1 LACTATE IS A MAJOR ENERGY SUBSTRATE FOR CORTICAL NEURONS AND 2 ENHANCES THEIR FIRING ACTIVITY.

- 3 Anastassios Karagiannis¹, Thierry Gallopin², Alexandre Lacroix¹, Fabrice Plaisier¹,
- 4 Juliette Piquet¹, Hélène Geoffroy², Régine Hepp¹, Jérémie Naudé¹, Benjamin Le
- 5 Gac¹, Richard Egger³, Bertrand Lambolez¹, Dongdong Li¹, Jean Rossier^{1,2}, Jochen F.
- 6 Staiger⁴, Hiromi Imamura⁵, Susumu Seino⁶, Jochen Roeper³ and Bruno Cauli^{1*}.
- 7
- Sorbonne Université, CNRS, INSERM, Neurosciences Paris Seine Institut de
 Biologie Paris Seine (NPS-IBPS), 9 quai Saint Bernard, 75005 Paris, France.
- 10 2. Brain Plasticity Unit, CNRS, ESPCI Paris, PSL Research University, 10 rue
- 11 Vauquelin, 75005 Paris, France.
- Institute of Neurophysiology, Goethe University Frankfurt, Theodor-Stern-Kai 7,
 60590 Frankfurt, Germany.
- 4. Institute for Neuroanatomy, University Medical Center Göttingen, Georg-August-University Göttingen, 37075 Göttingen, Germany.
- 16 5. Graduate School of Biostudies, Kyoto University, Kyoto 606-8501, Japan.
- 17 6. Division of Molecular and Metabolic Medicine, Kobe University Graduate School of
- 18 Medicine, 7-5-1 Kusunoki-cho, Chuo-ku, Kobe, Hyogo 650-0017, Japan.
- 19
- 20
- 21
- 22
- 23
- 24
- 25 *Correspondence: bruno.cauli@upmc.fr

1 SUMMARY

2 Glucose is the mandatory fuel for the brain, yet the relative contribution of glucose 3 and lactate for neuronal energy metabolism is unclear. We found that increased lactate, but not glucose concentration, enhances the spiking activity of neurons of the 4 cerebral cortex. Enhanced spiking was dependent on ATP-sensitive potassium (K_{ATP}) 5 6 channels formed with Kir6.2 and SUR1 subunits, which we show are functionally 7 expressed in most neocortical neuronal types. We also demonstrate the ability of 8 cortical neurons to take-up and metabolize lactate. We further reveal that ATP is 9 produced by cortical neurons largely via oxidative phosphorylation and only modestly 10 by glycolysis. Our data demonstrate that in active neurons, lactate is preferred to 11 glucose as an energy substrate, and that lactate metabolism shapes neuronal activity 12 in the neocortex through K_{ATP} channels. Our results highlight the importance of 13 metabolic crosstalk between neurons and astrocytes for brain function.

14

15 KEYWORDS

- 16 K_{ATP} channel, pyramidal cell, interneuron, glucose, single cell RT-PCR, ATP.
- 17

18 HIGHLIGHTS

- Most cortical neurons subtypes express pancreatic beta-cell like K_{ATP}
 channels.
- Lactate enhances spiking activity via its uptake and closure of K_{ATP} channels.
- Cortical neurons take up and oxidize lactate.
- Cortical neurons produce ATP mainly by oxidative phosphorylation.

1 INTRODUCTION

The human brain represents 2% of the body mass, yet it consumes about 20% of 2 3 blood oxygen and glucose which are mandatory energy substrates (Clarke and Sokoloff, 1999). The majority (~50-80%) of the cerebral energy metabolism is 4 believed to be consumed by the Na⁺/K⁺ ATPase pump to maintain cellular ionic 5 6 gradients dissipated during synaptic transmission and action potentials (Attwell and 7 Laughlin, 2001; Lennie, 2003). Synaptic and spiking activities are also coupled with local cerebral blood flow and glucose uptake (Devor et al., 2008;Logothetis, 2008). 8 9 This process, referred to as neurovascular and neurometabolic coupling, is the 10 physiological basis of brain imaging techniques (Raichle and Mintun, 2006) and 11 maintains extracellular glucose within a physiological range of 2-3 mM (Silver and 12 Erecinska, 1994; Hu and Wilson, 1997b). Also, following increased neuronal activity 13 extracellular lactate increases (Prichard et al., 1991;Hu and Wilson, 1997a) for several minutes up to twice of its 2-5 mM basal concentration despite oxygen 14 15 availability (Magistretti and Allaman, 2018).

16

17 Based on the observations that various by-products released during glutamatergic 18 transmission stimulate astrocyte glucose uptake, aerobic glycolysis and lactate 19 release (Pellerin and Magistretti, 1994;Voutsinos-Porche et al., 2003;Ruminot et al., 2011; Choi et al., 2012; Sotelo-Hitschfeld et al., 2015; Lerchundi et al., 2015), lactate 20 21 has been proposed to be shuttled from astrocytes to neurons to meet neuronal 22 energy needs. This hypothesis is supported by the existence of a lactate gradient 23 between astrocytes and neurons (Machler et al., 2016), the preferential use of lactate as an energy substrate in cultured neurons (Bouzier-Sore et al., 2003;Bouzier-Sore 24 25 et al., 2006), and its ability to support neuronal activity during glucose shortage 26 (Schurr et al., 1988; Rouach et al., 2008; Wyss et al., 2011; Choi et al., 2012). 27 However, the use of different fluorescent glucose analogues to determine whether 28 astrocytes or neurons take up more glucose during sensory-evoked neuronal activity 29 has led to contradicting results (Chuquet et al., 2010;Lundgaard et al., 2015). Furthermore brain slices and in vivo evidence have indicated that synaptic and 30 sensory stimulation enhanced neuronal glycolysis and potentially lactate release by 31 32 neurons (Ivanov et al., 2014; Diaz-Garcia et al., 2017), thereby challenging the astrocyte-neuron lactate shuttle hypothesis. Hence, the relative contribution of 33 34 glucose and lactate to neuronal ATP synthesis remains unresolved.

1 ATP-sensitive potassium channels (K_{ATP}) act as metabolic sensors controlling various cellular functions (Babenko et al., 1998). Their open probability (P_0) is 2 3 regulated by the energy charge of the cell (*i.e.* the ATP/ADP ratio). While ATP mediates a tonic background inhibition of K_{ATP} channels, cytosolic increases of ADP 4 concentrations that occur as a sequel to enhanced energy demands, increase the P_{0} 5 of K_{ATP} channels. In neurons, electrical activity is accompanied by enhanced sodium 6 influx, which in turn activates the Na^+/K^+ ATPase. Activity of this pump alters the 7 submembrane ATP/ADP ratio sufficiently to activate K_{ATP} channels (Tanner et al., 8 9 2011). The use of fluorescent ATP/ADP biosensors has demonstrated that KATP channels are activated ($P_0 > 0.1$) when ATP/ADP ratio is ≤ 5 (Tantama et al., 2013). 10

11

K_{ATP} channels are heterooctamers composed of four inwardly rectifying K⁺ channel 12 13 subunits, Kir6.1 or Kir6.2, and four sulfonylurea receptors, SUR1 or SUR2, the later existing in two splice variants (SUR2A and SUR2B) (Sakura et al., 1995;Aguilar-14 15 Bryan et al., 1995;Inagaki et al., 1995b;Isomoto et al., 1996;Inagaki et al., 1996;Chutkow et al., 1996;Yamada et al., 1997;Li et al., 2017;Martin et al., 2017;Lee 16 17 et al., 2017; Puljung, 2018). The composition in K_{ATP} channel subunits confers different functional properties, pharmacological profiles as well as metabolic 18 19 sensitivities (Isomoto et al., 1996;Inagaki et al., 1996;Gribble et al., 1997;Yamada et al., 1997;Okuyama et al., 1998;Liss et al., 1999). KATP channel subunits are 20 21 expressed in the neocortex (Ashford et al., 1988;Karschin et al., 1997;Dunn-Meynell 22 et al., 1998;Thomzig et al., 2005;Cahoy et al., 2008;Zeisel et al., 2015;Tasic et al., 23 2016) and have been shown to protect cortical neurons from ischemic injury (Heron-Milhavet et al., 2004;Sun et al., 2006) and to modulate their excitability (Gimenez-24 25 Cassina et al., 2012) and intrinsic firing activity (Lemak et al., 2014). KATP channels could thus be leveraged to decipher electrophysiologically the relative contribution of 26 27 glucose and lactate to neuronal ATP synthesis. Here, we apply single-cell RT-PCR (scRT-PCR) to identify the mRNA subunit composition of KATP channel across 28 29 different neocortical neuron subtypes and demonstrate lactate as the preferred energy substrate that also enhances firing activity. 30

31

1 **RESULTS**

2 Expression of K_{ATP} channel subunits in identified cortical neurons

3 We first sought to determine whether K_{ATP} channel subunits were expressed in different neuronal subtypes from the neocortex. Neurons (n=277) of the juvenile rat 4 barrel cortex from layers I to IV (Table S1) were functionally and molecularly 5 characterized in acute slices by scRT-PCR (Figure 1), whose sensitivity was 6 7 validated from 500 pg of total cortical RNAs (Figure S1A). Neurons were segregated into 7 different subtypes according to their overall molecular and electrophysiological 8 9 similarity (Figure 1A) using unsupervised Ward's clustering (Ward, 1963), an 10 approach we previously successfully used to classify cortical neurons (Cauli et al., 11 2000;Gallopin et al., 2006;Karagiannis et al., 2009). Regular spiking (RS, n=63) and 12 intrinsically bursting (IB, n=10) cells exhibited the molecular characteristics of 13 glutamatergic neurons, with very high single-cell detection rate (n=69 of 73, 95%) of vesicular glutamate transporter 1 (vGluT1) and low detection rate (n=7 of 73, 10%) of 14 15 glutamic acid decarboxylases (GADs, Figure 1B-E and Table S2), the GABA 16 synthesizing enzymes. This group of glutamatergic neurons distinctly displayed 17 hyperpolarized resting membrane potential (-81.2 \pm 0.8 mV), possessed a large 18 membrane capacitance (108.6 \pm 3.6 pF), discharged with wide action potentials (1.4 19 ± 0.0 ms) followed by medium afterhyperpolarizations (mAHs). These neurons did sustain only low maximal frequencies $(35.4 \pm 1.6 \text{ Hz})$ and showed complex spike 20 21 amplitude accommodation (Table S3-7). In contrast to RS neurons, IB neurons were 22 more prominent in deeper layers (Table S1) and their bursting activity affected their 23 adaptation amplitudes and kinetics (Figure 1C and Tables S4-5), spike broadening (Figure 1C and Tables S6) and the shape of mAHs (Figure 1C and Tables S7). 24

All other neuronal subtypes were characterized by a high single-cell detection rate of 25 26 GAD65 and/or GAD67 mRNA (n=202 of 204, 99%, Figure 1B and Table S2) and 27 therefore likely corresponded to GABAergic interneurons. Among GAD-positive 28 population, neurons frequently expressed mRNA for vasoactive intestinal polypeptide 29 (VIP), and in accordance to their electrophysiological phenotypes, were segregated 30 into Bursting VIP (n=27) and Adapting VIP (n=59) neurons. These VIP interneurons 31 were further characterized by high membrane resistance (581 \pm 27 M Ω) and small membrane capacitance (52.7 ± 2.3 pF, Figure 1B-C and Tables S2-3). 32 33 Other GABAergic interneurons co-expressed somatostatin (SOM) and calbindin (CB)

34 as well as neuropeptide Y (NPY) to a lesser extent and functionally corresponded to

1 Adapting SOM neurons (n=24, Figure 1B and Table S2). They displayed depolarized 2 resting membrane potential, pronounced voltage sags, low rheobases and 3 pronounced afterdepolarizations (Figure 1C and Table S3-6). In another group of 4 GABAergic adapting interneurons located in superficial layers, mRNA for NPY was detected at a high rate (n=31 of 56, 55%). In these Adapting NPY interneurons 5 mRNA for nitric oxide synthase-1 (NOS-1) was detected at a lower rate (Figure 1B 6 7 and Tables S1-2). In response to suprathreshold depolarizing current steps, these interneurons showed very little spike frequency adaptation (Figure 1C and Table S4). 8 9 Finally, parvalbumin (PV) was observed in virtually all neurons of a subpopulation 10 termed Fast Spiking-PV interneurons (FS-PV, n=37 of 38, 97%, Figure 1B and Table 11 S2). In comparison to all other cortical neurons described above, they were 12 characterized by low membrane resistance (201 \pm 13 M Ω), fast time constant, high rheobase, very short spikes $(0.6 \pm 0.0 \text{ ms})$ with sharp fast afterhyperpolarizations 13 (fAHs) and the ability to sustain high firing rates (139.9 \pm 6.8 Hz) with little to no 14 frequency adaptation (Figure 1C and Tables S3-7). These data thus identified 15 different neuronal subtypes based on their distinctive electrophysiological and 16 17 molecular features (Ascoli et al., 2008) confirming our previous classification 18 schemes (Cauli et al., 2000;Gallopin et al., 2006;Karagiannis et al., 2009).

The functional and molecular classification of cortical neurons allowed us to probe for 19 20 the single-cell expression of mRNA for KATP channel subunits in well defined 21 subpopulations. We observed consistent expression of Kir6.2 and SUR1 between the 22 different cortical neuronal subtypes (Figure 1D-F). Although the scRT-PCR 23 procedure was shown to be reliable for co-detecting all K_{ATP} channel subunits from 24 low amounts of total cortical RNAs (Figure S1A), the overall single-cell detection rates were low for Kir6.2 (n=63 of 248, 25%) and SUR1 (n=28 of 277, 10%). In 25 26 accordance to previous single-cell studies (Liss et al., 1999;Zeisel et al., 2015;Tasic 27 et al., 2016), our observation suggests an expression at a low copy number at the 28 single-cell level. Apart from a single Adapting NPY neuron (Figure 1D), where Kir6.1 mRNA was detected, our data set provide evidence that for all neocortical neuron 29 30 types the pattern of detected K_{ATP} channels mRNA expression suggested the coexpression Kir6.2 and SUR1 subunits. This implies that most cortical neurons might 31 32 be endowed with a pancreatic beta-cell like K_{ATP} channel, which might operate as a 33 metabolic sensor. We next tested this prediction with functional recordings of KATP 34 channel-mediated whole-cell currents in neocortical neurons.

1 Characterization of K_{ATP} channels in cortical neurons

To assess whether K_{ATP} channels are functional in identified cortical neurons (n=18, 2 Figure 2A), we measured the effects of different K_{ATP} channel modulators on whole-3 cell currents ($Q_{(3,18)}$ =32.665, p=3.8 x 10⁻⁷, Friedman test) and membrane resistances 4 $(Q_{(3 18)}=40.933, p=6.8 \times 10^{-9})$. Pinacidil (100 µM), a SUR2-preferring K_{ATP} channel 5 opener (Inagaki et al., 1996: Moreau et al., 2005), had little or no effect on current (4.1 6 7 ± 3.7 pA, p=0.478) and membrane resistance (-9.6 ± 3.7 %, p=0.121, Figure 2B-C). By contrast, diazoxide (300 µM), an opener acting on SUR1 and SUR2B-containing 8 K_{ATP} channels (Inagaki et al., 1996;Moreau et al., 2005), consistently induced an 9 outward current (45.0 \pm 9.6 pA, p=4.8 x 10⁻⁵) and a decrease in membrane 10 resistance $(-34.5 \pm 4.3\%, p=3.6 \times 10^{-5})$ indicative of the activation of a hyperpolarizing 11 conductance (Figure 2B-C). The sulfonylurea tolbutamide (500 µM, Figure 2B-C), a 12 13 KATP channel blocker (Ammala et al., 1996;Isomoto et al., 1996;Gribble et al., 1997; Isomoto and Kurachi, 1997), did not change whole-cell basal current (-6.6 ± 3.0 14 pA, p=0.156) or membrane resistance (20.5 \pm 7.5%, p=3.89 x 10⁻²). Converselv. 15 tolbutamide dramatically reversed diazoxide effects on both current (p=4.1 x 10⁻⁸) 16 and membrane resistance ($p=5.8 \times 10^{-10}$). 17

18

19 In virtually all neuronal subtypes (H_(6,43)=2.274, p=0.810, Kruskal–Wallis H test) or p=0.736, Student's t-test), 20 $(t_{(42)}=0.3395,$ the diazoxide-tolbutamide aroups 21 current/voltage relationship reversed very close to the theoretical potassium 22 equilibrium potential (E_{K} =-106.0 mV, Figure 2D-F) confirming the opening of a 23 selective potassium conductance. Besides its effects on plasma membrane KATP channels, diazoxide is also a mitochondrial uncoupler (Drose et al., 2006) which 24 increases reactive oxygen species (ROS) production. This might stimulate Ca²⁺ 25 sparks and large-conductance Ca²⁺-activated potassium channels (Xi et al., 2005) 26 leading to potential confounding effects. This possibility was ruled out by the 27 observation that Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 25 µM), a 28 29 ROS scavenger (D'Agostino et al., 2007), did not reduce the diazoxide-tolbutamide responses on current ($t_{(10)}=0.76559$, p=0.462, Figure S2A,B) and conductance 30 (t₍₁₀₎=1.24758, p=0.241, Figure S2A,C). 31

32

Cortical neurons exhibited K_{ATP} conductances of similar value between their subtypes ($H_{(6,63)}$ =5.6141, p=0.468) or groups ($U_{(9,54)}$ =233, p=0.855, Mann–Whitney U test,

Figures S3A,B). K_{ATP} channels activated by diazoxide essentially doubled the whole 1 cell conductance in the subthreshold membrane potential compared to control or 2 tolbutamide conditions, regardless of neuronal subtypes ($H_{(6,63)}$ =5.4763, p=0.484) or 3 groups (t₍₆₁₎=1.324, p=0.191, Figures 2G,H). Also, K_{ATP} current density was similar 4 5 $(H_{(6,63)}=4.4769, p=0.612, U_{(9,54)}=240.5, p=0.965, Figures S3C,D)$. Together with the pinacidil unresponsiveness, these data indicate that the large majority of cortical 6 7 neurons expressed functional SUR1-mediated KATP channels in a homogeneous fashion across different subpopulations. To confirm that Kir6.2 is the pore-forming 8 subunit of K_{ATP} channels in cortical neurons, we used a genetic approach based on 9 Kir6.2 knock-out mice (Miki et al., 1998). We first verified the expression of Kir6.2 and 10 11 SUR1 subunits in pyramidal cells from wild type mice by scRT-PCR (Figure 3A,B). We next used a dialysis approach by recording neurons with an ATP-free pipette 12 13 solution (Miki et al., 2001) enriched in sodium (20 mM) to stimulate submembrane ATP depletion and ADP production by the Na⁺/K⁺ ATPase, which is known to activate 14 15 K_{ATP} channels (Figure 3H). We confirmed that ATP1a1 and ATP1a3 (Figure 3B) were the main α -subunits of the Na⁺/K⁺ ATPase pump in pyramidal neurons (Zeisel et al., 16 2015;Tasic et al., 2016). Dialysis of ATP-free/20 mM Na⁺-pipette solution indeed 17 induced a standing outward current in Kir6.2^{+/+} neurons within 5 minutes (46.7 \pm 19.0 18 pA at -50 mV, n=26) that was reversing close to E_{K} (Figure 3C,E). In contrast, this 19 current was not observed in Kir6.2^{-/-} neurons (-59.9 \pm 11.9 pA, n=22, U_(26.22)=78, 20 p=2.4221 x 10⁻⁶, one-tailed, Figure 3D-G). Collectively, these data show that cortical 21 neurons predominately express functional KATP channels composed of Kir6.2 and 22 SUR1 subunits. 23

24

25 Modulation of neuronal excitability and activity by K_{ATP} channel

26 Despite their large diversity, cortical neurons display a homogenous functional 27 expression of K_{ATP} channels, questioning how these channels integrate the metabolic environment to adjust neuronal activity. To address this question, we first evaluated 28 in identified cortical neurons (n=39) the ability of KATP channels to modulate neuronal 29 excitability, notably by measuring membrane potentials ($Q_{(2,39)}$ =38.000, p=5.6 x 10⁻⁹) 30 and membrane resistances ($Q_{(2,39)}$ =40.205, p=1.9 x 10⁻⁹), as well as spiking activity 31 $(Q_{(2,39)}=28.593, p=6.2 \times 10^{-9})$. Following electrophysiological identification, the K_{ATP} 32 33 channel blocker tolbutamide was applied, which resulted in a slight depolarization $(\Delta V_m = 2.6 \pm 0.8 \text{ mV}, p = 1.74 \text{ x } 10^{-2}, Figure 4A,D)$ and increase in membrane 34

resistance ($\Delta R_m = 78 \pm 31 \text{ M}\Omega$, p=1.52 x 10⁻³, Figure 4B,E). These effects were strong enough to trigger and stimulate the firing of action potentials ($\Delta F=0.3 \pm 0.1 \text{ Hz}$, p= 9.21 x 10⁻³, Figure 4A,C,F). By contrast, diazoxide hyperpolarized cortical neurons (-4.0 ± 0.6 mV, p=1.87 x 10⁻⁴, Figure 4A,D), decreased their membrane resistance (-39 ± 23 M Ω , p=1.52 x 10⁻³, Figure 4B,E) but did alter their rather silent basal spiking activity (-0.1 ± 0.1 Hz, p=0.821, Figure 4A,C,F).

