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A mathematical framework for evo-devo dynamics 2

Mauricio González-Forero 3

• We formulate a framework integrating evolutionary and developmental dynamics. 4

• We derive equations describing the evolutionary dynamics of traits considering their developmental process. 5

• This yields a description of the evo-devo process in terms of closed-form formulas that are simple and insightful, 6

including for genetic covariance matrices. 7
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Abstract10

Natural selection acts on phenotypes constructed over development, which raises the question of how development

affects evolution. Classic evolutionary theory indicates that development affects evolution by modulating the genetic

covariation upon which selection acts, thus affecting genetic constraints. However, whether genetic constraints are

relative, thus diverting adaptation from the direction of steepest fitness ascent, or absolute, thus blocking adaptation

in certain directions, remains uncertain. This limits understanding of long-term evolution of developmentally con-

structed phenotypes. Here we formulate a general tractable mathematical framework that integrates age progression,

explicit development (i.e., the construction of the phenotype across life subject to developmental constraints), and

evolutionary dynamics, thus describing the evolutionary developmental (evo-devo) dynamics. The framework yields

simple equations that can be arranged in a layered structure that we call the evo-devo process, whereby five core

elementary components generate all equations including those mechanistically describing genetic covariation and the

evo-devo dynamics. The framework recovers evolutionary dynamic equations in gradient form and describes the evo-

lution of genetic covariation from the evolution of genotype, phenotype, environment, and mutational covariation.

This shows that genotypic and phenotypic evolution must be followed simultaneously to yield a dynamically suffi-

cient description of long-term phenotypic evolution in gradient form, such that evolution described as the climbing of

a fitness landscape occurs in “geno-phenotype” space. Genetic constraints in geno-phenotype space are necessarily

absolute because the phenotype is related to the genotype by development. Thus, the long-term evolutionary dynamics

of developed phenotypes is strongly non-standard: (1) evolutionary equilibria are either absent or infinite in number

and depend on genetic covariation and hence on development; (2) developmental constraints determine the admissible

evolutionary path and hence which evolutionary equilibria are admissible; and (3) evolutionary outcomes occur at ad-

missible evolutionary equilibria, which do not generally occur at fitness landscape peaks in geno-phenotype space, but

at peaks in the admissible evolutionary path where “total genotypic selection” vanishes if exogenous plastic response

vanishes and mutational variation exists in all directions of genotype space. Hence, selection and development jointly

define the evolutionary outcomes if absolute mutational constraints and exogenous plastic response are absent, rather

than the outcomes being defined only by selection. Moreover, our framework provides formulas for the sensitivities

of a recurrence and an alternative method to dynamic optimization (i.e., dynamic programming or optimal control) to

identify evolutionary outcomes in models with developmentally dynamic traits. These results show that development

has major evolutionary effects.
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1. Introduction 14

Development may be defined as the process that constructs the phenotype over life (Barresi and Gilbert, 2020). 15

In particular, development includes “the process by which genotypes are transformed into phenotypes” (Wolf et al., 16

2001). As natural selection screens phenotypes produced by development, a fundamental evolutionary problem con- 17

cerns how development affects evolution. Interest in this problem is long-standing (Baldwin 1896, Waddington 1959 18

p. 399, and Gould and Lewontin 1979) and has steadily increased in recent decades. It has been proposed that devel- 19

opmental constraints (Gould and Lewontin, 1979; Maynard Smith et al., 1985; Brakefield, 2006; Klingenberg, 2010), 20

causal feedbacks over development occurring among genes, the organism, and environment (Lewontin, 1983; Rice, 21

2011; Hansen, 2013; Laland et al., 2015), and various development-mediated factors (Laland et al., 2014, 2015), 22

namely plasticity (Pigliucci, 2001; West-Eberhard, 2003), niche construction (Odling-Smee et al., 1996, 2003), extra- 23

genetic inheritance (Baldwin, 1896; Cavalli-Sforza and Feldman, 1981; Boyd and Richerson, 1985; Jablonka and 24

Lamb, 2014; Bonduriansky and Day, 2018), and developmental bias (Arthur, 2004; Uller et al., 2018), may all have 25

important evolutionary roles. Understanding how development — including these elements acting individually and 26

together — affects the evolutionary process remains an outstanding challenge (Baldwin, 1896; Waddington, 1959; 27

Müller, 2007; Pigliucci, 2007; Laland et al., 2014, 2015; Galis et al., 2018). 28

Classic evolutionary theory indicates that development affects evolution by modulating the genetic covariation 29

upon which selection acts. This can be seen as follows. In quantitative genetics, an individual’s i-th trait value xi is 30

written as xi = x̄i +
∑

j αi j(y j− ȳ j)+ei, where the overbar denotes population average, y j is the individual’s gene content 31

at the j-th locus, αi j is the partial regression coefficient of the i-th trait deviation from the average on the deviation 32

from the average of the j-th locus content, and ei is the residual error (Fisher, 1918; Crow and Kimura, 1970; Falconer 33

and Mackay, 1996; Lynch and Walsh, 1998; Walsh and Lynch, 2018). The quantity αi j is Fisher’s additive effect 34

of allelic substitution (his α; see Eq. I of Fisher 1918 and p. 72 of Lynch and Walsh 1998) and is a description of 35

some of the linear effects of development, specifically of how genotypes are transformed into phenotypes. In matrix 36

notation, the vector of an individual’s trait values is x = x̄ + α(y − ȳ) + e, where the matrix α corresponds to what 37

Wagner (1984) calls the developmental matrix (his B). The breeding value of the multivariate phenotype x is defined 38

as ax ≡ x̄ + α(y − ȳ), which does not consider the error term that includes non-linear effects of genes on phenotype. 39

Breeding value thus depends on development via the developmental matrix α. The Lande (1979) equation describes 40
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the evolutionary change due to selection in the mean multivariate phenotype x̄ as ∆x̄ = G∂ ln W̄/∂x̄, where the additive41

genetic covariance matrix is G ≡ cov[ax, ax] = αcov[y, y]αᵀ (e.g., Wagner 1984), mean absolute fitness is W̄, and the42

selection gradient is ∂ ln W̄/∂x̄, which points in the direction of steepest increase in mean fitness (here and throughout43

we use matrix calculus notation described in Appendix A). An important feature of the Lande equation is that it is44

in gradient form, so the equation shows that, within the assumptions made, phenotypic evolution by natural selection45

proceeds as the climbing of a fitness landscape, as first shown by Wright (1937) for change in allele frequencies in a46

two-allele single-locus model. Moreover, the Lande equation shows that additive genetic covariation, described by G,47

may divert evolutionary change from the direction of steepest fitness ascent, and may prevent evolutionary change in48

some directions if genetic variation in those directions is absent (in which case G is singular). Since additive genetic49

covariation depends on development via the developmental matrix α, the Lande equation shows that development50

affects evolution by modulating genetic covariation via α (Charlesworth et al., 1982; Cheverud, 1984; Maynard Smith51

et al., 1985).52

However, this mathematical description might have limited further insight into the evolutionary effects of devel-53

opment, particularly because it lacks two key pieces of information. First, the above description yields a limited54

understanding of the form of the developmental matrix α. The definition of α as a matrix of regression coefficients55

does not make available a developmentally explicit nor evolutionarily dynamic understanding of α, which hinders un-56

derstanding of how development affects evolution. Although the developmental matrix α has been modelled (Pavlicev57

and Hansen, 2011) or analysed as unknowable (Martin, 2014), there is a lack of a general theory with an explicit de-58

scription of the developmental process to unveil the general structure of the developmental matrix α.59

Second, the description in the second paragraph above gives a very short-term account of the evolutionary process.60

The Lande equation in the second paragraph strictly describes the evolution of mean traits x̄ but not of mean gene61

content ȳ, that is, it does not describe change in allele frequency; yet, since α is a matrix of regression coefficients62

calculated for the current population, α depends on the current state of the population including allele frequency ȳ.63

Thus, the Lande equation above describes the dynamics of some traits x̄ as an implicit function of traits ȳ whose64

dynamics are not described. The equation thus contains fewer dynamic equations (as many as there are traits in x̄)65

than dynamic variables (as many as there are traits x̄ and loci ȳ), so it is underdetermined. Consequently, the Lande66

equation strictly admits an infinite number of evolutionary trajectories for a given initial condition. Technically, the67

evolutionary trajectory is ill-defined by the Lande’s system, so the Lande equation is dynamically insufficient (we68

note that these harsh-sounding terms do not mean that the Lande equation is wrong). The standard approach to this69

dynamic insufficiency is to assume Fisher’s (1918) infinitesimal model, whereby there is an infinite number of loci70

such that allele frequency change per locus per generation is negligible (Bulmer, 1971, 1980; Turelli and Barton,71

1994; Barton et al., 2017; Hill, 2017). Thus, the Lande equation is said to describe short-term evolution, during which72

there is negligible allele frequency change per locus (Walsh and Lynch, 2018, pp. 504 and 879). The Lande equation73

is then supplemented by the Bulmer (1980) equation (Lande and Arnold, 1983, Eq. 12) which describes the dynamics74

of G primarily due to change in linkage disequilibrium under the assumption of negligible allele frequency change,75
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thus still to describe short-term evolution (Walsh and Lynch, 2018, p. 553). Typically, the G matrix is assumed to have 76

reached an equilibrium in such short-term dynamics or to remain constant although this has often been shown not to 77

hold theoretically (Turelli, 1988) and empirically (Björklund et al., 2013). An alternative to the long-term dynamic 78

insufficiency of the classic Lande’s system would be to consider the vector of gene content y to be a subvector of the 79

vector of trait values x (Barfield et al., 2011), although such vector x does not admit the normality assumption of the 80

Lande equation and doing so does not yield a description of linkage disequilibrium dynamics. Indeed, there appears 81

to be no formal derivation of such extended Lande’s system that makes explicit the properties of its associated G- 82

matrix and the dependence of such matrix on development. Overall, understanding how development affects evolution 83

using the classic Lande equation might have been hindered by a lack of a general mechanistic understanding of the 84

developmental matrix α and by the generally long-term dynamic insufficiency of the classic Lande’s system. 85

Nevertheless, there has been progress on general mathematical aspects of how development affects evolution on 86

various fronts. Both the classic Lande equation (Lande, 1979) and the classic canonical equation of adaptive dynamics 87

(Dieckmann and Law, 1996) describe the evolutionary dynamics of a multivariate trait in gradient form without 88

an explicit account of development, by considering no explicit age progression or developmental (i.e., dynamic) 89

constraints (there is also an analogous equation for allele frequency change for multiple alleles in a single locus, 90

first incorrectly presented by Wright, 1937 but later corrected by Edwards, 2000 and presented in Lande’s form by 91

Walsh and Lynch, 2018, Eq. 5.12a). Various research lines have extended these equations to incorporate different 92

aspects of development. First, one line considers explicit age progression by implementing age structure, which 93

allows individuals of different ages to coexist and to have age-specific survival and fertility rates. Thus, evolutionary 94

dynamic equations in gradient form under age-structure have been derived under quantitative genetics assumptions 95

(Lande, 1982), population genetics assumptions (Charlesworth, 1993, 1994), and adaptive dynamics assumptions 96

(Durinx et al., 2008). An important feature of age-structured models is that the forces of selection decline with age 97

due to demography, in particular due to mortality and fewer remaining reproductive events as age advances (Medawar, 98

1952; Hamilton, 1966; Caswell, 1978; Caswell and Shyu, 2017). Such age-specific decline in the force of selection 99

does not occur in unstructured models. 100

Second, another research line in life-history theory has extended age-structured models to consider explicit de- 101

velopmental constraints (Gadgil and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983; Houston et al., 102

1988; Roff, 1992; Houston and McNamara, 1999; Sydsæter et al., 2008). This line has considered developmentally 103

dynamic models with two types of age-specific traits: genotypic traits called control variables, which are under direct 104

genetic control, and developed traits called state variables, which are constructed over life according to developmental 105

constraints, although such literature calls these constraints dynamic. This explicit consideration of developmental 106

constraints in an evolutionary context has mostly assumed that the population is at an evolutionary equilibrium. Thus, 107

this approach identifies evolutionarily stable (or uninvadable) controls and associated states using techniques from dy- 108

namic optimization such as optimal control and dynamic programming (Gadgil and Bossert, 1970; Taylor et al., 1974; 109

León, 1976; Schaffer, 1983; Houston et al., 1988; Roff, 1992; Houston and McNamara, 1999). While the assumption 110
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of evolutionary equilibrium yields great insight, it does not address the evolutionary dynamics which would provide111

a richer understanding. Moreover, the relationship between developmental constraints and genetic covariation is not112

made evident by this approach.113

Third, another research line in adaptive dynamics has made it possible to mathematically model the evolutionary114

developmental (evo-devo) dynamics. By evo-devo dynamics we mean the evolutionary dynamics of genotypic traits115

that modulate the developmental dynamics of developed traits that are constructed over life subject to developmental116

constraints. A first step in this research line has been to consider function-valued or infinite-dimensional traits, which117

are genotypic traits indexed by a continuous variable (e.g., age) rather than a discrete variable as in the classic Lande118

equation. Thus, the evolutionary dynamics of univariate function-valued traits (e.g., body size across continuous119

age) has been described in gradient form by the Lande equation for function-valued traits (Kirkpatrick and Heckman,120

1989) and the canonical equation for function-valued traits (Dieckmann et al., 2006). Although function-valued traits121

may depend on age, they are not subject to developmental constraints describing their developmental dynamics, so122

the consideration of the evolutionary dynamics of function-valued traits alone does not model the evo-devo dynam-123

ics. To our knowledge, Parvinen et al. (2013) were the first to mathematically model what we here call the evo-devo124

dynamics (but note that there have also been models integrating mathematical modeling of the developmental dy-125

namics and individual-based modeling of the evolutionary dynamics, for instance, Salazar-Ciudad and Marı́n-Riera,126

2013 and Watson et al., 2013). Parvinen et al. (2013) did so by considering the evolutionary dynamics of a univariate127

function-valued trait (control variable) that modulates the developmental construction of a multivariate developed trait128

(state variables) subject to explicit developmental constraints (they refer to these as process-mediated models). This129

approach requires the derivation of the selection gradient of the control variable affecting the state variables, which, as130

age is measured in continuous time, involves calculating a functional derivative (of invasion fitness; Dieckmann et al.,131

2006; Parvinen et al., 2013, Eq. 4). Parvinen et al. (2013) noted the lack of a general simplified method to calculate132

such selection gradient, but they calculated it for specific examples. Metz et al. (2016) illustrate how to calculate133

such selection gradient using a fitness return argument in a specific example. Using functional derivatives, Avila et al.134

(2021) derive the selection gradient of a univariate function-valued trait modulating the developmental construction135

of a univariate developed trait for a broad class of models (where relatives interact and the genotypic trait may depend136

on the developed trait). They obtain a formula for the selection gradient that depends on unknown associated vari-137

ables (costate variables or shadow values) (Avila et al., 2021, Eqs. 7 and 23), but at evolutionary equilibrium these138

associated variables can be calculated solving an associated partial differential equation (their Eq. 32). Despite these139

advances, the analysis of these models poses substantial technical challenges, by requiring calculation of functional140

derivatives or (partial) differential equations at evolutionary equilibrium in addition to the equations describing the141

developmental dynamics. These models have yielded evolutionary dynamic equations in gradient form for genotypic142

traits, but not for developed traits, so they have left unanswered the question of how the evolution of developed traits143

with explicit developmental constraints proceeds in the fitness landscape. Additionally, these models have not pro-144

vided a link between developmental constraints and genetic covariation (Metz 2011; Dieckmann et al. 2006 discuss a145
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link between constraints and genetic covariation in controls, not states; see Supplementary Information section S1 for 146

further details). 147

Fourth, a separate research line in quantitative genetics has considered models without age structure where a set of 148

traits are functions of underlying traits such as gene content or environmental variables (Wagner, 1984, 1989; Hansen 149

and Wagner, 2001; Rice, 2002; Martin, 2014; Morrissey, 2014, 2015). This dependence of traits on other traits is used 150

by this research line to describe development and the genotype-phenotype map. However, this research line considers 151

no explicit age progression, so it considers implicit rather than explicit developmental (i.e., dynamic) constraints. 152

