�̃� ≈
𝑡𝑘−�̃�

𝑡𝑘−𝑡𝑘−1
𝐵𝐿𝑖,𝑡𝑘−1

+
�̃�−𝑡𝑘−1

𝑡𝑘−𝑡𝑘−1
𝐵𝐿𝑖,𝑡𝑘. 559 

If 𝑁(𝑡) is a piecewise constant, that is, there exists a demographic time partition 560 

{�̃�0, �̃�1,⋯ , �̃��̃�}, such that 𝑁(𝑡) = 𝑁𝑘 for 𝑡 ∈ [�̃�𝑘, �̃�𝑘+1), 𝑘 = 0,⋯ , �̃�. Then, the 561 

expected branch length of type 𝑖 is calculated as 562 

 𝐵𝐿𝑖(𝑁(⋅)) = ∑ 2𝑁𝑘(𝐵𝐿𝑖,�̃�𝑘 − 𝐵𝐿𝑖,�̃�𝑘−1
)�̃�

𝑘=1 . 563 

When 𝑁(𝑡) is complex, the population size can be approximated by a piecewise 564 

constant function.  565 

 566 

Composite likelihood 567 

The mutation rate per base pair per generation is denoted 𝜇, and �⃗� = (𝜉𝑖) is the 568 

observed number of SNPs of 𝑛 sequences with σ base pairs, where 𝑖 = 1,⋯ , 𝑛 − 1. 569 

The expected SFS is �⃗� = (𝜆𝑖), where 𝜆𝑖 = 𝜇σ𝐵𝐿𝑖(𝑁(⋅)). Following the Poisson 570 
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probability and previous studies (Li and Stephan, 2006), the composite likelihood is 571 

calculated as follows:  572 

𝐿𝜇,𝜄(�⃗� , 𝑁(⋅)) = ∏
𝜆
𝑖

𝜉𝑖𝑒−𝜆𝑖

𝜉𝑖!

𝑛−1
𝑖=1 . 573 

The likelihood is extended to missing data and truncated SFS (see Supplemental 574 

Text). 575 

 576 

Demographic inference 577 

The number of demographic time intervals is variable. FitCoal first fits the 578 

observed SFS using a constant size model with one demographic time interval, and 579 

the number of time intervals is increased by one at a time to generate more complex 580 

models. The Local Unimodal Sampling (LUS) algorithm (Pedersen, 2010) is used to 581 

maximize the likelihood and estimate demographic parameters. A log-likelihood 582 

promotion rate is used to determine the best model to explain the observed SFS, and 583 

20% is used as the threshold. 584 

A series of demography with 𝑚 pieces is denoted by a set 𝑆(𝑚), where 𝑆(𝑚) 585 

contains all of the following 𝑚 pieces of population size: 586 

𝑁(𝑡|𝑁0 > 0,𝑁(𝑚), 𝑡(𝑚), 𝑐(𝑚))

= {

𝑁𝑚𝑁0 𝑡 ≥ 𝑡𝑚
𝑁𝑘𝑁0 𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑐𝑘 ∈ 𝒞, 𝑘 = 1,⋯ ,𝑚 − 1

(𝑡𝑘+1−𝑡𝑘)𝑁𝑘+1𝑁𝑘𝑁0

(𝑡−𝑡𝑘)𝑁𝑘+(𝑡𝑘+1−𝑡)𝑁𝑘+1
𝑡𝑘 ≤ 𝑡 < 𝑡𝑘+1, 𝑐𝑘 ∈ ℰ, 𝑘 = 1,⋯ ,𝑚 − 1

, 587 

where 𝑁(𝑚) = (𝑁1,⋯ , 𝑁𝑚) ∈ 𝑁[𝑚], 𝑡(𝑚) = (𝑡1,⋯ , 𝑡𝑚) ∈ 𝑡[𝑚], 588 

𝑐(𝑚) = (𝑐1,⋯ , 𝑐𝑚) ∈ 𝑐[𝑚], 𝑁[𝑚] = {(𝑁1, ⋯ , 𝑁𝑚)|𝑁1 = 1, 𝑁𝑖 > 0 for 𝑖 > 1}, 589 

𝑡[𝑚] = {(𝑡1,⋯ , 𝑡𝑚)|0 = 𝑡1 <⋅⋅⋅< 𝑡𝑚}, 𝑐[𝑚] = {(𝑐1,⋯ , 𝑐𝑚)|𝑐𝑚 ∈ 𝒞, 𝑐𝑖 ∈ 𝒞 ∪590 

ℰ for  = 1,⋯ ,𝑚 − 1}, 𝒞 = {constant}, and ℰ = {exponential}. 591 

The set 𝑆(𝑚) was used as the wide-range parameter space to determine the 592 

maximum likelihood. To find the best demographic history to explain the observed 593 

SFS, the following procedures were used: 594 

(1) The number of inference time intervals (or pieces) 𝑚 is initially set to 1, and the 595 

maximum likelihood max 𝐿1 is determined with the constant size model (model in 596 

