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Abstract

Chromatin conformation is an important characteristic of the genome which has been
repeatedly demonstrated to play vital roles in many biological processes.  Chromatin can be
characterized by the presence or absence of structural motifs called topologically associated
domains.  The de facto strategy for determination of topologically associated domains within a
cell line is the use of Hi-C sequencing data.  However Hi-C sequencing data can be expensive
or otherwise unavailable.  Various epigenetic features have been hypothesized to contribute to
the determination of chromatin conformation. Here we present TAPIOCA, a self-attention based
deep learning transformer algorithm for the prediction of chromatin topology which circumvents
the need for labeled Hi-C data and makes effective predictions of chromatin conformation
organization using only epigenetic features.  TAPIOCA outperforms prior art in established
metrics of TAD prediction,  while generalizing across cell lines beyond those used in training.

Availability: the source code of TAPIOCA and training and test datasets are available at
https://github.com/Max-Highsmith/TAPIOCA

Author Summary

In this paper we outline a machine learning approach for predicting the topological
organization of chromosomes using epigenetic track data as features.  By utilizing an
architecture inspired by the sequence transduction transformer network we are able to
effectively predict multiple metrics used to characterize topologically associated domains.  Our

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.444378doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.16.444378
http://creativecommons.org/licenses/by/4.0/


experimental results demonstrate that once trained our algorithm can effectively predict
topological organization on novel cell lines all without any exposure to original Hi-C data in test
datasets.

​

Introduction

As the cost of genetic sequencing continues to decrease at a rate surpassing Moore’s
law (“DNA Sequencing Costs: Data” n.d.), the plethora of available sequencing data has
permitted the wide-spread application of machine learning approaches to the field of genomics.
These approaches have spanned a variety of applications including: Assay denoising (Hong et
al. 2020) (Dimmick, Lee, and Frey 2020) (Highsmith and Cheng 2020).  3D modeling
(Oluwadare, Highsmith, and Cheng 2019), and regulatory network prediction
(Razaghi-Moghadam and Nikoloski 2020).  In this paper we outline the application of a recently
developed machine learning algorithm, the Transformer, to the task of topologically associated
domain (TAD) identification using epigenetic features as a proxy for Hi-C data.

The three dimensional genome has repeatedly been revealed to play an important role
in a plethora of important biological processes. One prolific assay for inspecting the 3D
organization of the genome is Hi-C, a variant of chromosome conformation capture (3C) assay.
Hi-C data can, in addition to many other applications, be used to identify regions of the genome
with preferentially self-interacting regions termed topologically associated domains (TADs).
Substantial scientific attention has been directed at the development of tools for identifying
TAD’s using Hi-C data (Zufferey et al. 2018) (Dixon et al. 2012) (Filippova et al. 2014).

It has been demonstrated that epigenetic features such as repressive histone
modifications have preferential association with inter-TAD boundaries, indicating the potential
contribution of epigenetic modifications in the construction of TADs. TAD prediction using
epigenetic features was first formulated as a classification problem using logistic regression to
predict boundaries(Ulianov et al. 2016).  The approach was later expanded to include lasso
regression and gradient boosting (Ramírez et al. 2018). The task was then reformulated as a
linear regression problem in which epigenetic features were used to predict transitional gamma,
a continuous metric created by the authors based on TAD identification tool Armatus.  Recently
the first application of neural networks, specifically LSTM obtained state-of-the are predictions
(Rozenwald et al. 2020)

This paper provides two important contributions relative to prior research in this area.
First we build upon the use of machine learning methods by applying self-attention through a
variant of the state-of-the-art Transformer model which we call TAPIOCA (Topological Attention
and Predictive Inference of Chromatin Arrangement). Second we extend the metrics for TAD
characterization beyond the previously used transitional gamma to incorporate more prolific
metrics for TAD characterization such as Insulation Score (Crane et al. 2015) and Directionality
Index (Dixon et al. 2012).  Through these extensions and comparative analysis to the results of
previously suggested models, we strengthen the case for dependence between epigenetic
profile and TAD formation.
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Results

Overview of Dataset Features and Labels
Previous work on prediction of topological organization in Drosophila based on

epigenetic features has used a metric called Transitional gamma.  Transitional gamma is
computed by performing TAD calling using the armatus tool with gamma values 1-10 and
assigning the transitional gamma of a loci to be the first gamma value at which armatus
identifies a TAD boundary (Figure 1a). In our experiments we use the transitional gamma
values assigned to the feature dataset by (Rozenwald et al. 2020).