7

8 Most cortical neurons (n=32 of 39) showed modulation of neuronal excitability by 9 both K_{ATP} channel modulators and were considered to be responsive. A similar proportion of responsive neurons was observed between neuronal subtypes (Figure 10 11 S4A, $X^{2}_{(5)}=7.313$, p=0.1984) or groups (Figure S4B, p=0.9999, Fisher's exact test). The apparent relative lack of responsiveness in FS-PV interneurons (Figure S4A), 12 13 despite a whole-cell K_{ATP} conductance similar to that of other neuronal types (Figure S3A), is likely attributable to their low input resistance (Table S3) making KATP 14 channels less effective to change membrane potential. Overall, K_{ATP} channels 15 modulated membrane potential, resistance and firing rate by up to 7.6 \pm 0.9 mV, 76 \pm 16 17% and 0.5 ± 0.2 Hz, respectively. This modulation of neuronal excitability (Figure 17 18 4G-J) and activity (Figure S4C,D) was similar between neuronal subtypes or groups (Figure 4H-J and S4C-E). Thus, K_{ATP} channels modulate the excitability and activity 19 20 of all subtypes of cortical neurons.

21

22 Enhancement of neuronal activity by lactate via modulation of K_{ATP} channels

23 The uniform expression of metabolically highly sensitive K_{ATP} channels by cortical 24 neurons suggests their ability to couple the local glycolysis capacity of astrocytes with spiking activity. We therefore evaluated whether extracellular changes in 25 glucose and lactate could differentially shape the spiking activity of cortical neurons 26 through their energy metabolism and K_{ATP} channel modulation. Importantly, to 27 preserve intracellular metabolism, neurons were recorded in perforated patch-28 29 configuration. Stable firing rates of about 4 Hz inducing ATP consumption by the 30 Na⁺/K⁺ ATPase (Attwell and Laughlin, 2001) were evoked by applying a depolarizing 31 current and continuously monitored throughout changes in extracellular medium (Figure 5A, Q_(2,16)=22.625, p=1.222 x 10⁻⁵). 32

1 Decreasing extracellular glucose from 10 mM to a normoglycemic concentration of 2.5 mM (Silver and Erecinska, 1994;Hu and Wilson, 1997b) did not change firing rate 2 (Figure 5A,B, p=0.2159) of cortical neurons (n=16). By contrast, supplementing 3 extracellular 2.5 mM glucose with 15 mM lactate, a concentration observed in the 4 blood after an intense physical exercise (Quistorff et al., 2008) and corresponding to 5 the same number of carbon atoms as 10 mM glucose, roughly doubled the firing rate 6 compared to both 2.5 (p=7.829 x 10^{-4}) and 10 mM glucose (p=4.303 x 10^{-6}) 7 conditions. Firing rate enhancement by lactate was dose-dependent ($H_{(8,76)}$ = 35.142, 8 $p=1.052 \times 10^{-5}$) and reached statistical significance above 5 mM (Figure 5C). We 9 reasoned that this effect could be mediated by KATP channel closure. Indeed, the 10 increase in firing rate by lactate (209 ± 49 %) was strongly reduced by the KATP 11 channel activator diazoxide (71 \pm 18 %, p=3.346 x 10⁻³, Figure 5D). Tolbutamide 12 reversed diazoxide's effect (160 \pm 17 %, p=9.345 x 10⁻³) but did not increase firing 13 rate further (p=0.5076). This occlusion of tolbutamide's effect by 15 mM lactate also 14 15 suggests that this concentration reaches saturating levels and is the highest metabolic state that can be sensed by K_{ATP} channels. Enhancement of neuronal 16 activity by lactate was also observed in Kir6.2^{+/+} cortical neurons (147 \pm 25 %, 17 $p=2.840 \times 10^{-2}$) but not in Kir6.2^{-/-} mice (112 ± 32 %, p=0.8785, Figure 5E). These 18 19 observations indicate that lactate enhances neuronal activity via a closure of KATP 20 channels (Figure 5F).

21

22 Mechanism of lactate-sensing

To determine whether lactate-sensing involves intracellular lactate oxidative metabolism and/or extracellular activation of the lactate receptor GPR81, we next probed the expression of monocarboxylate transporters (MCT), which allow lactate uptake. Consistent with mouse RNAseq data (Zeisel et al., 2015;Tasic et al., 2016), MCT1 and MCT2 were the main transporters detected in rat cortical neurons by scRT-PCR, although with relatively low single cell detection rates (54 of 277, 19.5% and 78 of 277, 28.2%, for MCT1 and 2, respectively, Figure 6A and S5).

30 The expression of monocarboxylate transporters in cortical neurons is compatible 31 with lactate uptake and metabolism leading to the closure of K_{ATP} channels and an 32 increase in firing rate. We thus evaluated whether lactate uptake was needed for 33 lactate-sensing. We used 250 μ M α -cyano-4-hydroxycinnamic acid (4-CIN), a 34 concentration blocking lactate uptake while only moderately altering mitochondrial

pyruvate carrier in brain slices (Schurr et al., 1999;Ogawa et al., 2005;Galeffi et al., 2007). 4-CIN reversed the increased firing rate induced by lactate (Figure 6B, T(9)=0, $p=7.686 \times 10^{-3}$) indicating that facilitated lactate transport is required for K_{ATP} channel closure and in turn firing rate acceleration.

A mechanism of lactate-sensing involving an intracellular lactate oxidative 5 metabolism would also require the expression of lactate dehydrogenase (LDH), that 6 7 reversibly converts lactate and nicotinamide adenine dinucleotide (NAD⁺) to pyruvate and NADH (Figure 6E, inset). We thus also probed for the expression of LDH 8 9 subunits. LDH-A and LDH-B were observed in a large majority of cortical neurons with LDH-A being more frequent in glutamatergic neurons than in GABAergic 10 interneurons (p=1.61 x 10^{-2} , Figure 6A and S5). Nonetheless, neuron subtypes 11 analysis did not allow to disclose which populations express less frequently LDH-A. 12 13 (Figure S5). To confirm the ability of cortical neurons to take up and oxidize lactate we also visualized NADH fluorescence dynamics (Chance et al., 1962) induced by 14 15 bath application of lactate. Widefield somatic NADH fluorescence appeared as a diffuse labeling surrounding presumptive nuclei (Figure 6D). Consistent with lactate 16 17 transport by MCTs and oxidization by LDH, NADH was increased under lactate application ($U_{(61.67)}$ =196, p=1.2 10⁻¹⁸, Figure 6E-F). 18

Since the lactate receptor GPR81 has been observed in the cerebral cortex (Lauritzen et al., 2014), lactate-sensing might also involve this receptor. This possibility was ruled out by the observation that pyruvate (15 mM), which is transported by MCTs (Broer et al., 1998;Broer et al., 1999) but does not activate GPR81 (Ahmed et al., 2010), enhanced firing rate to an extent similar to that of lactate (Figure 6C, U_(16,6)=43, p=0.7468). In line with its uptake and reduction, pyruvate also decreased NADH (Figure 6E-F, U_(44,67)=868, p=2.08 x 10⁻⁴).

26 The requirement of monocarboxylate transport and the similar effect of lactate and pyruvate on neuronal activity suggest that once taken up, lactate would be oxidized 27 28 into pyruvate and metabolized by mitochondria to produce ATP, leading in turn to a 29 closure of K_{ATP} channels and increased firing rate. The apparent absence of glucose responsiveness in cortical neurons also suggests that glycolysis contributes modestly 30 to ATP production. To determine the relative contribution of glycolysis and oxidative 31 phosphorylation to ATP synthesis, we transduced the genetically encoded 32 fluorescence resonance energy transfer (FRET)-based ATP biosensor AT1.03 YEMK 33 (Imamura et al., 2009) using a recombinant Sindbis virus. AT1.03^{YEMK} fluorescence 34

was mostly observed in pyramidal shaped cells (Figure 6G), consistent with the strong tropism of this viral vector towards pyramidal neurons (Piquet et al., 2018). Blocking glycolysis with 200 μ M iodoactic acid (IAA) decreased modestly the FRET ratio by 2.9 ± 0.2% (Figure 6H, p=2.55 x 10⁻⁹). By contrast, adding potassium cyanide (KCN, 1mM), a respiratory chain blocker, reduced the FRET ratio to a much larger extent (52.3 ± 0.6%, Figure 6H, p=2.55 x 10⁻⁹). KCN also induced a strong NADH

7 fluorescence increase (Figure S6A-B, $U_{(12,42)}=0$, p=5.83 x 10⁻¹²), indicating a highly

8 active oxidative phosphorylation in cortical neurons.

1 DISCUSSION

We report that extracellular lactate and pyruvate, but not glucose, enhance the 2 3 activity of cortical neurons through a mechanism involving facilitated transport and the subsequent closure of K_{ATP} channels composed of Kir6.2 and SUR1 subunits. 4 ATP synthesis derives mostly from oxidative phosphorylation and weakly from 5 6 glycolysis in cortical neurons. Together with their ability to oxidize lactate by LDH. 7 these observations suggest that lactate is a preferred energy substrate over glucose in cortical neurons. Besides its metabolic importance lactate also appears as a 8 9 signaling molecule enhancing firing activity (Figure 7). This suggests that an efficient 10 neurovascular and neurometabolic coupling could define a time window of an up 11 state of lactate during which neuronal activity and plasticity would be locally 12 enhanced (Suzuki et al., 2011; Jimenez-Blasco et al., 2020).

13

14 K_{ATP} channel subunits in cortical neurons

15 Similarly to neurons of the hippocampal formation (Zawar et al., 1999;Cunningham et al., 2006;Sada et al., 2015) we found that, regardless of the neuronal type, most 16 17 neocortical neurons express diazoxide-sensitive, but pinacidil-insensitive KATP channels (Cao et al., 2009). In agreement with this pharmacological profile (Inagaki 18 et al., 1996) and the absence of functional KATP channels in Kir6.2^{-/-} neurons, we 19 observed Kir6.2 and SUR1 subunits as the main components of KATP channels. Their 20 21 low detection rate is presumably due to the low copy number of their mRNAs, as 22 described in single cortical neurons from mice (Zeisel et al., 2015;Tasic et al., 2016), 23 and making their observation by scRT-PCR challenging (Tsuzuki et al., 2001). Since Kir6.2 is an intronless gene, collection of the nucleus was avoided to prevent 24 potential false positives. Thus, neurons positive for both Kir6.2 and somatostatin 25 26 intron, taken as an indicator of genomic DNA (Hill et al., 2007; Devienne et al., 2018), 27 were discarded from Kir6.2 expression analysis. Unavoidably, this procedure does 28 reduce the amount of cytoplasm collected, thereby decreasing the detection rate of 29 both Kir6.2 and SUR1.

30

Consistent with the preferred expression of Kir6.1 in mural and endothelial cells (Bondjers et al., 2006;Zeisel et al., 2015;Tasic et al., 2016;Aziz et al., 2017;Vanlandewijck et al., 2018;Saunders et al., 2018), this subunit was only observed in one out of 277 cortical neurons analyzed. Similarly, SUR2B, the SUR2

variant expressed in forebrain (Isomoto et al., 1996) and cortex (Figure S1), whose
 presence is largely restricted to vascular cells (Zeisel et al., 2015), was not observed
 in cortical neurons.

4

5 Relative sensitivity of cortical neurons to glucose, lactate and pyruvate

6 Consistent with previous observations (Yang et al., 1999), decreasing extracellular 7 glucose from standard slice concentrations down to a normoglycemic level did not alter firing rates of cortical neurons. However, their activity is silenced during 8 9 hypoglycemic episodes through K_{ATP} channels activation (Yang et al., 1999;Zawar and Neumcke, 2000; Molnar et al., 2014; Sada et al., 2015). This relative glucose 10 11 unresponsiveness is in contrast with pancreatic beta cells and hypothalamic glucose-12 excited neurons whose activity is regulated over a wider range of glucose 13 concentrations by K_{ATP} channels also composed with Kir6.2 and SUR1 subunits (Aguilar-Bryan et al., 1995;Inagaki et al., 1995a;Miki et al., 1998;Yang et al., 14 15 1999; Miki et al., 2001; Tarasov et al., 2006; Varin et al., 2015). The inability of cortical 16 neurons to regulate their spiking activity at glucose levels beyond normoglycemia is 17 likely due to the lack of glucokinase, a hexokinase which catalyzes the first step of 18 glycolysis and acts as a glucose sensor in the millimolar range (German, 1993; Yang 19 et al., 1999). As earlier reported, hexokinase-1 (HK1) is the major isoform in cortical neurons (Zeisel et al., 2015; Tasic et al., 2016; Piguet et al., 2018). Since this enzyme 20 21 has a micromolar affinity for glucose and is inhibited by its product, glucose-6-22 phosphate (Wilson, 2003), HK1 is likely already saturated and/or inhibited during 23 normoglycemia thereby limiting glycolysis. Nonetheless, HK1 saturation/inhibition can be mitigated when energy consumption is high (Attwell and Laughlin, 2001;Wilson, 24 2003;Tantama et al., 2013), and then glucose can probably modulate neuronal 25 activity via a high affinity mechanism, as evidenced by slow oscillations of spiking 26 27 activity involving synaptic transmission (Cunningham et al., 2006) or by the use of 28 glucose-free whole-cell patch-clamp solution (Kawamura, Jr. et al., 2010) that mimics 29 high glucose consumption (Piquet et al., 2018; Diaz-Garcia et al., 2019).

30

Similarly to glucose-excited hypothalamic neurons (Yang et al., 1999;Song and Routh, 2005), but in contrast with pancreatic beta cells (Newgard and McGarry, 1995), cortical neurons were dose-dependently excited by lactate. This lactate sensitivity is consistent with lactate transport and oxidization in hypothalamic and

1 cortical neurons (Ainscow et al., 2002;Sada et al., 2015;Diaz-Garcia et al., 2017) 2 which are low in beta cells (Sekine et al., 1994; Pullen et al., 2011). Pyruvate had a similar effect to lactate in cortical neurons under normoglycemic condition whereas it 3 only maintains the activity of hypothalamic glucose-excited neurons during 4 hypoglycemia (Yang et al., 1999) and barely activates pancreatic beta cells (Dufer et 5 al., 2002). Thus, cortical neurons display a peculiar metabolic sensitivity to 6 7 monocarboxylates. Our data also suggest that under normoglycemic conditions a portion of K_{ATP} channels are open when cortical neurons fire action potentials. 8

9

10 Mechanism of lactate-sensing

11 Our pharmacological, molecular and genetic evidence indicates that the closure of 12 K_{ATP} channels is responsible for the firing rate enhancement by lactate. Since K_{ATP} 13 channels can be modulated by G protein-coupled receptors (Kawamura, Jr. et al., 14 2010), lactate-sensing might have been mediated by GPR81, a G_i protein-coupled 15 lactate receptor expressed in the cerebral cortex (Lauritzen et al., 2014). This 16 possibility is however unlikely since the activation of GPR81 inhibits cultured cortical 17 neurons (Bozzo et al., 2013; de Castro Abrantes H. et al., 2019) and we show here 18 that enhancing effect pyruvate on neuronal activity was similar to that of lactate, 19 although pyruvate does not activate GPR81 (Ahmed et al., 2010).

20

21 We found that lactate-sensing was critically dependent on lactate transport and we 22 confirmed the capacity of cortical neurons to take up and oxidize lactate (Bittar et al., 23 1996;Laughton et al., 2000;Bouzier-Sore et al., 2003;Wyss et al., 2011;Choi et al., 2012;Sada et al., 2015;Machler et al., 2016). LDH metabolites, including pyruvate 24 and oxaloacetate, can lead to K_{ATP} channel closure (Dhar-Chowdhury et al., 25 26 2005;Sada et al., 2015) and could mediate lactate-sensing. An intermediate role of 27 oxaloacetate in lactate-sensing is compatible with enhanced Krebs cycle and 28 oxidative phosphorylation, which leads to an increased ATP/ADP ratio and the 29 closure of K_{ATP} channels (Figure 7). In contrast to oxaloacetate, intracellular ATP was found to be ineffective for reverting K_{ATP} channel opening induced by LDH inhibition 30 (Sada et al., 2015). Interestingly, hippocampal interneurons were found to be 31 insensitive to glucose deprivation in whole cell configuration (Sada et al., 2015) but 32 not in perforated patch configuration (Zawar and Neumcke, 2000) whereas almost 33 34 the opposite was found in CA1 pyramidal cells. Whether altered intracellular

metabolism by whole-cell recording accounted for the apparent lack of ATP
 sensitivity remains to be determined.

3

Lactate as an energy substrate for neurons and an enhancer of spiking activity
 and neuronal plasticity

We confirmed that the ATP produced by cortical neurons was mostly derived from 6 7 oxidative phosphorylation and marginally from glycolysis (Almeida et al., 2001;Hall et al., 2012). Together with the enhancement of spiking activity through K_{ATP} channels 8 9 by lactate, but not by glucose, our data support both the notion that lactate is a 10 preferred energy substrate over glucose for cortical neurons (Bouzier-Sore et al., 11 2003) and the astrocyte-neuron lactate shuttle hypothesis (Pellerin and Magistretti, 12 1994). Although the local cellular origin of lactate has been recently guestioned (Lee 13 et al., 2012; Diaz-Garcia et al., 2017), a growing number of evidence indicates that 14 astrocytes are major central lactate producers (Almeida et al., 2001:Choi et al., 15 2012;Sotelo-Hitschfeld et al., 2015;Karagiannis et al., 2015;Le Douce J. et al., 16 2020; Jimenez-Blasco et al., 2020).

17 Glutamatergic synaptic transmission stimulates blood glucose uptake, astrocyte 18 glycolysis, as well as lactate release (Pellerin and Magistretti, 1994;Voutsinos-Porche 19 et al., 2003; Ruminot et al., 2011; Choi et al., 2012; Sotelo-Hitschfeld et al., 20 2015; Lerchundi et al., 2015) and diffusion through the astroglial gap junctional 21 network (Rouach et al., 2008). This indicates that local and fast glutamatergic 22 synaptic activity would be translated by astrocyte metabolism into a widespread and 23 long-lasting extracellular lactate increase (Prichard et al., 1991;Hu and Wilson, 1997a), which could in turn enhance the firing of both excitatory and inhibitory 24 25 neurons (Figure 7). Such a lactate surge would be spatially confined by the gap 26 junctionnal connectivity of the astroglial network, which in layer IV represents an 27 entire barrel (Houades et al., 2008).

This suggests that increased astrocytic lactate induced by whisker stimulation could enhance the activity of the cortical network and fine-tune upcoming sensory processing for several minutes, thereby favoring neuronal plasticity. Along this line, lactate derived from astrocyte glycogen supports both neuronal activity and long-term memory formation (Suzuki et al., 2011;Choi et al., 2012;Vezzoli et al., 2020). Similarly, cannabinoids, which notably alter neuronal processing and memory

formation (Stella et al., 1997), hamper lactate production by astrocytes (Jimenez Blasco et al., 2020).