𝑆(1)).  597 

(2) Increase 𝑚 by 1. For each change of type 𝑐(𝑚), parameters 𝑁(𝑚) = (𝑁1, ⋯ , 𝑁𝑚) 598 

and 𝑡(𝑚) = (𝑡1 = 0, 𝑡2, ⋯ , 𝑡𝑚) are searched to maximize the likelihood by LUS 599 
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algorithm to fit the observed SFS. The maximum likelihood max 𝐿𝑚 is calculated 600 

with models in S(m) with all possible change types.  601 

(3) Repeat step (2) until (1 +  threshold) ∙ log(max 𝐿𝑚) < log(max 𝐿𝑚−1) is 602 

obtained. The best model corresponding max 𝐿𝑚−1 is determined to explain the 603 

observed SFS.  604 

(4) To avoid local optima, steps (1) – (3) are repeated 𝐾 times to find the best model. 605 

𝐾 = 10 when analyzing simulated samples, and 𝐾 = 200 when analyzing the 606 

observed SFSs of the 1000GP and HGDP-CEPH populations. 607 

To determine the threshold of log-likelihood promotion rate, a large number of 608 

simulations were performed (Table S9). For each model, 200 replicates were 609 

conducted, and the number of inference time intervals in the estimated demographic 610 

history was determined for each replicate. If the estimated number of inference time 611 

intervals was larger than the true number of inference time intervals, overfitting was 612 

recorded. When the former was smaller than the latter, underfitting was considered. 613 

The thresholds of 10%, 20%, and 30% were used. When 10% was used, the maximum 614 

overfitting rate was 2%. When 20% was used, all cases examined were inferred 615 

correctly. When 30% was used, the underfitting was observed in one of 20 examined 616 

models. Therefore, 20% was used as the threshold of log-likelihood promotion rate in 617 

subsequent analyses. 618 

 619 

Data simulation 620 

Data were simulated using ms (Hudson, 2002) and MaCS (Chen et al., 2009) 621 

software. Unless otherwise specified, a generation time was assumed to be 24 years 622 

(Liu and Fu, 2015; Scally and Durbin, 2012), the mutation rate 𝜇 was set for 623 

1.2 × 10−8 per base per generation (Campbell et al., 2012; Conrad et al., 2011; Kong 624 

et al., 2012; Liu and Fu, 2015), and the recombination rate was 𝑟 = 0.8𝜇. For each 625 

model, 200 SFSs were simulated to calculate the median and 2.5 and 97.5 percentiles. 626 

When verifying the inferred demographic histories, 80,000 DNA fragments with the 627 

length of 10kb each were used for simulation, taking into the consideration of small 628 

fragments split by sequencing mask in 1000GP and HGDP-CEPH data sets. High 629 

frequency alleles of SFS (10% mutation types for Bottleneck I, II, III, VII, VIII, IX, 630 

and 15% for Bottleneck IV, V, VI) were removed when assessing models to verify the 631 
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super bottleneck. Detailed simulation command lines and demographic inference are 632 

presented in the Supplementary Text. 633 

 634 

1000 Genomes Project data 635 

Sequences of autosomal SNPs in 1000GP phase 3 (Altshuler et al., 2015) were 636 

downloaded from the 1000GP ftp server 637 

(ftp://ftp.1000genomes.ebi.ac.uk/vol1/ftp/release/20130502/), and 26 populations 638 

were analyzed, including seven African populations (ACB, ASW, ESN, GWD, LWK, 639 

MSL, and YRI), five European populations (CEU, FIN, GBR, IBS, and TSI), five 640 

East Asian populations (CDX, CHB, CHS, JPT, and KHV), five South Asian 641 

populations (BEB, GIH, ITU, PJL, and STU), and four American populations (CLM, 642 

MXL, PEL, and PUR). The 1000 GP strict mask was used to exclude artifacts of SNP 643 

calling. Noncoding regions except pseudogenes, defined by GENCODE release 35 644 

(Frankish et al., 2019), were examined to avoid potential effects of purifying selection. 645 

The number of sites that passed the filtering was 826,649,529 in the human genome. 646 

Bi-allelic polymorphic sites with high-confidence ancestral allele inference, according 647 

to 1000GP annotations, were used. To avoid the effect of positive selection, high 648 

frequency mutations were excluded, and the truncated SFS was used to infer 649 

demographic history (Figure S11; Table S10). The average proportion of excluded 650 

high-frequency SNPs for all 1000GP populations was 4.40%. 651 

 652 

HGDP-CEPH data 653 

In total, 24 populations were analyzed, including three African populations 654 

(Biaka, Mandeka, and Yoruba), five European populations (Adygei, Basque, French, 655 

Russian, and Sardinain), four Middle East populations (Bedouin, Druze, Mozabite, 656 

and Palestinian), three East Asian populations (Han, Japanese, and Yakut), eight 657 

Central and South Asian populations (Balochi, Brahui, Burusho, Hazara, Kalash, 658 