In addition to using the standard transitional gamma, we use Hi-C data (Figure 1b) to
extract two additional labels for TAD characterization, which are prolific in the Hi-C literature:
Directionality Index and Insulation Score.

We compute directionality index using a procedure based on Dixon et al (Dixon et al.
2012).  Directionality Index is motivated by the observation that downstream portions of a
domain are highly biased towards interactions with upstream bins.  Directionality Index is
computed using Equation 1, where A is a quantity of reads mapped from the observed bin to R
bins downstream; B is a quantity of reads mapped from an observed bin to R bins upstream,
and E is the mean of B and A.  The result is a 1 dimensional vector with values corresponding to
each genomic loci within R bins of the chromosome border. In the original Directionality Index
literature the directionality vector is then passed to a hidden markov model, however, for ease of
comparison we treat the directionality vector as our labels.  Our directionality uses a radius of
10.

(1)

We compute the insulation score using a procedure based on (Crane et al. 2015).
Insulation Score is motivated by the intuition that regions which have drastic changes in quantity
of interactions with their neighbors are likely boundaries for TADS.  Insulation Score (Figure 1d)
is calculated by sliding a window of radius R along the diagonal of a contact matrix and
computing the sum of signals across each bin.  This vector is then normalized and a Difference
Vector is computed by observing changes in the summed value of L bins before and after a loci
of interest.  The result is a 1 dimensional vector with values corresponding to each genomic loci
within R+L bins of the chromosome border.  In the original Insulation Score literature the regions
of the Difference vector where values switch sign are marked as potential TAD boundaries.  In
our experiments we use the full vector as the label. We use R=3 and L=10.

Overview of TAPIOCA Network
The TAPIOCA network is inspired by the transformer architecture originally proposed in

2017 as an approach to the problem of Seq2Seq language translation (Vazawani et al 2017) .
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To convert the transformer network from the task of language translation to TAD prediction, we
treat epigenetic features as though they are word embeddings and append a final linear
prediction layer converting transformer outputs to numerical values for TAD labels (Fig 2a).
The core processing component of the TAPIOCA architecture is made up of a series of attention
layers each containing Scaled Dot-Product Attention with 7 heads followed by a linear neural
network layer (Fig 2b).  Our network treats the number of attention layers as a hyper parameter
which is tuned (Supplementary Figures 1-3).

Benchmark of TAPIOCA Network Relative to Prior Art
We compared TAPIOCA-network’s performance on the task of TAD prediction to the
performance of previously used models such as linear regression (Ulianov et al. 2016), ridge
and lasso regression (Ramírez et al. 2018) and Bi-directional Long Short-Term Memory
(BILSTM) (Rozenwald et al. 2020) We observe visual similarity between the predictions of our
network and Hi-C derived labels across all three metrics (Fig 4).  TAPIOCA-network outperforms
all previous approaches on the transitional gamma dataset (Table 1). In insulation vector
experiments TAPIOCA-network outperforms all linear regression variants while remaining
competitive with BILSTM (Table 2).  TAPIOCA-network was the only network capable of
effectively predicting Directionality index, even after extensive hyperparameter tuning of other
networks (Fig 4c, Table 3).

TAPIOCA Network Remains Effective Across Cell Lines.
One of the most important characteristics of any machine learning algorithm is its ability to
generalize.  To ensure that our network’s predictive ability is not constrained to cell lines for
which Hi-C data is already available, we test effectiveness of TAPIOCA at predicting TAD
organization on cell lines which differ from the network training dataset.  We observe that in
most instances the network's performance remains high even when training and test cell lines
differ (Fig 5), in certain instances performing marginally better using different cell lines.
Gamma obtains high values for R2 across all 5 metrics regardless of train test combination.
The insulation vector and directionality index metric also obtain comparable results across
training test cell line combinations in most instances.