Peripheral lactate produced by skeletal muscles during intense physical exercise and 3 consumed by the active brain (Quistorff et al., 2008) could also have a similar but 4 more global effect on neuronal processing and plasticity. Blood-borne lactate has 5 6 been shown to promote learning and memory formation via brain-derived 7 neurotrophic factor (El Hayek L. et al., 2019). It is worth noting that the production of this neurotrophin is altered in Kir6.2^{-/-} mice and impaired by a K_{ATP} channel opener 8 (Fan et al., 2016), both conditions compromising the effect of lactate on spiking 9 10 activity. Hence, the increase in astrocyte or systemic lactate could fine-tune neuronal 11 processing and plasticity in a context-dependent manner and their coincidence could 12 be potentially synergistic.

13

14 Lactate-sensing compensatory mechanisms

Since excitatory neuronal activity increases extracellular lactate (Prichard et al., 1991;Hu and Wilson, 1997a) and lactate enhances neuronal activity, such a positive feedback loop (Figure 7) suggests that compensatory mechanisms might be recruited to prevent an overexcitation of neuronal activity by lactate supply. A metabolic negative feedback mechanism could involve the impairment of astrocyte metabolism and lactate release by endocannabinoids (Jimenez-Blasco et al., 2020) produced during intense neuronal activity (Stella et al., 1997).

Another possibility would consist in a blood flow decrease that would in turn reduce the delivery of blood glucose and subsequent local lactate production and release but also blood-borne lactate. Some GABAergic interneuron subtypes (Cauli et al., 2004;Uhlirova et al., 2016;Krawchuk et al., 2019), but also astrocytes (Girouard et al., 2010), can trigger vasoconstriction and blood flow decrease when their activity is increased. This could provide a negative hemodynamic feedback restricting spatially and temporally the increase of spiking activity by lactate.

PV-expressing and SOM-expressing interneurons exhibit higher mitochondrial content and apparent oxidative phosphorylation than pyramidal cells (Gulyas et al., 2006) suggesting that interneurons would more rapidly metabolize and sense lactate than pyramidal cells. These inhibitory GABAergic interneurons might therefore silence the cortical network, thereby providing a negative neuronal feedback loop. Active decrease in blood flow is associated with a decrease in neuronal activity

(Shmuel et al., 2002;Shmuel et al., 2006;Devor et al., 2007). Vasoconstrictive
 GABAergic interneurons may underlie for both processes and could contribute to
 returning the system to a low lactate state.

4

5 **Conclusion**

6 Our data indicate that lactate is both an energy substrate for cortical neurons and a 7 signaling molecule enhancing their spiking activity. This suggests that a coordinated 8 neurovascular and neurometabolic coupling would define a time window of an up 9 state of lactate that, besides providing energy and maintenance to the cortical 10 network, would fine-tune neuronal processing and favor, for example, memory 11 formation (Suzuki et al., 2011;Kann et al., 2014;Galow et al., 2014;Jimenez-Blasco et 12 al., 2020).

13

14 **ACKNOWLEDGMENTS**

This work was supported by grants from the Human Frontier Science Program (HFSP, RGY0070/2007, BC), the Agence Nationale pour la Recherche (ANR 2011 MALZ 003 01, BC). AK was supported by a Fondation pour la Recherche Médicale fellowship (FDT20100920106). We thank the animal facility of the IBPS (Paris, France).

1 AUTHOR CONTRIBUTIONS

2 Conceptualization, T.G., J. Roeper and B.C.; Formal Analysis, J.N., B.C.;

- 3 Investigation, A.K., T.G., A.L., F.P., J.P., H.G., R.H., B.C., Resources, B.L., J.
- 4 Rossier, H.I., S.S., J. Roeper, B.C.; Writing –Original Draft, B.C.; Writing –Review &
- 5 Editing, J.N., B.L.G., R.E., D.L., B.L., J.F.S., J. Roeper, B.C., Visualization, A.K.,
- 6 B.C.; Supervision, B.C.; Project Administration, B.C., Funding Acquisition, B.C.
- 7

8 **DECLARATION OF INTERESTS**

- 9 The authors declare no competing interests.
- 10

11 STAR★METHODS

12 KEY RESOURCES TABLE

REAGENT or RESOURCE	SOURCE	IDENTIFIER
Chemicals, Peptides, and Recombinant Proteins		
Kynurenic acid	Sigma-Aldrich	K3375
Potassium D-gluconate	Sigma-Aldrich	G4500
Magnesium chloride solution	Sigma-Aldrich	M1028
EGTA	Sigma-Aldrich	E3889
HEPES	Sigma-Aldrich	H4034
Pinacidil monohydrate	Sigma-Aldrich	P154
Diazoxide	Sigma-Aldrich	D9035
Tolbutamide	Sigma-Aldrich	T0891
Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin	Millipore	475872
Gramicidin from Bacillus aneurinolyticus (Bacillus brevis)	Sigma-Aldrich	G5002
Sodium L-lactate	Sigma-Aldrich	L7022
α -Cyano-4-hydroxycinnamic Acid	Sigma-Aldrich	C2020
Sodium pyruvate	Sigma-Aldrich	P2256
Sodium iodoacetate	Sigma-Aldrich	12512
Potassium cyanide	Sigma-Aldrich	60178
Tetrodotoxin citrate	Latoxan Laboratory	L8502
Dithiothreitol	VWR	443852A
Primer "random"	Roche	11034731001
dNTPs	GE Healthcare Life Sciences	28-4065-52
Mineral Oil	Sigma-Aldrich	M5904
RNasin Ribonuclease Inhibitors	Promega	N2511
SuperScript II Reverse Transcriptase	Invitrogen	18064014
Taq DNA Polymerase	Qiagen	201205
Penicillin-Streptomycin	Sigma-Aldrich	P4333-100ML
MEGAscript™ SP6 Transcription Kit	Ambion	AM1330
Experimental Models: Cell Lines		
Baby hamster kidney-21	ATCC	CCL-10

Experimental Models: Organisms/Strains		
Rat: Wistar	Janvier Labs	jHan:WI
Mouse: Wild type C57BL/6RJ	Janvier Labs	C57BL/6RJ
Mouse: Kir6.2 knockout (KO)	Miki et al., 1998	MGI:2178821
Oligonucleotides		
PCR primer rat vGluT1 external sense: 5'-GGCTCCTTTTTCTGGGGGGTAC-3'	(Gallopin et al., 2006)	N/A
PCR primer rat/mouse vGluT1 external antisense: 5'-CCAGCCGACTCCGTTCTAAG-3'	(Gallopin et al., 2006)	N/A
PCR primer rat vGluT1 internal sense: 5'-TGGGGGTACATTGTCACTCAGA-3'	(Gallopin et al., 2006)	N/A
PCR primer rat vGluT1 internal antisense: 5'-ATGGCAAGCAGGGTATGTGAC-3'	(Gallopin et al., 2006)	N/A
PCR primer rat/mouse GAD65 external sense: 5'-CCAAAAGTTCACGGGCGG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat/mouse GAD65 external antisense: 5'- TCCTCCAGATTTTGCGGTTG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD65 internal sense: 5'-TGAGAAGCCAGCAGAGAGCG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD65 internal antisense: 5'-TGGGGTAATGGAAATCAATCACTT-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD67 external sense: 5'-ATGATACTTGGTGTGGCGTAGC-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD67 external antisense: 5'- GTTTGCTCCTCCCCGTTCTTAG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD67 internal sense: 5'-CAATAGCCTGGAAGAGAAGAGTCG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat GAD67 internal antisense: 5'-GTTTGCTCCTCCCCGTTCTTAG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NOS-1 external sense: 5'-CCTGGGGCTCAAATGGTATG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NOS-1 external antisense: 5'-CACAATCCACACCCAGTCGG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NOS-1 internal sense: 5'-CCTCCCCGCTGTGTCCAA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NOS-1 internal antisense: 5'-GAGTGGTGGTCAACGATGGTCA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CB external sense: 5'-GAAAGAAGGCTGGATTGGAG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CB external antisense: 5'-CCCACACATTTTGATTCCCTG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CB internal sense: 5'-ATGGGCAGAGAGATGATGGG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CB internal antisense: 5'-TATCATCCACGGTCTTGTTTGC-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NOS-1 internal antisense: 5'-GAGTGGTGGTCAACGATGGTCA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat PV external sense: 5'-GCCTGAAGAAAAAGAGTGCGG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat PV external antisense: 5'-GTCCCCGTCCTTGTCTCCAG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat PV internal sense: 5'-GCGGATGATGTGAAGAAGGTG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat PV internal antisense: 5'-CAGCCATCAGCGTCTTTGTT-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CR external sense: 5'-TTGATGCTGACGGAAATGGGTA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CR external antisense: 5'-CAAGCCTCCATAAACTCAGCG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CR internal sense: 5'-GCTGGAGAAGGCAAGGAAAGG-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat CR internal antisense: 5'ATTCTCTTCGGTTGGCAGGA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NPY external sense: 5'-CGAATGGGGCTGTGTGGA-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NPY external antisense: 5'-AGTTTCATTTCCCATCACCACAT-3'	(Karagiannis et al., 2009)	N/A
PCR primer rat NPY internal sense: 5'-CCCTCGCTCTATCCCTGCTC-3'	(Karagiannis et al., 2009)	N/A

PCR primer rat NPY internal antisense: 5'-GTTCTGGGGGGCATTTTCTGTG-3' PCR primer rat VIP external sense: 5'-TTATGATGTGTCCAGAAATGCGAG-3' PCR primer rat VIP external antisense: 5'- TTTTATTTGGTTTTGCTATGGAAG-3' PCR primer rat VIP internal sense: 5'-TGGCAAACGAATCAGCAGTAGC-3' PCR primer rat VIP internal antisense: 5'-GAATCTCCCTCACTGCTCCTCT-3' PCR primer rat SOM external sense: 5'-ATGCTGTCCTGCCGTCTCCA-3' PCR primer rat SOM external antisense: 5'-GCCTCATCTCGTCCTGCTCA-3' PCR primer rat SOM internal sense: 5'-GCATCGTCCTGGCTTTGGG-3' PCR primer rat SOM internal antisense: 5'-AGGCTCCAGGGCATCGTTCT-3' PCR primer rat CCK external sense: 5'-TGTCTGTGCGTGGTGATGGC-3' PCR primer rat CCK external antisense: 5'-GCATAGCAACATTAGGTCTGGGAG-3' PCR primer rat CCK internal sense: 5'-ATACATCCAGCAGGTCCGCAA-3' PCR primer rat CCK internal antisense: 5'-GGTCGTGTGCGTGGTTGTTT-3' PCR primer rat Kir6.1 external sense: 5'-CTGGCTCACAAGAACATCCG-3' PCR primer rat Kir6.1 external antisense: 5'- AGCGTCTCTGCCCTTCTGTG-3' PCR primer rat Kir6.1 internal sense: 5'-GCTGGCTGCTCTTCGCTATC-3' PCR primer rat Kir6.1 internal antisense: 5'-TTCTCCCTCCAAACCCAATG-3' PCR primer rat Kir6.2 external sense: 5'-CCCCACACGCTGCTCATTTT-3' PCR primer rat Kir6.2 external antisense: 5'-AGGAGCCAGGTCGTAGAGCG-3' PCR primer rat Kir6.2 internal sense: 5'-GCGTCACAAGCATCCACTCC-3' PCR primer rat Kir6.2 internal antisense: 5'-CCACCCACACCGTTCTCCAT-3' PCR primer rat SUR1 external sense: 5'-GGTGAAGAAGCCTCCGATGA-3' PCR primer rat SUR1 external antisense: 5'-GGTGAAGAAGCCTCCGATGA-3' PCR primer rat SUR1 internal sense: 5'-GGTTCGGTCCACTGTCAAGG-3' PCR primer rat SUR1 internal antisense: 5'-GTCAGCGTCTCCATCCGTGC-3' PCR primer rat SUR2 external sense: 5'-CGCTGCCTTTTGAGTCCTGT-3' PCR primer rat SUR2 external antisense: 5'- GATGGCAAGGAGGAGAGACG -3' PCR primer rat SUR2 internal sense: 5'-TGGACAACTACGAGCAGGCG-3' PCR primer rat SUR2 internal antisense: 5'-CACAACCCACCTGACCCACA-3' PCR primer rat SOM intron external sense: 5'-GGAAATGGCTGGGACTCGTC-3' PCR primer rat SOM intron external antisense: 5'-AAACCATGGATGATAGGAAGTCGT-3' PCR primer rat SOM intron internal sense: 5'-GTCCCCTTTGCGAATTCCCT-3' PCR primer rat SOM intron internal antisense: 5'-TTCGAGCAGCTCCATTTTCC-3' PCR primer rat SUR2A/B sense: 5'-ACTTCAGCGTTGGACAGAGACA-3' PCR primer rat SUR2A/B antisense: 5'-GGTCAGCAGTCAGAATGGTGTG-3' PCR primer mouse vGluT1 external sense: 5'-GGCTCCTTTTTCTGGGGGCTAC-3'

(Karagiannis et al., 2009)	N/A
(Karagiannis et al., 2009)	N/A
(Férézou et al., 2007)	N/A
(Karagiannis et al., 2009)	N/A
This paper	N/A
This paper	N/A
(Varin et al., 2015)	N/A
This paper	N/A
(Hill et al., 2007)	N/A
(Hill et al., 2007)	N/A
This paper	N/A
(Cabezas et al., 2013)	N/A

PCR primer mouse vGluT1 internal sense: 5'-ATTCGCAGCCAACAGGGTCT-3'	(Cabezas et al., 2013)	N/A
PCR primer mouse vGluT1 internal antisense: 5'-TGGCAAGCAGGGTATGTGAC-3'	(Cabezas et al., 2013)	N/A
PCR primer mouse GAD65 internal sense: 5'-CACCTGCGACCAAAAACCCT-3'	(Perrenoud et al., 2012)	N/A
PCR primer mouse GAD65 internal antisense: 5'-GATTTTGCGGTTGGTCTGCC-3'	(Perrenoud et al., 2012)	N/A
PCR primer mouse GAD67 external sense: 5'-TACGGGGTTCGCACAGGTC-3'	(Férézou et al., 2002)	N/A
PCR primer mouse GAD67 external antisense: 5'-CCCAGGCAGCATCCACAT-3'	(Cabezas et al., 2013)	N/A
PCR primer mouse GAD67 internal sense: 5'- CCCAGAAGTGAAGACAAAAGGC-3'	(Cabezas et al., 2013)	N/A
PCR primer mouse GAD67 internal antisense: 5'-AATGCTCCGTAAACAGTCGTGC-3'	(Cabezas et al., 2013)	N/A
PCR primer mouse ATP1α1 external sense: 5'-CAGGGCAGTGTTTCAGGCTAA-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α1 external antisense: 5'-CCGTGGAGAAGGATGGAGC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α1 internal sense: 5'-TAAGCGGGCAGTAGCGGG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α1 internal antisense: 5'-AGGTGTTTGGGCTCAGATGC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α2 external sense: 5'-AGTGAGGAAGATGAGGGACAGG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α2 external antisense: 5'-ACAGAAGCCCAGCACTCGTT-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α2 internal sense: 5'-AAATCCCCTTCAACTCCACCA-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α2 internal antisense: 5'-GTTCCCCAAGTCCTCCCAGC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α3 external sense: 5'-CGGAAATACAATACTGACTGCGTG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α3 external antisense: 5'-GTCATCCTCCGTCCCTGCC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α3 internal sense: 5'-TGACACACAGTAAAGCCCAGGA-3'	(Devienne et al., 2018)	N/A
PCR primer mouse ATP1α3 internal antisense: 5'-CCACAGCAGGATAGAGAAGCCA-3'	(Devienne et al., 2018)	N/A
PCR primer mouse Kir6.2 external sense: 5'- CGGAGAGGGCACCAATGT-3'	(Devienne et al., 2018)	N/A
PCR primer mouse Kir6.2 external antisense: 5'-CACCCACGCCATTCTCCA-3'	(Devienne et al., 2018)	N/A
PCR primer mouse Kir6.2 internal sense: 5'-CATCCACTCCTTTTCATCTGCC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse Kir6.2 internal antisense: 5'-TCGGGGCTGGTGGTCTTG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse SUR1 external sense: 5'-CAGTGTGCCCCCCGAGAG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse SUR1 external antisense: 5'-GGTCTTCTCCCTCGCTGTCTG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse SUR1 internal sense: 5'-ATCATCGGAGGCTTCTTCACC-3'	(Devienne et al., 2018)	N/A
PCR primer mouse SUR1 internal antisense: 5'-GGTCTTCTCCCTCGCTGTCTG-3'	(Devienne et al., 2018)	N/A
PCR primer mouse SOM intron external sense: 5'-CTGTCCCCCTTACGAATCCC-3'	(Thoby-Brisson et al., 2003)	N/A
PCR primer mouse SOM intron external antisense: 5'-CCAGCACCAGGGATAGAGCC-3'	(Thoby-Brisson et al., 2003)	N/A
PCR primer mouse SOM intron internal sense: 5'-CTTACGAATCCCCCAGCCTT-3'	(Cea-del Rio et al., 2010)	N/A
PCR primer mouse SOM intron internal antisense: 5'-TTGAAAGCCAGGGAGGAACT-3'	(Cea-del Rio et al., 2010)	N/A
PCR primer rat MCT1 external sense: 5'-GTCAGCCTTCCTCCTTTCCA-3'	This paper	N/A
PCR primer rat MCT1 external antisense: 5'-TCCGCTTTCTGTTCTTTGGC-3'	This paper	N/A
PCR primer rat MCT1 internal sense: 5'-TTGTTGCGAATGGAGTGTGC-3'	This paper	N/A
PCR primer rat MCT1 internal antisense: 5'-CACGCCACAAGCCCAGTATG-3'	This paper	N/A
0 010000101100000011110-0		