Makrani, Pathan, and Sindhi), and an American population (Maya). Only bi-allelic 659 

SNPs locating in GENCODE non-coding regions (Frankish et al., 2019) except 660 

pseudogenes that passed HGDP-CEPH filtering were used. HGDP-CEPH accessible 661 

mask was also used to filter SNPs (Bergstrom et al., 2020). The number of sites that 662 

passed the filtering was 791,999,125 in the human genome. Missing data were 663 

allowed to avoid artifacts due to imputation. The proportion of sites with two or more 664 
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missing individuals was less than 3% for all populations (Table S11). Each population 665 

had two SFSs, with one calculated from sites with no missing data, and another from 666 

sites with one missing individual. Similarly, truncated SFSs were used to avoid the 667 

effect of positive selection (Figures S12 and S13; Table S12). The average proportion 668 

of excluded high-frequency SNPs for all HGDP-CEPH populations was 7.18%. 669 

 670 

SFS truncation 671 

Denote the SFS of 𝑛 samples by �⃗� = (𝜆1, … , 𝜆𝑛−1). An 𝑚-dimension vector 672 

�⃗⃗� = (𝑣1, … , 𝑣𝑚) is said to be tail-up if there exist 𝑧 ∈ {1,⋯ ,𝑚 − 1} such that 673 

𝑣𝑧 < ⋯ < 𝑣𝑚. If �⃗�  is the expected SFS of a single varying size population, we have 674 

𝜆⌈𝑛/2⌉ > ⋯ > 𝜆𝑛−1. However, the observed SFS �⃗� = (𝜉1, … , 𝜉𝑛−1) may be tailed up 675 

because of some evolutionary factors, such as positive selection and population 676 

structure, which could introduce bias to the demographic inference. Therefore, the 677 

truncated SFS is recommended.  678 

A simple procedure is implemented to discard the tail-up types of SFS, 679 

containing high-frequency mutations. To determine the truncated tail of SFS, a small 680 

window slides through the SFS. The cutoff is determined if 𝜉𝑖 exceeds its random 681 

fluctuation range. Let 𝑛 (�⃗� ) = max
𝑘∈{1,⋯,𝑛−1}

{𝑘|𝑤𝑘(�⃗� ) − 3𝑆𝐷𝑘(�⃗� ) < 𝑤𝑘−𝑖(𝑛)+1, ⋯ , 𝑤𝑘 <682 

𝑤𝑘(�⃗� ) + 3𝑆𝐷𝑘(�⃗� )},  683 

where 𝑤𝑘(�⃗� ) =
1

𝑖(𝑛)
∑ 𝜉𝑎

𝑘
𝑎=𝑘−𝑖(𝑛)+1 , 𝑆𝐷𝑘(�⃗� ) = √𝑤𝑘(�⃗� ), and 684 

𝑖(𝑛) = {
3 𝑛 ≤ 50
4 50 < 𝑛 ≤ 100
5 𝑛 > 100

. The truncated SFS �⃗� 
𝑇

= (𝜉𝑖), where 𝑖 = 1,⋯ , 𝑘. In the 685 

analysis, we used this strategy to truncate the SFS for each human population. We call 686 

(𝑛 − 𝑘)/𝑛 the proportion of truncated SFS types.  687 

When the truncating strategy was applied, the proportion of truncated SFS types 688 

was different for different populations (Table S5, S7). Therefore, to verify the effect 689 

of this strategy, the same truncating standard (~10%, the mean proportion) was also 690 

used for 1000GP populations (Figure S15). For HGDP-CEPH, because the proportion 691 

of considered SNPs without missing samples is larger than 80% for all populations, 692 

we used the corresponding SFS to determine the cutoff to truncate both SFSs. 693 
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Similarly, the same truncating standard (~15%, the mean proportion) was used for 694 

HGDP-CEPH (Figure S15). 695 

 696 

Composite likelihood  697 

Denote 𝜇 as the mutation rate per base pair per generation. Denote �⃗� = (𝜉𝑖) as 698 

the observed number of SNPs of 𝑛 sequences with σ base pair, where 𝑖 =699 

1,⋯ , 𝑛 − 1. The expected SFS �⃗� = (𝜆𝑖), where 𝜆𝑖 = 𝜇σ𝐵𝐿𝑖(𝑁(⋅)). Following the 700 

Poisson probability and the previous studies (Hudson, 2001; Li and Stephan, 2006), 701 

the composite likelihood could be written as  702 

𝐿𝜇,𝜄(�⃗� , 𝑁(⋅)) = ∏
𝜆
𝑖

𝜉𝑖𝑒−𝜆𝑖

𝜉𝑖!