Thus, this line has not considered the effect of age structure nor explicit developmental constraints (Wagner, 1984, 153

1989; Hansen and Wagner, 2001; Rice, 2002; Martin, 2014; Morrissey, 2014, 2015). Also, this line has not provided 154

an evolutionarily dynamic understanding of the developmental matrix, nor long-term dynamically sufficient equations 155

in gradient form describing the evolution of developed traits. 156

Here we formulate a tractable mathematical framework that integrates age progression (i.e., age structure), explicit 157

developmental constraints, and evolutionary dynamics. The framework describes the evolutionary dynamics of geno- 158

typic traits and the concomitant developmental dynamics of developed traits subject to developmental constraints. It 159

yields dynamically sufficient expressions describing the long-term evolutionary dynamics in gradient form including 160

for developed traits, so it shows how the climbing of an adaptive topography proceeds for developed traits in a broad 161

class of models. It also obtains a mechanistic counterpart of the developmental matrix thus relating development to 162

genetic covariation for a broad class of models. The resulting equations are long-term dynamically sufficient in the 163

sense that the evolutionary dynamics of all variables involved are described over evolutionary time scales (i.e., for an 164

arbitrary number of mutation-fixation events), including the evolutionary dynamics of the genotype, phenotype, envi- 165

ronment, and genetic covariation modulated by development (provided the elementary components below are known 166

or assumed). 167

We base our framework on adaptive dynamics assumptions (Dieckmann and Law, 1996; Metz et al., 1996; Cham- 168

pagnat, 2006; Durinx et al., 2008). We obtain equations describing the evolutionary dynamics in gradient form of 169

traits x̄ that are constructed over a developmental process with explicit developmental constraints occurring as age 170

progresses. Developmental constraints allow the phenotype to be “predisposed” to develop in certain ways, thus 171

allowing for developmental bias (Arthur, 2004; Uller et al., 2018). We allow development to depend on the envi- 172

ronment, which allows for a mechanistic description of plasticity (Pigliucci, 2001; West-Eberhard, 2003). We also 173

allow development to depend on social interactions, which allows for a mechanistic description of extra-genetic in- 174

heritance (Boyd and Richerson, 1985; Jablonka and Lamb, 2014; Bonduriansky and Day, 2018) and indirect genetic 175

effects (Moore et al., 1997). In turn, we allow the environment faced by each individual to depend on the traits of 176

the individual and of social partners, thus allowing for individual and social niche construction although we do not 177

consider ecological inheritance (Odling-Smee et al., 1996, 2003). We also let the environment depend on processes 178

that are exogenous to the evolving population, such as eutrophication or climate change caused by members of other 179

species, thus allowing for exogenous environmental change. To facilitate analysis, we let population dynamics occur 180
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over a short time scale, whereas environmental and evolutionary dynamics occur over a long time scale. Crucially, we181

measure age in discrete time, which simplifies the mathematics yielding closed-form formulas for otherwise implicitly182

defined quantities. Our methods use concepts from optimal control (Sydsæter et al., 2008) and integrate tools from183

adaptive dynamics (Dieckmann and Law, 1996) and matrix population models (Caswell, 2001; Otto and Day, 2007).184

While we use concepts from optimal control, we do not use optimal control itself and instead derive an alternative185

method to optimal control that can be used to obtain optimal controls in a broad class of evolutionary models with186

dynamic constraints. Our approach differs somewhat from standard matrix population models, where the stage (e.g.,187

age and size) of an individual is discrete and described as indices of the population density vector (Caswell, 2001;188

Caswell et al., 1997; de Vries and Caswell, 2018; Caswell, 2019, Ch. 6); instead, we let the stage of an individual be189

partly discrete (specifically, age), described as indices in the population density vector, and partly continuous (e.g.,190

size), described as arguments of various functions.191

We obtain three sets of main results. First, we derive several closed-form formulas for the total selection gra-192

dient of genotypic traits ȳ (i.e., of control variables) that affect the development of the phenotype x̄ (i.e., of state193

variables), formulas that can be easily computed with elementary operations. The total selection gradient of geno-194

typic traits is the selection gradient that appears in the canonical equation of adaptive dynamics of ȳ, so coupling the195

total selection gradient of genotypic traits, the canonical equation, and the developmental constraint describing the196

developmental dynamics of developed traits provides simple expressions to model the evo-devo dynamics in a broad197

class of models. In particular, these expressions provide an alternative method to dynamic optimization (e.g., dynamic198

programming or optimal control) to calculate evolutionary outcomes for evolutionary (e.g., life history) models with199

developmentally dynamic traits, both analytically for sufficiently simple models and numerically for more complex200

ones. Second, we derive equations in gradient form describing the evolutionary dynamics of developed traits x̄ and201

of the niche-constructed environment. These equations motivate a definition of the “mechanistic additive genetic202

covariance matrix” in terms of “mechanistic breeding value”, defined in turn in terms of a mechanistic counterpart203

of Fisher’s (1918) additive effects of allelic substitution obtained from the developmental process rather than from204

regression. Specifically, we obtain formulas for a mechanistic counterpart of the developmental matrix α for a broad205

class of models. This yields closed-form formulas for the sensitivity of the solutions of a system of recurrence equa-206

tions and are thus of use beyond evolutionary or biological applications, formulas that seem to have been previously207

unavailable (Johnson, 2011). Analogously to the classic Lande equation, our equation describing the evolutionary208

dynamics of the developed traits x̄ depends on the genotypic traits ȳ and so it is generally dynamically insufficient if209

the evolutionary dynamics of the genotypic traits is not considered. Third, we obtain synthetic equations in gradient210

form simultaneously describing the evolutionary dynamics of genotypic, developed, and environmental traits. These211

equations are in gradient form and are dynamically sufficient in that they include as many evolutionarily dynamic212

equations as evolutionarily dynamic variables, which enables one to describe the long-term evolution of developed213

multivariate phenotypes as the climbing of a fitness landscape. Such equations describe the evolutionary dynamics214

of the constraining matrix analogous to G as an emergent property, where genotypic traits ȳ play an analogous role215
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to that of allele frequency under quantitative genetics assumptions while linkage disequilibrium is not an issue as 216

we assume clonal reproduction. In this extended dynamically sufficient Lande’s system, the associated constraining 217

matrix is always singular, which is mathematically trivial, but biologically crucial as it entails that development plays 218

a major evolutionary role. 219

2. Problem statement 220

We begin by describing the mathematical problem we address. We consider a finite age-structured population with 221

deterministic density-dependent population dynamics with age measured in discrete time. Each individual is described 222

by three types of traits that we call genotypic, phenotypic (or developed), and environmental, all of which can vary 223

with age and can evolve. We let all traits take continuous values, which allows us to take derivatives. Genotypic traits 224

are defined by being directly genetically controlled: for instance, a genotypic trait may be the presence or absence 225

of a given nucleotide at a given single-nucleotide locus (Voss, 1992), described with a continuous representation 226

(see below). Phenotypic traits are defined by being constructed over life subject to a developmental constraint: for 227

instance, a phenotypic trait may be body size subject to the influence of genes, developmental history, environment, 228

social interactions, and developmental processes constructing the body. Environmental traits are defined as describing 229

the local environment of the individual subject to an environmental constraint: for instance, an environmental trait 230

may be ambient temperature, which the individual may adjust behaviorally such as by roosting in the shade. We 231

assume that reproduction transmits genotypic traits clonally, but developed and environmental traits need not be 232

transmitted clonally due to social interactions. Given clonal reproduction of genotypic traits, we do not need to 233

further specify the genetic architecture (e.g., ploidy, number of loci, or linkage) and it may depend on the particular 234

model. We assume that the genotypic traits are developmentally independent, whereby genotypic traits are entirely 235

specified by the individual’s genotype and do not depend on other traits expressed over development: in particular, 236

this means that the genotype can only be modified by mutation, but the genotype at a given locus and age does not 237

depend on other loci, the phenotype, or the environment. Developmental independence corresponds to the notion 238

of “open-loop” control of optimal control theory (Sydsæter et al., 2008). Genotypic traits may still be mutationally 239

correlated, whereby genotypic traits may tend to mutate together or separately. We assume that environmental traits 240

are mutually independent, which facilitates derivations. We obtain dynamically sufficient equations in gradient form 241

for the evolution of the phenotype by aggregating the various types of traits. We give names to such aggregates for 242

ease of reference. We call the aggregate of the genotype and phenotype the geno-phenotype. We call the aggregate of 243

the genotype, phenotype, and environment the geno-envo-phenotype. 244

The above terminology departs from standard terminology in adaptive dynamics as follows. In adaptive dynamics, 245

our genotypic traits are referred to as the phenotype and our phenotypic traits as function-valued phenotypes (or 246

state variables). We depart from this terminology to follow the biologically common notion that the phenotype is 247

constructed over development. In turn, adaptive dynamics terminology defines the environment as any quantity outside 248
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the individual, and thus refers to the global environment. In contrast, by environment we refer to the local environment249

of the individual. This allows us to model niche construction as the local environment of a mutant individual may250

differ from that of a resident.251

We use the following notation (Table 1). Each individual can live from age 1 to age Na ∈ {2, 3, . . .}. Each individual252

has a number Ng of genotypic traits at each age. A mutant’s genotypic trait i ∈ {1, . . . ,Ng} at age a ∈ {1, . . . ,Na} is253

yia ∈ R. For instance, yia may be a continuous representation of nucleotide presence at a locus: let YIJa be 1 if254

nucleotide I ∈ {1, 2, 3, 4} (for A, C, G, T) is at locus J ∈ {1, . . . , n} at age a or 0 otherwise and let Ya be the255

corresponding matrix (see Fig. 1 of Voss, 1992); then, the i-th entry of vec(Ya) gives whether the nucleotide I = di/ne256

is present at locus J = i− bi/ncn, where d·e and b·c are the ceiling and floor functions; the i-th entry of vec(Ya) may be257

represented by the Heaviside function, which can be approximated by ỹia = 1/[1 + exp(−yia/γ)], where γ > 0 is small258

and yia ∈ [−10γ, 10γ] is continuous. Another example is that yia is the value of a life-history trait i at age a assumed to259

be directly under genetic control (i.e., a control variable in life-history models; Gadgil and Bossert, 1970; Taylor et al.,260

1974; León, 1976; Schaffer, 1983). While yia may be often constant with age a in the first example, it generally is not261

in the second so we allow genotypic traits to depend on age. Given our assumption of developmental independence262

of genotypic traits, the genotypic trait value yia for all i ∈ {1, . . . ,Ng} and all a ∈ {1, . . . ,Na} of a given individual is263

exclusively controlled by her genotype but mutations can tend to change the value of yia and yk j simultaneously for264

k , i and j , a. Additionally, each individual has a number Np of developed traits, that is, of phenotypes at each age.265

A mutant’s phenotype i ∈ {1, . . . ,Np} at age a ∈ {1, . . . ,Na} is xia ∈ R. Moreover, each individual has a number Ne of266

environmental traits that describe her local environment at each age. A mutant’s environmental trait i ∈ {1, . . . ,Ne} at267

age a ∈ {1, . . . ,Na} is εia ∈ R. Although we do not consider the developmental or evolutionary change of the number268

of traits (i.e., of Ng, Np, or Ne), our framework still allows for the modelling of the developmental or evolutionary269

origin of novel traits (e.g., the origin of a sixth digit where there was five previously in development or evolution;270

Chan et al., 1995; Litingtung et al., 2002; Müller, 2010, or a gene duplication event) by implementing a suitable271

codification (e.g., letting xia mean sixth-digit length, being zero in a previous age or evolutionary time; or by letting272

ỹia mean nucleotide presence and be zero for all novel loci before duplication).273

We use the following notation for collections of these quantities. A mutant’s i-th genotypic trait across all ages274

is denoted by the column vector yi = (yi1; . . . ; yiNa ) ∈ RNa×1, where the semicolon indicates a line break, that is, yi =275

(yi1, . . . , yiNa )
ᵀ. A mutant’s i-th phenotype across all ages is denoted by the column vector xi = (xi1; . . . ; xiNa ) ∈ RNa×1.276

A mutant’s i-th environmental trait across all ages is denoted by the column vector εεε i = (εi1; . . . ; εiNa ) ∈ RNa×1. A277

mutant’s genotype across all genotypic traits and all ages is denoted by the block column vector y = (y1; . . . ; yNg ) ∈278

RNaNg×1. A mutant’s phenotype across all developed traits and all ages is denoted by the block column vector x =279

(x1; . . . ; xNp ) ∈ RNaNp×1. A mutant’s environment across all environmental traits and all ages is denoted by the block280

column vector εεε = (εεε1; . . . ;εεεNp ) ∈ RNaNe×1. To simultaneously refer to the genotype and phenotype, we denote the281

geno-phenotype of the mutant individual at age a as za = (xa; ya) ∈ R(Np+Ng)×1, and the geno-phenotype of a mutant282

across all ages as z = (x; y) ∈ RNa(Np+Ng)×1. Moreover, to simultaneously refer to the genotype, phenotype, and283
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environment, we denote the geno-envo-phenotype of a mutant individual at age a as ma = (za;εεεa) ∈ R(Np+Ng+Ne)×1, 284

and the geno-envo-phenotype of the mutant across all ages as m = (z;εεε) ∈ RNa(Np+Ng+Ne)×1. We denote resident values 285

analogously with an overbar (e.g., z̄ is the resident geno-phenotype). 286

Table 1: Notation summary
Symbol Meaning
x Phenotype (developed traits)
y Genotype (genotypic traits)
z Geno-phenotype (genotype and phenotype)
εεε Environment
m Geno-envo-phenotype (genotype, pheno-

type, and environment)
Na Number of ages
Np Number of developed traits
Ng Number of genotypic traits
Ne Number of environmental traits
g Developmental map
h Environmental map
n Population density
f Fertility
p Survival probability
` Survivorship
w Fitness
λ Invasion fitness
u Stable age distribution
v Reproductive value
φ Force of selection on fertility
π Force of selection on survival
t Ecological time
τ Evolutionary time
θ Socio-devo time
T Generation time
x̌ Resident phenotype in the context of mutant
ẑ Unperturbed geno-phenotype
ζ, ξ Arbitrary vectors
bζ Mechanistic breeding value of ζ
bs
ζ Stabilized mechanistic breeding value of ζ

Hζ Mechanistic additive genetic covariance ma-
trix of ζ

Lζ Mechanistic additive socio-genetic cross-
covariance matrix of ζ

∂ζᵀ

∂ξ
Direct effects of ξ on ζ

δζᵀ

δξ
Total immediate effects of ξ on ζ

dζᵀ

dξ
Total effects of ξ on ζ

sζᵀ

sξ
Stabilized effects of ξ on ζ
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The developmental process that constructs the phenotype is as follows (with causal dependencies described in287

Fig. 1). We assume that an individual’s multivariate phenotype at a given age is a function of the genotypic, phe-288

notypic, and environmental traits that the individual had at the immediately previous age as well as of the social289

interactions experienced at that age. Thus, we assume that a mutant’s multivariate phenotype at age a + 1 is given by290

the developmental constraint291

xa+1 = ga(ma, z̄) (1)

for all a ∈ {1, . . . ,Na − 1} with initial condition x1 = x̄1. The function292

ga(ma, z̄) = (g1a(ma, z̄); . . . ; gNpa(ma, z̄))

is the developmental map at age a, which we assume is a differentiable function of the individual’s geno-envo-293

phenotype at that age and of the geno-phenotype of the individual’s social partners who can be of any age; thus,294

an individual’s development directly depends on the individual’s local environment but not directly on the local295

environment of social partners. The developmental constraint (1) is a mathematical, deterministic description of296

Waddington’s (1957) “epigenetic landscape”. Eq. (1) is a constraint in that the phenotype xa+1 cannot take any value297

but only those that satisfy the equality (e.g., an individual’s body size today cannot take any value but depends on298

her body size, gene expression, and environment since yesterday). The term developmental function can be traced299

back to Gimelfarb (1982) through Wagner (1984). The developmental map in Eq. (1) is an extension of the notions300

of genotype-phenotype map (often a function from genotype to phenotype, without explicit developmental dynamics)301

and reaction norm (often a function from environment to phenotype, also without explicit developmental dynamics),302

as well as of early mathematical descriptions of development in an evolutionary context (Alberch et al., 1979). The303

dependence of the mutant phenotype on the phenotype of social partners in (1) allows one to implement Jablonka and304