PCR primer rat MCT2 external sense: 5'-GCGAAGTCTAAAAGTAAGGTTGGC-3'	This paper	N/A
PCR primer rat MCT2 external antisense: 5'-ATTTACCAGCCAGGGGAGGG-3'	This paper	N/A
PCR primer rat MCT2 internal sense: 5'-CCGTATGCTAAGGACAAAGGAGT-3'	This paper	N/A
PCR primer rat MCT2 internal antisense: 5'-GGGAAGAACTGGGCAACACT-3'	This paper	N/A
PCR primer rat MCT4 external sense: 5'-CATTGGTCTCGTGCTGCTGT-3'	This paper	N/A
PCR primer rat MCT4 external antisense: 5'-CCCCGTTTTTCTCAGGCTCT-3'	This paper	N/A
PCR primer rat MCT4 internal sense: 5'-TGTGGCTGTGCTCATCGGAC-3'	This paper	N/A
PCR primer rat MCT4 internal antisense: 5'-CCTCTTCCTCTCCCGATGC-3'	This paper	N/A
PCR primer rat LDH-A external sense: 5'-GAAGAACAGGTCCCCCAGAA-3'	This paper	N/A
PCR primer rat LDH-A external antisense: 5'-GGGTTTGAGACGATGAGCAGT-3'	This paper	N/A
PCR primer rat LDH-A internal sense: 5'-CAGTTGTTGGGGTTGGTGCT-3'	This paper	N/A
PCR primer rat LDH-A internal antisense: 5'-TCTCCCCTCTTGCTGACGG-3'	This paper	N/A
PCR primer rat LDH-B external sense: 5'-ACTGCCGTCCCGAACAACAA-3'	This paper	N/A
PCR primer rat LDH-B external antisense: 5'-ACTCTCCCCCTCCTGCTGG-3'	This paper	N/A
PCR primer rat LDH-B internal sense: 5'-TCTGGGGAAGTCTCTGGCTGA-3'	This paper	N/A
PCR primer rat LDH-B internal antisense: 5'-TTGGCTGTCACGGAGTAATCTTT-3'	This paper	N/A
Recombinant DNA		
pcDNA-ATeam1.03YEMK	(Imamura et al., 2009)	N/A
pSinRep5 plasmid	Invitrogen	K750-01
pDH(26S) helper plasmid	Invitrogen	K750-01
pDH(26S) helper plasmid Software and Algorithms	Invitrogen	K750-01
	Invitrogen Molecular Devices	K750-01 https://www.molecular devices.com
Software and Algorithms		https://www.molecular
Software and Algorithms Pclamp 10.2	Molecular Devices	https://www.molecular devices.com https://fr.mathworks.c
Software and Algorithms Pclamp 10.2 Matlab 2018b	Molecular Devices MathWorks	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7	Molecular Devices MathWorks Statsoft GraphPad	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012)	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012)	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0Other	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ https://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W CoolSnap HQ2	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Roper Scientific	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W CoolSnap HQ2 Axopatch 200B	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Roper Scientific Molecular Devices	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W CoolSnap HQ2 Axopatch 200B Digidata 1440A	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Roper Scientific Molecular Devices Molecular Devices	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ https://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W CoolSnap HQ2 Axopatch 200B Digidata 1440A S900 stimulator	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Roper Scientific Molecular Devices Molecular Devices Dagan corporation	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and Algorithms Pclamp 10.2 Matlab 2018b Statistica 6.1 GraphPad Prism 7 ImagingWorkbench 6.0.25 FIJI Image-Pro Analyzer 7.0 Other VT1000S BX51WI WI-DPMC LUMPlan FI /IR 60x/0.90 W LUMPlan FI /IR 40x/0.80 W CoolSnap HQ2 Axopatch 200B Digidata 1440A S900 stimulator pE-2	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Roper Scientific Molecular Devices Molecular Devices Dagan corporation CoolLED	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0OtherVT1000SBX51WIWI-DPMCLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 40x/0.80 WCoolSnap HQ2Axopatch 200BDigidata 1440AS900 stimulatorpE-2FF395/495/610-Di01-25x36	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Olympus Roper Scientific Molecular Devices Molecular Devices Dagan corporation CoolLED Semrock	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0OtherVT1000SBX51WIWI-DPMCLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 40x/0.80 WCoolSnap HQ2Axopatch 200BDigidata 1440AS900 stimulatorpE-2FF395/495/610-Di01-25x36FF01-425/527/685-25	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Doly	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0OtherVT1000SBX51WIWI-DPMCLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 40x/0.80 WCoolSnap HQ2Axopatch 200BDigidata 1440AS900 stimulatorpE-2FF395/495/610-Di01-25x36FF01-425/527/685-25780 nm Collimated LED	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Dagan corporation CoolLED Semrock Semrock Semrock	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0OtherVT1000SBX51WIWI-DPMCLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 40x/0.80 WCoolSnap HQ2Axopatch 200BDigidata 1440AS900 stimulatorpE-2FF395/495/610-Di01-25x36FF01-425/527/685-25780 nm Collimated LEDDodt Gradient Contrast	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Dagan corporation Cooll ED Semrock Semrock Semrock Thorlabs Luigs and Neumann	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/
Software and AlgorithmsPclamp 10.2Matlab 2018bStatistica 6.1GraphPad Prism 7ImagingWorkbench 6.0.25FIJIImage-Pro Analyzer 7.0OtherVT1000SBX51WIWI-DPMCLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 60x/0.90 WLUMPlan FI /IR 40x/0.80 WCoolSnap HQ2Axopatch 200BDigidata 1440AS900 stimulatorpE-2FF395/495/610-Di01-25x36FF01-425/527/685-25780 nm Collimated LED	Molecular Devices MathWorks Statsoft GraphPad INDEC Systems (Schindelin et al., 2012) MediaCybernetics Leica Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Olympus Dagan corporation CoolLED Semrock Semrock Semrock	https://www.molecular devices.com https://fr.mathworks.c om/ http://www.statsoft.co m/Products/STATISTI CA-Features https://www.graphpad .com/ http://www.indecbiosy stems.com https://fiji.sc/Fiji http://www.mediacy.c om/ N/A N/A N/A N/A N/A N/A N/A N/A N/A N/

Millicell	Millipore	PICM0RG50
FF02-438/24-25	Semrock	N/A
FF458-Di02-25x36	Semrock	N/A
FF01-483/32-25	Semrock	N/A
FF01-542/27-25	Semrock	N/A
Lambda 10B	Sutter Instruments	N/A

LEAD CONTACT AND MATERIALS AVAILABILITY 1

2 Further information and requests for resources and reagents should be directed to,

and will be fulfilled by, the lead contact, B. Cauli (bruno.cauli@upmc.fr). 3

4

EXPERIMENTAL MODEL AND SUBJECT DETAILS 5

6 Wistar rats, C57BL/6RJ or Kir6.2 KO mice were used for all experiments in 7 accordance with French regulations (Code Rural R214/87 to R214/130) and 8 conformed to the ethical guidelines of both the European Economic Community (86/609/EEC) and the French National Charter on the ethics of animal 9 experimentation. A maximum of 3 rats or 5 mice were housed per cage and single 10 11 animal housing was avoided. Male rats and mice of both genders were housed on a 12-hour light/dark cycle in a temperature-controlled (21–25°C) room and were given 12 food and water ad libitum. Animals were used for experimentation at 13-24 days of 13

14 age.

1 METHOD DETAILS

2 Cortical slice preparation

Rats or mice were deeply anesthetized with isoflurane. After decapitation brains were quickly removed and placed into cold (~4°C) oxygenated artificial cerebrospinal fluid (aCSF) containing (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 2 CaCl₂, 1 MgCl₂, 26 NaHCO₃, 10 glucose, 15 sucrose, and 1 kynurenic acid. Coronal slices (300 μ m thick) containing the barrel cortex were cut with a vibratome (VT1000S, Leica) and allowed to recover at room temperature for at least 1h in aCSF saturated with O₂/CO₂ (95 %/5 %) as previously described (Karagiannis et al., 2009;Devienne et al., 2018).

10

11 Whole-cell patch-clamp recording

12 Patch pipettes (4-6 M Ω) pulled from borosilicate glass were filled with 8 μ I of RNAse 13 free internal solution containing in (mM): 144 K-gluconate, 3 MgCl₂, 0.5 EGTA, 10 HEPES, pH 7.2 (285/295 mOsm). Whole-cell recordings were performed at 25.3 ± 14 15 0.2°C using a patch-clamp amplifier (Axopatch 200B, Molecular Devices). Data were filtered at 5-10 kHz and digitized at 50 kHz using an acquisition board (Digidata 1440, 16 17 Molecular Devices) attached to a personal computer running pCLAMP 10.2 software 18 package (Molecular Devices). For ATP washout experiments neurons were recorded 19 in voltage clamp mode using an ATP-free internal solution containing in (mM): 140 KCl, 20 NaCl, 2 MgCl₂, 10 EGTA, 10 HEPES, pH 7.2. 20

21

22 Cytoplasm harvesting and scRT-PCR

23 At the end of the whole-cell recording, lasting less than 15 min, the cytoplasmic content was aspirated in the recording pipette. The pipette's content was expelled 24 into a test tube and reverse transcription (RT) was performed in a final volume of 10 25 26 µl, as described previously (Lambolez et al., 1992). The scRT-PCR protocol was 27 designed to probe simultaneously the expression of neuronal markers, K_{ATP} channels 28 subunits or some key elements of energy metabolism. Two-steps amplification was 29 performed essentially as described (Cauli et al., 1997;Devienne et al., 2018). Briefly, cDNAs present in the 10 µl reverse transcription reaction were first amplified 30 simultaneously using all external primer pairs listed in the Key Ressources Table. 31 Tag polymerase and 20 pmol of each primer were added to the buffer supplied by the 32 manufacturer (final volume, 100 µl), and 20 cycles (94°C, 30 s; 60°C, 30 s; 72°C, 35 33 34 s) of PCR were run. Second rounds of PCR were performed using 1 µl of the first

1 PCR product as a template. In this second round, each cDNA was amplified 2 individually using its specific nested primer pair (Key Ressources Table) by 3 performing 35 PCR cycles (as described above). 10 μ l of each individual PCR 4 product were run on a 2 % agarose gel stained with ethidium bromide using Φ X174 5 digested by *Hae*III as a molecular weight marker.

6

7 Perforated patch-clamp recording

Gramicidin stock solution (2 mg/ml, Sigma-Aldrich) was prepared in DMSO and 8 9 diluted to 10-20 µg/ml (Zawar and Neumcke, 2000) in the RNAse free internal 10 solution described above. The pipette tip was filled with gramicidin-free solution. 11 Progress in perforation was evaluated by monitoring the capacitive transient currents 12 elicited by -10 mV voltage pulses from a holding potential of -60 mV. In perforated 13 patch configuration, a continuous current (52 \pm 7 pA) was injected to induce the spiking of action potentials at stable firing rates of 4.1 ± 0.4 Hz obtained after an 14 15 equilibration period of 3.6 ± 0.5 min. Membrane and access resistance were continuously monitored by applying -50 pA hyperpolarizing current pulses lasting 1 s 16 17 every 10 s using an external stimulator (S900, Dagan) connected to the amplifier. 18 Recordings were stopped when going into whole-cell configuration occurred, as 19 evidenced by sudden increase of spike amplitude and decrease of access 20 resistance.

21

22 NADH imaging

23 Recordings were made in layer II-III of the rat somatosensory cortex. Wide-field 24 fluorescent images were obtained using a double port upright microscope BX51WI, 25 WI-DPMC, Olympus) with a 60x objective (LUMPlan FI /IR 60x/0.90 W, Olympus) 26 and a digital camera (CoolSnap HQ2, Roper Scientific) attached on the front port of 27 the microscope. NADH autofluorescence was obtained by 365 nm excitation with a 28 Light Emitting Device (LED, pE-2, CoolLED) using Imaging Workbench 6.0.25 29 software (INDEC Systems) and dichroic (FF395/495/610-Di01-25x36, Semrock) and emission filters (FF01-425/527/685-25, Semrock). Infrared Dodt gradient contrast 30 images (IR-DGC, (Dodt and Zieglgansberger, 1998)) were obtained using a 780 nm 31 32 collimated LED (M780L3-C1, Thorlabs) as a transmitted light source and DGC optics (Luigs and Neumann). Autofluorescence and IR-DGC images were collected every 33 34 10s by alternating the fluorescence and transmitted light sources. In parallel, infrared

transmitted light images of slices were also continuously monitored on the back-port of the microscope using a customized beam splitter (725 DCSPXR, Semrock) and an analogic CCD camera (XC ST-70 CE, Sony). The focal plane was maintained constant on-line using infrared DGC images of cells as anatomical landmarks (Lacroix et al., 2015).

6

7 Subcloning and viral production

The coding sequence of the ATP sensor ATeam1.03YEMK (Imamura et al., 2009) 8 9 was subcloned into the viral vector pSinRep5. Sindbis virus was produced as previously described (Piquet et al., 2018). Recombinant pSinRep5 and helper 10 11 plasmid pDH26S (Invitrogen) were transcribed in vitro into capped RNA using the Megascript SP6 kit (Ambion). Baby hamster kidney-21 cells (ATCC) were 12 electroporated with sensor-containing RNA and helper RNA (2.10⁷ cells, 950 µF, 230 13 V) and incubated for 24 h at 37°C in 5% CO₂ in Dulbecco's modified Eagle Medium 14 15 supplemented with 5% fetal calf serum before collecting cell supernatant containing the viruses. The virus titer (10⁸ infectious particles/ml) was determined after counting 16 17 fluorescent baby hamster kidney cells infected using serial dilution of the stock virus.

18

19 Brain slice viral transduction

Brain slices were placed onto a millicell membrane (Millipore) with culture medium 20 21 (50% minimum essential medium, 50% Hank's balanced salt sodium, 6.5 g/l glucose 22 and 100 U/ml penicillin-streptomycin (Sigma-Aldrich) as previously described (Piquet 23 et al., 2018). Infection was performed by adding $\sim 5 \times 10^5$ particles per slice. Slices were incubated overnight at 35°C in 5% CO2. The next morning, brain slices were 24 equilibrated for 1h in aCSF containing (in mM): 126 NaCl, 2.5 KCl, 1.25 NaH₂PO₄, 2 25 26 CaCl₂, 1 MgCl₂, 26 NaHCO₃, 10 glucose, 15 sucrose. Slices were then placed into the recording chamber, heated at ~30 °C and continuously perfused at 1-2 ml/min. 27

28

29 **FRET imaging**

Recordings were made from visually identified pyramidal cells in layer II-III of the rat somatosensory cortex. Wide-field fluorescent images were obtained using a 40x objective and a digital camera attached on the front port of the microscope. The ATP sensor ATeam1.03YEMK was excited at 400 nm with a LED using Imaging Workbench 6.0.25 software and excitation (FF02-438/24-25, Semrock) and dichroic

filters (FF458-Di02-25x36, Semrock). Double fluorescence images were collected
every 15s by alternating the fluorescence emission filters for the CFP (FF01-483/3225, Semrock) and the YFP (FF01-542/27-25, Semrock) using a filter wheel (Lambda
10B, Sutter Instruments). The focal plane was maintained constant on-line as
described above.

6

7 Pharmacological studies

Pinacidil (100 µM, Sigma-Aldrich); Diazoxide (300 µM, Sigma-Aldrich) and 8 9 Tolbutamide (500 µM, Sigma-Aldrich), Mn(III)tetrakis(1-methyl-4-pyridyl)porphyrin (MnTMPyP, 25 μM, Millipore), α-cyano-4-hydroxycinnamate (4-CIN, 250 μM, Sigma-10 Aldrich); iodoacetic acid (IAA, 200 µM, Sigma-Aldrich) or KCN (1 mM, Sigma-Aldrich) 11 was dissolved in aCSF from stock solutions of pinacidil (100 mM; NaOH 1M), 12 diazoxide (300 mM; NaOH 1M), tolbutamide (500 mM; NaOH 1M), 4-CIN (250 mM; 13 14 DMSO), IAA (200 mM, water) and KCN (1 M, water). Changes in extracellular 15 glucose, lactate or pyruvate concentration were compensated by changes in sucrose 16 concentration to maintain the osmolarity of the aCSF constant as previously 17 described (Miki et al., 2001; Varin et al., 2015; Piquet et al., 2018) and pH was 18 adjusted to 7.4.

19

20 QUANTIFICATION AND STATISTICAL ANALYSIS

21 Analysis of somatic features

The laminar location determined by infrared videomicroscopy and recorded as 1-4 according to a location right within layers I, II/III or IV. For neurons located at the border of layers I-II/III and II/III-IV, the laminar location was represented by 1.5 and 3.5, respectively. Somatic features were measured from IR DGC of the recorded neurons. Briefly, the soma was manually delineated using Image-Pro Analyzer 7.0 software (MediaCybernetics) and length of major and minor axes, perimeter and area were extracted. The soma elongation was calculated as the ratio between major and

*perimeter*²

minor axis. Roundness was calculated according to: $4\pi \times area$; a value close to 1 is indicative of round somata.

1 Analysis of electrophysiological properties

32 electrophysiological properties chosen to describe the electrophysiological 2 3 diversity of cortical neurons (Ascoli et al., 2008) were determined using the I-clamp fast mode of the amplifier as previously described (Karagiannis et al., 2009). 4 Membrane potential values were corrected for theoretical liquid junction potential (-5 6 15.6 mV). Resting membrane potential was measured just after passing in whole-cell 7 configuration, and only cells with a resting membrane potential more negative than -8 55 mV were analyzed further. Membrane resistance (R_m) and membrane time 9 constant (τ_m) were determined on responses to hyperpolarizing current pulses (duration, 800 ms) eliciting voltage shifts of 10-15 mV negative to rest (Kawaguchi, 10 1993;Kawaguchi, 1995). Time constant was determined by fitting this voltage 11 12 response to a single exponential. Membrane capacitance (C_m) was calculated according to $C_m = \tau_m/R_m$. Sag index was quantified as a relative decrease in 13 membrane conductance according to (G_{sag}-G_{hvp})/G_{sag} (Halabisky et al., 2006) where 14 G_{hyp} and G_{sag} correspond to the whole-cell conductance when the sag was inactive 15 and active, respectively. G_{sag} was measured as the slope of the linear portion of a 16 current-voltage (I-V) plot, where V was determined at the end of 800 ms 17 18 hyperpolarizing current pulses (-100 to 0 pA) and G_{hyp} as the slope of the linear 19 portion of an I–V plot, where V was determined as the maximal negative potential 20 during the 800 ms hyperpolarizing pulses. Rheobase was quantified as the minimal 21 depolarizing current pulse intensity (800 ms duration pulses, 10 pA increments) 22 generating at least one action potential. First spike latency (Gupta et al., 2000;Ascoli 23 et al., 2008) was measured at rheobase as the time needed to elicit the first action 24 potential. To describe different firing behaviors near threshold, spike frequency was 25 measured near spike threshold on the first trace in which at least three spikes were 26 triggered. Instantaneous discharge frequencies were measured and fitted to a 27 straight line according to $F_{threshold} = m_{threshold} t + F_{min.}$, where $m_{threshold}$ is the slope termed adaptation, t the time and F_{min}, the minimal steady state frequency. Analysis 28 29 of the action potentials waveforms was done on the first two spikes. Their amplitude (A1 and A2) was measured from threshold to the positive peak of the spike. Their 30 31 duration (D1 and D2) was measured at half amplitude (Kawaguchi, 1993;Cauli et al., 1997). Their amplitude reduction and the duration increase were calculated 32 according to (A1-A2)/A1 and (D2-D1)/D1, respectively (Cauli et al., 1997;Cauli et al., 33 34 2000). The amplitude and the latency of the fast and medium afterhyperpolarization

1 (fAH and mAH) were measured for the first two action potentials as the difference 2 between spike threshold and the negative peak of the AHs (Kawaguchi, 1993). The 3 amplitude and latency of afterdepolarization (AD) following single spikes (Haj-4 Dahmane and Andrade, 1997) were measured as the difference between the negative peak of the fAH and the peak of the AD and between the spike threshold 5 6 and the peak of the AD, respectively. When neurons did not exhibit mAH or AD, 7 amplitude and latency were arbitrarily set to 0. A complex spike amplitude accommodation during a train of action potentials, consisting in a transient decrease 8 9 of spikes amplitude, was measured as the difference between the peak of the 10 smallest action potential and the peak of the following largest action potential (Cauli 11 et al., 2000). Maximal firing rate was defined as the last trace before prominent 12 reduction of action potentials amplitude indicative of a saturated discharge. To take 13 into account the biphasic spike frequency adaptation (early and late) occurring at high firing rates (Cauli et al., 1997;Cauli et al., 2000;Gallopin et al., 2006), 14 15 instantaneous firing frequency was fitted to a single exponential (Halabisky et al., 2006) with a sloping baseline, according to : $F_{Saturation} = A_{sat} \cdot e^{-t/\tau_{sat}} + t \cdot m_{sat} + F_{max}$, where 16 17 A_{sat} corresponds to the amplitude of early frequency adaptation, τ_{sat} to the time constant of early adaptation, m_{sat} to the slope of late adaptation and F_{max} to the 18 19 maximal steady state frequency.

20

21 Unsupervised clustering

22 To classify neurons unsupervised clustering was performed using the laminar 23 location of the soma, 10 molecular parameters (vGluT1, GAD65 and/or GAD67, 24 NOS-1, CB, PV, CR, NPY, VIP, SOM and CCK) and the 32 electrophysiological parameters described above. Neurons positive for GAD65 and/or GAD67 were 25 denoted as GAD positive and these mRNAs were considered as a single molecular 26 variable as previously described (Gallopin et al., 2006). Parameters were 27 standardized by centering and reducing all of the values. Cluster analysis was run on 28 29 Statistica 6.1 software (Statsoft) using Ward's method (Ward, 1963). The final 30 number of clusters was established by hierarchically subdividing the clustering tree 31 into higher order clusters as previously described (Karagiannis et al., 2009).