𝑛−1
𝑖=1 . 703 

For missing data, we assume that σ(𝑛) base pair are sequenced in 𝑛 samples 704 

and 𝑆 is the set of all sample sizes. We denote the observed number of SNPs of 705 

𝑛(∈ 𝑆) sequences by �⃗� 
(𝑛)

= (𝜉1
(𝑛)

, ⋯ , 𝜉𝑛−1
(𝑛)

). The expected SFS of 𝑛 706 

sequences �⃗� 
(𝑛)

= (𝜆1
(𝑛)

, ⋯ , 𝜆𝑛−1
(𝑛)

), where 𝜆𝑖
(𝑛)

= 𝜇σ(𝑛)𝐵𝐿𝑖
(𝑛)

(𝑁(⋅)), 𝐵𝐿𝑖
(𝑛)

(𝑁(⋅)) is 707 

the expected branch length of type 𝑖 with 𝑛 samples under population size 𝑁(⋅). 708 

Total number of base pair is given by σ(𝑆) := ∑ σ(𝑛)
𝑛∈𝑆 . The composite likelihood 709 

could be written as 710 

𝐿𝜇,(𝜄(𝑛))𝑛∈𝑆
((�⃗� 

(𝑛)
)𝑛∈𝑆, 𝑁(⋅))

= ∏ 𝐿𝜇,𝜄(𝑛)(�⃗� 
(𝑛)

, 𝑁(⋅))𝑛∈𝑆

= ∏ ∏
(𝜆𝑖

(𝑛)
)
𝜉
𝑖
(𝑛)

𝑒
−𝜆

𝑖
(𝑛)

𝜉
𝑖
(𝑛)

!

𝑛−1
𝑖=1𝑛∈𝑆

. 711 

If SFS is tail-up, we use truncated SFS �⃗� 
𝑇

= (𝜉𝑖), where 𝑖 = 1,⋯ , 𝑘. The 712 

composite likelihood is 713 

𝐿𝜇,𝜄(�⃗� 
𝑇
, 𝑁(⋅)) = ∏

𝜆
𝑖

𝜉𝑖𝑒−𝜆𝑖

𝜉𝑖!

𝑘
𝑖=1 . 714 

Sequencing errors often affect rare mutations in a sample. Thus singletons and 715 

mutations with size (𝑛 − 1) can be discarded. Although this is unnecessary in this 716 
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study, as a general method, the composite likelihood of an SFS without those 717 

mutations is 718 

𝐿𝜇,𝜄(�⃗� , 𝑁(⋅)) = ∏
𝜆
𝑖

𝜉𝑖𝑒−𝜆𝑖

𝜉𝑖!

𝑛−2
𝑖=2 . 719 

 720 

Loss of genetic diversity due to the super bottleneck 721 

To measure the loss of current human genetic diversity due to the super 722 

bottleneck, we calculated the expected tree length of demographic histories with or 723 

without the super bottleneck. It was straightforward to ignore a bottleneck with 724 

instantaneous size changes, thus we considered seven 1000GP African populations 725 

(ACB, ASW, ESN, GWD, LWK, MSL and YRI) and one HGDP-CEPH African 726 

population (Yoruba). To remove the bottleneck, we replaced the population size 727 

during the super bottleneck with that after the bottleneck. We then compared the 728 

expected tree length of inferred demographic history (ω1) with that of demographic 729 

history without the bottleneck (ω0). 730 

The loss of current genetic diversity due to the super bottleneck is (ω0 −731 

ω1)/ω0. When the actual sample size was used for each population, the genetic 732 

diversity was measured as Watterson’s 𝜃. The genetic diversity loss of these eight 733 

populations was 46.22% and the range was 32.17–60.56%. 734 

When 𝑛 = 2, the genetic diversity was measured as π, the pairwise nucleotide 735 

diversity. The loss of current genetic diversity in these eight populations was 65.85% 736 

and the range was 52.71–73.60%. It was larger than the estimate based on 737 

Watterson’s 𝜃 because the bottleneck was ancient and the recovery rate of 738 

Watterson’s 𝜃 was faster than that of π (Tajima, 1989). These results demonstrate 739 

the importance of the super bottleneck in the human evolution. 740 

 741 

QUANTIFICATION AND STATISTICAL ANALYSES 742 

Validation of FitCoal calculation 743 

We verified the calculation of expected branch lengths in this section. Under the 744 

constant size model, when the sample size was small (𝑛 = 5, where n is the number 745 
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of sequences) or extremely large (𝑛 = 1,000), FitCoal calculated the expected branch 746 

lengths correctly (Fu, 1995) (Figure S14, Table S13). Computational accuracy reaches 747 

10−8 or 10−11. The high accuracy is important for the precise estimation of 748 

demographic history in the following sections. 749 

Moreover, our results were almost the same as the expected branch lengths under 750 

three simple models calculated by using the Zivković-Wiehe method (Zivković and 751 