Key Epigenetic Features in TAD prediction using TAPIOCA
Network Resembles the Key Features Observed in Prior Art
We ran experiments excluding each epigenetic feature from training in both our TAPIOCA
network and the previous state of the art BiLSTM network. We observe high consistency in the
evaluated performance of the TAPIOCA network across the metrics: mean average error, mean
squared error, pearson correlation and spearman correlation (Fig 6a).  We observe similar
degradation of performance across both networks when excluding features (Fig 6b).  Removing
certain epigenetic features such as Chriz and Su(HW) showed sharp relative drops in
performance on both networks, however, other previously identified features such as

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 17, 2021. ; https://doi.org/10.1101/2021.05.16.444378doi: bioRxiv preprint 

https://paperpile.com/c/eMmCRy/nAnB
https://paperpile.com/c/eMmCRy/256z
https://paperpile.com/c/eMmCRy/Yxsl
https://doi.org/10.1101/2021.05.16.444378
http://creativecommons.org/licenses/by/4.0/


H3K27me3 and H3K27ac (Rozenwald et al. 2020) showed low relative degradation in
performance of the TAPIOCA network.

Epigenetic Features have different priority in predictive ability
based on TAD label selection.
We ran experiments excluding each epigenetic feature across the three TAD identifying metrics
(Fig 6c). In each case networks were trained using the hyperparameters which obtained best
results in full features experiments. In many instances the directionality networks failed to
converge to meaningful results.  This may be due to the directionality datasets demonstrated
difficulty and requirement for extreme hyper parameter tuning.  While the insulation networks
and gamma networks both converged in most feature exclusion experiments, the prioritization of
values for epigenetic features showed little correlation (Fig 6c).  While removing features such
as dSFMBT, WDS and CHRIZ all showed pronounced decreases in performance for gamma
prediction, the performance was not noticeably lower for these features in insulation score
prediction relative to the removal of other epigenetic features such as H3K27Me3 and H3K27Ac
.

Discussion

We observe state of the art performance by TAPIOCA network on the well established
metric of transitional gamma, indicating that the TAPIOCA approach should be considered when
predicting TADs using epigenetic features.  Furthermore TAPIOCA’s high performance on
Insulation score and its unique success in Directionality index demonstrate the power of the
transformer approach to modeling the complex predictive relationship of epigenetic profile and
chromatin topology.

TAPIOCA’s ability to generalize across multiple cell lines indicates potential for real utility
in saving the cost of Hi-C experiments, as this demonstrates that TAPIOCA can be used even
without available Hi-C contact matrices from which to obtain labels.  Future work could include
examination of TAPIOCA’s effectiveness across other model organisms beyond Drosophila.
Such experiments may provide insight to similarity of the underlying biological mechanism of
TAD formation in different organisms.

In our experiments where we removed individual features, we observed a different set of
epigenetic features whose absence maximally degraded model performance when using the
TAPIOCA network than when using the previously described BILSTM.  This seems to indicate
that those decreases in performance may be unelucidated consequences of the selected
machine learning models, rather than true biological relationships, raising uncertainty to the role
of histone modifications H3K27Me3 and H3K27Ac in TAD formation as  suggested in previous
literature (Rozenwald et al. 2020).  However, the epigenetic features where degradation of
model performance was consistent between BILSTM and TAPIOCA, provide increased reason
for hypothesizing an underlying relationship between TAD formation and presence of features
such as Chriz.
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We observed differing impacts on removing epigenetic features across  different TAD
characterization metrics.  This disparity has multiple potential explanations and must be
considered in conjunction with a few important observations. First, the explicit characterization
of what makes a TAD is still an open area of discussion as multiple tools exist for TAD
characterization and different tools often do not give fully concordant depictions (Zufferey et al.
2018).   Second,  the low performance of directionality index experiments in all epigenetic
removal experiments is likely indicative of a failure of the model  to capture the underlying data
distribution, rather than anything grounded in biological reality. This claim is made in
consideration with the demonstrated high hyperparameter sensitivity of the directionality dataset
and the inability of BILSTM or regression variants to make successful predictions.