32

1 Analysis of voltage clamp recordings

Whole-cell currents were measured from a holding potential of -70 mV and 2 3 membrane resistances were determined by applying a voltage step to -60 mV of 100 ms every 5 s. The effects of K_{ATP} channel modulators were measured at the end of 4 drug application by averaging, over a period of 1 minute, whole cell currents and 5 changes in membrane resistance relative to control baseline prior to the application 6 7 of drugs. Whole-cell K_{ATP} current and conductance were determined by subtracting current and conductance measured under KATP channel activator by their value 8 9 measured under K_{ATP} channel blocker. The relative whole-cell K_{ATP} conductance was 10 determined by dividing the whole-cell K_{ATP} conductance by the whole cell 11 conductance measured under K_{ATP} channel activator. Whole-cell K_{ATP} current density 12 was determined by dividing the whole-cell K_{ATP} current by the membrane 13 capacitance. KATP current reversal potential was measured by subtracting I/V 14 relationships obtained during voltage ramps from -60 to -130 mV determined under 15 K_{ATP} channel activator and blocker, respectively.

During ATP washout experiments, whole-cell currents and I/V relationships were measured every 10 s at a holding potential of -50 mV and during voltage ramps from -40 to -120 mV, respectively. Washout currents were determined by subtracting the whole-cell currents measured at the beginning and the end of the whole cellrecording, respectively.

21

22 Analysis of current clamp recordings

23 Every 10 s, membrane potential and mean firing rate were measured and membrane 24 resistances were determined from voltage responses induced by -50 pA currents pulses lasting 1 s. K_{ATP} voltage response and changes in membrane resistance and 25 26 firing rate were determined by subtracting their value measured under K_{ATP} channel 27 activator by their value measured under KATP channel blocker. Neurons were 28 considered as responsive to K_{ATP} channel modulators if the K_{ATP} channel activator 29 induced both a hyperpolarization and a decrease in membrane resistance reversed 30 by the K_{ATP} channel blocker.

31

32 Analysis of perforated patch recordings

Mean firing frequency was measured every 10 s. Quantification of spiking activity was determined by averaging firing frequency over a period of 5 min preceding a

change in extracellular aCSF composition. Firing frequencies were normalized by the
 averaged mean firing frequency measured under control condition.

3

4 NADH imaging

Shading correction was applied off-line on the NADH autofluorescence images using 5 6 the "Shading Corrector" plugin of FIJI software (Schindelin et al., 2012) and a blank 7 field reference image. To compensate for potential x-y drifts all IR-DGC images were realigned off-line using the "StackReg" and "TurboReg" plugins (Thevenaz et al., 8 9 1998) of FIJI software and the same registration was applied to the corrected 10 NAD(P)H autofluorescence images. To determine somatic regions of interest (ROIs) 11 the soma was manually delineated on IR-DGC images. The mean NADH 12 autofluorescence was measured at each time point using the same ROIs. Variations 13 of fluorescence intensity were expressed as the ratio (F-F0)/F0 where F corresponds to the mean fluorescence intensity in the ROI at a given time point, and FO 14 15 corresponds to the mean fluorescence intensity in the same ROI during the 5 min control baseline prior to changes in aCSF composition. Effect of monocarboxylate 16 17 superfusion or oxidative phosphorylation blockade was quantified by averaging the 18 normalized ratio (R/R0) during the last five minutes of drug application.

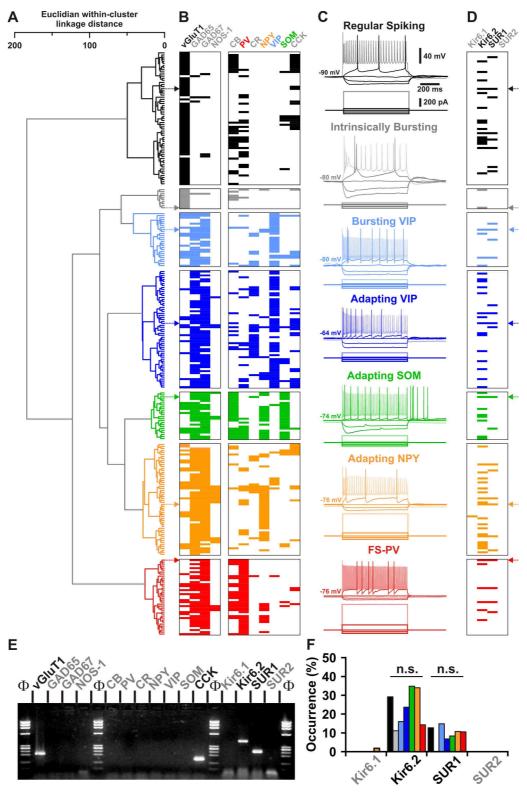
19

20 FRET imaging

21 All images were realigned off-line as described above using the YFP images as the 22 reference for registration. Fluorescence ratios were calculated by dividing the 23 registered YFP images by the registered CFP images using FIJI. The somatic ROIs were manually delineated on the YFP images as described above. The mean ratio 24 25 was measured at each time point using the same ROIs. Variations of fluorescence 26 ratio were expressed as the ratio (R-R0)/R0 where R corresponds to the 27 fluorescence ratio in the ROI at a given time point, and R0 corresponds to the mean 28 fluorescence ratio in the same ROI during the 10 min control baseline prior to drug 29 application. Effect of glycolysis or oxidative phosphorylation blockade was quantified 30 by averaging the normalized ratio during the last five minutes of drug application.

31

1 Statistical analysis

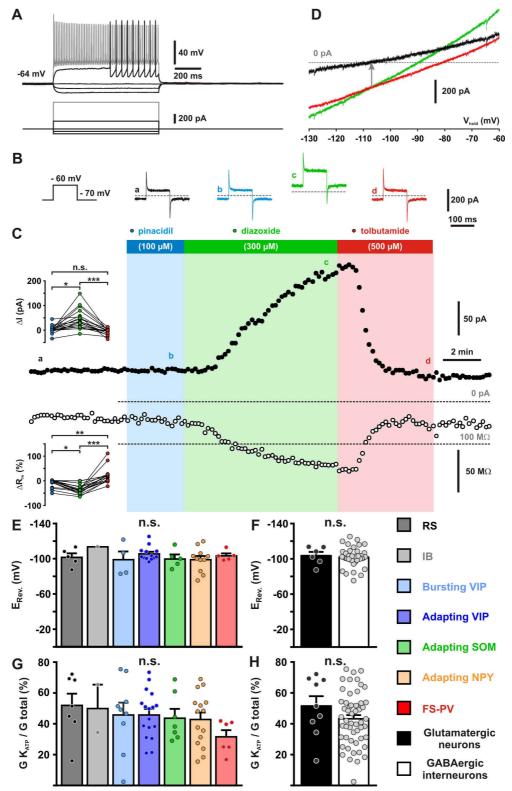

Statistical analyses were performed with Statistica 6.1 and GraphPad Prism 7. All values are expressed as means \pm s.e.m. Normality of distributions and equality of variances were assessed using the Shapiro–Wilk test and the Fisher F-test, respectively. Parametric tests were only used if these criteria were met. Holm-Bonferroni correction was used for multiple comparisons and p-values are given as uncorrected. Statistical significance on all figures uses the following convention of corrected p-values: * p <0.05, ** p < 0.01, *** p <0.001.

9 Statistical significance of morphological and electrophysiological properties of neurons was determined using the Mann-Withney U test. Comparison of the 10 11 occurrence of expressed genes and of responsiveness of K_{ATP} channel modulators 12 between different cell types was determined using Fisher's exact test. Statistical 13 significance of the effects of K_{ATP} channel modulators was determined using the Friedman and post hoc Dunn's tests. Significance of the effect of the ROS scavenger 14 15 was determined using one-tailed unpaired student t-test. Comparison of K_{ATP} channel properties was determined using Mann-Withney U, Student-t, or Kruskal-Wallis H 16 tests. Comparison of responses between Kir6.2^{+/+} and Kir6.2^{-/-} neurons was 17 determined using Mann-Withney U test. Statistical significance of the effects of 18 19 energy substrates and drug applications on evoked firing in perforated patch recordings was determined using Friedman and Dunn's tests. Comparison of the 20 21 effects of monocarboxylates and cyanide on NADH fluorescence was determined using Mann-Withney U test. Statistical significance of the effects of metabolic 22 inhibitors on intracellular ATP was determined using Friedman and Dunn's tests. 23

1 FIGURE LEGENDS

2 Figure 1. Cortical neuron subtypes express Kir6.2 and SUR1 K_{ATP} channel

3 subunits.


(A) Ward's clustering of 277 cortical neurons (left panel). The x axis represents the
 average within-cluster linkage distance, and the y axis the individuals.

3 (B) Heatmap of gene expression across the different cell clusters. For each cell, colored and white rectangles indicate presence and absence of genes, respectively. 4 5 (C) Representative voltage responses induced by injection of current pulses (bottom traces) corresponding to -100, -50 and 0 pA, rheobase and intensity inducing a 6 7 saturating firing frequency (shaded traces) of a Regular Spiking neuron (black), an Intrinsically Bursting neuron (gray), a Bursting VIP interneuron (light blue), an 8 9 Adapting VIP interneuron (blue), an Adapting SOM interneuron (green), an Adapting NPY interneuron (orange), and a Fast Spiking-Parvalbumin interneuron (FS-PV, red). 10 11 The colored arrows indicate the expression profiles of neurons whose firing pattern is 12 illustrated in (C). 13 (D) Heatmap of the expression of the subunits of the K_{ATP} channels in the different 14 clusters.

- 15 (E) scRT-PCR analysis of the RS neuron depicted in (A-D).
- 16 (F) Histograms summarizing the expression profile of K_{ATP} channel subunits in
- 17 identified neuronal types. n.s. not statistically significant.
- 18

1 Figure 2. Pharmacological and biophysical characterization of K_{ATP} channels in

2 cortical neurons.

4 5

(A) Representative voltage responses of a FS-PV interneuron induced by injection of
 current pulses (bottom traces).

3 (B) Protocol of voltage pulses from -70 to -60 mV (left trace). Responses of whole-

4 cell currents in the FS-PV interneurons shown in (A) in control condition (black) and

5 in presence of pinacidil (blue), piazoxide (green) and tolbutamide (red) at the time 6 indicated by a-d in (C).

7 (C) Stationary currents recorded at -60 mV (filled circles) and membrane resistance

8 (open circles) changes induced by K_{ATP} channel modulators. The colored bars and

9 shaded zones indicate the duration of application of K_{ATP} channel modulators. Upper

10 and lower insets: changes in whole-cell currents and relative changes in membrane

11 resistance induced by K_{ATP} channel modulators, respectively.

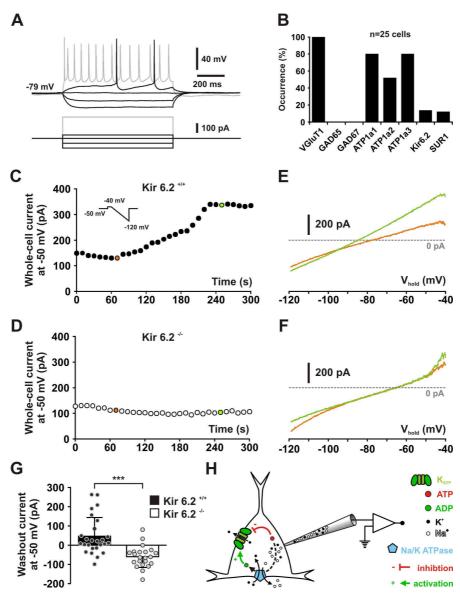
12 (D) Whole cell current-voltage relationships measured under diazoxide (green trace)

13 and tolbutamide (red trace). KATP I/V curve (black trace) obtained by subtracting the

14 curve under diazoxide by the curve under tolbutamide. The arrow indicates the

15 reversal potential of K_{ATP} currents.

16 (E-H) Histograms summarizing the K_{ATP} current reversal potential (E,F) and relative


17 K_{ATP} conductance (G,H) in identified neuronal subtypes (E,G) or between

18 glutamatergic and GABAergic neurons (F,G). Data are expressed as mean ± s.e.m.,

19 and the individual data points are depicted. n.s. not statistically significant.

1 Figure 3. Kir6.2 is the pore forming subunit of K_{ATP} channels in cortical

2 neurons.

3 4

> 5 (A) Representative voltage responses of a mouse layer II/III RS pyramidal cell 6 induced by injection of current pulses (bottom traces).

> 7 (B) Histograms summarizing the expression profile of vGluT1, GAD65 and 67, the

8 ATP1a1-3 subunits of the Na/K ATPase and the Kir6.2 and SUR1 K_{ATP} channel 9 subunits in layer II/III RS pyramidal cells from Kir6.2^{+/+} mice.

(C, D) Whole-cell stationary currents recorded at -50 mV during dialysis with ATP free pipette solution in RS neurons of Kir6.2^{+/+} (C) and Kir6.2^{-/-} (D) mice. Inset;
 voltage clamp protocol.

1 (E, F) Current-voltage relationships obtained during ATP washout at the time 2 indicated by green and orange circles in (C, D) in RS neurons of Kir6.2^{+/+} (E) and 3 Kir6.2^{-/-} (F) mice.

- 4 (G) Histograms summarizing the whole-cell ATP washout currents in Kir6.2^{+/+} (black)
- 5 and Kir6.2^{-/-} (white) RS neurons. Data are expressed as mean \pm s.e.m., and the
- 6 individual data points are depicted.
- 7 (H) Diagram depicting the principle of the ATP washout experiment.
- 8

1 Figure 4. Modulation of cortical neuronal excitability and activity by K_{ATP}

channels. tolbutamide • diazoxide Α D 500 µM 300 µM 20 10 ∆V_m (mV) 0 40 mV -10 -20 -60 mV Ε 1500 *** 2 min 1000 В (MO) 500 $\Delta \mathbf{R}_{m}$ **100 Μ**Ω ٥ ~ 8000 ୖୄୄ % -500 0 ŝ 300 MΩ õ F COCOCO COL С ∆F (Hz) 0 0.5 Hz -2 0 Hz n.s. n.s. G Н 20 20 15 15 RS ∆V_m (mV) ∆V_m (mV) 10 10 **Bursting VIP** 5 5 Adapting VIP 0 Adapting SOM n.s. L n.s. J 400 400 Adapting NPY ∆**R**_m (MΩ) ∆**R**_m (MΩ) 300 300 °00 FS-PV 200 200 Glutamatergic neurons 100 100 GABAergic interneurons

3

2

4

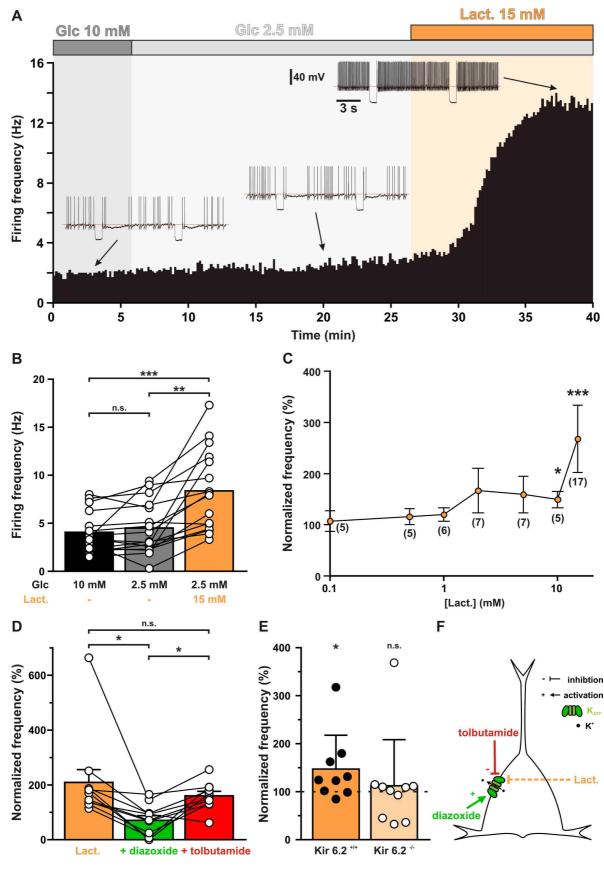
5 (A-C) Representative example showing the changes in membrane potential (A), 6 resistance (B, open circles) and spiking activity (C) induced by application of 7 tolbutamide (red) and diazoxide (green). The colored bars and shaded zones indicate 8 the application duration of K_{ATP} channel modulators.

1 (D-F) Relative changes in membrane potential (D), resistance (E) and firing rate (F)

2 induced by tolbutamide and diazoxide in cortical neurons.

3 (G-J) Histograms summarizing the modulation of membrane potential (G,

4 H_(5,32)=0.14854, p=0.999, and H, U_(8,24)=95.5, p=0.991) and resistance (I,


5 $H_{(5,32)}$ =3.00656, p=0.699, and J, $U_{(8,24)}$ =73, p=0.329) by K_{ATP} channels in neuronal

6 subtypes (G, I) and groups (H, J). Data are expressed as mean ± s.e.m., and the

7 individual data points are depicted. n.s. not statistically significant.

2 modulation.

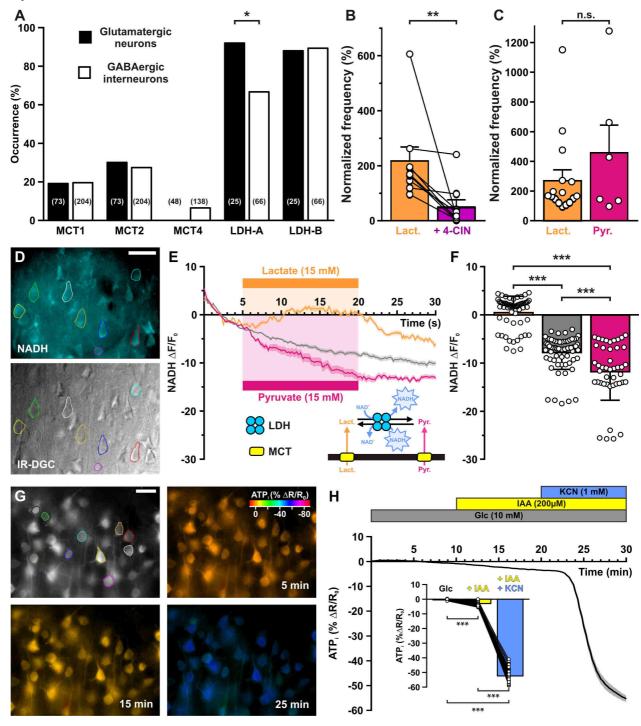
1 (A) Representative perforated patch recording of an adapting VIP neuron showing 2 the modulation of firing frequency induced by changes in the extracellular 3 concentrations of metabolites. The colored bars and shaded zones indicate the 4 concentration in glucose (grey) and lactate (orange). Voltage responses recorded at 5 the time indicated by arrows. The red dashed lines indicate -40 mV.

6 (B) Histograms summarizing the mean firing frequency during changes in 7 extracellular concentration of glucose (black and grey) and lactate (orange). Data are 8 expressed as mean ± s.e.m., and the individual data points are depicted. n.s. not 9 statistically significant.

(C) Dose-dependent enhancement of firing frequency by lactate. Data are normalized
by the mean firing frequency in absence of lactate and are expressed as mean ±
s.e.m. Numbers in brackets indicate the number of recorded neurons at different
lactate concentrations.

(D) Histograms summarizing the normalized frequency under 15 mM lactate (orange)
and its modulation by addition of diazoxide (green) or tolbutamide (red). Data are
expressed as mean ± s.e.m., and the individual data points are depicted. n.s. not
statistically significant.

18 (E) Histograms summarizing the enhancement of normalized frequency by 15 mM


lactate in Kir6.2 ^{+/+} (orange) and Kir6.2 ^{-/-} (pale orange) mouse cortical neurons. The
dash line indicates the normalized mean firing frequency in absence of lactate. Data

are expressed as mean \pm s.e.m., and the individual data points are depicted.

22 (F) Diagram depicting the enhancement of neuronal activity by lactate via modulation

23 of K_{ATP} channels.