Wiehe, 2008) (Table S14). Since Zivković-Wiehe equations can be numerically 752 

solved when n < 50, we could not compare our results with theirs when the sample 753 

size was large.  754 

For more complex models, the average branch lengths were obtained from 755 

extensive coalescent simulations. Although with certain variances, the simulated 756 

results were consistent with the FitCoal expected branch lengths under different 757 

demographic models (Table S15). Therefore, FitCoal can analytically derive the 758 

expected branch length for each SFS type under arbitrary demographic models. 759 

We also compared the results obtained from the tabulated FitCoal and those from 760 

the original ones without tabulation. These results were nearly identical with each 761 

other (Tables S14 and S15). Since the former was much faster than the latter, the 762 

former was used to infer demographic histories. Hereafter, tabulated FitCoal is 763 

referred to as FitCoal for short, unless otherwise indicated. 764 

 765 

FitCoal- and simulation-based likelihood surface 766 

In this section, we compared two likelihood surfaces based FitCoal and 767 

simulation (Figure S1). We considered an instantaneous growth model. The 768 

population size increases from 10,000 (𝑁1) to 20,000 (𝑁0) at standard coalescent time 769 

0.2. For simplicity, we obtained a SFS by multiplying the expected branch length by 770 

𝜃𝑙 (= 4N0𝜇), where 𝜇𝑙 = 1.0. The number of sequences is 100.  771 

We then compared the FitCoal composite likelihood surface of the SFS and the 772 

composite likelihood surface of the SFS based on simulation approach. To draw the 773 

likelihood surfaces, we performed a grid search in a parameter space. We considered 774 

that the population size increase from 𝑁1 to 𝑁0 at standard coalescent time 0.2, 775 

where 𝑁0 ranges from 19,600 to 20,400 and 𝑁1 from 9,800 to 10,200. The 776 
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coalescent simulations were conducted by the ms software. The number of 777 

simulations is 100,000 to calculate the simulation-based likelihood. 778 

The surface of FitCoal likelihood is smooth, but the surface of likelihood based 779 

on simulation approach is rugged (Figure S1). Moreover, the FitCoal likelihoods are 780 

also larger than those based on simulation approach because the FitCoal expected 781 

branch lengths fit the data better than the average branch lengths obtained from 782 

simulations. 783 

 784 

Demographic inference on simulated data 785 

It has been shown that FitCoal can precisely estimate the demographic histories 786 

under six different demographic models (Figure 2). We then validated the accuracy of 787 

FitCoal on more simulated data in this section. 788 

Comparing with the examined cases (Figure 2), the performance of FitCoal can 789 

be further improved by providing a priori knowledge. In some circumstances, a slow 790 

and continuous change may be more biological relevant than a quick and sudden 791 

change and vice versa. FitCoal was then re-performed conditional on either 792 

exponential or instantaneous change within each inference time interval (Figures S16 793 

and S17). Our results showed that the FitCoal accuracy was enhanced in the presence 794 

of correct priori knowledge. Even if the condition was misspecified, the inferred 795 

demographic histories were still similar with the true histories. 796 

FitCoal is a model-flexible method and the number of inference time intervals is 797 

dependent on the complexity of true demography. FitCoal has the power to detect 798 

more complex population histories (Figure S18). Although FitCoal may omit slight 799 

changes of population size occurred in short time periods, it has great ability to detect 800 

the major changes in all examined complex histories. When two-population split 801 

models are considered (Figure S19), FitCoal is reasonably accurate but with a slightly 802 

larger recent population size due to the effects of migration. 803 

 804 

Effects of positive selection 805 
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To simulate samples affected by positive selection, we considered a two-locus 806 

model (Kim and Stephan, 2002) under a constant size model. We assumed that the 807 

effective population size was 27,000, and the number of neutral fragments were 808 

10,000, and 10 or 20% of them were partially linked with selected alleles. The 809 

distance between the neutral and the selected loci was 50kb, and recombination rate 810 

was 1cM per Mb. The sample size was 202 (the average sample size of 1000GP 811 

populations). The selection coefficient (s = 0.01 or 0.05) was varied. We assumed a 812 

mutation rate of 1.2 × 10−8 per base per generation and a generation time of 24 813 

years. To compare among different cases, the fixed number SNPs (5,882,885 SNPs, 814 

the average number of SNPs in 1000GP populations) were applied. Under neutrality, 815 

it was equivalent to the sequenced length of 771.589 Mb. 816 

All the simulated samples had a tail-up feature because of the excess of 817 

high-frequency mutations (Fay and Wu, 2000). Considering the low genetic diversity 818 

of selected loci, the contribution of selected loci to the genome-wide diversity was 819 

relatively low, thus only a slight excess of rare mutations (Fu and Li, 1993) was 820 

observed. The ratio between the number of singletons and doubletons ranged between 821 

2.01 and 2.10 in the simulated samples, only slightly larger than the expected value 822 

(2.0) under neutrality. 823 

We then applied FitCoal to estimated demography. When the full SFSs were 824 

used, our results showed that the population size remains constant within 2,000 kry 825 