Lamb’s (2014) notion that extra-genetic inheritance transmits the phenotype rather than the genotype (see their p. 108),305

such that in (1) the mutant phenotype can be a possibly altered copy of social partners’ phenotype. The developmental306

map in Eq. (1) may be non-linear and can change over development (e.g., from gia = sin xia to gi j = xβi j for a < j and307

some parameter β, for instance, due to metamorphosis) and over evolution (e.g., from a sine to a power function if308

gia = [ỹ ja sin xia + (1 − ỹ ja)xβia] as nucleotide presence ỹ ja evolves from 0 to 1). Simpler forms of the developmental309

constraint (1) are standard in life-history models, which call such constraints dynamic stemming from the terminology310

of optimal control theory (Gadgil and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983; Sydsæter et al.,311

2008). Simpler forms of the developmental constraint (1) are also standard in physiologically structured models of312

population dynamics (de Roos, 1997, Eq. 7). The developmental constraint (1) can describe gene regulatory networks313

(Alon, 2020), learning in deep neural networks (Saxe et al., 2019), and reaction-diffusion models of morphology314

(Murray, 2003) in discrete developmental time and space, once such models are written in the form of Eq. (1) (e.g.,315

if space is one-dimensional, the i-th developed trait may refer to the i-th spatial location; more spatial dimensions316

would require care in the mapping from multidimensional space to the unidimensional i-th phenotypic index, but317

11

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


Environment

Fitness

Genotype

Phenotype

Exogenous
process

(e.g., climate change)
Partners’
genotype

Partners’
phenotype

Geno-phenotype
Geno-envo-phenotype

Figure 1: Causal diagram among the framework’s components. Variables have age-specific values which are not shown for clarity. The phenotype

x is constructed by a developmental process. Each arrow indicates the direct effect of a variable on another one. A mutant’s genotypic traits may

directly affect the phenotype (with the slope quantifying developmental bias from genotype), environment (niche construction by genotype), and

fitness (direct selection on genotype). A mutant’s phenotype at a given age may directly affect her phenotype at an immediately subsequent age

(quantifying developmental bias from the phenotype), thus the direct feedback loop from phenotype to itself. A mutant’s phenotype may also

directly affect her environment (niche construction by the phenotype) and fitness (direct selection on the phenotype). A mutant’s environment

may directly affect the phenotype (plasticity) and fitness (environmental sensitivity of selection). The social partners’ genotype may directly

affect their own phenotype (quantifying developmental bias from genotype), the mutant’s phenotype (indirect genetic effects from genotypes), and

the mutant’s fitness (social selection on genotype). The social partners’ phenotype at a given age may directly affect their own phenotype at an

immediately subsequent age (quantifying developmental bias from phenotypes), thus the direct feedback loop. The social partners’ phenotype at

a given age may also directly affect the mutant’s phenotype (quantifying indirect genetic effects from the phenotype), the mutant’s environment

(social niche construction), and the mutant’s fitness (social selection on the phenotype). The environment may also be directly influenced by

exogenous processes. We assume that the genotype is developmentally independent (i.e., controls y are open-loop), which means that there is no

arrow towards the genotype.

doing so is possible; Supplementary Information section S6). The developmental constraint (1) also admits that a 318

slight perturbation in the geno-envo-phenotype at an early age yields a large change in the phenotype at a later age, 319

possibly changing it from zero to an appreciable value (as in descriptions of developmental innovation (Goldschmidt, 320

1940; Gould, 1977; Orr and Coyne, 1992; Orr, 2005; Müller, 2010), possibly via exploratory processes highlighted 321

by Gerhart and Kirschner 2007 and Kirschner and Gerhart (2010) provided a mathematical model of such processes 322

satisfies Eq. (1)). However, slight perturbations yielding large phenotypic effects raise the question of whether our 323

assumption below that invasion implies fixation is violated if mutant phenotypes x deviate substantially from resident 324

phenotypes x̄; indeed, it has previously been established that invasion implies fixation if mutant genotypes y do not 325

deviate substantially from resident genotypes ȳ (Geritz et al., 2002; Geritz, 2005; Dieckmann et al., 2006; Priklopil 326

and Lehmann, 2020), which we assume. We leave for future work to address explicitly whether large deviations in 327

mutant phenotypes in our sense of the word still entail that invasion implies fixation because of small deviations in 328

mutant genotypes. For simplicity, we assume that the phenotype x1 = x̄1 at the initial age is constant and does not 329

evolve. This assumption corresponds to the common assumption in life-history models that state variables at the initial 330

age are given (Gadgil and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983; Sydsæter et al., 2008). 331

We describe the local environment as follows. We assume that an individual’s local environment at a given age 332
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is a function of the genotypic traits, phenotype, and social interactions of the individual at that age, and of processes333

that are not caused by the population considered. Thus, we assume that a mutant’s environment at age a is given by334

the environmental constraint335

εεεa = ha(za, z̄, τ) (2)

for all a ∈ {1, . . . ,Na}. The function336

ha(za, z̄, τ) = (h1a(za, z̄, τ); . . . ; hNea(za, z̄, τ))

is the environmental map at age a, which can change over development and evolution. We assume that the environ-337

mental map is a differentiable function of the individual’s geno-phenotype at that age (e.g., the individual’s behavior338

at a given age may expose it to a particular environment at that age), the geno-phenotype of the individual’s so-339

cial partners who can be of any age (e.g., through social niche construction), and evolutionary time τ due to slow340

exogenous environmental change. We assume slow exogenous environmental change to enable the resident popu-341

lation to reach carrying capacity to be able to use relatively simple techniques of evolutionary invasion analysis to342

derive selection gradients. The environmental constraint (2) may also be non-linear and can change over develop-343

ment (i.e., over a) and over evolution (as the genotype or phenotype evolves or exogenously as evolutionary time344

advances). The environmental constraint (2) is a minimalist description of the environment of a specific kind (akin345

to “feedback functions” used in physiologically structured models to describe the influence of individuals on the en-346

vironment; de Roos, 1997). A different, perhaps more realistic environmental constraint would be constructive of347

the form εεεa+1 = ha(ma, z̄, τ), in which case the only structural difference between an environmental trait and a de-348

veloped trait would be the dependence of the environmental trait on exogenous processes (akin to “feedback loops”349

used in physiologically structured models to describe the influence of individuals on the environment; de Roos, 1997).350

The environmental constraint could be further extended to model ecological inheritance by letting the environmental351

constraint have the form εεεa+1 = ha(ε̄εε(τ − ∆τ),ma, z̄, τ), where the environmental map now depends on the resident352

environment at the previous evolutionary time (a similar lag could be added to the developmental map so it depends353

on the resident geno-phenotype at the previous evolutionary time to model certain aspects of symbolic social learning;354

Jablonka and Lamb, 2010, 2014; Odling-Smee, 2010). We use the minimalist environmental constraint (2) as a first355

approximation to shorten derivations; our derivations illustrate how one could obtain equations with more complex356

developmental and environmental constraints. With the minimalist environmental constraint (2), the environmental357

traits are mutually independent in that changing one environmental trait at one age does not directly change any other358

environmental trait at any age (i.e., ∂εk j/∂εia = 0 if i , k or a , j). We say that development is social if dxᵀ/dz̄|y=ȳ , 0.359

Our aim is to obtain closed-form equations describing the evolutionary dynamics of the resident phenotype x̄360

subject to the developmental constraint (1) and the environmental constraint (2). The evolutionary dynamics of the361

phenotype x̄ emerge as an outgrowth of the evolutionary dynamics of the genotype ȳ and environment ε̄εε. In the362

Supplementary Information section S3, we provide a short derivation of the canonical equation of adaptive dynamics363
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closely following Dieckmann and Law (1996) although assuming deterministic population dynamics. The canonical 364

equation describes the evolutionary dynamics of resident genotypic traits as: 365

∆ȳ
∆τ
≈ ιHy

dλ
dy

∣∣∣∣∣
y=ȳ

, (3)

where λ = λ(m, m̄) is invasion fitness, ι is a non-negative scalar measuring mutational input proportional to the 366

mutation rate and the carrying capacity, and Hy = cov[y, y] is the mutational covariance matrix (of genotypic traits). 367

The selection gradient in Eq. (3) involves total derivatives so we call it the total selection gradient of the genotype, 368

which measures the effects of genotypic traits y on invasion fitness λ across all the paths in Fig. 1. Total selection 369

gradients, namely total derivatives of invasion fitness with respect to mutant traits evaluated at resident traits, are 370

conceptually similar to the notion of “total derivative of fitness” of Caswell (1982, 2001) denoted by him as dλ, “total 371

differential” of Charlesworth (1994) denoted by him as dr, “integrated sensitivity” of van Tienderen (1995) denoted 372

by him as IS, and of “extended selection gradient” of Morrissey (2014, 2015) denoted by him as η. However, total 373

selection gradients differ from Lande’s selection gradient in that the latter is defined in terms of partial derivatives and 374

so measures only the direct effects of traits on fitness (Fig. 1). We will be concerned with describing the evolutionary 375

dynamics to first-order of approximation, so we will treat the approximation in Eq. (3) as an equality although we 376

keep the approximation symbols throughout to distinguish what is and what is not an approximation. 377

The arrangement above describes the evolutionary developmental (evo-devo) dynamics: the evolutionary dynam- 378

ics of the resident genotype are given by the canonical equation (3), while the concomitant developmental dynamics 379

of the phenotype are given by the developmental (1) and environmental (2) constraints evaluated at resident trait val- 380

ues. To complete the description of the evo-devo dynamics, we obtain closed-form expressions for the total selection 381

gradient of the genotype. Moreover, to determine whether the evolution of the resident developed phenotype x̄ can 382

be described as the climbing of a fitness landscape, we derive equations in gradient form describing the evolutionary 383

dynamics of the resident phenotype x̄, environment ε̄εε, geno-phenotype z̄, and geno-envo-phenotype m̄. To do so, we 384

first give an overview of the model, which describes a complication introduced by social development, how we handle 385

it, and well-known first-order approximations to invasion fitness in age-structured populations. We then use these 386

descriptions to write our results. Derivations are in the Appendices. 387

3. Model overview 388

Here we give an overview of the model. We describe it in detail in the Supplementary Information section S2. 389

3.1. Set up 390

We base our framework on standard assumptions of adaptive dynamics, particularly following Dieckmann and 391

Law (1996). We separate time scales, so developmental and population dynamics occur over a short discrete ecological 392

time scale t and evolutionary dynamics occur over a long discrete evolutionary time scale τ. Although the population 393
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is finite, in a departure from Dieckmann and Law (1996), we let the population dynamics be deterministic rather394

than stochastic for simplicity, so there is no genetic drift. Thus, the only source of stochasticity in our framework is395

mutation. We assume that mutation is rare, weak, and unbiased. Weak mutation means that the variance of mutant396

genotypic traits around resident genotypic traits is marginally small (i.e., a mutant y is marginally different from the397

resident ȳ, so 0 < E[||y − ȳ||2] = tr(cov[y, y]) =
∑Ng

i=1
∑Na

a=1 E[(yia − ȳia)2] � 1. Weak mutation (Gillespie, 1983; Walsh398

and Lynch, 2018, p. 1003) is also called δ-weak selection (Wild and Traulsen, 2007). Unbiased mutation means399

that mutant genotypic traits are symmetrically distributed around the resident genotypic traits (i.e., the mutational400

distribution M(y− ȳ) is even, so M(y− ȳ) = M(ȳ− y)). Yet, unbiased mutation in genotypic traits still allows for bias401

in the distribution of mutant phenotypes since a function of a random variable may have a different distribution from402

that of the random variable (i.e., the distribution of x − x̄ is not even in general); thus, we do not make the isotropy403

assumption of Fisher’s (1930) geometric model (Orr, 2005), although isotropy may arise for mechanistic breeding404

values (defined below) with large NaNg and additional assumptions (e.g., high pleiotropy and high developmental405

integration) from the central limit theorem (Martin, 2014). We assume that a monomorphic resident population having406

geno-envo-phenotype m̄ undergoes density-dependent population dynamics that bring it to carrying capacity. At this407

carrying capacity, rare mutant individuals arise which have a marginally different genotype y and that develop their408

phenotype in the context of the resident. If the mutant genotype increases in frequency, it increasingly faces mutant409

rather than resident individuals. Thus, with social development, the mutant phenotype may change as the mutant410

genotype spreads, which complicates invasion analysis.411

3.2. A complication introduced by social development412

With social development, the phenotype an individual develops depends on the traits of her social partners. This413

introduces a complication to standard evolutionary invasion analysis, for two reasons. First, the phenotype of a mutant414

genotype may change as the mutant genotype spreads and is more exposed to the mutant’s traits via social interactions,415

making the mutant phenotype frequency dependent. Thus, the phenotype developed by a rare mutant genotype in the416

context of a resident phenotype may be different from the phenotype developed by the same mutant genotype in the417

context of itself once the mutant genotype has approached fixation. Second, because of social development, a recently418

fixed mutant may not breed true, that is, her descendants may have a different phenotype from her own despite clonal419

reproduction of the genotype and despite the mutant genotype being fixed (Fig. 2; see also Kobayashi et al. 2015,420

Eq. 14 in their Appendix). Yet, to apply standard invasion analysis techniques, the phenotype of the fixed genotype421

must breed true, so that the phenotype of a mutant genotype developed in the context of individuals with the mutant422

genotype have the same phenotype.423

To carry out invasion analysis, we proceed as follows. Ideally, one should follow explicitly the change in mutant424

phenotype as the mutant genotype increases in frequency and achieves fixation, and up to a point where the fixed425

mutant phenotype breeds true. Yet, to simplify the analysis, we separate the dynamics of phenotype convergence and426

the population dynamics. We thus introduce an additional phase to the standard separation of time scales in adaptive427
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Figure 2: A difficulty introduced by social development. (A) Illustration of socio-devo dynamics. The dashed line is a socio-devo initial resident

phenotype x̄a(θ) = 0.1 for all a ∈ {1, . . . , 4}, x̄1 = 0.1, and socio-devo time θ = 1. The gray line immediately above is a phenotype developed in the

context of such resident, where x̄a+1(2) = ga(z̄a, x̄a+1) = x̄a(2)+ ȳa{x̄a(2)+q[x̄a+1(1)]2}, with ȳa = 0.5 for all a ∈ {1, . . . , 4} and q = 0.5. Setting this

phenotype x̄(2) as resident and iterating up to θ = 10 yields the remaining gray lines, with iteration 10 given by the black line, where x̄a+1(10) =

x̄a(10) + ȳa{x̄a(10) + q[x̄a+1(9)]2} and x̄(10) ≈ x̄(9) is approximately a socio-devo stable equilibrium, which breeds true. (B) Introducing in the

context of such resident x̄(10) (dashed line) a mutant genotype y yields the mutant phenotype x (gray line), where xa+1 = xa + ya{xa + q[x̄a+1(10)]2}

and ya = 0.6 for all a ∈ {1, . . . , 4}. Such mutant does not breed true: a mutant x′ (solid black line) with the same genotype developed in the context

of mutant x has a different phenotype, where x′a+1 = x′a + ya{x′a + q[xa+1]2}. One can use socio-devo dynamics (A) to find for such mutant genotype

y a phenotype that breeds true under social development.

Resident-mutant
population dynamics

Socio-devo
dynamics

Resident
population dynamics

Resident SDS resident SDS resident
at carrying cap.