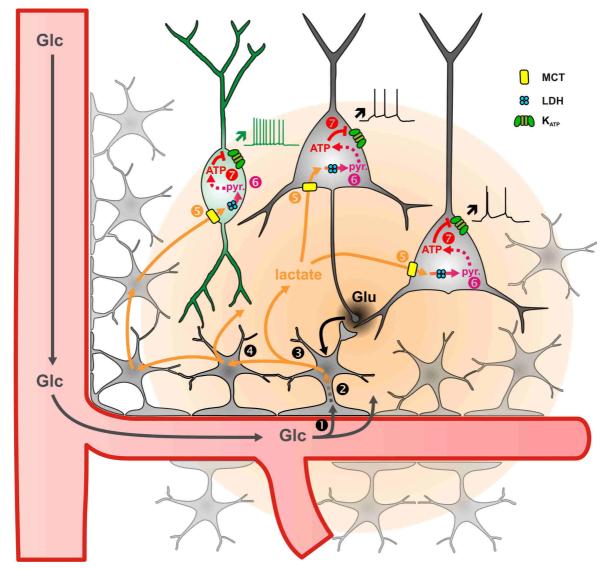
- 1 Figure 6. Lactate enhancement of cortical neuronal activity involves lactate
- 2 uptake and metabolism.

3 4

5 (A) Histograms summarizing the expression profile of the monocarboxylate 6 transporters MCT1, 2 and 4 and LDH A and B lactate dehydrogenase subunits in 7 glutamatergic neurons (black) and GABAergic interneurons (white). The numbers in 8 brackets indicate the number of analyzed cells. (B) Histograms summarizing the enhancement of normalized frequency by 15 mM
lactate (orange) and its suppression by the MCTs inhibitor 4-CIN (purple). Data are
expressed as mean ± s.e.m., and the individual data points are depicted.

4 (C) Histograms summarizing the enhancement of normalized frequency by 15 mM
5 lactate (orange) and pyruvate (magenta). Data are expressed as mean ± s.e.m., and
6 the individual data points are depicted n.s. not statistically significant.

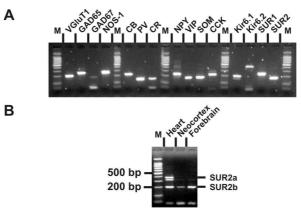
7 (D) Widefield NADH autofluorescence (upper panel, scale bar: 20 μ m) and 8 corresponding field of view observed under IR-DGC (lower panel). The somatic 9 regions of interest are delineated.

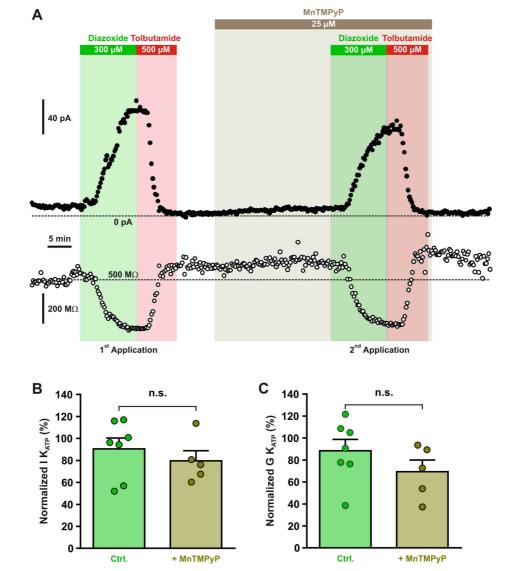

(E) Mean relative changes in NADH autofluorescence in control condition (grey) and
in response to 15 mM lactate (orange) or pyruvate (magenta). The colored bars
indicate the duration of applications. Data are expressed as mean ± s.e.m. Inset:
diagram depicting the NADH changes induced by lactate and pyruvate uptake by
MCT and their interconversion by LDH.

15 (F) Histograms summarizing the mean relative changes in NAD(P)H 16 autofluorescence measured during the last 5 minutes of 15 mM lactate (orange) or 17 pyruvate (magenta) application and corresponding time in control condition (grey). 18 Data are expressed as mean ± s.e.m., and the individual data points are depicted.

(G) Widefield YFP fluorescence of the ATP biosensor AT1.03^{YEMK} (upper left panel,
scale bar: 30 µm) and pseudocolor images showing the intracellular ATP (YFP/CFP
ratio value coded by pixel hue, see scale bar in upper right panel) and the
fluorescence intensity (coded by pixel intensity) at different times under 10 mM
extracellular glucose (upper right panel) and after addition of IAA (lower left panel)
and KCN (lower right panel).

(H) Mean relative changes in intracellular ATP (relative YFP/CFP ratio) measured
under 10 mM extracellular glucose (grey) and after addition of IAA (yellow) and KCN
(blue). Data are expressed as mean ± s.e.m. The colored bars indicate the time and
duration of metabolic inhibitor application. Inset: Histograms summarizing the mean
relative changes in intracellular ATP (relative YFP/CFP ratio) ratio under 10 mM
extracellular glucose (grey) and after addition of IAA (yellow) and KCN (blue). Data
are expressed as mean ± s.e.m., and the individual data points are depicted.

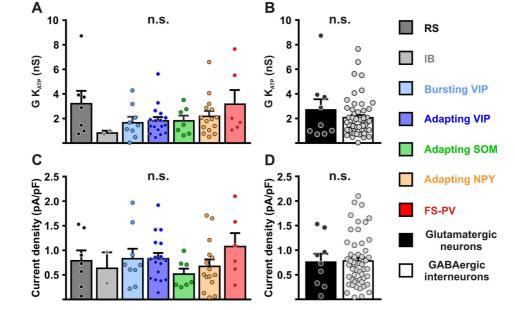

- 1 Figure 7. Diagram summarizing the mechanism of lactate-sensing in the
- 2 cortical network.


3

Glutamate (Glu) released during synaptic transmission stimulates • blood glucose 4 (Glc) uptake in astrocytes, 2 aerobic glycolysis, 3 lactate release and 4 diffusion 5 through the astrocytic network. Lactate is then G taken up by neurons via 6 monobarboxylate transporters (MCT) and G oxidized into pyruvate by lactate 7 dehydrogenase (LDH). The ATP produced by pyruvate oxidative metabolism • 8 closes K_{ATP} channels and increases the spiking activity of both pyramidal cells (black) 9 and inhibitory interneurons (green). The color gradient of the circles represents the 10 11 extent of glutamate (black) and lactate (orange) diffusion, respectively. Dashed arrows indicate multisteps reactions. 12

1 Figure S1. Molecular expression of K_{ATP} channels.

- 2
- 3
- 4 (A) RT-PCR products generated from 500 pg of total cortical RNAs. M: 100 bp ladder
- 5 molecular weight marker.
- 6 (B) SUR2 splice variants-specific RT-PCR analysis of 1 ng total RNAs from rat heart,
- 7 neocortex and forebrain.

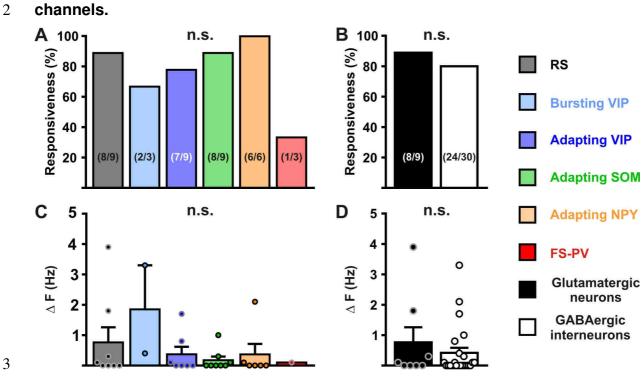


1 Figure S2. Diazoxide-induced current is independent of ROS production.

2

(A) Representative stationary currents at -60 mV (filled circles) and membrane
resistance (open circles) changes induced by diazoxide and tolbutamide under
control condition and in presence of the superoxide dismutase and catalase mimetic,
MnTMPyP. The colored bars and shaded zones indicate the duration of application.

(B-C) Histograms summarizing the relative K_{ATP} currents (B) and relative whole-cell K_{ATP} conductance (C) evoked by two consecutive diazoxide and tolbutamide applications in control condition (Ctrl.) and after the presence of MnTMPyP. Data are normalized by the data measured during first application, expressed as mean ± s.e.m., and the individual data points are depicted. n.s. not statistically significant.



1 Figure S3. Characterization of K_{ATP} channels in different cortical neurons.

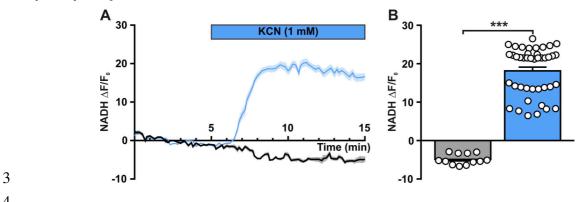
3 (A-D) Histograms summarizing the whole-cell K_{ATP} conductance (A, B) and K_{ATP} 4 current density (C, D) and K_{ATP} current reversal potential in identified neuronal 5 subtypes (A,C) or between glutamatergic and GABAergic neurons (B,D). Data are 6 expressed as mean ± s.e.m., and the individual data points are depicted. n.s. not 7 statistically significant.

1 Figure S4. Modulation of neuronal activity in different cortical neurons by K_{ATP}

5 (A-D) Histograms summarizing the proportion of responsive neurons (A, $K^{2}_{(5)}=7.3125$, p=0.1984, and B, p=0.9999) and modulation firing rate 6 (C, H_(5.32)=5.69107, p=0.337, and D, U_(8.24)=87.5, p=0.6994) by K_{ATP} channels in 7 neuronal subtypes (A,C) and groups (B,D). The numbers in brackets indicate the 8 number of responsive cells and analyzed cells, respectively. Data are expressed as 9 10 mean ± s.e.m., and the individual data points are depicted. n.s. not statistically 11 significant.

1 Figure S5. Expression profile of monocarboxylate transporters and lactate

2 dehydrogenase subunits in different cortical neuronal types.


3

MCT1 MCT2 LDH-A LDH-B MCT4 100 RS Adapting VIP 80 IB Adapting SOM Occurrence (%) **Bursting VIP** Adapting NPY 60 FS-PV 40 20 0 201 (63) 69 40 00 60 00 00 00 00 (38) (10) (19) (29) (11) (19) (20) 10 0 0 00 0 00 0 0 0 0 101 01 0 to 10 to 10 to 10 to 63)

4 5

Histograms summarizing the expression profile of the monocarboxylate transporters
 MCT1, 2 and 4 and LDH A and B lactate dehydrogenase subunits in different
 neuronal subtypes. The numbers in brackets indicate the number of analyzed cells.

1 Figure S6. Neuronal NADH autofluorescence increase by blockade of oxidative

2 phosphorylation.

4

(A) Mean relative changes in NADH autofluorescence in control condition (grey) and 5 in response to 1 mM KCN (blue). The colored bar indicates the duration of KCN 6

7 applications. Data are expressed as mean ± s.e.m.

8 (B) Histograms summarizing the mean relative changes in NADH autofluorescence

measured during the last 5 minutes of 1 mM KCN application (blue) and 9

corresponding time in control condition (grey). Data are expressed as mean ± s.e.m., 10

and the individual data points are depicted. 11

1 **REFERENCES**

- 2
- $\overline{3}$
- 4 Aguilar-Bryan, L., Nichols, C.G., Wechsler, S.W., Clement, J.P., Boyd, A.E., III,
- 5 Gonzalez, G., Herrera-Sosa, H., Nguy, K., Bryan, J., and Nelson, D.A. (1995). Cloning
- 6 of the beta cell high-affinity sulfonylurea receptor: a regulator of insulin secretion.
- 7 Science *268*, 423-426.
- 8 Ahmed,K., Tunaru,S., Tang,C., Muller,M., Gille,A., Sassmann,A., Hanson,J., and
- 9 Offermanns, S. (2010). An autocrine lactate loop mediates insulin-dependent
- 10 inhibition of lipolysis through GPR81. Cell Metab *11*, 311-319.
- 11 Ainscow, E.K., Mirshamsi, S., Tang, T., Ashford, M.L., and Rutter, G.A. (2002). Dynamic
- 12 imaging of free cytosolic ATP concentration during fuel sensing by rat hypothalamic
- 13 neurones: evidence for ATP-independent control of ATP-sensitive K(+) channels. J.
- 14 Physiol *544*, 429-445.
- 15 Almeida, A., Almeida, J., Bolanos, J.P., and Moncada, S. (2001). Different responses of
- 16 astrocytes and neurons to nitric oxide: the role of glycolytically generated ATP in
- astrocyte protection. Proc. Natl. Acad. Sci. U. S. A 98, 15294-15299.
- 18 Ammala, C., Moorhouse, A., and Ashcroft, F.M. (1996). The sulphonylurea receptor
- confers diazoxide sensitivity on the inwardly rectifying K+ channel Kir6.1 expressed in human embryonic kidney cells. J. Physiol *494 (Pt 3)*, 709-714.
- 21 Ascoli, G.A., Alonso-Nanclares, L., Anderson, S.A., Barrionuevo, G., avides-
- 22 Piccione, R., Burkhalter, A., Buzsaki, G., Cauli, B., DeFelipe, J., Fairen, A.,
- 23 Feldmeyer, D., Fishell, G., Fregnac, Y., Freund, T.F., Gardner, D., Gardner, E.P.,
- 24 Goldberg, J.H., Helmstaedter, M., Hestrin, S., Karube, F., Kisvarday, Z.F., Lambolez, B.,
- Lewis, D.A., Marin, O., Markram, H., Munoz, A., Packer, A., Petersen, C.C.,
- 26 Rockland,K.S., Rossier,J., Rudy,B., Somogyi,P., Staiger,J.F., Tamas,G.,
- 27 Thomson, A.M., Toledo-Rodriguez, M., Wang, Y., West, D.C., and Yuste, R. (2008).
- 28 Petilla terminology: nomenclature of features of GABAergic interneurons of the
- 29 cerebral cortex. Nat. Rev. Neurosci. 9, 557-568.
- 30 Ashford, M.L., Sturgess, N.C., Trout, N.J., Gardner, N.J., and Hales, C.N. (1988).
- Adenosine-5'-triphosphate-sensitive ion channels in neonatal rat cultured central neurones. Pflugers Arch. *412*, 297-304.
- Attwell,D., and Laughlin,S.B. (2001). An energy budget for signaling in the grey matter of the brain. J. Cereb. Blood Flow Metab *21*, 1133-1145.
- Aziz, Q., Li, Y., Anderson, N., Ojake, L., Tsisanova, E., and Tinker, A. (2017). Molecular and functional characterization of the endothelial ATP-sensitive potassium channel.
- 37 J. Biol. Chem. *292*, 17587-17597.
- Babenko, A.P., Aguilar-Bryan, L., and Bryan, J. (1998). A view of sur/KIR6.X, KATP
- 39 channels. Annu. Rev. Physiol 60, 667-687.

- 1 Bittar, P.G., Charnay, Y., Pellerin, L., Bouras, C., and Magistretti, P.J. (1996). Selective
- 2 distribution of lactate dehydrogenase isoenzymes in neurons and astrocytes of
- 3 human brain. J. Cereb. Blood Flow Metab *16*, 1079-1089.
- 4 Bondjers, C., He, L., Takemoto, M., Norlin, J., Asker, N., Hellstrom, M., Lindahl, P., and
- 5 Betsholtz, C. (2006). Microarray analysis of blood microvessels from PDGF-B and
- 6 PDGF-Rbeta mutant mice identifies novel markers for brain pericytes. FASEB J. 20,
- 7 1703-1705.
- 8 Bouzier-Sore, A.K., Voisin, P., Bouchaud, V., Bezancon, E., Franconi, J.M., and

9 Pellerin, L. (2006). Competition between glucose and lactate as oxidative energy

- 10 substrates in both neurons and astrocytes: a comparative NMR study. Eur. J.
- 11 Neurosci. *24*, 1687-1694.
- 12 Bouzier-Sore, A.K., Voisin, P., Canioni, P., Magistretti, P.J., and Pellerin, L. (2003).
- Lactate is a preferential oxidative energy substrate over glucose for neurons in
 culture. J. Cereb. Blood Flow Metab *23*, 1298-1306.
- Bozzo,L., Puyal,J., and Chatton,J.Y. (2013). Lactate modulates the activity of primary cortical neurons through a receptor-mediated pathway. PLoS. ONE. *8*, e71721.
- 17 Broer, S., Broer, A., Schneider, H.P., Stegen, C., Halestrap, A.P., and Deitmer, J.W.
- 18 (1999). Characterization of the high-affinity monocarboxylate transporter MCT2 in
- 19 Xenopus laevis oocytes. Biochem. J. *341 (Pt 3)*, 529-535.
- Broer,S., Schneider,H.P., Broer,A., Rahman,B., Hamprecht,B., and Deitmer,J.W.
 (1998). Characterization of the monocarboxylate transporter 1 expressed in Xenopus
 laevis oocytes by changes in cytosolic pH. Biochem. J. *333 (Pt 1)*, 167-174.
- Cabezas,C., Irinopoulou,T., Cauli,B., and Poncer,J.C. (2013). Molecular and
 functional characterization of GAD67-expressing, newborn granule cells in mouse
 dontate gyrus, Front Neural Circuits, 7,60
- dentate gyrus. Front Neural Circuits. 7, 60.
- 26 Cahoy, J.D., Emery, B., Kaushal, A., Foo, L.C., Zamanian, J.L., Christopherson, K.S.,
- 27 Xing,Y., Lubischer,J.L., Krieg,P.A., Krupenko,S.A., Thompson,W.J., and Barres,B.A.
- 28 (2008). A transcriptome database for astrocytes, neurons, and oligodendrocytes: a
- new resource for understanding brain development and function. J. Neurosci. 28,
 264-278.
- 31 Cao, R., Higashikubo, B.T., Cardin, J., Knoblich, U., Ramos, R., Nelson, M.T.,
- 32 Moore, C.I., and Brumberg, J.C. (2009). Pinacidil induces vascular dilation and
- 33 hyperemia in vivo and does not impact biophysical properties of neurons and
- 34 astrocytes in vitro. Cleve. Clin. J. Med. *76 Suppl 2*, S80-S85.
- 35 Cauli, B., Audinat, E., Lambolez, B., Angulo, M.C., Ropert, N., Tsuzuki, K., Hestrin, S.,
- and Rossier, J. (1997). Molecular and physiological diversity of cortical nonpyramidal
 cells. J. Neurosci. *17*, 3894-3906.
- 38 Cauli, B., Porter, J.T., Tsuzuki, K., Lambolez, B., Rossier, J., Quenet, B., and Audinat, E.
- (2000). Classification of fusiform neocortical interneurons based on unsupervised
 clustering. Proc. Natl. Acad. Sci. U. S. A *97*, 6144-6149.