(Figure S5A). If the selection strength was greatly strong (𝑠 = 0.05, where s is the 826 

selection coefficient), FitCoal estimated a large ancient population ~240 kyr ago 827 

because of the effects of high-frequency mutations. When the high-frequency 828 

mutations were removed (i.e. the truncated SFS), the large ancient population size 829 

was reduced (Figure S5B). If 𝑠 = 0.01 and 20% loci were subject to positive 830 

selection, a slight population expansion was observed, corresponding to the slight 831 

excess of rare mutations due to positive selection. Overall, a correct demographic 832 

history was estimated within two million years. 833 

 834 

Verification of inferred human demographic histories 835 
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To evaluate the precision of the inferred human demographic histories (Figure 3), 836 

we simulated 200 data sets under each demographic history. The SFSs of simulated 837 

data fit the observed SFSs perfectly (Figures S20 and S21). The results showed that 838 

FitCoal, with truncated SFS, is highly accurate to reveal human demographic history 839 

(Figures S22 – S32). Moreover, when high-frequency mutations were discarded, the 840 

truncated proportion of SFS was different for different populations. To address the 841 

influence of truncated proportions, we inferred the demographic histories by setting 842 

the average truncating proportion within each data set (10% for 1000GP and 15% for 843 

HGDP-CEPH) (Fig S10). Results were consistent with the ones obtained above. 844 

Therefore, the strategy of truncating SFS does not affect our conclusions. 845 

Similar with the log-likelihood ratio test, the number of inference time intervals 846 

was determined by the log-likelihood promotion rate when increasing the number of 847 

inference time intervals. It is recommended to use 20% as the threshold of 848 

log-likelihood promotion rate derived from extensive simulation results (Table S11). 849 

When analyzing the human data, the inferred demographic histories are not sensitive 850 

to this threshold (Figure S33, S34; Tables S16, S17). For example, the log-likelihood 851 

promotion rate for three and four inference time intervals of CEU is 2471.16 and 852 

17.07%, respectively. The number of inference time intervals is three, and the inferred 853 

demographic history is highly similar with that with four inference time intervals. 854 

Thus, the inferred demographic histories are robust to the threshold of 20%. 855 

 856 

The super bottleneck estimated in Africans 857 

In this section, we explored why the super bottleneck can only be estimated in 858 

the African population and provided the mathematical explanation. We proved that 859 

the inferred number of intervals before time 𝑡 depends on the dimension of the SFS 860 

before time 𝑡.  861 

Denote the probability of state 𝑙 at time 𝑡 from 𝑛 samples by 𝑝𝑙
𝑛(𝑡), where 862 

𝑙 = 2,⋯ , 𝑛. And denote the expected brach length of size 𝑖 from 𝑛 samples by 863 

𝐵𝐿𝑖
𝑛(𝑁(⋅)), where 𝑖 = 1,⋯ , 𝑛 − 1. There exists an invertible matrix 𝒳 =864 

(𝑥𝑔
ℎ)

𝑔,ℎ=2,⋯,𝑛
 which only depends on 𝑛, such that 𝑝𝑙

𝑛(𝑡) = ∑ 𝑥𝑔
𝑙𝑛

𝑔=2 𝑝𝑔
𝑔
(𝑡) (Bhaskar 865 
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and Song, 2014; Polanski et al., 2003). If positive numbers 𝑚 < 𝑛, there exist a 866 

matix 𝒴 = (𝑦𝑔
ℎ)

𝑔=2,⋯,𝑚,ℎ=2,⋯,𝑛
, which only depends on 𝑚 and 𝑛, such that 867 

𝑝𝑙
𝑚(𝑡) = ∑ 𝑦𝑙

ℎ𝑛
ℎ=2 𝑝ℎ

𝑛(𝑡). Combined with eq(1), there exist a matrix 868 

𝒵 = (𝑧𝑔
ℎ)

𝑔=1,⋯,𝑚−1,ℎ=1,⋯,𝑛−1
, which only depends on 𝑚 and 𝑛, such that 869 

𝐵𝐿𝑖
𝑚(𝑁(⋅)) = ∑ 𝑧𝑖

𝑗𝑛−1
𝑗=1 𝐵𝐿𝑗

𝑛(𝑁(⋅)). 870 

Define the population size before time 𝑡 by 𝑁𝑡(𝑠) = 𝑁(𝑡 + 𝑠). Denote the 871 

expected branch length of state 𝑙 before time 𝑡 by 𝐵𝑙(𝑡) = (𝑏1,𝑙(𝑡),⋯ , 𝑏𝑙−1,𝑙(𝑡)), 872 

where 𝑏𝑖,𝑙(𝑡) represent the expected branch length of state 𝑙 before time 𝑡 of type 873 

𝑖 at time 𝑡. We have 𝑏𝑗,𝑙(𝑡) = 𝑝𝑙
𝑛(𝑡)𝐵𝐿𝑗

𝑙(𝑁𝑡(⋅)). 𝐵𝐿𝑖,𝑘
𝑡  ( 𝑖 = 1,⋯ , 𝑛 − 1) denote 874 

the branch length of type 𝑖 whose number of lineages are no more than 𝑘 before 875 

time 𝑡. We have  876 

𝐵𝐿𝑖,𝑘
𝑡 = ∑ ∑

𝑝(𝑗→𝑖)𝑝(𝑙−𝑗→𝑛−𝑖)

