Abstract
Visual Snow (VS) refers to the persistent visual experience of static in the whole visual field of both eyes. It is often reported by patients with migraine and co-occurs with conditions like tinnitus and tremor. The underlying pathophysiology of the condition is poorly understood. Previously we hypothesised, that VSS may be characterised by disruptions to rhythmical activity within the visual system1.
To test this, data from 18 patients diagnosed with visual snow syndrome (VSS), and 16 matched controls, were acquired using Magnetoencephalography (MEG). Participants were presented with visual grating stimuli, known to elicit decreases in alpha-band (8-13Hz) power and increases in gamma-band power (40-70Hz).
Data were mapped to source-space using a beamformer. Across both groups, decreased alpha power and increased gamma power localised to early visual cortex. Data from primary visual cortex (V1) were compared between groups. No differences were found in either alpha or gamma peak frequency or the magnitude of alpha power, p>.05. However, compared with controls, our VSS cohort displayed significantly increased V1 gamma power, p=.035. This new electromagnetic finding concurs with previous fMRI and PET findings suggesting that in VSS, the visual cortex is hyper-excitable. The coupling of alpha-phase to gamma amplitude (i.e., phase-amplitude coupling, PAC) within V1 was also quantified. Compared with controls, the VSS group had significantly reduced alpha-gamma PAC, p<.05, indicating a potential excitation-inhibition imbalance in VSS, as well as a potential disruption to top-down “noise-cancellation” mechanisms.
Overall, these results suggest that rhythmical brain activity in primary visual cortex is both hyperexcitable and disorganised in VSS, consistent with visual snow being a condition of thalamocortical dysrhythmia.
Competing Interest Statement
The authors have declared no competing interest.
Footnotes
↵* Joint first authors