New
resident

Time scale:

Figure 3: Phases of an evolutionary time step. Evolutionary time is τ. SDS means socio-devo stable. The socio-devo dynamics phase is added

to the standard separation of time scales in adaptive dynamics, which only consider the other two phases. The socio-devo dynamics phase is only

needed if development is social (i.e., if the developmental map ga depends directly or indirectly on social partners’ geno-phenotype for some age

a).

dynamics so that phenotypic convergence occurs first and then resident population dynamics follow. Such additional 428

phase does not describe a biological process but is a mathematical technique to facilitate mathematical treatment (akin 429

to using best-response dynamics to find Nash equilibria). However, this phase might still be biologically justified under 430

somewhat broad conditions. In particular, Aoki et al. (2012, their Appendix A) show that such additional phase is 431

justified in their model of social learning evolution if mutants are rare and social learning dynamics happen faster than 432

allele frequency change; they also show that this additional phase is justified for their particular model if selection 433

is δ-weak. As a first approximation, here we do not formally justify the separation of phenotype convergence and 434

resident population dynamics for our model and simply assume it for simplicity. 435

3.3. Phases of an evolutionary time step 436

To handle the above complication introduced by social development, we partition a unit of evolutionary time in 437

three phases: socio-developmental (socio-devo) dynamics, resident population dynamics, and resident-mutant popu- 438

lation dynamics (Fig. 3). 439

At the start of the socio-devo dynamics phase of a given evolutionary time τ, the population consists of individuals 440

all having the same resident genotype, phenotype, and environment. A new individual arises which has identical 441
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genotype as the resident, but develops a phenotype that may be different from that of the original resident due to social442

development. This developed phenotype, its genotype, and its environment are set as the new resident. This process443

is repeated until convergence to what we term a “socio-devo stable” (SDS) resident equilibrium or until divergence.444

These socio-devo dynamics are formally described by Eq. (S1) and illustrated in Fig. 2A. If development is not social,445

the resident is trivially SDS so the socio-devo dynamics phase is unnecessary. If an SDS resident is achieved, the446

population moves to the next phase; if an SDS resident is not achieved, the analysis stops. We thus study only the447

evolutionary dynamics of SDS resident geno-envo-phenotypes. More specifically, we say a geno-envo-phenotype448

m̄ = (x̄; ȳ; ε̄εε) is a socio-devo equilibrium if and only if x̄ is produced by development when the individual has such449

genotype ȳ and everyone else in the population has that same genotype, phenotype, and environment (Eq. S2). A450

socio-devo equilibrium m̄ = (x̄; ȳ; ε̄εε) is locally stable (i.e., SDS) if and only if a marginally small deviation in the451

initial phenotype x̄(1) from the socio-devo equilibrium keeping the same genotype leads the socio-devo dynamics452

(Eq. S1) to the same equilibrium. A socio-devo equilibrium m̄ is locally stable if all the eigenvalues of the matrix453

dx
dx̄ᵀ

∣∣∣∣∣
y=ȳ

have absolute value (or modulus) strictly less than one. For instance, this is always the case if social interactions454

are only among peers (i.e., individuals of the same age) so the mutant phenotype at a given age depends only on the455

phenotype of immediately younger social partners (in which case the above matrix is block upper triangular so all its456

eigenvalues are zero; Eq. G9). We assume that there is a unique SDS geno-envo-phenotype for a given developmental457

map at every evolutionary time τ.458

If an SDS resident is achieved in the socio-devo dynamics phase, the population moves to the resident population459

dynamics phase. Because the resident is SDS, an individual with resident genotype developing in the context of the460

resident geno-phenotype is guaranteed to develop the resident phenotype. Thus, we may proceed with the standard461

invasion analysis. Hence, in this phase of SDS resident population dynamics, the SDS resident undergoes density462

dependent population dynamics, which we assume asymptotically converges to a carrying capacity.463

Once the SDS resident has achieved carrying capacity, the population moves to the resident-mutant population464

dynamics phase. At the start of this phase, a random mutant genotype y marginally different from the resident genotype465

ȳ arises in a vanishingly small number of mutants. We assume that the mutant becomes either lost or fixed in the466

population (Geritz et al., 2002; Geritz, 2005; Priklopil and Lehmann, 2020), establishing a new resident geno-envo-467

phenotype.468

Repeating this evolutionary time step generates long term evolutionary dynamics of an SDS geno-envo-phenotype.469

3.4. Invasion fitness in age structured populations470

We now write a well-known first-order approximation of invasion fitness for age-structured populations. To do471

this, we first write a mutant’s survival probability and fertility at each age. At the resident population dynamics472
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equilibrium, the mutant’s fertility at age a is 473

fa = fa(ma, m̄) (4a)

and the mutant’s survival probability from age a to a + 1 is 474

pa = pa(ma, m̄). (4b)

The first argument ma in Eqs. (4) is the direct dependence of the mutant’s fertility and survival at a given age on 475

her own geno-envo-phenotype at that age. The second argument m̄ in Eqs. (4) is the direct dependence on social 476

partners’ geno-envo-phenotype at any age (thus, fertility and survival may directly depend on the environment of 477

social partners, specifically, as it may affect the carrying capacity, and fertility and survival are density dependent). 478

In the Supplementary Information section S2.3, we recover the well-known result that invasion fitness λ for age- 479

structured populations is to first-order of approximation around resident genotypic traits equal to the relative fitness w 480

of a mutant individual per unit of generation time, that is λ ≈ w (Eq. S21), where 481

w =

Na∑
j=1

w j, (5a)

a mutant’s relative fitness at age j is 482

w j =
1
T

(
φ j f j + π j p j

)
, (5b)

and generation time is 483

T =

Na∑
j=1

j`◦j f ◦j (6)

(Charlesworth 1994, Eq. 1.47c; Bulmer 1994, Eq. 25, Ch. 25; Bienvenu and Legendre 2015, Eqs. 5 and 12). The 484

superscript ◦ denotes evaluation at y = ȳ (so at m = m̄ as the resident is a socio-devo equilibrium). The quantity 485

` j =
∏ j−1

k=1 pk is the survivorship of mutants from age 1 to age j, and `◦j is that of neutral mutants. We denote the force 486

of selection on fertility at age j (Hamilton 1966 and Caswell 1978, his Eqs. 11 and 12) as 487

φ j(m̄) = `◦j (7a)

and the force of selection on survival at age j as 488

π j(m̄) =
1
p◦j

Na∑
k= j+1

`◦k f ◦k , (7b)

which are independent of mutant trait values because they are evaluated at the resident trait values. It is easily checked 489

that φ j and π j decrease with j (respectively, if p◦j < 1 and f ◦j+1 > 0 provided that p◦j does not change too abruptly with 490

age). 491

18

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


Invasion fitness in our age-structured population can also be written in terms of a mutant’s expected lifetime492

reproductive success because of our assumption that mutants arise when residents are at carrying capacity (Mylius493

and Diekmann, 1995). Specifically, invasion fitness for age-structured populations with mutants arising at carrying494

capacity is to first-order of approximation around resident genotypic traits given by λ ≈ 1+(R0−1)/T (Eq. S23), where495

R0 is a mutant’s expected lifetime reproductive success. For our life cycle, a mutant’s expected lifetime reproductive496

success is497

R0 =

Na∑
j=1

` j f j, (8)

(Caswell, 2001).498

4. The layers of the evo-devo process499

We use the model above to obtain three main results. First, we obtain formulas for the total selection gradient of500

the genotype and underlying equations. Second, we obtain formulas and underlying equations for the evolutionary501

dynamics in gradient form for the phenotype and environment, which if considered on their own yield an underde-502

termined and so dynamically insufficient evolutionary system. Third, we obtain formulas and underlying equations503

for the evolutionary dynamics in gradient form for the geno-phenotype and the geno-envo-phenotype, which if con-504

sidered on their own yield a determined and so dynamically sufficient system. These results provide formulas for505

genetic covariation and other high-level quantities from low-level mechanistic processes. We term the resulting set of506

equations the “evo-devo process”. The evo-devo process can be arranged in a layered structure, where each layer is507

formed by components in layers below (Fig. 4). This layered structure helps see how complex interactions between508

variables involved in genetic covariation are formed by building blocks describing the direct interaction between vari-509

ables. We thus present the evo-devo process starting from the lowest-level layer up to the highest. The three main510

results highlighted above are given in the top layers 6 and 7, and the underlying equations are given in the lower level511

layers 2-5. The derivations of these equations are provided in the Appendices and involve recurrent use of the chain512

rule due to the recurrence and feedbacks involved in the developmental constraint (1).513

4.1. Layer 1: elementary components514

The components of the evo-devo process can be calculated from ten elementary components. These include five515

“core” elementary components: the fertility fa(ma, m̄), survival probability pa(ma, m̄), developmental map ga(ma, z̄),516

and environmental map ha(za, z̄, τ) for all ages a, as well as the mutational covariance matrix Hy (Fig. 4, Layer 1). The517

remaining five elementary components of the evo-devo process are the mutation rate µ and the initial conditions for518

the various dynamical processes, namely, the evolutionarily initial resident genotype ȳ(τ = 1), the developmentally519

initial resident phenotype x̄1, the population density n̄∗1 at carrying capacity of initial-age residents, and the socio-520

devo initial resident phenotype x̄(θ = 1). Once the five core elementary components are available, either from purely521
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Figure 4: The evo-devo process and its layered structure. Here we summarize the equations composing the evo-devo process arranged in a layered

structure. Each layer is formed by components in layers below. Layer 7 describes the evolutionary dynamics as (A) evo-devo dynamics, which in

the limit as ∆τ→ 0 implies (B) the evolutionary dynamics of the geno-phenotype, and (C) the evolutionary dynamics of the geno-envo-phenotype.

(D) Layer 6 describes genetic covariation. (E) Layer 5 describes stabilized effects (total derivatives over life after socio-devo stabilization, denoted

by s/s). (F) Layer 4 describes total effects (total derivatives over life before socio-devo stabilization, denoted by d/d). (G) Layer 3 describes total

immediate effects (total derivatives at the current age, denoted by δ/δ). (H) Layer 2 describes direct effects (partial derivatives, denoted by ∂/∂). (I)

Layer 1 comprises the elementary components of the evo-devo process that generate all layers above. All derivatives are evaluated at y = ȳ. See

text for the equations of direct-effect matrices, which have structure due to age structure. See Fig. 1 and Table 1 for the meaning of symbols.

theoretical models or using empirical data, all the remaining layers of the evo-devo process can be derived. The 522

remaining elementary components are then needed to compute the solution of the evo-devo dynamics. The five core 523

elementary components except for Hy correspond to the elementary components of physiologically structured models 524

of population dynamics (de Roos, 1997). 525

4.2. Layer 2: direct effects 526

We now write the equations for the next layer, that of the direct-effect matrices which constitute nearly elementary 527

components of the evo-devo process. Direct-effect matrices measure the direct effect that a variable has on another 528

variable. Direct-effect matrices capture various effects of age structure, including the declining forces of selection as 529

age advances. 530

Direct-effect matrices include direct selection gradients, which have the following structure due to age-structure. 531
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The direct selection gradient of the phenotype, genotype, or environment is532

∂w
∂ζ

∣∣∣∣∣
y=ȳ
≡

(
∂w
∂ζ1

; · · · ;
∂w
∂ζNa

)∣∣∣∣∣∣
y=ȳ

=

(
∂w1

∂ζ1
; · · · ;

∂wNa

∂ζNa

)∣∣∣∣∣∣
y=ȳ

, (Layer 2, Eq. 1)

for ζ ∈ {x, y,εεε}, with dimensions for ∂w/∂x|y=ȳ ∈ RNaNp×1, ∂w/∂y|y=ȳ ∈ RNaNg×1, and ∂w/∂εεε|y=ȳ ∈ RNaNe×1. These533

gradients measure direct directional selection on the phenotype, genotype, or environment, respectively. Analogously,534

Lande’s (1979) selection gradient measures direct directional selection under quantitative genetics assumptions. Also,535

the direct selection gradient of the environment measures the environmental sensitivity of selection (Chevin et al.,536

2010). The block entries of Layer 2, Eq. 1 can be computed by differentiating Eq. (5b). Note that the second line537

in Layer 2, Eq. 1 takes the derivative of fitness at each age, so from Eq. (5b) each block entry in Layer 2, Eq. 1 is538

weighted by the forces of selection at each age. Thus, the selection gradients in Layer 2, Eq. 1 capture the declining539

forces of selection in that increasingly rightward block entries have smaller magnitude if survival and fertility effects540

are of the same magnitude as age increases.541

We use the above definitions to form the following aggregate direct selection gradients. The direct selection542

gradient of the geno-phenotype is543

∂w
∂z

∣∣∣∣∣
y=ȳ
≡

(
∂w
∂x

;
∂w
∂y

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×1,

and the direct selection gradient of the geno-envo-phenotype is544

∂w
∂m

∣∣∣∣∣
y=ȳ
≡

(
∂w
∂x

;
∂w
∂y

;
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng+Ne)×1.

Direct-effect matrices also include matrices that measure direct developmental bias. These matrices have specific,545

sparse structure due to the arrow of developmental time: changing a trait at a given age cannot have effects on the546

developmental past of the individual and only directly affects the developmental present or immediate future. Using547

matrix calculus notation (Appendix A), the block matrix of direct effects of a mutant’s phenotype on her phenotype548

is549

∂xᵀ

∂x

∣∣∣∣∣
y=ȳ
≡



∂xᵀ1
∂x1

· · ·
∂xᵀ

Na

∂x1
...

. . .
...

∂xᵀ1
∂xNa

· · ·
∂xᵀ

Na

∂xNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=



I
∂xᵀ2
∂x1

· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I
∂xᵀ

Na

∂xNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNp , (Layer 2, Eq. 2a)

which can be understood as measuring direct developmental bias from the phenotype. The equality (Layer 2, Eq. 2a) 550

follows because the direct effects of a mutant’s phenotype on her phenotype are only non-zero at the next age (from 551

the developmental constraint in Eq. 1) or when the phenotypes are differentiated with respect to themselves. The 552

block entries of Layer 2, Eq. 2a can be computed by differentiating the developmental constraint (1). Analogously, 553

the block matrix of direct effects of a mutant’s genotype on her phenotype is 554

∂xᵀ

∂y

∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂y1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
∂xᵀ

Na

∂yNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNg×NaNp , (Layer 2, Eq. 2b)

which can be understood as measuring direct developmental bias from the genotype. Note that the main block diagonal 555

is zero. 556

Direct-effect matrices also include matrices measuring direct plasticity and direct niche construction. Indeed, the 557

block matrix of direct effects of a mutant’s environment on her phenotype is 558

∂xᵀ

∂εεε

∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂εεε1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
∂xᵀNa

∂εεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNe×NaNp , (Layer 2, Eq. 2c)

which can be understood as measuring the direct plasticity of the phenotype (Noble et al., 2019). In turn, the block 559
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matrix of direct effects of a mutant’s phenotype or genotype on her environment is560

∂εεεᵀ

∂ζ

∣∣∣∣∣
y=ȳ

=



∂εεεᵀ1
∂ζ1

0 · · · 0 0

0
∂εεεᵀ2
∂ζ2

· · · 0 0
...

...
. . .

...
...

0 0 · · ·
∂εεεᵀNa−1

∂ζNa−1
0

0 0 · · · 0
∂εεεᵀNa

∂ζNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 2, Eq. 2d)

for ζ ∈ {x, y}, which can be understood as measuring direct niche construction by the phenotype or genotype. The561

equality (Layer 2, Eq. 2d) follows from the environmental constraint in Eq. (2) since the environment faced by a562

mutant at a given age is directly affected by the mutant phenotype or genotype at the same age only (i.e., ∂εεεᵀj /∂ζa = 0563

for a , j).564

Direct-effect matrices also include a matrix describing direct mutual environmental dependence. This is measured565

by the block matrix of direct effects of a mutant’s environment on itself566

∂εεεᵀ

∂εεε

∣∣∣∣∣
y=ȳ

=



∂εεεᵀ1
∂εεε1

0 · · · 0 0

0
∂εεεᵀ2
∂εεε2

· · · 0 0
...

...
. . .

...
...