𝑝(𝑙→𝑛)
𝑙−1
𝑗=1

𝑘
𝑙=2 𝑏𝑗,𝑙(𝑡), 877 

where 𝑝(𝑎 → 𝑏) = {
(𝑏−1
𝑎−1

) 𝑏 ≥ 𝑎 ≥ 1

0 else
. 878 

Then, 879 

𝐵𝐿𝑖,𝑘
𝑡

= ∑ ∑
𝑝(𝑗→𝑖)𝑝(𝑙−𝑗→𝑛−𝑖)

𝑝(𝑙→𝑛)

𝑙−1
𝑗=1

𝑘
𝑙=2 𝑏𝑗,𝑙(𝑡)

= ∑ ∑
𝑝(𝑗→𝑖)𝑝(𝑙−𝑗→𝑛−𝑖)

𝑝(𝑙→𝑛)

𝑙−1
𝑗=1

𝑘
𝑙=2 𝑝𝑙

𝑛(𝑡)𝐵𝐿𝑗
𝑙(𝑁𝑡(⋅))

= ∑ (𝑘−1
ℎ=1 ∑ ∑

𝑝(𝑗→𝑖)𝑝(𝑙−𝑗→𝑛−𝑖)

𝑝(𝑙→𝑛)

𝑙−1
𝑗=1

𝑘
𝑙=2 𝑝𝑙

𝑛(𝑡)𝑧𝑗
ℎ)𝐵𝐿ℎ

𝑘 (𝑁𝑡(⋅))

. 880 

Thus, the space that is generated by 𝐵𝐿1,𝑘
𝑡 , ⋯, 𝐵𝐿𝑛−1,𝑘

𝑡  can be generated by 881 

𝐵𝐿1
𝑘(𝑁𝑡(⋅)), ⋯, 𝐵𝐿𝑘−1

𝑘 (𝑁𝑡(⋅)). This leads that the dimension of (𝐵𝐿𝑖,𝑘
𝑡 )

𝑖=1,⋯,𝑛−1
 is 882 

no more than (𝑘 − 1). 883 

If the number of ancestral lineages is no more than 𝑘 before a given standard 884 

coalescent time 𝑡, the number of inference time intervals should be no more than 885 

(𝑘 − 1) before time 𝑡 in the inferred demographic history without overfitting. 886 

Technically speaking, if a high proportion of the number of ancestral lineages is no 887 

more than 𝑘 before a given standard coalescent time 𝑡, we have the same conclusion 888 

because it is an inferred demographic history. 889 

For the non-African populations, when 𝑡 = 1.0, the number of ancestral lineages 890 

is no more than three in more than 90% cases (Table S18), indicating the power to 891 
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infer an constant size model (with one inference time interval), an expansion or 892 

contraction (with two inference time intervals) beyond this time point. The end time 893 

of the super bottleneck is 813 (772–864) kyr ago and the corresponding standard 894 

coalescent time is larger than 1.0 for all non-African populations (Figure 3C, F). 895 

Therefore, the super bottleneck cannot be inferred in this case since the bottleneck 896 

contains three inference time intervals. 897 

 898 

Confounding factors of bottleneck  899 

African populations have complex population structure (Hsieh et al., 2016; 900 

Lopez et al., 2018; Schlebusch and Jakobsson, 2018; Skoglund et al., 2017), and a 901 

complex population structure model is proposed for African and European 902 

populations (Lopez et al., 2018) (Figure S35). To address the effects of population 903 

structure, we simulated data for a western rainforest hunter-gatherer (wRHG) and a 904 

western farmer (wARG) population and estimated their demographic histories (Figure 905 

S35). Due to frequent migrations, a larger recent population size is estimated for both 906 

populations. However, the ancient population size (14,427) is accurately inferred for 907 

both populations (14,493 and 14,428). Thus, the super bottleneck is not due to the 908 

complex African population structure. 909 

To consider the effects of archaic introgression from ghost populations (Beerli, 910 

2004; Durvasula and Sankararaman, 2020), we examined different models by 911 

assuming that introgression happened in different time periods with different 912 

migration rates (Figure S36). Results show that archaic introgression does not result 913 

in an ancient super bottleneck. 914 

Truncated SFS was used in demography inference in this study. To examine the 915 

effects of SFS truncation, the FitCoal inference was re-performed by taking the full 916 

SFSs that include high-frequency derived mutations. Again, the super bottleneck is 917 

revealed only in the African populations, but not in the non-African populations 918 

(Figures S37 and S38). Therefore, the ancient super bottleneck is not due to the 919 

effects of SFS truncation. 920 

 921 
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Computational performance 922 