- 1 Cauli, B., Tong, X.K., Rancillac, A., Serluca, N., Lambolez, B., Rossier, J., and Hamel, E.
- 2 (2004). Cortical GABA interneurons in neurovascular coupling: relays for subcortical
- 3 vasoactive pathways. J. Neurosci. 24, 8940-8949.
- 4 Cea-del Rio, C.A., Lawrence, J.J., Tricoire, L., Erdelyi, F., Szabo, G., and McBain, C.J.
- 5 (2010). M3 muscarinic acetylcholine receptor expression confers differential
- 6 cholinergic modulation to neurochemically distinct hippocampal basket cell subtypes.
- 7 J. Neurosci. *30*, 6011-6024.
- 8 Chance, B., Cohen, P., Jobsis, F., and Schoener, B. (1962). Intracellular oxidation-9 reduction states in vivo. Science *137*, 499-509.
- 10 Choi, H.B., Gordon, G.R., Zhou, N., Tai, C., Rungta, R.L., Martinez, J., Milner, T.A.,
- 11 Ryu, J.K., McLarnon, J.G., Tresguerres, M., Levin, L.R., Buck, J., and MacVicar, B.A.
- 12 (2012). Metabolic Communication between Astrocytes and Neurons via Bicarbonate-
- 13 Responsive Soluble Adenylyl Cyclase. Neuron *75*, 1094-1104.
- 14 Chuquet, J., Quilichini, P., Nimchinsky, E.A., and Buzsaki, G. (2010). Predominant
- 15 Enhancement of Glucose Uptake in Astrocytes versus Neurons during Activation of
- 16 the Somatosensory Cortex. J. Neurosci. *30*, 15298-15303.
- 17 Chutkow,W.A., Simon,M.C., Le Beau,M.M., and Burant,C.F. (1996). Cloning, tissue 18 expression, and chromosomal localization of SUR2, the putative drug-binding subunit
- 19 of cardiac, skeletal muscle, and vascular KATP channels. Diabetes 45, 1439-1445.
- 20 Clarke, D.D., and Sokoloff, L. (1999). Circulation and Energy Metabolism of the Brain.
- 21 In Basic Neurochemistry: Molecular, Cellular and Medical Aspects., G.J. Siegel, ed.
- 22 (Philadelphia: Lippincott Williams & Wilkins), pp. 637-669.
- 23 Cunningham, M.O., Pervouchine, D.D., Racca, C., Kopell, N.J., Davies, C.H.,
- Jones, R.S., Traub, R.D., and Whittington, M.A. (2006). Neuronal metabolism governs cortical network response state. Proc. Natl. Acad. Sci. U. S. A *103*, 5597-5601.
- 26 D'Agostino, D.P., Putnam, R.W., and Dean, J.B. (2007). Superoxide ({middle dot}O2-)
- production in CA1 neurons of rat hippocampal slices exposed to graded levels of
 oxygen. J. Neurophysiol.
- de Castro Abrantes H., Briquet, M., Schmuziger, C., Restivo, L., Puyal, J.,
- 30 Rosenberg, N., Rocher, A.B., Offermanns, S., and Chatton, J.Y. (2019). The lactate
- 31 receptor HCAR1 modulates neuronal network activity through the activation of
- 32 Galpha and Gbeta subunits. J. Neurosci.
- Devienne,G., Le Gac,B., Piquet,J., and Cauli,B. (2018). Single Cell Multiplex Reverse
 Transcription Polymerase Chain Reaction After Patch-clamp. J. Vis. Exp.
- 35 Devor, A., Hillman, E.M., Tian, P., Waeber, C., Teng, I.C., Ruvinskaya, L.,
- 36 Shalinsky, M.H., Zhu, H., Haslinger, R.H., Narayanan, S.N., Ulbert, I., Dunn, A.K.,
- 37 Lo,E.H., Rosen,B.R., Dale,A.M., Kleinfeld,D., and Boas,D.A. (2008). Stimulus-
- induced changes in blood flow and 2-deoxyglucose uptake dissociate in ipsilateral
- 39 somatosensory cortex. J. Neurosci. 28, 14347-14357.

- 1 Devor, A., Tian, P., Nishimura, N., Teng, I.C., Hillman, E.M., Narayanan, S.N., Ulbert, I.,
- 2 Boas, D.A., Kleinfeld, D., and Dale, A.M. (2007). Suppressed neuronal activity and
- 3 concurrent arteriolar vasoconstriction may explain negative blood oxygenation level-
- 4 dependent signal. J. Neurosci. 27, 4452-4459.
- 5 Dhar-Chowdhury, P., Harrell, M.D., Han, S.Y., Jankowska, D., Parachuru, L.,
- 6 Morrissey, A., Srivastava, S., Liu, W., Malester, B., Yoshida, H., and Coetzee, W.A.
- 7 (2005). The glycolytic enzymes, glyceraldehyde-3-phosphate dehydrogenase, triose-
- 8 phosphate isomerase, and pyruvate kinase are components of the K(ATP) channel
- 9 macromolecular complex and regulate its function. J. Biol. Chem. *280*, 38464-38470.
- 10 Diaz-Garcia, C.M., Lahmann, C., Martinez-Francois, J.R., Li, B., Koveal, D.,
- 11 Nathwani, N., Rahman, M., Keller, J.P., Marvin, J.S., Looger, L.L., and Yellen, G. (2019).
- 12 Quantitative in vivo imaging of neuronal glucose concentrations with a genetically
- 13 encoded fluorescence lifetime sensor. J. Neurosci. Res.
- 14 Diaz-Garcia, C.M., Mongeon, R., Lahmann, C., Koveal, D., Zucker, H., and Yellen, G.
- 15 (2017). Neuronal Stimulation Triggers Neuronal Glycolysis and Not Lactate Uptake.
- 16 Cell Metab *26*, 361-374.
- 17 Dodt,H.U., and Zieglgansberger,W. (1998). Visualization of neuronal form and
- 18 function in brain slices by infrared videomicroscopy. Histochem. J. *30*, 141-152.
- 19 Drose, S., Brandt, U., and Hanley, P.J. (2006). K+-independent actions of diazoxide
- 20 question the role of inner membrane KATP channels in mitochondrial cytoprotective
- 21 signaling. J. Biol. Chem. *281*, 23733-23739.
- 22 Dufer, M., Krippeit-Drews, P., Buntinas, L., Siemen, D., and Drews, G. (2002). Methyl
- 23 pyruvate stimulates pancreatic beta-cells by a direct effect on KATP channels, and
- not as a mitochondrial substrate. Biochem. J. *368*, 817-825.
- Dunn-Meynell,A.A., Rawson,N.E., and Levin,B.E. (1998). Distribution and phenotype
 of neurons containing the ATP-sensitive K+ channel in rat brain. Brain Res. *814*, 4154.
- 28 El Hayek L., Khalifeh, M., Zibara, V., Abi, A.R., Emmanuel, N., Karnib, N., El-
- 29 Ghandour, R., Nasrallah, P., Bilen, M., Ibrahim, P., Younes, J., Abou, H.E., Barmo, N.,
- 30 Jabre, V., Stephan, J.S., and Sleiman, S.F. (2019). Lactate Mediates the Effects of
- 31 Exercise on Learning and Memory through SIRT1-Dependent Activation of
- Hippocampal Brain-Derived Neurotrophic Factor (BDNF). J. Neurosci. *39*, 2369-2382.
- 34 Fan,Y., Kong,H., Ye,X., Ding,J., and Hu,G. (2016). ATP-sensitive potassium
- channels: uncovering novel targets for treating depression. Brain Struct. Funct. 221,
 3111-3122.
- 37 Férézou, I., Cauli, B., Hill, E.L., Rossier, J., Hamel, E., and Lambolez, B. (2002). 5-HT3
- 38 receptors mediate serotonergic fast synaptic excitation of neocortical vasoactive
- intestinal peptide/cholecystokinin interneurons. J. Neurosci. 22, 7389-7397.

- 1 Férézou, I., Hill, E.L., Cauli, B., Gibelin, N., Kaneko, T., Rossier, J., and Lambolez, B.
- 2 (2007). Extensive overlap of mu-opioid and nicotinic sensitivity in cortical
- 3 interneurons. Cereb. Cortex *17*, 1948-1957.

4 Galeffi, F., Foster, K.A., Sadgrove, M.P., Beaver, C.J., and Turner, D.A. (2007). Lactate

5 uptake contributes to the NAD(P)H biphasic response and tissue oxygen response

- 6 during synaptic stimulation in area CA1 of rat hippocampal slices. J. Neurochem.
- 7 *103*, 2449-2461.
- 8 Gallopin, T., Geoffroy, H., Rossier, J., and Lambolez, B. (2006). Cortical sources of
- 9 CRF, NKB, and CCK and their effects on pyramidal cells in the neocortex. Cereb.
- 10 Cortex *16*, 1440-1452.
- Galow,L.V., Schneider,J., Lewen,A., Ta,T.T., Papageorgiou,I.E., and Kann,O. (2014).
 Energy substrates that fuel fast neuronal network oscillations. Front Neurosci. *8*, 398.
- 13 German, M.S. (1993). Glucose sensing in pancreatic islet beta cells: the key role of
- 14 glucokinase and the glycolytic intermediates. Proc. Natl. Acad. Sci. U. S. A *90*, 1781-15 1785.
- 16 Gimenez-Cassina, A., Martinez-Francois, J.R., Fisher, J.K., Szlyk, B., Polak, K.,
- 17 Wiwczar, J., Tanner, G.R., Lutas, A., Yellen, G., and Danial, N.N. (2012). BAD-
- 18 Dependent Regulation of Fuel Metabolism and K(ATP) Channel Activity Confers
- 19 Resistance to Epileptic Seizures. Neuron *74*, 719-730.
- 20 Girouard, H., Bonev, A.D., Hannah, R.M., Meredith, A., Aldrich, R.W., and Nelson, M.T.
- 21 (2010). Astrocytic endfoot Ca2+ and BK channels determine both arteriolar dilation 22 and constriction. Proc. Natl. Acad. Sci. U. S. A *107*, 3811-3816.
- 22 Cribble E.M. Ashfield P. Ammele C. and Asheroft E.M. (1997) Broparties a
- Gribble, F.M., Ashfield, R., Ammala, C., and Ashcroft, F.M. (1997). Properties of cloned
 ATP-sensitive K+ currents expressed in Xenopus oocytes. J. Physiol *498 (Pt 1)*, 8798.
- 26 Gulyas, A.I., Buzsaki, G., Freund, T.F., and Hirase, H. (2006). Populations of
- 27 hippocampal inhibitory neurons express different levels of cytochrome c. Eur. J.
- 28 Neurosci. *23*, 2581-2594.
- Gupta, A., Wang, Y., and Markram, H. (2000). Organizing principles for a diversity of GABAergic interneurons and synapses in the neocortex. Science *287*, 273-278.
- Haj-Dahmane, S., and Andrade, R. (1997). Calcium-activated cation nonselective
- 32 current contributes to the fast afterdepolarization in rat prefrontal cortex neurons. J.
- 33 Neurophysiol. *78*, 1983-1989.
- 34 Halabisky, B.E., Shen, F., Huguenard, J.R., and Prince, D.A. (2006).
- 35 Electrophysiological Classification of Somatostatin-positive Interneurons in Mouse
- 36 Sensorimotor Cortex. J. Neurophysiol.
- Hall,C.N., Klein-Flugge,M.C., Howarth,C., and Attwell,D. (2012). Oxidative
- 38 phosphorylation, not glycolysis, powers presynaptic and postsynaptic mechanisms
- 39 underlying brain information processing. J. Neurosci. 32, 8940-8951.

- 1 Heron-Milhavet, L., Xue-Jun, Y., Vannucci, S.J., Wood, T.L., Willing, L.B., Stannard, B.,
- 2 Hernandez-Sanchez, C., Mobbs, C., Virsolvy, A., and LeRoith, D. (2004). Protection
- 3 against hypoxic-ischemic injury in transgenic mice overexpressing Kir6.2 channel
- 4 pore in forebrain. Mol. Cell Neurosci. *25*, 585-593.
- Hill,E.L., Gallopin,T., Férézou,I., Cauli,B., Rossier,J., Schweitzer,P., and Lambolez,B.
 (2007). Functional CB1 receptors are broadly expressed in neocortical GABAergic
 and glutamatergic neurons. J. Neurophysiol. *97*, 2580-2589.
- Houades, V., Koulakoff, A., Ezan, P., Seif, I., and Giaume, C. (2008). Gap junction mediated astrocytic networks in the mouse barrel cortex. J. Neurosci. *28*, 5207-5217.
- Hu,Y., and Wilson,G.S. (1997a). A temporary local energy pool coupled to neuronal activity: fluctuations of extracellular lactate levels in rat brain monitored with rapid-
- response enzyme-based sensor. J. Neurochem. *69*, 1484-1490.
- Hu,Y., and Wilson,G.S. (1997b). Rapid changes in local extracellular rat brain glucose observed with an in vivo glucose sensor. J. Neurochem. *68*, 1745-1752.
- 15 Imamura, H., Nhat, K.P., Togawa, H., Saito, K., Iino, R., Kato-Yamada, Y., Nagai, T., and
- 16 Noji,H. (2009). Visualization of ATP levels inside single living cells with fluorescence
- resonance energy transfer-based genetically encoded indicators. Proc. Natl. Acad.
 Sci. U. S. A *106*, 15651-15656.
- Inagaki,N., Gonoi,T., Clement,J.P., Namba,N., Inazawa,J., Gonzalez,G., guilarBryan,L., Seino,S., and Bryan,J. (1995a). Reconstitution of IKATP: an inward rectifier
 subunit plus the sulfonylurea receptor. Science *270*, 1166-1170.
- Inagaki, N., Gonoi, T., Clement, J.P., Wang, C.Z., Aguilar-Bryan, L., Bryan, J., and
- 23 Seino, S. (1996). A family of sulfonylurea receptors determines the pharmacological
- properties of ATP-sensitive K+ channels. Neuron *16*, 1011-1017.
- 25 Inagaki, N., Tsuura, Y., Namba, N., Masuda, K., Gonoi, T., Horie, M., Seino, Y.,
- Mizuta, M., and Seino, S. (1995b). Cloning and functional characterization of a novel
- ATP-sensitive potassium channel ubiquitously expressed in rat tissues, including pancreatic islets, pituitary, skeletal muscle, and heart. J. Biol. Chem. *270*, 5691-5694.
- 28 pancreatic Islets, pituliary, skeletal muscle, and fieart. J. Biol. Chem. 270, 5091-5094
- Isomoto, S., Kondo, C., Yamada, M., Matsumoto, S., Higashiguchi, O., Horio, Y.,
- 30 Matsuzawa, Y., and Kurachi, Y. (1996). A novel sulfonylurea receptor forms with BIR
- 31 (Kir6.2) a smooth muscle type ATP-sensitive K+ channel. J. Biol. Chem. 271, 24321-
- **24324**.
- 33 Isomoto, S., and Kurachi, Y. (1997). Function, regulation, pharmacology, and
- molecular structure of ATP-sensitive K+ channels in the cardiovascular system. J.
 Cardiovasc. Electrophysiol. *8*, 1431-1446.
- 36 Ivanov, A.I., Malkov, A.E., Waseem, T., Mukhtarov, M., Buldakova, S., Gubkina, O.,
- 37 Zilberter, M., and Zilberter, Y. (2014). Glycolysis and oxidative phosphorylation in
- 38 neurons and astrocytes during network activity in hippocampal slices. J. Cereb.
- 39 Blood Flow Metab *34*, 397-407.

- 1 Jimenez-Blasco, D., Busquets-Garcia, A., Hebert-Chatelain, E., Serrat, R., Vicente-
- 2 Gutierrez, C., Ioannidou, C., Gomez-Sotres, P., Lopez-Fabuel, I., Resch-Beusher, M.,
- 3 Resel, E., Arnouil, D., Saraswat, D., Varilh, M., Cannich, A., Julio-Kalajzic, F., Bonilla-
- 4 Del,R., I, Almeida,A., Puente,N., Achicallende,S., Lopez-Rodriguez,M.L., Jolle,C.,
- 5 Deglon, N., Pellerin, L., Josephine, C., Bonvento, G., Panatier, A., Lutz, B., Piazza, P.V.,
- 6 Guzman, M., Bellocchio, L., Bouzier-Sore, A.K., Grandes, P., Bolanos, J.P., and
- 7 Marsicano, G. (2020). Glucose metabolism links astroglial mitochondria to
- 8 cannabinoid effects. Nature.
- 9 Kann,O., Papageorgiou,I.E., and Draguhn,A. (2014). Highly energized inhibitory
- 10 interneurons are a central element for information processing in cortical networks. J.
- 11 Cereb. Blood Flow Metab *34*, 1270-1282.
- 12 Karagiannis, A., Gallopin, T., David, C., Battaglia, D., Geoffroy, H., Rossier, J.,
- Hillman, E.M., Staiger, J.F., and Cauli, B. (2009). Classification of NPY-expressing
 neocortical interneurons. J. Neurosci. *29*, 3642-3659.
- 15 Karagiannis, A., Sylantyev, S., Hadjihambi, A., Hosford, P.S., Kasparov, S., and
- 16 Gourine, A.V. (2015). Hemichannel-mediated release of lactate. J. Cereb. Blood Flow
- 17 Metab.
- 18 Karschin, C., Ecke, C., Ashcroft, F.M., and Karschin, A. (1997). Overlapping distribution
- 19 of K(ATP) channel-forming Kir6.2 subunit and the sulfonylurea receptor SUR1 in
- 20 rodent brain. FEBS Lett. 401, 59-64.
- 21 Kawaguchi, Y. (1993). Groupings of nonpyramidal and pyramidal cells with specific
- physiological and morphological characteristics in rat frontal cortex. J. Neurophysiol.
 69, 416-431.
- Kawaguchi,Y. (1995). Physiological subgroups of nonpyramidal cells with specific
 morphological characteristics in layer II/III of rat frontal cortex. J. Neurosci. *15*, 26382655.
- 27 Kawamura, M., Jr., Ruskin, D.N., and Masino, S.A. (2010). Metabolic Autocrine
- 28 Regulation of Neurons Involves Cooperation among Pannexin Hemichannels,
- Adenosine Receptors, and KATP Channels. J. Neurosci. *30*, 3886-3895.
- 30 Krawchuk, M.B., Ruff, C.F., Yang, X., Ross, S.E., and Vazquez, A.L. (2019).
- 31 Optogenetic assessment of VIP, PV, SOM and NOS inhibitory neuron activity and
- 32 cerebral blood flow regulation in mouse somato-sensory cortex
- 33 1. J. Cereb. Blood Flow Metab 271678X19870105.
- 34 Lacroix, A., Toussay, X., Anenberg, E., Lecrux, C., Ferreiros, N., Karagiannis, A.,
- 35 Plaisier, F., Chausson, P., Jarlier, F., Burgess, S.A., Hillman, E.M., Tegeder, I.,
- 36 Murphy, T.H., Hamel, E., and Cauli, B. (2015). COX-2-Derived Prostaglandin E2
- 37 Produced by Pyramidal Neurons Contributes to Neurovascular Coupling in the
- 38 Rodent Cerebral Cortex. J. Neurosci. *35*, 11791-11810.
- 39 Lambolez, B., Audinat, E., Bochet, P., Crepel, F., and Rossier, J. (1992). AMPA receptor
- 40 subunits expressed by single Purkinje cells. Neuron *9*, 247-258.

- 1 Laughton, J.D., Charnay, Y., Belloir, B., Pellerin, L., Magistretti, P.J., and Bouras, C.
- 2 (2000). Differential messenger RNA distribution of lactate dehydrogenase LDH-1 and
- 3 LDH-5 isoforms in the rat brain. Neuroscience *96*, 619-625.
- 4 Lauritzen, K.H., Morland, C., Puchades, M., Holm-Hansen, S., Hagelin, E.M.,
- 5 Lauritzen, F., Attramadal, H., Storm-Mathisen, J., Gjedde, A., and Bergersen, L.H.
- 6 (2014). Lactate receptor sites link neurotransmission, neurovascular coupling, and
- 7 brain energy metabolism. Cereb. Cortex *24*, 2784-2795.
- 8 Le Douce J., Maugard, M., Veran, J., Matos, M., Jego, P., Vigneron, P.A., Faivre, E.,
- 9 Toussay, X., Vandenberghe, M., Balbastre, Y., Piquet, J., Guiot, E., Tran, N.T.,
- 10 Taverna, M., Marinesco, S., Koyanagi, A., Furuya, S., Gaudin-Guerif, M., Goutal, S.,
- 11 Ghettas, A., Pruvost, A., Bemelmans, A.P., Gaillard, M.C., Cambon, K., Stimmer, L.,
- 12 Sazdovitch, V., Duyckaerts, C., Knott, G., Herard, A.S., Delzescaux, T., Hantraye, P.,
- 13 Brouillet, E., Cauli, B., Oliet, S.H.R., Panatier, A., and Bonvento, G. (2020). Impairment
- 14 of Glycolysis-Derived I-Serine Production in Astrocytes Contributes to Cognitive
- 15 Deficits in Alzheimer's Disease. Cell Metab *31*, 503-517.
- Lee,K.P.K., Chen,J., and MacKinnon,R. (2017). Molecular structure of human KATP in complex with ATP and ADP. Elife. *6*.
- Lee, Y., Morrison, B.M., Li, Y., Lengacher, S., Farah, M.H., Hoffman, P.N., Liu, Y.,
- 19 Tsingalia, A., Jin, L., Zhang, P.W., Pellerin, L., Magistretti, P.J., and Rothstein, J.D.
- 20 (2012). Oligodendroglia metabolically support axons and contribute to
- 21 neurodegeneration. Nature.
- 22 Lemak, M.S., Voloshanenko, O., Draguhn, A., and Egorov, A.V. (2014). KATP channels
- 22 modulate intrinsic firing activity of immature entorhinal cortex layer III neurons. Front
- 24 Cell Neurosci. *8*, 255.
- Lennie, P. (2003). The cost of cortical computation. Curr. Biol. *13*, 493-497.
- 26 Lerchundi, R., Fernandez-Moncada, I., Contreras-Baeza, Y., Sotelo-Hitschfeld, T.,
- 27 Machler, P., Wyss, M.T., Stobart, J., Baeza-Lehnert, F., Alegria, K., Weber, B., and
- Barros, L.F. (2015). NH4+ triggers the release of astrocytic lactate via mitochondrial
- 29 pyruvate shunting. Proc. Natl. Acad. Sci. U. S. A.
- Li,N., Wu,J.X., Ding,D., Cheng,J., Gao,N., and Chen,L. (2017). Structure of a
- 31 Pancreatic ATP-Sensitive Potassium Channel. Cell *168*, 101-110.
- 32 Liss, B., Bruns, R., and Roeper, J. (1999). Alternative sulfonylurea receptor expression
- defines metabolic sensitivity of K-ATP channels in dopaminergic midbrain neurons.
- 34 EMBO J. *18*, 833-846.
- Logothetis,N.K. (2008). What we can do and what we cannot do with fMRI. Nature *453*, 869-878.
- 37 Lundgaard, I., Li, B., Xie, L., Kang, H., Sanggaard, S., Haswell, J.D., Sun, W.,
- 38 Goldman, S., Blekot, S., Nielsen, M., Takano, T., Deane, R., and Nedergaard, M. (2015).
- 39 Direct neuronal glucose uptake heralds activity-dependent increases in cerebral
- 40 metabolism. Nat. Commun. *6*, 6807.