0 0 · · ·
∂εεεᵀNa−1

∂εεεNa−1
0

0 0 · · · 0
∂εεεᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

= I ∈ RNaNe×NaNe . (Layer 2, Eq. 3)

The first equality follows from the environmental constraint (Eq. 2) and the second equality follows from our assump-567

tion that environmental traits are mutually independent, so ∂εεεᵀa /∂εεεa|y=ȳ = I for all a ∈ {1, . . . ,Na}. It is conceptually568

useful to write ∂εεεᵀ/∂εεε|y=ȳ rather than only I, and we do so throughout.569

Additionally, direct-effect matrices include matrices describing direct social developmental bias, which includes570

the direct effects of extra-genetic inheritance and indirect genetic effects. The block matrix of direct effects of social571

partners’ phenotype or genotype on a mutant’s phenotype is572

∂xᵀ

∂ζ̄

∣∣∣∣∣∣
y=ȳ

=



0
∂xᵀ2
∂ζ̄1

· · ·
∂xᵀNa

∂ζ̄1

0
∂xᵀ2
∂ζ̄2

· · ·
∂xᵀNa

∂ζ̄2
...

...
. . .

...

0
∂xᵀ2
∂ζ̄Na

· · ·
∂xᵀNa

∂ζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (Layer 2, Eq. 4)
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for ζ̄ ∈ {x̄, ȳ}, where the equality follows because the phenotype x1 at the initial age is constant by assumption. The 573

matrix in Layer 2, Eq. 4 can be understood as measuring direct social developmental bias from either the phenotype 574

or genotype, and mechanistically measures the direct effects of extra-genetic inheritance and indirect genetic effects. 575

This matrix can be less sparse than direct-effect matrices above because the mutant’s phenotype can be affected by the 576

phenotype or genotype of social partners of any age. 577

Direct-effect matrices also include matrices describing direct social niche construction. The block matrix of direct 578

effects of social partners’ phenotype or genotype on a mutant’s environment is 579

∂εεεᵀ

∂ζ̄

∣∣∣∣∣∣
y=ȳ
≡



∂εεεᵀ1
∂ζ̄1

· · ·
∂εεεᵀNa

∂ζ̄1
...

. . .
...

∂εεεᵀ1
∂ζ̄Na

· · ·
∂εεεᵀNa

∂ζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (Layer 2, Eq. 5)

for ζ̄ ∈ {x̄, ȳ}, which can be understood as measuring direct social niche construction by either the phenotype or 580

genotype. This matrix does not contain any zero entries in general because the mutant’s environment at any age can 581

be affected by the phenotype or genotype of social partners of any age. 582

We use the above definitions to form direct-effect matrices involving the geno-phenotype. The block matrix of 583

direct effects of a mutant’s geno-phenotype on her geno-phenotype is 584

∂zᵀ

∂z

∣∣∣∣∣
y=ȳ
≡


∂xᵀ

∂x
∂yᵀ

∂x
∂xᵀ

∂y
∂yᵀ

∂y


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


∂xᵀ

∂x
0

∂xᵀ

∂y
I


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 2, Eq. 6)

∈ RNa(Np+Ng)×Na(Np+Ng),

which measures direct developmental bias of the geno-phenotype, and where the equality follows because genotypic 585

traits are developmentally independent by assumption. The block matrix of direct effects of a mutant’s geno-phenotype 586

on her environment is 587

∂εεεᵀ

∂z

∣∣∣∣∣
y=ȳ
≡

(
∂εεεᵀ

∂x
;
∂εεεᵀ

∂y

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNe , (Layer 2, Eq. 7)

which measures direct niche construction by the geno-phenotype. The block matrix of direct effects of social partners’ 588

geno-phenotypes on a mutant’s environment is 589

∂εεεᵀ

∂z̄

∣∣∣∣∣
y=ȳ
≡

(
∂εεεᵀ

∂x̄
;
∂εεεᵀ

∂ȳ

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNe , (Layer 2, Eq. 8)

which measures direct social niche construction by partners’ geno-phenotypes. The block matrix of direct effects of a 590

mutant’s environment on her geno-phenotype is 591

∂zᵀ

∂εεε

∣∣∣∣∣
y=ȳ
≡

(
∂xᵀ

∂εεε

∂yᵀ

∂εεε

)∣∣∣∣∣
y=ȳ

=

(
∂xᵀ

∂εεε
0
)∣∣∣∣∣

y=ȳ
∈ RNaNe×Na(Np+Ng), (Layer 2, Eq. 9)
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which measures the direct plasticity of the geno-phenotype, and where the equality follows because genotypic traits592

are developmentally independent.593

We will see that the evolutionary dynamics of the environment depends on a matrix measuring “inclusive” direct594

niche construction. This matrix is the transpose of the matrix of direct social effects of a focal individual’s geno-595

phenotype on hers and her partners’ environment596

∂(εεε + ε̌εε)
∂zᵀ

∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+
∂εεε

∂z̄ᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×Na(Np+Ng), (Layer 2, Eq. 10)

where we denote by ε̌εε the environment a resident experiences when she develops in the context of mutants (a donor597

perspective for the mutant). Thus, this matrix can be interpreted as inclusive direct niche construction by the geno-598

phenotype. Note that the second term on the right-hand side of Layer 2, Eq. 10 is the direct effects of social partners’599

geno-phenotypes on a focal mutant (a recipient perspective for the mutant). Hence, inclusive direct niche construction600

by the geno-phenotype as described by Layer 2, Eq. 10 can be equivalently interpreted either from a donor or a601

recipient perspective.602

4.3. Layer 3: total immediate effects603

We now proceed to write the equations of the next layer of the evo-devo process, that of total immediate effects.604

Total-immediate-effect matrices measure the total effects that a variable has on another variable only at a given age,605

thus without considering the downstream effects over development. With the developmental and environmental con-606

straints assumed, if there are no environmental traits, total immediate effect matrices (δζᵀ/δξ) reduce to direct effect607

matrices (∂ζᵀ/∂ξ).608

Total-immediate-effect matrices include total immediate selection gradients, which capture some of the effects of609

niche construction. The total immediate selection gradient of the phenotype, genotype, or geno-phenotype is610

δw
δζ

∣∣∣∣∣
y=ȳ

=

(
∂w
∂ζ

+
∂εεεᵀ

∂ζ

∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

, (Layer 3, Eq. 1)

for ζ ∈ {x, y, z}. Here, the total immediate selection gradient of ζ depends on direct directional selection on ζ, direct611

niche construction by ζ, and direct environmental sensitivity of selection. Thus, total immediate selection gradients612

measure total immediate directional selection, which is directional selection in the fitness landscape modified by the613

interaction of niche construction and environmental sensitivity of selection. In a standard quantitative genetics frame-614

work, the total immediate selection gradients correspond to Lande’s (1979) selection gradient if the environmental615

traits are not explicitly included in the analysis.616

Total immediate selection on the environment equals direct selection on the environment because we assume617

environmental traits are mutually independent. The total immediate selection gradient of the environment is618

δw
δεεε

∣∣∣∣∣
y=ȳ

=

(
∂εεεᵀ

∂εεε

∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×1. (Layer 3, Eq. 2)
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Given our assumption that environmental traits are mutually independent, the matrix of direct effects of the envi- 619

ronment on itself is the identity matrix. Thus, the total immediate selection gradient of the environment equals the 620

selection gradient of the environment. 621

Total-immediate-effect matrices also include matrices describing total immediate developmental bias, which cap- 622

ture additional effects of niche construction. The block matrix of total immediate effects of the phenotype, genotype, 623

social partner’s phenotype, or social partner’s genotype on a mutant’s phenotype is 624

δxᵀ

δζ

∣∣∣∣∣
y=ȳ

=

(
∂xᵀ

∂ζ
+
∂εεεᵀ

∂ζ

∂xᵀ

∂εεε

)∣∣∣∣∣∣
y=ȳ

, (Layer 3, Eq. 3)

for ζ ∈ {x, y, x̄, ȳ}. Here, the total immediate effects of ζ on the phenotype depend on the direct developmental bias 625

from ζ, direct niche construction by ζ, and the direct plasticity of the phenotype. Consequently, total immediate effects 626

on the phenotype can be interpreted as measuring total immediate developmental bias, which measures developmental 627

bias in the developmental process modified by the interaction of niche construction and plasticity. 628

Moreover, total immediate-effect matrices include matrices describing total immediate plasticity of the phenotype, 629

which equals plasticity of the phenotype because environmental traits are mutually independent by assumption. The 630

block matrix of total immediate effects of a mutant’s environment on her phenotype is 631

δxᵀ

δεεε

∣∣∣∣∣
y=ȳ

=
∂εεεᵀ

∂εεε

∂xᵀ

∂εεε

∣∣∣∣∣
y=ȳ
∈ RNaNe×NaNp . (Layer 3, Eq. 4)

Given our assumption that environmental traits are mutually independent, the matrix of direct effects of the environ- 632

ment on itself is the identity matrix. Thus, the total immediate plasticity of the phenotype equals the direct plasticity 633

of the phenotype. 634

We use the above definitions to form a matrix quantifying the total immediate developmental bias of the geno- 635

phenotype. This is the block matrix of total immediate effects of a mutant’s geno-phenotype on her geno-phenotype 636

δzᵀ

δz

∣∣∣∣∣
y=ȳ

=

(
∂zᵀ

∂z
+
∂εεεᵀ

∂z
∂zᵀ

∂εεε

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×Na(Np+Ng). (Layer 3, Eq. 5)

Consequently, the total immediate developmental bias of the geno-phenotype depends on the direct developmental bias 637

of the geno-phenotype, direct niche construction by the geno-phenotype, and direct plasticity of the geno-phenotype. 638

4.4. Layer 4: total effects 639

We now move to write the equations for the next layer of the evo-devo process, that of total-effect matrices. Total- 640

effect matrices measure the total effects of a variable on another one over the individual’s life, thus considering the 641

downstream effects over development, but before the effects of social development have stabilized in the population. 642

More generally, total-effect matrices include matrices that give the sensitivity to perturbations of the solution of a 643

recurrence of the form (1). 644
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The total effects of the phenotype on itself describe the developmental feedback of the phenotype. This is given645

by the block matrix of total effects of a mutant’s phenotype on her phenotype646

dxᵀ

dx

∣∣∣∣∣
y=ȳ

=

(
2I −

δxᵀ

δx

)−1
∣∣∣∣∣∣∣
y=ȳ

=

Na∑
a=1

(
δxᵀ

δx
− I

)a−1
∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNp , (Layer 4, Eq. 1)

which is always invertible (Appendix B, Eq. B15) and where the last equality follows by the geometric series of647

matrices. This matrix can be interpreted as a lifetime collection of total immediate effects of the phenotype on itself.648

Also, the developmental feedback of the phenotype can be seen as describing the total developmental bias of the649

phenotype. More generally, Layer 4, Eq. 1 gives the sensitivity of the solution x of the recurrence (1) to perturbations650

in the solution at other times (ages): in particular, dxk j/dxia gives the sensitivity of the solution xk j of the k-th variable651

at time j to perturbations in the solution xia of the i-th variable at time a. Developmental feedback may cause major652

phenotypic effects at subsequent ages as its block entries involve matrix products. Indeed, the total effects of the653

phenotype at age a on the phenotype at age j are given by654

dxᵀ
j

dxa
=



y
j−1∏
k=a

δxᵀk+1

δxk
=
δxᵀ

a+1

δxa
· · ·

δxᵀ
j

δx j−1
for j > a

I for j = a

0 for j < a.

(Layer 4, Eq. 2)

Since matrix multiplication is not commutative, the y denotes right multiplication. By depending on the total im-655

mediate developmental bias from the phenotype, the developmental feedback of the phenotype depends on direct656

developmental bias from the phenotype, direct niche-construction by the phenotype, and direct plasticity of the phe-657

notype (Layer 3, Eq. 3). Layer 4, Eq. 1 has the same form of an equation for total effects used in path analysis (Greene658

1977, p. 380; see also Morrissey 2014, Eq. 2) if (δxᵀ/δx − I)|y=ȳ is interpreted as a matrix listing the path coefficients659

of “direct” effects of the phenotype on itself (direct, without explicitly considering environmental traits).660

The total effects of the genotype on the phenotype are a mechanistic analogue of Fisher’s additive effects of allelic661

substitution and of Wagner’s developmental matrix. The block matrix of total effects of a mutant’s genotype on her662

phenotype is given by663

dxᵀ

dy

∣∣∣∣∣
y=ȳ

=

(
δxᵀ

δy
dxᵀ

dx

)∣∣∣∣∣∣
y=ȳ
∈ RNaNg×NaNp , (Layer 4, Eq. 3)

which is singular because the developmentally initial phenotype is not affected by the genotype (by our assumption664

that the initial phenotype is constant) and the developmentally final genotypic traits do not affect the phenotype (by665

our assumption that individuals do not survive after the final age; so dxᵀ/dy|y=ȳ has rows and columns that are zero;666

Appendix C, Eq. C16). From Layer 4, Eq. 3, this matrix can be interpreted as involving a developmentally immediate667
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pulse caused by a change in genotypic traits followed by the triggered developmental feedback of the phenotype. 668

The matrix of total effects of the genotype on the phenotype measures total developmental bias of the phenotype 669

from the genotype. By giving the total effects of a perturbation in the genotype on the phenotype, the entries of this 670

matrix are a mechanistic analogue of Fisher’s additive effect of allelic substitution, which he defined as regression 671

coefficients (his α; see Eq. I of Fisher 1918 and p. 72 of Lynch and Walsh 1998). Also, this matrix is a mechanistic 672

analogue of Wagner’s (1984, 1989) developmental matrix (his B) (see also Martin 2014), Rice’s (2002) rank-1 D 673

tensor, and Morrissey’s (2015) total effect matrix (his Φ, but not Morrissey’s (2014) Φ, which is a regression-based 674

form of dxᵀ/dx) (interpreting these authors’ partial derivatives as total derivatives, although using derivatives rather 675

than regression coefficients violates the standard partition of phenotypic variance into genetic and “environmental” 676

variances, as explained below). More generally, interpreting y as parameters affecting the recurrence (1) over x, Layer 677

4, Eq. 3 gives the sensitivity of the solution x to perturbation in the parameters at other times (ages): in particular, 678

dxk j/dyia gives the sensitivity of the solution xk j of the k-th variable at time j to perturbations in the i-th parameter yia at 679

time a. The definition of total effects of the genotype on the phenotype in terms of derivatives (Layer 4, Eq. 3) differs 680

from Fisher’s in terms of regression coefficients both in that it reveals its structure and so it can be used for evo-devo 681

dynamically sufficient analysis, and in that regression coefficients of phenotype to genotype are uncorrelated with 682

residuals whereas the derivative analogues need not be. This implies that the standard partition of phenotypic variance 683

in quantitative genetics does not hold with our mechanistic analogues, so a mechanistic analogue of heritability can 684

be greater than one (as further explained in Layer 6). 685

The total effects of the environment on the phenotype measure the total plasticity of the phenotype, considering 686

downstream effects over development. This is given by the block matrix of total effects of a mutant’s environment on 687

her phenotype 688

dxᵀ

dεεε

∣∣∣∣∣
y=ȳ

=

(
δxᵀ

δεεε

dxᵀ

dx

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×NaNp . (Layer 4, Eq. 4)

Thus, the total plasticity of the phenotype can be interpreted as a developmentally immediate pulse of plastic change 689

in the phenotype followed by the triggered developmental feedback of the phenotype. 690

The total effects of social partners’ genotype or phenotype on the phenotype measure the total social developmen- 691

tal bias of the phenotype. The block matrix of total effects of social partners’ phenotype or genotype on a mutant’s 692

phenotype is 693

dxᵀ

dζ̄

∣∣∣∣∣∣
y=ȳ

=

δxᵀ
δζ̄

dxᵀ

dx

∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 5)

for ζ̄ ∈ {x̄, ȳ}. This matrix can be interpreted as measuring total social developmental bias of the phenotype from 694

phenotype or genotype, as well as the total effects on the phenotype of extra-genetic inheritance, and the total in- 695

direct genetic effects. In particular, the matrix of total social developmental bias of the phenotype from phenotype, 696

dxᵀ/dx̄|y=ȳ, is a mechanistic version of the matrix of interaction coefficients in the indirect genetic effects literature 697

(i.e., Ψ in Eq. 17 of Moore et al. 1997, which is defined as a matrix of regression coefficients). From Layer 4, Eq. 5, 698
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the total social developmental bias of the phenotype can be interpreted as a developmentally immediate pulse of phe-699

notype change caused by a change in social partners’ traits followed by the triggered developmental feedback of the700

mutant’s phenotype.701

The total effects on the genotype are simple since genotypic traits are developmentally independent by assumption.702