We compared the performance of the FitCoal with or without tabulation. We 923 

applied them to analyze the data of YRI population by fixing four inference time 924 

intervals and allowing instantaneous population size change. The former is much 925 

faster than the latter (1 second vs 36.2 hours). 926 

 927 

DATA AND SOFTWARE AVAILABILITY 928 

The authors declare that all data are available in the main text and the 929 

supplementary materials. FitCoal is a free plug-in of the eGPS software (Yu et al., 930 

2019) and can be downloaded and run as an independent package. FitCoal and its 931 

documentation are available via Zenodo at 932 

https://zenodo.org/record/4805461#.YNl61Ey-vuo, our institute website at 933 

http://www.picb.ac.cn/evolgen/, and eGPS website http://www.egps-software.net/. 934 

Raw data were deposited on Mendeley 935 

(https://data.mendeley.com/datasets/xmf5r8nzrn/draft?a=8e2a5abe-de47-4ab7-a313-e936 

2e5526cbc55). 937 

  938 
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 939 

Figure 1. Illustration of the fast infinitesimal time coalescent (FitCoal) process. 940 

The left panel shows the backward process in which four lineages coalesce into one 941 

after passing through millions of infinitesimal time intervals. The highlighted area 942 

shows the backward transformation process of different states with tiny probability 943 

changes in an infinitesimal time interval (∆𝑡). Thick arrows indicate high 944 

transformation probabilities, and thin arrows indicate low transformation probabilities. 945 

Each state is indicated with a rounded rectangle, in which one circle indicates one 946 

lineage. The rounded rectangles with black filled circles are the states with probability 947 

1. The rounded rectangles with empty circles are the states with probability 0. The 948 

probabilities between 0 and 1 are indicated by grey circles. The middle panel shows 949 

branches of different states. The right panel shows the demographic history of a 950 

population. The width of shadowed area indicates the effective population size, i.e., 951 

the number of breeding individuals (Harpending et al., 1998). It is assumed that the 952 

effective population size remains unchanged within ∆𝑡.   953 
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 954 

Figure 2. Demographic histories estimated by FitCoal, stairway plot, and PSMC 955 

using simulated samples. (A) Constant size model. (B) Instantaneous increase model. 956 

(C) PSMC “standard” model. (D) Exponential growth I model. (E) Exponential 957 

growth II model. (F) Exponential growth III model. These six models are the same as 958 

those of the previous study by Liu and Fu (Liu and Fu, 2015). Thin black lines 959 

indicate true models. Thick red lines indicate the medians of FitCoal estimated 960 

histories; thin red lines are 2.5 and 97.5 percentiles of FitCoal estimated histories. 961 

Green and blue lines indicate the results of stairway plot and PSMC, respectively, of 962 

the previous study (Liu and Fu, 2015). The mutation rate is assumed to be 1.2 × 10−8 963 

per base per generation, and a generation time is assumed to be 24 years. n is the 964 

number of simulated sequences, and L is the length of simulated sequences. 965 

  966 
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 967 

Figure 3. FitCoal estimated histories of human populations using 1000GP and 968 

HGPD-CEPH genomic data sets. (A) Estimated histories of 26 populations in 969 

1000GP. (B) Linear-scaled estimation of histories of 1000GP populations during the 970 

super bottleneck period. (C) Calendar time vs standard coalescent time of estimated 971 

histories of 1000GP populations. (D) Estimated histories of 24 HGPD-CEPH 972 

populations. (E) Linear-scaled estimation of histories of HGPD-CEPH populations 973 

during the super bottleneck period. (F) Calendar time vs standard coalescent time of 974 

estimated histories of HGPD-CEPH populations. Various color lines indicate the 975 

following: red, African populations; yellow, European populations; brown, Middle 976 

East populations; blue, East Asian populations; green, Central or South Asian 977 

populations; and dark sea green, American populations. Blue circles show the 978 

population size gap between the African and non-African populations, indicating the 979 

hidden effect of the super bottleneck in non-African populations. The mutation rate is 980 

assumed to be 1.2 × 10−8 per base per generation, and a generation time is assumed 981 

to be 24 years.  982 

  983 
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 984 

Figure 4. Verification of the super bottleneck. (A) Bottleneck I model, mimicking 985 

the demography of 1000GP African population and its estimated histories. (B) 986 

Bottleneck II model, mimicking the estimated demography of 1000GP non-African 987 

population and its estimated histories. (C) Bottleneck III model, mimicking the true 988 

demography of 1000GP non-African population and its estimated histories. Thin 989 

black lines indicate models. Thick red lines denote the medians of FitCoal estimated 990 

histories; thin red lines represent 2.5 and 97.5 percentiles of FitCoal estimated 991 

histories. Blue circle indicates the population size gap, the hidden effect of the super 992 

bottleneck in non-African populations. The mutation rate is assumed to be 1.2 ×993 

10−8 per base per generation, and a generation time is assumed to be 24 years. The 994 

number of simulated sequences is 202 in Bottleneck I and 200 in Bottleneck II and III. 995 

The length of simulated sequence is 800 Mb. 996 

 997 

 998 

 999 
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