- 1 Machler, P., Wyss, M.T., Elsayed, M., Stobart, J., Gutierrez, R., von Faber-Castell, A.,
- 2 Kaelin, V., Zuend, M., San, M.A., Romero-Gomez, I., Baeza-Lehnert, F., Lengacher, S.,
- 3 Schneider, B.L., Aebischer, P., Magistretti, P.J., Barros, L.F., and Weber, B. (2016). In
- Vivo Evidence for a Lactate Gradient from Astrocytes to Neurons. Cell Metab *23*, 94 102.
- 6 Magistretti, P.J., and Allaman, I. (2018). Lactate in the brain: from metabolic end-7 product to signalling molecule. Nat. Rev. Neurosci. *19*, 235-249.
- 8 Martin,G.M., Yoshioka,C., Rex,E.A., Fay,J.F., Xie,Q., Whorton,M.R., Chen,J.Z., and
- 9 Shyng,S.L. (2017). Cryo-EM structure of the ATP-sensitive potassium channel
- 10 illuminates mechanisms of assembly and gating. Elife. 6.
- 11 Miki, T., Liss, B., Minami, K., Shiuchi, T., Saraya, A., Kashima, Y., Horiuchi, M.,
- 12 Ashcroft, F., Minokoshi, Y., Roeper, J., and Seino, S. (2001). ATP-sensitive K+
- 13 channels in the hypothalamus are essential for the maintenance of glucose
- 14 homeostasis. Nat. Neurosci. 4, 507-512.
- 15 Miki, T., Nagashima, K., Tashiro, F., Kotake, K., Yoshitomi, H., Tamamoto, A., Gonoi, T.,
- 16 Iwanaga, T., Miyazaki, J., and Seino, S. (1998). Defective insulin secretion and
- enhanced insulin action in KATP channel-deficient mice. Proc. Natl. Acad. Sci. U. S.
 A *95*, 10402-10406.
- 19 Molnar, G., Farago, N., Kocsis, A.K., Rozsa, M., Lovas, S., Boldog, E., Baldi, R.,
- 20 Csajbok, E., Gardi, J., Puskas, L.G., and Tamas, G. (2014). GABAergic neurogliaform
- cells represent local sources of insulin in the cerebral cortex. J. Neurosci. *34*, 1133-1137.
- Moreau, C., Prost, A.L., Derand, R., and Vivaudou, M. (2005). SUR, ABC proteins targeted by KATP channel openers. J. Mol. Cell Cardiol. *38*, 951-963.
- Newgard,C.B., and McGarry,J.D. (1995). Metabolic coupling factors in pancreatic
 beta-cell signal transduction. Annu. Rev. Biochem. *64*, 689-719.
- Ogawa,M., Watabe,H., Teramoto,N., Miyake,Y., Hayashi,T., Iida,H., Murata,T., and
 Magata,Y. (2005). Understanding of cerebral energy metabolism by dynamic living
- brain slice imaging system with [18F]FDG. Neurosci. Res. *52*, 357-361.
- 30 Okuyama, Y., Yamada, M., Kondo, C., Satoh, E., Isomoto, S., Shindo, T., Horio, Y.,
- 31 Kitakaze, M., Hori, M., and Kurachi, Y. (1998). The effects of nucleotides and
- 32 potassium channel openers on the SUR2A/Kir6.2 complex K+ channel expressed in
- a mammalian cell line, HEK293T cells. Pflugers Arch. 435, 595-603.
- Pellerin,L., and Magistretti,P.J. (1994). Glutamate uptake into astrocytes stimulates aerobic glycolysis: a mechanism coupling neuronal activity to glucose utilization.
- 36 Proc. Natl. Acad. Sci. U. S. A. *91*, 10625-9.
- 37 Perrenoud, Q., Geoffroy, H., Gauthier, B., Rancillac, A., Alfonsi, F., Kessaris, N.,
- 38 Rossier, J., Vitalis, T., and Gallopin, T. (2012). Characterization of Type I and Type II
- 39 nNOS-Expressing Interneurons in the Barrel Cortex of Mouse. Front Neural Circuits.
- 40 *6*, 36.

- 1 Piquet, J., Toussay, X., Hepp, R., Lerchundi, R., Le, D.J., Faivre, E., Guiot, E.,
- 2 Bonvento, G., and Cauli, B. (2018). Supragranular Pyramidal Cells Exhibit Early
- 3 Metabolic Alterations in the 3xTg-AD Mouse Model of Alzheimer's Disease. Front
- 4 Cell Neurosci. *12*, 216.
- 5 Prichard, J., Rothman, D., Novotny, E., Petroff, O., Kuwabara, T., Avison, M.,
- 6 Howseman, A., Hanstock, C., and Shulman, R. (1991). Lactate rise detected by 1H
- 7 NMR in human visual cortex during physiologic stimulation. Proc. Natl. Acad. Sci. U.
- 8 S. A *88*, 5829-5831.
- 9 Puljung,M.C. (2018). Cryo-electron microscopy structures and progress toward a 10 dynamic understanding of KATP channels. J. Gen. Physiol *150*, 653-669.
- 11 Pullen, T.J., da, S., X, Kelsey, G., and Rutter, G.A. (2011). miR-29a and miR-29b
- 12 contribute to pancreatic beta-cell-specific silencing of monocarboxylate transporter 1 13 (Mct1). Mol. Cell Biol. *31*, 3182-3194.
- Quistorff,B., Secher,N.H., and Van Lieshout,J.J. (2008). Lactate fuels the human
 brain during exercise. FASEB J. *22*, 3443-3449.
- 16 Raichle, M.E., and Mintun, M.A. (2006). Brain work and brain imaging. Annu. Rev.
- 17 Neurosci. *29*, 449-476.
- 18 Rouach, N., Koulakoff, A., Abudara, V., Willecke, K., and Giaume, C. (2008). Astroglial
- metabolic networks sustain hippocampal synaptic transmission. Science *322*, 15511555.
- 21 Ruminot, I., Gutierrez, R., Pena-Munzenmayer, G., Anazco, C., Sotelo-Hitschfeld, T.,
- 22 Lerchundi, R., Niemeyer, M.I., Shull, G.E., and Barros, L.F. (2011). NBCe1 Mediates
- the Acute Stimulation of Astrocytic Glycolysis by Extracellular K+. J. Neurosci. *31*,
- 2414264-14271.
- 25 Sada, N., Lee, S., Katsu, T., Otsuki, T., and Inoue, T. (2015). Epilepsy treatment.
- Targeting LDH enzymes with a stiripentol analog to treat epilepsy. Science *347*,
 1362-1367.
- 28 Sakura, H., Ammala, C., Smith, P.A., Gribble, F.M., and Ashcroft, F.M. (1995). Cloning
- and functional expression of the cDNA encoding a novel ATP-sensitive potassium
- channel subunit expressed in pancreatic beta-cells, brain, heart and skeletal muscle.
 FEBS Lett. *377*, 338-344.
- 32 Saunders, A., Macosko, E.Z., Wysoker, A., Goldman, M., Krienen, F.M., de, R.H.,
- Bien, E., Baum, M., Bortolin, L., Wang, S., Goeva, A., Nemesh, J., Kamitaki, N.,
- 34 Brumbaugh, S., Kulp, D., and McCarroll, S.A. (2018). Molecular Diversity and
- 35 Specializations among the Cells of the Adult Mouse Brain. Cell *174*, 1015-1030.
- 36 Schindelin, J., rganda-Carreras, I., Frise, E., Kaynig, V., Longair, M., Pietzsch, T.,
- 37 Preibisch, S., Rueden, C., Saalfeld, S., Schmid, B., Tinevez, J.Y., White, D.J.,
- Hartenstein, V., Eliceiri, K., Tomancak, P., and Cardona, A. (2012). Fiji: an open-source
- 39 platform for biological-image analysis. Nat. Methods *9*, 676-682.

- 1 Schurr, A., Miller, J.J., Payne, R.S., and Rigor, B.M. (1999). An increase in lactate
- 2 output by brain tissue serves to meet the energy needs of glutamate-activated
- 3 neurons. J. Neurosci. 19, 34-39.

4 Schurr, A., West, C.A., and Rigor, B.M. (1988). Lactate-supported synaptic function in 5 the rat hippocampal slice preparation. Science *240*, 1326-1328.

- 6 Sekine, N., Cirulli, V., Regazzi, R., Brown, L.J., Gine, E., Tamarit-Rodriguez, J.,
- 7 Girotti, M., Marie, S., MacDonald, M.J., Wollheim, C.B., and . (1994). Low lactate
- 8 dehydrogenase and high mitochondrial glycerol phosphate dehydrogenase in
- 9 pancreatic beta-cells. Potential role in nutrient sensing. J. Biol. Chem. *269*, 4895-
- 10 **4902**.
- 11 Shmuel, A., Augath, M., Oeltermann, A., and Logothetis, N.K. (2006). Negative
- functional MRI response correlates with decreases in neuronal activity in monkey
 visual area V1. Nat. Neurosci. *9*, 569-577.
- 14 Shmuel, A., Yacoub, E., Pfeuffer, J., Van de Moortele, P.F., Adriany, G., Hu, X., and
- 15 Ugurbil,K. (2002). Sustained negative BOLD, blood flow and oxygen consumption
- response and its coupling to the positive response in the human brain. Neuron *36*,
- 17 **1195-1210**.
- 18 Silver, I.A., and Erecinska, M. (1994). Extracellular glucose concentration in
- 19 mammalian brain: continuous monitoring of changes during increased neuronal
- activity and upon limitation in oxygen supply in normo-, hypo-, and hyperglycemic
- animals. J. Neurosci. 14, 5068-5076.
- Song,Z., and Routh,V.H. (2005). Differential effects of glucose and lactate on
 glucosensing neurons in the ventromedial hypothalamic nucleus. Diabetes *54*, 15-22.
- 24 Sotelo-Hitschfeld, T., Niemeyer, M.I., Machler, P., Ruminot, I., Lerchundi, R., Wyss, M.T.,
- 25 Stobart, J., Fernandez-Moncada, I., Valdebenito, R., Garrido-Gerter, P., Contreras-
- 26 Baeza, Y., Schneider, B.L., Aebischer, P., Lengacher, S., San, M.A., Le, D.J.,
- 27 Bonvento, G., Magistretti, P.J., Sepulveda, F.V., Weber, B., and Barros, L.F. (2015).
- Channel-mediated lactate release by k+-stimulated astrocytes. J. Neurosci. *35*, 4168-4178.
- 30 Stella,N., Schweitzer,P., and Piomelli,D. (1997). A second endogenous cannabinoid 31 that modulates long-term potentiation. Nature *388*, 773-778.
- 32 Sun,H.S., Feng,Z.P., Miki,T., Seino,S., and French,R.J. (2006). Enhanced neuronal
- damage after ischemic insults in mice lacking Kir6.2-containing ATP-sensitive K+
 channels. J. Neurophysiol. *95*, 2590-2601.
- 35 Suzuki, A., Stern, S.A., Bozdagi, O., Huntley, G.W., Walker, R.H., Magistretti, P.J., and
- Alberini, C.M. (2011). Astrocyte-neuron lactate transport is required for long-term memory formation. Cell *144*, 810-823.
- 38 Tanner, G.R., Lutas, A., Martinez-Francois, J.R., and Yellen, G. (2011). Single K ATP
- 39 channel opening in response to action potential firing in mouse dentate granule
- 40 neurons. J. Neurosci. *31*, 8689-8696.

- 1 Tantama, M., Martinez-Francois, J.R., Mongeon, R., and Yellen, G. (2013). Imaging
- 2 energy status in live cells with a fluorescent biosensor of the intracellular ATP-to-ADP
- 3 ratio. Nat. Commun. *4*, 2550.
- 4 Tarasov, A.I., Girard, C.A., and Ashcroft, F.M. (2006). ATP sensitivity of the ATP-
- 5 sensitive K+ channel in intact and permeabilized pancreatic beta-cells. Diabetes *55*, 6 2446-2454.
- 7 Tasic, B., Menon, V., Nguyen, T.N., Kim, T.K., Jarsky, T., Yao, Z., Levi, B., Gray, L.T.,
- 8 Sorensen, S.A., Dolbeare, T., Bertagnolli, D., Goldy, J., Shapovalova, N., Parry, S.,
- 9 Lee, C., Smith, K., Bernard, A., Madisen, L., Sunkin, S.M., Hawrylycz, M., Koch, C., and
- 10 Zeng,H. (2016). Adult mouse cortical cell taxonomy revealed by single cell
- 11 transcriptomics. Nat. Neurosci.
- 12 Thevenaz, P., Ruttimann, U.E., and Unser, M. (1998). A pyramid approach to subpixel 13 registration based on intensity. IEEE Trans. Image Process *7*, 27-41.
- 14 Thoby-Brisson, M., Cauli, B., Champagnat, J., Fortin, G., and Katz, D.M. (2003).
- 15 Expression of functional tyrosine kinase B receptors by rhythmically active respiratory
- neurons in the pre-Botzinger complex of neonatal mice. J. Neurosci. 23, 7685-7689.
- 17 Thomzig, A., Laube, G., Pruss, H., and Veh, R.W. (2005). Pore-forming subunits of K-
- 18 ATP channels, Kir6.1 and Kir6.2, display prominent differences in regional and
- cellular distribution in the rat brain. J. Comp Neurol. *484*, 313-330.
- 20 Tsuzuki,K., Lambolez,B., Rossier,J., and Ozawa,S. (2001). Absolute quantification of
- AMPA receptor subunit mRNAs in single hippocampal neurons. J. Neurochem. *77*, 1650-1659.
- 23 Uhlirova, H., Kilic, K., Tian, P., Thunemann, M., Desjardins, M., Saisan, P.A.,
- 24 Sakadzic, S., Ness, T.V., Mateo, C., Cheng, Q., Weldy, K.L., Razoux, F.,
- 25 Vanderberghe, M., Cremonesi, J.A., Ferri, C.G., Nizar, K., Sridhar, V.B., Steed, T.C.,
- 26 Abashin, M., Fainman, Y., Masliah, E., Djurovic, S., Andreassen, O., Silva, G.A.,
- 27 Boas, D.A., Kleinfeld, D., Buxton, R.B., Einevoll, G.T., Dale, A.M., and Devor, A. (2016).
- 28 Cell type specificity of neurovascular coupling in cerebral cortex. Elife. 5.
- 29 Vanlandewijck, M., He, L., Mae, M.A., Andrae, J., Ando, K., Del, G.F., Nahar, K.,
- 30 Lebouvier, T., Lavina, B., Gouveia, L., Sun, Y., Raschperger, E., Rasanen, M., Zarb, Y.,
- 31 Mochizuki, N., Keller, A., Lendahl, U., and Betsholtz, C. (2018). A molecular atlas of cell
- 32 types and zonation in the brain vasculature. Nature *554*, 475-480.
- 33 Varin, C., Rancillac, A., Geoffroy, H., Arthaud, S., Fort, P., and Gallopin, T. (2015).
- 34 Glucose Induces Slow-Wave Sleep by Exciting the Sleep-Promoting Neurons in the
- Ventrolateral Preoptic Nucleus: A New Link between Sleep and Metabolism. J.
 Neurosci 35, 9900-9911
- 36 Neurosci. *35*, 9900-9911.
- 37 Vezzoli, E., Cali, C., De, R.M., Ponzoni, L., Sogne, E., Gagnon, N., Francolini, M.,
- Braida, D., Sala, M., Muller, D., Falqui, A., and Magistretti, P.J. (2020). Ultrastructural
- 39 Evidence for a Role of Astrocytes and Glycogen-Derived Lactate in Learning-
- 40 Dependent Synaptic Stabilization. Cereb. Cortex *30*, 2114-2127.

- 1 Voutsinos-Porche, B., Bonvento, G., Tanaka, K., Steiner, P., Welker, E., Chatton, J.Y.,
- 2 Magistretti, P.J., and Pellerin, L. (2003). Glial glutamate transporters mediate a
- 3 functional metabolic crosstalk between neurons and astrocytes in the mouse
- 4 developing cortex. Neuron *37*, 275-286.
- 5 Ward, J.H. (1963). Hierarchical grouping to optimize an objective function. Journal of 6 the American Statistical Association *58*, 236-244.
- 7 Wilson, J.E. (2003). Isozymes of mammalian hexokinase: structure, subcellular
- 8 localization and metabolic function. J. Exp. Biol. *206*, 2049-2057.
- 9 Wyss,M.T., Jolivet,R., Buck,A., Magistretti,P.J., and Weber,B. (2011). In vivo 10 evidence for lactate as a neuronal energy source. J. Neurosci. *31*, 7477-7485.
- 11 Xi,Q., Cheranov,S.Y., and Jaggar,J.H. (2005). Mitochondria-derived reactive oxygen 12 species dilate cerebral arteries by activating Ca2+ sparks. Circ. Res. *97*, 354-362.
- 13 Yamada, M., Isomoto, S., Matsumoto, S., Kondo, C., Shindo, T., Horio, Y., and
- 14 Kurachi, Y. (1997). Sulphonylurea receptor 2B and Kir6.1 form a sulphonylurea-
- sensitive but ATP-insensitive K+ channel. J. Physiol 499 (Pt 3), 715-720.
- 16 Yang,X.J., Kow,L.M., Funabashi,T., and Mobbs,C.V. (1999). Hypothalamic glucose
- sensor: similarities to and differences from pancreatic beta-cell mechanisms.
 Diabetes *48*, 1763-1772.
- Zawar,C., and Neumcke,B. (2000). Differential activation of ATP-sensitive potassium
 channels during energy depletion in CA1 pyramidal cells and interneurones of rat
 hippocampus. Pflugers Arch. *439*, 256-262.
- Zawar,C., Plant,T.D., Schirra,C., Konnerth,A., and Neumcke,B. (1999). Cell-type
 specific expression of ATP-sensitive potassium channels in the rat hippocampus. J.
 Physiol *514 (Pt 2)*, 327-341.
- 25 Zeisel, A., Manchado, A.B., Codeluppi, S., Lonnerberg, P., La, M.G., Jureus, A.,
- 26 Marques, S., Munguba, H., He, L., Betsholtz, C., Rolny, C., Castelo-Branco, G., Hjerling-
- 27 Leffler, J., and Linnarsson, S. (2015). Cell types in the mouse cortex and hippocampus
- revealed by single-cell RNA-seq. Science.
- 29 30