The block matrix of total effects of a mutant’s genotype on itself is703

dyᵀ

dy

∣∣∣∣∣
y=ȳ

= I ∈ RNaNg×NaNg , (Layer 4, Eq. 6)

and the block matrix of total effects of a vector ζ ∈ {x,εεε, x̄, ȳ, z̄, ε̄εε, m̄} on a mutant’s genotype is704

dyᵀ

dζ

∣∣∣∣∣
y=ȳ

= 0,

(Appendix C, Eq. C13).705

We can use some of the previous total-effect matrices to construct the following total-effect matrices involving the706

geno-phenotype. The block matrix of total effects of a mutant’s phenotype on her geno-phenotype is707

dzᵀ

dx

∣∣∣∣∣
y=ȳ
≡

(dxᵀ

dx
dyᵀ

dx

)∣∣∣∣∣
y=ȳ

=

(dxᵀ

dx
0
)∣∣∣∣∣

y=ȳ
∈ RNaNp×Na(Np+Ng), (Layer 4, Eq. 7)

measuring total developmental bias of the geno-phenotype from the phenotype. The block matrix of total effects of708

the genotype on her geno-phenotype is709

dzᵀ

dy

∣∣∣∣∣
y=ȳ
≡

(
dxᵀ

dy
dyᵀ

dy

)∣∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
I
)∣∣∣∣∣∣

y=ȳ
∈ RNaNg×Na(Np+Ng), (Layer 4, Eq. 8)

measuring total developmental bias of the geno-phenotype from the genotype. This matrix dzᵀ/dy|y=ȳ is singular710

because any matrix with fewer rows than columns is singular (Horn and Johnson, 2013, p. 14). This singularity will711

be important when we consider mechanistic additive genetic covariances (Layer 6). Now, the block matrix of total712

effects of a mutant’s geno-phenotype on her geno-phenotype is713

dzᵀ

dz

∣∣∣∣∣
y=ȳ
≡


dxᵀ

dx
dyᵀ

dx
dxᵀ

dy
dyᵀ

dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


dxᵀ

dx
0

dxᵀ

dy
I


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
2I −

δzᵀ

δz

)−1
∣∣∣∣∣∣∣
y=ȳ

=

Na∑
a=1

(
δzᵀ

δz
− I

)a−1

(Layer 4, Eq. 9)

∈ RNa(Np+Ng)×Na(Np+Ng),

which can be interpreted as measuring the developmental feedback of the geno-phenotype (Appendix E, Eq. E4).714

Since dzᵀ/dz|y=ȳ is square and block lower triangular, and since dxᵀ/dx|y=ȳ is invertible (Appendix B, Eq. B15), we715

have that dzᵀ/dz|y=ȳ is invertible.716
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Moreover, the total effects of the phenotype and genotype on the environment quantify total niche construction. 717

Total niche construction by the phenotype is quantified by the block matrix of total effects of a mutant’s phenotype on 718

her environment 719

dεεεᵀ

dx

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
∂εεεᵀ

∂x

)∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dx
∂εεεᵀ

∂z

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×NaNe , (Layer 4, Eq. 10)

which can be interpreted as showing that developmental feedback of the phenotype occurs first and then direct niche- 720

constructing effects by the phenotype follow. Similarly, total niche construction by the genotype is quantified by the 721

block matrix of total effects of a mutant’s genotype on her environment 722

dεεεᵀ

dy

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
∂εεεᵀ

∂x
+
∂εεεᵀ

∂y

)∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dy
∂εεεᵀ

∂z

)∣∣∣∣∣∣
y=ȳ
∈ RNaNg×NaNe , (Layer 4, Eq. 11)

which depends on direct niche construction by the genotype and on total developmental bias of the phenotype from 723

the genotype followed by niche construction by the phenotype. The analogous relationship holds for total niche 724

construction by the geno-phenotype, quantified by the block matrix of total effects of a mutant’s geno-phenotype on 725

her environment 726

dεεεᵀ

dz

∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂εεεᵀ

∂z

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNe , (Layer 4, Eq. 12)

which depends on the developmental feedback of the geno-phenotype and direct niche construction by the geno- 727

phenotype. 728

The total effects of the environment on itself quantify environmental feedback. The block matrix of total effects 729

of a mutant’s environment on her environment is 730

dεεεᵀ

dεεε

∣∣∣∣∣
y=ȳ

=

(
∂εεεᵀ

∂εεε
+

dxᵀ

dεεε
∂εεεᵀ

∂x

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×NaNe , (Layer 4, Eq. 13)

which is always invertible (Appendix D, Eq. D5). This matrix can be interpreted as measuring environmental feed- 731

back, which depends on direct mutual environmental dependence, total plasticity of the phenotype, and direct niche 732

construction by the phenotype. 733

We can also use some of the following previous total-effect matrices to construct the following total-effect matrices 734

involving the geno-envo-phenotype. The block matrix of total effects of a mutant’s phenotype on her geno-envo- 735

phenotype is 736

dmᵀ

dx

∣∣∣∣∣
y=ȳ
≡

(dxᵀ

dx
dyᵀ

dx
dεεεᵀ

dx

)∣∣∣∣∣
y=ȳ

=

(dxᵀ

dx
0

dεεεᵀ

dx

)∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 14)
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∈ RNaNp×Na(Np+Ng+Ne),

measuring total developmental bias of the geno-envo-phenotype from the phenotype. The block matrix of total effects737

of a mutant’s genotype on her geno-envo-phenotype is738

dmᵀ

dy

∣∣∣∣∣
y=ȳ
≡

(
dxᵀ

dy
dyᵀ

dy
dεεεᵀ

dy

)∣∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
I

dεεεᵀ

dy

)∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 15)

∈ RNaNg×Na(Np+Ng+Ne),

measuring total developmental bias of the geno-envo-phenotype from the genotype, and which is singular because it739

has fewer rows than columns.740

The block matrix of total effects of a mutant’s environment on her geno-envo-phenotype is741

dmᵀ

dεεε

∣∣∣∣∣
y=ȳ

=

(dxᵀ

dεεε
dyᵀ

dεεε
dεεεᵀ

dεεε

)∣∣∣∣∣
y=ȳ

=

(dxᵀ

dεεε
0

dεεεᵀ

dεεε

)∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 16)

∈ RNaNe×Na(Np+Ng+Ne),

measuring total plasticity of the geno-envo-phenotype. The block matrix of total effects of a mutant’s geno-phenotype742

on her geno-envo-phenotype is743

dmᵀ

dz

∣∣∣∣∣
y=ȳ
≡


dmᵀ

dx
dmᵀ

dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 17)

∈ RNa(Np+Ng)×Na(Np+Ng+Ne),

measuring total developmental bias of the geno-envo-phenotype from the geno-phenotype. The block matrix of total744

effects of a mutant’s geno-envo-phenotype on her geno-envo-phenotype is745

dmᵀ

dm

∣∣∣∣∣
y=ȳ

=



dmᵀ

dx
dmᵀ

dy
dmᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 18)

∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne),

measuring developmental feedback of the geno-envo-phenotype, and which we show is invertible (Appendix F).746

Obtaining a compact form for dmᵀ/dm|y=ȳ analogous to Layer 4, Eq. 9 seemingly needs (dεεεᵀ/dεεε|y=ȳ)−1 which appears747

to yield relatively complex expressions so we leave this for future analysis.748
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We will see that the evolutionary dynamics of the phenotype depends on a matrix measuring “inclusive” total 749

developmental bias of the phenotype. This matrix is the transpose of the matrix of total social effects of a focal 750

individual’s genotype or phenotype on hers and her partners’ phenotypes 751

d(x + x̌)
dζᵀ

∣∣∣∣∣
y=ȳ

=

 dx
dζᵀ

+
dx

dζ̄ᵀ

∣∣∣∣∣∣
y=ȳ

, (Layer 4, Eq. 19)

for ζ ∈ {x, y} where we denote by x̌ the phenotype that a resident develops in the context of mutants (a donor 752

perspective for the mutant). Thus, this matrix can be interpreted as measuring inclusive total developmental bias 753

of the phenotype. Note that the second term on the right-hand side of Layer 4, Eq. 19 is the total effects of social 754

partners’ phenotype or genotype on a focal mutant (a recipient perspective for the mutant). Thus, the inclusive total 755

developmental bias of the phenotype as described by Layer 4, Eq. 19 can be equivalently interpreted either from a 756

donor or a recipient perspective. 757

Having written expressions for the above total-effect matrices, we can now write the total selection gradients, 758

which measure total directional selection, that is, directional selection considering all the pathways in which a trait 759

can affect fitness in Fig. 1 (see also Morrissey 2014). This contrasts with Lande’s (1979) selection gradient, which 760

corresponds to the direct selection gradient measuring the direct effect of a variable on fitness in Fig. 1. In Appendix 761

B-Appendix F, we show that the total selection gradient of vector ζ ∈ {x, y, z,εεε,m} is 762

dw
dζ

∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dζ
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

, (Layer 4, Eq. 20)

which has the form of the chain rule in matrix calculus notation. Hence, the total selection gradient of ζ depends 763

on the total effects of ζ on the geno-envo-phenotype and direct directional selection on the geno-envo-phenotype. 764

Consequently, the total directional selection on ζ is the directional selection on the geno-envo-phenotype transformed 765

by the total effects of ζ on the geno-envo-phenotype considering the downstream developmental effects. Layer 4, 766

Eq. 20 has the same form of previous expressions by Caswell (e.g., Caswell, 1982, Eq. 4 and Caswell, 2001, Eq. 9.38), 767

except that it is in terms of traits rather than vital rates (i.e, Caswell’s equations have the entries of the Leslie matrix in 768

Eq. S7 in the place of m). Layer 4, Eq. 20 also recovers the form of Morrissey’s (2014) extended selection gradient. 769

Total selection gradients take the following particular forms. 770

The total selection gradient of the phenotype is 771

dw
dx

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
∂w
∂x

+
dεεεᵀ

dx
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 21)

=

(
dxᵀ

dx
δw
δx

)∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dx
δw
δz

)∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dx
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

.
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This gradient depends on direct directional selection on the phenotype and direct directional selection on the environ-772

ment (Layer 2, Eq. 1). It also depends on developmental feedback of the phenotype (Layer 4, Eq. 1) and total niche773

construction by the phenotype, which also depends on developmental feedback of the phenotype (Layer 4, Eq. 10).774

Consequently, the total selection gradient of the phenotype can be interpreted as measuring total (directional) pheno-775

typic selection in the fitness landscape modified by developmental feedback of the phenotype and by the interaction776

of total niche construction and environmental sensitivity of selection.777

The total selection gradient of the genotype is778

dw
dy

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
∂w
∂x

+
∂w
∂y

+
dεεεᵀ

dy
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 22)

=

(
dxᵀ

dy
δw
δx

+
δw
δy

)∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dy
δw
δz

)∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dy
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

=

(
δxᵀ

δy
dw
dx

+
δw
δy

)∣∣∣∣∣∣
y=ȳ

.

This gradient not only depends on direct directional selection on the phenotype and the environment, but also on direct779

directional selection on the genotype (Layer 2, Eq. 1). It also depends on the mechanistic analogue of Fisher’s (1918)780

additive effects of allelic substitution or of Wagner’s (1984, 1989) developmental matrix (Layer 4, Eq. 3) and on total781

niche construction by the genotype, which also depends on the developmental matrix (Layer 4, Eq. 11). Consequently,782

the total selection gradient of the genotype can be interpreted as measuring total (directional) genotypic selection783

in a fitness landscape modified by the interaction of total developmental bias of the phenotype from the genotype784

and directional selection on the phenotype and by the interaction of total niche construction by the genotype and785

environmental sensitivity of selection. In a standard quantitative genetics framework, the total selection gradient of786

the genotype would correspond to Lande’s (1979) selection gradient of the genotype if phenotypic and environmental787

traits were not explicitly included in the analysis. The fifth line of Layer 4, Eq. 22 has the form of previous expressions788

for the total selection gradient of controls in continuous age in terms of partial derivatives of the Hamiltonian involving789

costate variables for which closed-form formulas have been lacking (e.g., Day and Taylor 1997, Eq. 4, Day and Taylor790

2000, Eq. 6, and Avila et al. 2021, Eq. 23; see also our Eq. K4). Costate variables are proportional to the total selection791

gradient of states (i.e., the phenotype; Eq. (K3); see also Appendix K and Metz et al. 2016). Our discrete-age approach792

allowed us to obtain closed-form formulas for the total selection gradient of states (Layer 4, Eq. 21), thus providing793

closed-form formulas for the total selection gradient of controls.794

To derive equations describing the evolutionary dynamics of the geno-envo-phenotype, we make use of the total795

selection gradient of the environment, although such gradient is not necessary to obtain equations describing the796
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evolutionary dynamics of the geno-phenotype. The total selection gradient of the environment is 797

dw
dεεε

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε
∂w
∂x

+
dεεεᵀ

dεεε
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 23)

=

(
dxᵀ

dεεε
δw
δx

+
δw
δεεε

)∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dεεε
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

=

(
δxᵀ

δεεε

dw
dx

+
δw
δεεε

)∣∣∣∣∣∣
y=ȳ

.

This gradient depends on total plasticity of the phenotype and on environmental feedback, which in turn depends on 798

total plasticity of the phenotype and niche construction by the phenotype (Layer 4, Eq. 13). Consequently, the total 799

selection gradient of the environment can be understood as measuring total (directional) environmental selection in a 800

fitness landscape modified by environmental feedback and by the interaction of total plasticity of the phenotype and 801

direct directional selection on the phenotype. 802

We can combine the expressions for the total selection gradients above to obtain the total selection gradient of the 803

geno-phenotype and the geno-envo-phenotype. The total selection gradient of the geno-phenotype is 804

dw
dz

∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂w
∂z

+
dεεεᵀ

dz
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

(Layer 4, Eq. 24)

=

(
dzᵀ

dz
δw
δz

)∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dz
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

.