With these considerations, we do still observe differences in the contribution of removing
single epigenetic features to successful prediction of insulation score and transitional gamma.
One potential explanatory hypothesis for this disparity may be that different epigenetic features
contribute to different scales or motifs of chromatin organization, some of which are more easily
captured by armatus than insulation scores.  Further work aiming to investigate this hypothesis
may benefit from expanding analysis even further to include some of the many other TAD
characterization metrics outlined in Zufferey et al. (Zufferey et al. 2018)

Conclusion
In this manuscript we present, TAPIOCA, a tool for predicting TADs using epigenetic

data via a self-attention based deep learning architecture. By reformulating the task of TAD
prediction as a sequence transduction problem and developing an architecture inspired by the
novel transformer network from machine learning literature we obtain state-of-the art results in
inferring TAD characterization from epigenetic data. In addition to these results we contribute to
the research community by expanding multiple Drosophila cell line datasets to include metrics
for insulation score and directionality index.

Methods

Data
All data is based on cell lines from the Drosophila model organism.  We use three cell lines:
Schneider-2 (S2) and Kc167 from late embryos and DmBG3-c2 (BG3) from the central nervous
system.  Epigenetic profiles and transitional gamma labels for all cell lines were found at
https://github.com/MichalRozenwald/Hi-ChIP-ML.  Hi-C data used to construct Insulation and
Gamma labels is available on the Gene Expression Omnibus at GSE69013.  Cleaned datasets
for all three metrics are available, along with all of our experiments at
https://github.com/Max-Highsmith/TAPIOCA.
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Evaluation Metrics
We utilize 5 metrics for evaluation of similarity of predictions to labels: Mean Squared Error,
Mean Absolute Error, R Squared, Pearson Correlation Coefficient and Spearman Correlation
Coefficient.
Mean Squared Error:

Mean Absolute Error:

Coefficient of Determination:

Pearson Correlation Coefficient:

Spearman Correlation Coefficient:
Spearman Correlation is similar to pearson correlation differing in that it utilizes rank variables
so as to evaluate monotonic relationship between the matrices without imposing a linearity
condition that may not exist in nature.

Model Hyper Parameter Tuning
In all hyper parameter tuning experiments, we used a random search over sets of

discrete values for each parameter.  Hyper parameters were determined separately for each
network with each TAD label.  With each network we tested batch sizes (1,4,16,64), learning
rates (1e5, 1e4, 1e3, 1e2, 1e1).  With BILSTM and TAPIOCA we varied dropout (0,0.1,
0.2,0.3,0.5,0.7).  And layer number (1,2,3,4,5,6). With TAPIOCA we varied the number of hidden
units (512, 1024, 2048) and with BILSTM we varied bias existence for (True, False).  All Models
were initially trained with 10 iterations of random search for hyper parameters.  Because none of
these initial 10 results for the directionality dataset converged when using regression variants
and BILSTM, we expanded the random search size to 20 but still did not obtain convergence on
any network except TAPIOCA.
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Model Architecture and Training Details
The TAPIOCA model is inspired by the transformer architecture (Alammar n.d.).   The
Transformer was originally proposed for the task of seq2seq sentence translation and while our
task is similar, there are a few key differences which inspired adjustments to the TAPIOCA
architecture.

First, when working with seq2seq sentence translation, the fundamental unit of a
sequence is a categorical token, typically a word. The preliminary step in translation tasks is the
conversion of tokens into numerical vector representations via embedding.  In the task of TAD
prediction we begin with normalized epigenetic feature vectors for each 20kb region instead of
tokens.  This removes the need for inclusion of an embedding step because we already have
vector representations.

Secondly, because multihead attention does not use recurrence or convolution it permits
increased ability to identify relationships between spatially distant features.  While this
characteristic is clearly advantageous, it also necessitates manual inclusion of positional
information into propagated vectors.  In the original transformer architecture this task is
performed by adding a positional encoding vector to embedded inputs.  In the original
transformer the positional encoding vector is more information dense for certain vector
components. The assumption is that because the embedding layer is high dimensional (512)
that the necessary information will be passed, and multiple components can permit meaningful
feature integration of position and embedding. However, in the TAD identification task we
eschew embedding completely, instead using epigenetic feature vectors.  Thus additive
positional encoding would have potential to overwrite or give implicit preference to components
which already encode specific information.  To prevent this we instead concatenate the
positional econding vector to the epigenetic features.

Third, Unlike seq2seq translation there is no variation in sentence length of inputs and
outputs.  When training we use a sentence length of 11 bins, (220kb region).  We use the mean
squared error of our full predicted vector and label vectors as a loss function.  When evaluating
performance on test data we pass each sequence through with stride 1, keeping the middle
vector bin.
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Figure Labels
Figure 1 Dataset Overview. (a) Generation process of transitional gamma labels.  (b) Hi-C
Contact matrix (c) Generation process of Directionality Index labels.  (d) Generation process of
Insulation score labels. (e) vectors used as labels in the training process. (f) Distribution of
numerical values for each metric

Figure 2 TAPIOCA Architecture. (a) Overview of architecture (b) Details of multi-head
attention block.

Figure 3 Visualization of Predictive Process. (a) Hi-C track data (b) Label and predicted
values for transitional gamma, (c) insulation vector, and (d) directionality index. (e) epigenetic
track data values.

Figure 4 Benchmarking TAPIOCA. Predictions made by (blue) linear regression, (green) ridge
regression, (yellow) lasso regression, (red) bidirectional long-short term memory network and
(purple) tapioca network.  The dotted black line shows Hi-C obtained predictive values for (a)
transitional gamma, (b) insulation vector, and (c) directionality index.

Figure 5 Performance Across Cell Lines. Rows indicate training set cell lines, columns
indicate testing set cell lines using (orange) transitional gamma, (green) insulation vector, and
(blue) directionality index labels.  Super rows show metric of evaluation: mean squared error,
mean average error, r2, pearson correlation and spearman correlation

Figure 6 Removal of Features. (a) performance of TAPIOCA network when excluding single
epigenetic features on (pink) pearson correlation, (green) mean average error, (yellow) mean
squared error, and (blue) spearman correlation.  (b) Pearson correlation of (blue) TAPIOCA
network and (orange) bidirectional Long Short-Term memory network when excluding single
epigenetic features .  (c) Spearman correlation of TAPIOCA network predictions of (orange)
transitional gamma (green) insulation score and (blue) directionality index when excluding
single epigenetic features.

Table Labels

Table 1 Performance metrics of varying models using transitional gamma labels on s2
cell line.
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Table 2 Performance metrics of varying models using insulation vector labels on s2 cell
lines.

Table 3 Performance metrics of varying models using directionality index labels on s2
cell lines.
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Tables

0 1 2 3 4 5

0 metric mse mae r2 pcc spc

1 linear 5.295623745 2.06299329 -3.290349947 0.5304458182 0.5479940049

2 lasso 3.992718951 1.69535561 -2.234776934 0.52124268 0.5443327447

3 ridge 1.941319312 1.123036858 -0.5727966349 0.5219417622 0.5423751718

4 bilstm 1.410318817 0.9008385497 -0.1425965202 0.4938267709 0.5068998462

5 transformer 1.266783631 0.8550913035 -0.02630876811 0.5058097635 0.5527842042
Table 1:  Performance metrics of different models on gamma using S2 cell line

0 1 2 3 4 5

0 metric mse mae r2 pcc spc

1 linear Na NA NA NA NA

2 lasso 0.06974714665 0.2059695515 -0.002145843473 0.058078392 0.07441855312

3 ridge 0.06951995737 0.204573979 0.00111847349 0.038189119 0.04004053408

4 bilstm 0.05829887199 0.1904818259 0.1623460593 0.419690222 0.3940576234

5 transformer 0.0652860434 0.2000407176 0.06195249305 0.324928991 0.3334798006

Table 2:  Performance metrics of different models on insulation using S2 cell line

0 1 2 3 4 5

0 metric mse mae r2 pcc spc

1 linear 8499.176481 57.25845387 -0.01948713842 -0.0392333315 -0.02423517569

2 lasso 8349.548968 55.66149272 -0.00153912602 -0.0066974481 0.003306583346

3 ridge 8337.046141 55.49885533 -3.94E-05 0.0185781542 0.01345918225

4 bilstm 10696.08042 78.29492895 -0.2830085879 -0.0551410883 -0.02034854701

5 transformer 6534.42304 55.28723772 0.2161875611 0.5086738093 0.5152162301
Table 3:  Performance metrics of different models on directionality using S2 cell line
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