Thus, the total selection gradient of the geno-phenotype can be interpreted as measuring total (directional) geno- 805

phenotypic selection in a fitness landscape modified by developmental feedback of the geno-phenotype and by the 806

interaction of total niche construction by the geno-phenotype and environmental sensitivity of selection. In turn, the 807

total selection gradient of the geno-envo-phenotype is 808

dw
dm

∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dm
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

, (Layer 4, Eq. 25)

which can be interpreted as measuring total (directional) geno-envo-phenotypic selection in a fitness landscape modi- 809

fied by developmental feedback of the geno-envo-phenotype. 810

4.5. Layer 5: stabilized effects 811

We now move on to write the equations for the next layer of the evo-devo process, that of (socio-devo) stabilized- 812

effect matrices. Stabilized-effect matrices measure the total effects of a variable on another one considering down- 813

stream developmental effects, after the effects of social development have stabilized in the population. Stabilized- 814

effect matrices arise in the derivation of the evolutionary dynamics of the phenotype and environment as a result of 815
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social development. If development is not social (i.e., dxᵀ/dz̄|y=ȳ = 0), then all stabilized-effect matrices (sζᵀ/sξ|y=ȳ)816

reduce to the corresponding total-effect matrices (dζᵀ/dξ|y=ȳ), except one (sxᵀ/sx̄|y=ȳ) that reduces to the identity817

matrix.818

The stabilized effects of social partners’ phenotypes on a focal individual’s phenotype measure social feedback.819

This is given by the transpose of the matrix of stabilized effects of social partners’ phenotypes on a focal individual’s820

phenotype821

sx
sx̄ᵀ

∣∣∣∣∣
y=ȳ

=

(
I −

dx̌
dxᵀ

∣∣∣∣∣
y=ȳ

)−1

=

(
I −

dx
dx̄ᵀ

∣∣∣∣∣
y=ȳ

)−1

=

∞∑
θ=1

(
dx

dx̄ᵀ

)θ−1
∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNp , (Layer 5, Eq. 1)

where the last equality follows by the geometric series of matrices. The matrix sx/sx̄ᵀ|y=ȳ is invertible by our assump-822

tion that all the eigenvalues of dx/dx̄ᵀ|y=ȳ have absolute value strictly less than one, to guarantee that the resident823

is socio-devo stable. The matrix sx/sx̄ᵀ|y=ȳ can be interpreted as the total effects of social partners’ phenotypes on a824

focal individual’s phenotype after socio-devo stabilization (Eq. S1); or vice versa, of a focal individual’s phenotype on825

social partners’ phenotypes. Thus, the matrix sx/sx̄ᵀ|y=ȳ describes social feedback arising from social development.826

This matrix corresponds to an analogous matrix found in the indirect genetic effects literature (Moore et al., 1997,827

Eq. 19b and subsequent text). If development is not social from the phenotype (i.e., dxᵀ/dx̄|y=ȳ = 0), then the matrix828

sx/sx̄ᵀ|y=ȳ is the identity matrix. This is the only stabilized-effect matrix that does not reduce to the corresponding829

total-effect matrix when development is not social.830

The stabilized effects of a focal individual’s phenotype or genotype on her phenotype measure stabilized develop-831

mental bias. We define the transpose of the matrix of stabilized effects of a focal individual’s phenotype or genotype832

on her phenotype as833

sx
sζᵀ

∣∣∣∣∣
y=ȳ

=

(
sx

sx̄ᵀ
d(x + x̌)

dζᵀ

)∣∣∣∣∣∣
y=ȳ

, (Layer 5, Eq. 2a)

for ζ ∈ {x, y}. This matrix can be interpreted as measuring stabilized developmental bias of the phenotype from834

ζ, where a focal individual’s genotype or phenotype first affects the development of her own and social partners’835

phenotype which then feeds back to affect the individual’s phenotype. Stabilized developmental bias is “inclusive” in836

that it includes both the effects of the focal individual on herself and on social partners. If development is not social837

(i.e., dxᵀ/dz̄|y=ȳ = 0), then a stabilized developmental bias matrix (sx/sζᵀ|y=ȳ) reduces to the corresponding total838

developmental bias matrix (dx/dζᵀ|y=ȳ).839

The stabilized effects of the environment on the phenotype measure stabilized plasticity. The transpose of the840

matrix of stabilized effects of a focal individual’s environment on the phenotype is841

sx
sεεεᵀ

∣∣∣∣∣
y=ȳ

=

(
sx

sx̄ᵀ

dx
dεεεᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×NaNe . (Layer 5, Eq. 2b)
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This matrix can be interpreted as measuring stabilized plasticity of the phenotype, where the environment first causes 842

total plasticity in a focal individual and then the focal individual causes stabilized social effects on social partners. 843

Stabilized plasticity does not depend on the inclusive effects of the environment. If development is not social (i.e., 844

dxᵀ/dz̄|y=ȳ = 0), then stabilized plasticity reduces to total plasticity. 845

The stabilized effects on the genotype are simple since genotypic traits are developmentally independent by as- 846

sumption. The transpose of the matrix of stabilized effects of a focal individual’s phenotype or environment on the 847

genotype is 848

sy
sζᵀ

∣∣∣∣∣
y=ȳ

=
dy

dζᵀ

∣∣∣∣∣
y=ȳ

= 0, (Layer 5, Eq. 3a)

for ζ ∈ {x,εεε}. The transpose of the matrix of stabilized effects of a focal individual’s genotype on the genotype is 849

sy
syᵀ

∣∣∣∣∣
y=ȳ

=
dy

dyᵀ

∣∣∣∣∣
y=ȳ

= I ∈ RNaNg×NaNg . (Layer 5, Eq. 3b)

We can use some of the previous stabilized-effect matrices to construct the following stabilized-effect matrices 850

involving the geno-phenotype. The transpose of the matrix of stabilized effects of a focal individual’s genotype on the 851

geno-phenotype is 852

sz
syᵀ

∣∣∣∣∣
y=ȳ
≡

( sx
syᵀ

;
sy

syᵀ

)∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNg , (Layer 5, Eq. 4a)

measuring stabilized developmental bias of the geno-phenotype from the genotype. The transpose of the matrix of 853

stabilized effects of a focal individual’s environment on the geno-phenotype is 854

sz
sεεεᵀ

∣∣∣∣∣
y=ȳ
≡

( sx
sεεεᵀ

;
sy
sεεεᵀ

)∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNe , (Layer 5, Eq. 4b)

measuring stabilized plasticity of the geno-phenotype. The transpose of the matrix of stabilized effects of a focal 855

individual’s geno-phenotype on the geno-phenotype is 856

sz
szᵀ

∣∣∣∣∣
y=ȳ
≡


sx

sxᵀ

sx
syᵀ

sy
sxᵀ

sy
syᵀ


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


sx

sxᵀ
sx

syᵀ

0 I


∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 5, Eq. 5)

∈ RNa(Np+Ng)×Na(Np+Ng),

measuring stabilized developmental feedback of the geno-phenotype. 857

The stabilized effects of the phenotype or genotype on the environment measure stabilized niche construction. 858

Although the matrix 859

sεεε
sxᵀ

∣∣∣∣∣
y=ȳ

appears in some of the matrices we construct, it is irrelevant as it disappears in the matrix products we encounter. The 860

following matrix does not disappear. The transpose of the matrix of stabilized effects of a focal individual’s genotype 861
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on the environment is862

sεεε
syᵀ

∣∣∣∣∣
y=ȳ

=

(
∂(εεε + ε̌εε)
∂zᵀ

sz
syᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×NaNg , (Layer 5, Eq. 6a)

which is formed by stabilized developmental bias of the geno-phenotype from genotype followed by inclusive direct863

niche construction by the geno-phenotype. This matrix can be interpreted as measuring stabilized niche construction864

by the genotype. If development is not social (i.e., dxᵀ/dz̄|y=ȳ = 0), then stabilized niche construction by the genotype865

reduces to total niche construction by the genotype (see Layer 4, Eq. 11 and Layer 2, Eq. 10).866

The stabilized effects of the environment on itself measure stabilized environmental feedback. The transpose of867

the matrix of stabilized effects of a focal individual’s environment on the environment is868

sεεε
sεεεᵀ

∣∣∣∣∣
y=ȳ

=

(
∂(εεε + ε̌εε)
∂zᵀ

sz
sεεεᵀ

+
∂εεε

∂εεεᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×NaNe , (Layer 5, Eq. 6b)

which depends on stabilized plasticity of the geno-phenotype, inclusive direct niche construction by the geno-869

phenotype, and direct mutual environmental dependence.870

We can also use some of the following previous stabilized-effect matrices to construct the following stabilized-871

effect matrices comprising the geno-envo-phenotype. The transpose of the matrix of stabilized effects of a focal872

individual’s genotype on the geno-envo-phenotype is873

sm
syᵀ

∣∣∣∣∣
y=ȳ
≡

( sx
syᵀ

;
sy

syᵀ
;

sεεε
syᵀ

)∣∣∣∣∣
y=ȳ

(Layer 5, Eq. 7a)

∈ RNa(Np+Ng+Ne)×NaNg ,

measuring stabilized developmental bias of the geno-envo-phenotype from the genotype. The transpose of the matrix874

of stabilized effects of a focal individual’s environment on the geno-envo-phenotype is875

sm
sεεεᵀ

∣∣∣∣∣
y=ȳ
≡

( sx
sεεεᵀ

;
sy
sεεεᵀ

;
sεεε

sεεεᵀ

)∣∣∣∣∣
y=ȳ

(Layer 5, Eq. 7b)

∈ RNa(Np+Ng+Ne)×NaNe ,

measuring stabilized plasticity of the geno-envo-phenotype. Finally, the transpose of the matrix of stabilized effects876

of a focal individual’s geno-envo-phenotype on the geno-envo-phenotype is877

sm
smᵀ

∣∣∣∣∣
y=ȳ
≡



sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

sy
sxᵀ

sy
syᵀ

sy
sεεεᵀ

sεεε
sxᵀ

sεεε
syᵀ

sεεε
sεεεᵀ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0

sεεε
sxᵀ

sεεε
syᵀ

sεεε
sεεεᵀ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(Layer 5, Eq. 8)

37

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne),

measuring stabilized developmental feedback of the geno-envo-phenotype. 878

4.6. Layer 6: genetic covariation 879

We now move to the next layer of the evo-devo process, that of genetic covariation. To present this layer, we first 880

define mechanistic breeding value under our adaptive dynamics assumptions, which allows us to define mechanistic 881

additive genetic covariance matrices under our assumptions. Then, we define (socio-devo) stabilized mechanistic 882

breeding value, which we use to define mechanistic additive socio-genetic cross-covariance matrices. The notions of 883

stabilized mechanistic breeding values and mechanistic socio-genetic cross-covariance generalize the corresponding 884

notions of mechanistic breeding value and mechanistic additive genetic covariance to consider the effects of social 885

development. 886

We follow the standard definition of breeding value to define its mechanistic analogue under our assumptions. 887

The breeding value of a trait is defined under quantitative genetics assumptions as the best linear estimate of the 888

trait from gene content (Lynch and Walsh, 1998; Walsh and Lynch, 2018). Specifically, under quantitative genetics 889

assumptions, the i-th trait value xi is written as xi = x̄i +
∑

j αi j(y j − ȳ j) + ei, where the overbar denotes population 890

average, y j is the j-th predictor (gene content in j-th locus), αi j is the partial least-square regression coefficient of 891

xi− x̄i vs y j− ȳ j, and ei is the residual error; the breeding value of xi is ai ≡ x̄i +
∑

j αi j(y j− ȳ j). Accordingly, we define 892

the mechanistic breeding value bζ of a vector ζ as its first-order estimate with respect to genotypic traits y around the 893

resident genotypic traits ȳ: 894

bζ ≡ ζ |y=ȳ +
dζ
dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ) = ζ̄ +
dζ
dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ). (Layer 6, Eq. 1)

The key difference of this definition with that of breeding value is that rather than using regression coefficients, this 895

definition uses the total effects of the genotype on ζ, dζ/dyᵀ|y=ȳ, which are a mechanistic analogue to Fisher’s additive 896

effect of allelic substitution (his α; see Eq. I of Fisher 1918 and p. 72 of Lynch and Walsh 1998). As previously stated, 897

the matrix dζ/dyᵀ|y=ȳ also corresponds to Wagner’s (1984, 1989) developmental matrix, particularly when ζ = x (his 898

B; see Eq. 1 of Wagner 1989). 899

That there is a material difference between breeding value and its mechanistic counterpart is made evident with 900

heritability. Because breeding value under quantitative genetics uses linear regression via least squares, breeding value 901

ai is guaranteed to be uncorrelated with the residual error ei. This guarantees that heritability is between zero and one. 902

Indeed, the (narrow sense) heritability of trait xi is defined as h2 = var[ai]/var[xi], where using xi = ai + ei we have 903

var[xi] = var[ai] + var[ei] + 2cov[ai, ei]. The latter covariance is zero due to least squares, and so h2 ∈ [0, 1]. In 904

contrast, mechanistic breeding values may be correlated with residual errors. Indeed, in our framework we have that 905

phenotype xia = bia + O(||y− ȳ||2), but mechanistic breeding value bia is not computed via least squares, so bia and the 906

error O(||y− ȳ||2) may covary, positively or negatively. Hence, the classic quantitative genetics partition of phenotypic 907
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variance into genetic and “environmental” (i.e., residual) variance does not hold with mechanistic breeding value,908

as there may be mechanistic genetic and “environmental” covariance. Consequently, since the covariance between909

two random variables is bounded from below by the negative of the product of their standard deviations, mechanistic910

heritability defined as the ratio between the variance of mechanistic breeding value and phenotypic variance cannot911

be negative but it may be greater than one.912

Our definition of mechanistic breeding value recovers Fisher’s (1918) infinitesimal model under certain conditions,913

although we do not need to assume the infinitesimal model. According to Fisher’s (1918) infinitesimal model, the914

normalized breeding value excess is normally distributed as the number of loci approaches infinity. Using Layer 6,915

Eq. 1, we have that the mechanistic breeding value excess for the i-th entry of bζ is916

bζi − ζ̄i =

Ng∑
k=1

Na∑
a=1

dζi

dyka

∣∣∣∣∣
y=ȳ

(yka − ȳka).

Let us denote the mutational variance for the k-th genotypic trait at age a by917

σ2
ka = E[(yka − ȳka)2],

and let us denote the total mutational variance by918

s2
NgNa

=

Ng∑
k=1

Na∑
a=1

σ2
ka.

If the yka are mutually independent and Lyapunov’s condition is satisfied, from the Lyapunov central limit theorem919

we have that, as either the number of genotypic traits Ng or the number of ages Na tends to infinity (e.g., by reducing920

the age bin size), the normalized mechanistic breeding value excess921

1
sNgNa

(bζi − ζ̄i)

is normally distributed with mean zero and variance 1. Thus, this limit yields Fisher’s (1918) infinitesimal model, al-922

though we do not need to assume such limit. Our framework thus recovers the infinitesimal model as a particular case,923

when either Ng or Na approaches infinity (provided that the yka are mutually independent and Lyapunov’s condition924

holds).925

From our definition of mechanistic breeding value, we have that the mechanistic breeding value of the genotype926

is simply the genotype itself. From Layer 6, Eq. 1, the expected mechanistic breeding value of vector ζ is927

b̄ζ ≡ E[bζ] = ζ̄.

In turn, the mechanistic breeding value of the genotype y is928

by = ȳ +
dy

dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ) = ȳ + y − ȳ = y,
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since dy/dyᵀ|y=ȳ = I because, by assumption, the genotype does not have developmental constraints and is develop- 929

mentally independent (Layer 4, Eq. 6). 930

We now define mechanistic additive genetic covariance matrices under our assumptions. The additive genetic 931

variance of a trait is defined under quantitative genetics assumptions as the variance of its breeding value, which is 932

extended to the multivariate case so the additive genetic covariance matrix of a trait vector is the covariance matrix of 933

the traits’ breeding values (Lynch and Walsh, 1998; Walsh and Lynch, 2018). Accordingly, we define the mechanistic 934

additive genetic covariance matrix of a vector ζ ∈ Rm×1 as the covariance matrix of its mechanistic breeding value: 935

Hζ ≡ cov[bζ ,bζ]

= E[(bζ − b̄ζ)(bζ − b̄ζ)ᵀ] = E[(bζ − ζ̄)(bζ − ζ̄)ᵀ]

= E
[(

dζ
dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ)
) (

dζ
dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ)
)ᵀ]

= E
[

dζ
dyᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ)(y − ȳ)ᵀ
dζᵀ

dy

∣∣∣∣∣
y=ȳ

]
=

dζ
dyᵀ

∣∣∣∣∣
y=ȳ

E
[
(y − ȳ)(y − ȳ)ᵀ

] dζᵀ

dy

∣∣∣∣∣
y=ȳ

=

(
dζ
dyᵀ

Hy
dζᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×m, (Layer 6, Eq. 2)

where the fourth line follows from the property of the transpose of a product (i.e., (AB)ᵀ = BᵀAᵀ) and the last line 936

follows since the mechanistic additive genetic covariance matrix of the genotype y is 937

Hy ≡ cov[by,by] = cov[y, y] ∈ RNaNg×NaNg .

Layer 6, Eq. 2 has the same form of previous expressions for the additive genetic covariance matrix under quantitative 938

genetics assumptions, although using least-square regression coefficients in place of the derivatives if the classic 939

partitioning of phenotypic variance is to hold (see Eq. II of Fisher 1918, Eq. + of Wagner 1984, Eq. 3.5b of Barton 940

and Turelli 1987, and Eq. 4.23b of Lynch and Walsh 1998; see also Eq. 22a of Lande 1980, Eq. 3 of Wagner 1989, and 941

Eq. 9 of Charlesworth 1990). We denote the matrix H (for heredity) rather than G to note that the two are different, 942

particularly as the former is based on mechanistic breeding value. Note Hζ is symmetric. 943

In some cases, Layer 6, Eq. 2 allows one to immediately determine whether a mechanistic additive genetic co- 944

variance matrix is singular. Indeed, a matrix with fewer rows than columns is always singular (Horn and Johnson, 945

2013, section 0.5 second line), and if the product AB is well-defined and B is singular, then AB is singular (this is 946

easily checked to hold). Hence, from Layer 6, Eq. 2 it follows that Hζ is necessarily singular if dζᵀ/dy has fewer rows 947

than columns, that is, if y has fewer entries than ζ. Since y has NaNg entries and ζ has m entries, then Hζ is singular 948

if NaNg < m. Moreover, Layer 6, Eq. 2 allows one to immediately identify bounds for the “degrees of freedom” of 949

genetic covariation, that is, for the rank of Hζ . Indeed, for a matrix A ∈ Rm×n, we have that the rank of A is at most 950

the smallest value of m and n, that is, rank(A) ≤ min{m, n} (Horn and Johnson, 2013, section 0.4.5 (a)). Moreover, 951
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from the Frobenius inequality (Horn and Johnson, 2013, section 0.4.5 (e)), for a well-defined product AB, we have952

that rank(AB) ≤ rank(B). Therefore, for ζ ∈ Rm×1, we have that953

rank(Hζ) ≤ min{NaNg,m}. (Layer 6, Eq. 3)

Intuitively, this states that the degrees of freedom of genetic covariation are at most given by the lifetime number of954

genotypic traits (i.e., NaNg). So if there are more traits in ζ than there are lifetime genotypic traits, then there are955

fewer degrees of freedom of genetic covariation than traits. This point is mathematically trivial and has undoubtedly956

been clear in the evolutionary literature for decades. However, this point will be biologically crucial because the957

evolutionary dynamic equations in gradient form that are generally dynamically sufficient involve a Hζ whose ζ958

necessarily has fewer entries than y. Note also that these points on the singularity and rank of Hζ also hold under959

quantitative genetics assumptions, where the same structure (Layer 6, Eq. 2) holds, except that Hy does not refer960

to mutational variation but to standing variation in allele frequency and total effects are measured with regression961

coefficients. Considering standing variation in Hy and regression coefficients does not affect the points made in this962

paragraph.963

Consider the following slight generalization of the mechanistic additive genetic covariance matrix. We define964

the mechanistic additive genetic cross-covariance matrix between a vector ζ ∈ Rm×1 and a vector ξ ∈ Rn×1 as the965

cross-covariance matrix of their mechanistic breeding value:966

Hζξ ≡ cov[bζ ,bξ] =

(
dζ
dyᵀ

Hy
dξᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×n. (Layer 6, Eq. 4)

Thus, Hζζ = Hζ . Note Hζξ may be rectangular, and if square, asymmetric. Again, from Layer 6, Eq. 4 it follows that967

Hζξ is necessarily singular if there are fewer entries in y than in ξ (i.e., if NaNg < n). Also, for ξ ∈ Rn×1, have that968

rank(Hζξ) ≤ min{NaNg, n}.

In words, the degrees of freedom of genetic cross-covariation are at most given by the lifetime number of genotypic969

traits.970

The mechanistic additive genetic covariance matrix of the phenotype takes the following form. Evaluating Layer971

6, Eq. 2 at ζ = x, the mechanistic additive genetic covariance matrix of the phenotype x ∈ RNaNp×1 is972

Hx =

(
dx

dyᵀ
Hy

dxᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×NaNp , (Layer 6, Eq. 5)

which is singular because the developmental matrix dxᵀ/dy|y=ȳ is singular since the developmentally initial phenotype973

is not affected by the genotype and the developmentally final genotypic traits do not affect the phenotype (Appendix974

C, Eq. C16). However, a dynamical system consisting only of evolutionary dynamic equations for the phenotype thus975

having an associated Hx-matrix is underdetermined in general because the system has fewer dynamic equations (i.e.,976

the number of entries in x) than dynamic variables (i.e., the number of entries in (x; y;εεε)). Indeed, the evolution-977

ary dynamics of the phenotype generally depends on the resident genotype, in particular, because the developmental978
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matrix depends on the resident genotype (Layer 4, Eq. 3; e.g., due to non-linearities in the developmental map involv- 979

ing products between genotypic traits, or between genotypic traits and phenotypes, or between genotypic traits and 980

environmental traits, that is, gene-gene interaction, gene-phenotype interaction, and gene-environment interaction, 981

respectively). Thus, evolutionary dynamic equations of the phenotype alone generally have either zero or an infinite 982

number of solutions for any given initial condition and are thus dynamically insufficient. To have a determined system 983

in gradient form that is dynamically sufficient in general, we follow the evolutionary dynamics of both the phenotype 984

and the genotype, that is, of the geno-phenotype, which depends on Hz rather than Hx alone. 985

The mechanistic additive genetic covariance matrix of the geno-phenotype takes the following form. Evaluating 986

Layer 6, Eq. 2 at ζ = z, the mechanistic additive genetic covariance matrix of the geno-phenotype z ∈ RNa(Np+Ng)×1 is 987

Hz =

(
dz

dyᵀ
Hy

dzᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×Na(Np+Ng). (Layer 6, Eq. 6)

This matrix is necessarily singular because the geno-phenotype z includes the genotype y so dzᵀ/dy has fewer rows 988

than columns (Layer 4, Eq. 8). Intuitively, Layer 6, Eq. 6 has this form because the phenotype is related to the 989

genotype by the developmental constraint (1). From Layer 6, Eq. 3, the rank of Hz has an upper bound given by the 990

number of genotypic traits across life (i.e., NaNg), so Hz has at least NaNp eigenvalues that are exactly zero. Thus, Hz 991

is singular if there is at least one trait that is developmentally constructed according to the developmental constraint 992

(1) (i.e., if Np > 0). This is a mathematically trivial singularity, but it is biologically key because it is Hz rather than 993

Hx that occurs in a generally dynamically sufficient evolutionary system in gradient form (provided the environment 994

is constant; if the environment is not constant, the relevant matrix is Hm which is also always singular if there is at 995

least one phenotype or one environmental trait). 996

Another way to see the singularity of Hz is the following. From Layer 6, Eq. 6, we can write the mechanistic 997

additive genetic covariance matrix of the geno-phenotype as 998

Hz =

(
Hzx Hzy

)
,

where the mechanistic additive genetic cross-covariance matrix between z and x is 999

Hzx =

(
dz

dyᵀ
Hy

dxᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNp ,

and the mechanistic additive genetic cross-covariance matrix between z and y is 1000

Hzy =

(
dz

dyᵀ
Hy

dyᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×NaNg .

Thus, using Layer 4, Eq. 6, we have that 1001

Hzx = Hzy
dxᵀ

dy

∣∣∣∣∣
y=ȳ

. (Layer 6, Eq. 7)

That is, some columns of Hz (i.e., those in Hzx) are linear combinations of other columns of Hz (i.e., those in Hzy). 1002

Hence, Hz is singular. 1003
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The mechanistic additive genetic covariance matrix of the geno-phenotype is singular because the geno-phenotype1004

includes the genotype (“gene content”). The singularity arises because the mechanistic breeding value of the pheno-1005

type is a linear combination of the mechanistic breeding value of the genotype by definition of mechanistic breeding1006

value, regardless of whether the phenotype is a linear function of the genotype and regardless of the number of phe-1007

notypic or genotypic traits. In quantitative genetics terms, the G-matrix is a function of allele frequencies (which1008

corresponds to our ȳ), so a generally dynamically sufficient Lande system would require that allele frequencies are1009

part of the dynamic variables considered; consequently, if the geno-phenotypic vector z̄ includes allele frequencies ȳ,1010

then G is necessarily singular since by definition, breeding value under quantitative genetics assumptions is a linear1011

combination of gene content. The singularity of Hz implies that if there is only one phenotype and one genotypic1012

trait, with a single age each, then there is a perfect correlation between their mechanistic breeding values (i.e., their1013

correlation coefficient is 1). This also holds under quantitative genetics assumptions, in which case the breeding1014

value a of a trait x is a linear combination of a single predictor y, so the breeding value a and predictor y are per-1015

fectly correlated (i.e., cov[a, y]/
√

var[a]var[y] = cov[αy, y]/
√

var[αy]var[y] = (α/α)cov[y, y]/
√

var[y]var[y] = 1).1016

The perfect correlation between a single breeding value and a single predictor arises because, by definition, breeding1017

value excludes residual error e. Note this does not mean that the phenotype and genotype are linearly related: it is1018

(mechanistic) breeding values and the genotype that are linearly related by definition of (mechanistic) breeding value1019

(Layer 6, Eq. 1). A standard approach to remove the singularity of an additive genetic covariance matrix is to remove1020

some traits from the analysis (Lande, 1979). To remove the singularity of Hz we would need to remove at least either1021

all phenotypic traits or all genotypic traits from the analysis. However, removing all phenotypic traits from the anal-1022

ysis prevents analysing phenotypic evolution as the climbing of a fitness landscape whereas removing all genotypic1023

traits from the analysis renders the analysis dynamically insufficient in general because the evolutionary dynamics1024

of some variables is not described. Thus, in general, to analyse a dynamically sufficient description of phenotypic1025

evolution as the climbing of a fitness landscape, we must keep the singularity of Hz.1026

We now use stabilized-effect matrices (Layer 5) to consider social development by extending the notion of mech-1027

anistic breeding value (Layer 6, Eq. 1). We define the stabilized mechanistic breeding value of a vector ζ as:1028

bs
ζ ≡ ζ |y=ȳ +

sζ
syᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ) = ζ̄ +
sζ
syᵀ

∣∣∣∣∣
y=ȳ

(y − ȳ). (Layer 6, Eq. 8)

Recall that the stabilized-effect matrix sξ/syᵀ|y=ȳ equals the total-effect matrix dξ/dyᵀ|y=ȳ if development is non-1029

social. Thus, if development is non-social, the stabilized mechanistic breeding value bs
ζ equals the mechanistic breed-1030

ing value bζ . Also, note that E[bs
ζ] = ζ̄.1031

With this, we extend the notion of mechanistic additive genetic covariance matrix to include the effects of socio-1032

devo stabilization as follows. We define the mechanistic additive socio-genetic cross-covariance matrix of ζ ∈ Rm×1
1033

as (L for legacy)1034

Lζ ≡ cov[bs
ζ ,bζ] =

(
sζ
syᵀ

Hy
dζᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×m. (Layer 6, Eq. 9)
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Note Lζ may be asymmetric and its main diagonal entries may be negative (unlike variances). If development is 1035

non-social, Lζ equals Hζ . As before, Lζ is singular if ζ has fewer entries than y. Also, for ζ ∈ Rm×1, have that 1036

rank(Lζ) ≤ min{NaNg,m}.

That is, the degrees of freedom of socio-genetic covariation are at most also given by the lifetime number of genotypic 1037

traits. 1038

Similarly, we generalize this notion and define the mechanistic additive socio-genetic cross-covariance matrix 1039

between ζ ∈ Rm×1 and ξ ∈ Rn×1 as 1040

Lζξ ≡ cov[bs
ζ ,bξ] =

(
sζ
syᵀ

Hy
dξᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×n. (Layer 6, Eq. 10)

Again, if development is non-social, Lζξ equals Hζξ. Note Lζξ may be rectangular and, if square, asymmetric. Also, 1041

Lζξ is singular if ξ has fewer entries than y. For ξ ∈ Rn×1, have that 1042

rank(Lζξ) ≤ min{NaNg, n}.

That is, the degrees of freedom of socio-genetic cross-covariation are at most still given by the lifetime number of 1043

genotypic traits. 1044

In particular, some Lζξ matrices are singular or not as follows. The mechanistic additive socio-genetic cross- 1045

covariance matrix between ζ and the geno-phenotype z 1046

Lζz =

(
sζ
syᵀ

Hy
dzᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×Na(Np+Ng) (Layer 6, Eq. 11)

is singular if there is at least one phenotype (i.e., if Np > 0). Thus, Lζz has at least NaNp eigenvalues that are exactly 1047

zero. Also, the mechanistic additive socio-genetic cross-covariance matrix between ζ and the geno-envo-phenotype 1048

m 1049

Lζm =

(
sζ
syᵀ

Hy
dmᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×(1+Na)(Np+Ng+Ne) (Layer 6, Eq. 12)

is singular if there is at least one phenotype or one environmental trait (i.e., if Np > 0 or Ne > 0). Thus, Lζm has 1050

at least Na(Np + Ne) eigenvalues that are exactly zero. In important contrast, the mechanistic additive socio-genetic 1051

cross-covariance matrix between a vector ζ ∈ {y, z,m} and the genotype y 1052

Lζy =

(
sζ
syᵀ

Hy

)∣∣∣∣∣∣
y=ȳ
∈ Rm×NaNg (Layer 6, Eq. 13)

is non-singular if Hy is non-singular because the genotype is developmentally independent (Appendix H and Ap- 1053

pendix J). The L-matrices share various properties with similar generalizations of the G-matrix arising in the indirect 1054

genetic effects literature (Kirkpatrick and Lande, 1989; Moore et al., 1997; Townley and Ezard, 2013). 1055
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4.7. Layer 7: evolutionary dynamics1056

Finally, we move to the top layer of the evo-devo process, that of the evolutionary dynamics. This layer con-1057

tains equations describing the evolutionary dynamics under explicit developmental and environmental constraints. In1058

Supplementary Information section S3 and Appendix G-Appendix J, we show that, in the limit as ∆τ → 0, the1059

evolutionary dynamics of the phenotype, genotype, geno-phenotype, environment, and geno-envo-phenotype (i.e., for1060

ζ ∈ {x, y, z,εεε,m}) are given by1061

dζ̄
dτ
≈

(
ιLζm

∂w
∂m

+
sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

, (Layer 7, Eq. 1a)

which must satisfy both the developmental constraint1062

x̄a+1 = ga(m̄a, z̄) for all a ∈ {1, . . . ,Na − 1} with fixed x̄1, (Layer 7, Eq. 1b)

and the environmental constraint1063

ε̄εεa = ha(z̄a, z̄, τ) for all a ∈ {1, . . . ,Na}. (Layer 7, Eq. 1c)

If ζ = z in Layer 7, Eq. 1a, then the equations in Layers 2-6 guarantee that the developmental constraint is satisfied1064

for all τ > τ1 given that it is satisfied at the initial evolutionary time τ1. If ζ = m in Layer 7, Eq. 1a, then the equations1065

in Layers 2-6 guarantee that both the developmental and environmental constraints are satisfied for all τ > τ1 given1066

that they are satisfied at the initial evolutionary time τ1. Both the developmental and environmental constraints can1067

evolve as the genotype, phenotype, and environment evolve and such constraints can involve any family of curves as1068

long as they are differentiable.1069

Layer 7, Eq. 1a describes the evolutionary dynamics as consisting of selection response and exogenous plastic1070

response. Layer 7, Eq. 1a contains the term1071

ιLζm
∂w
∂m

∣∣∣∣∣
y=ȳ

, (Layer 7, Eq. 2)

which comprises direct directional selection on the geno-envo-phenotype (∂w/∂m|y=ȳ) and socio-genetic cross-1072

covariation between ζ and the geno-envo-phenotype (Lζm). The term in Layer 7, Eq. 2 is the selection response1073

of ζ and is a mechanistic generalization of Lande’s (1979) generalization of the univariate breeder’s equation (Lush,1074

1937; Walsh and Lynch, 2018). Additionally, Layer 7, Eq. 1a contains the term1075 (
sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

, (Layer 7, Eq. 3)

which comprises the vector of environmental change due to exogenous causes (∂ε̄εε/∂τ) and the matrix of stabilized1076

plasticity (sζ/sεεεᵀ|y=ȳ). The term in Layer 7, Eq. 3 is the exogenous plastic response of ζ and is a mechanistic gener-1077

alization of previous expressions (cf. Eq. A3 of Chevin et al. 2010). Note that the endogenous plastic response of ζ1078

(i.e., the plastic response due to endogenous environmental change arising from niche construction) is part of both the1079

selection response and the exogenous plastic response (Layers 2-6).1080
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Selection response is relatively incompletely described by direct directional selection on the geno-envo-phenotype. 1081

We saw that the matrix Lζm is always singular if there is at least one phenotype or one environmental trait 1082

(Layer 6, Eq. 12). Consequently, evolutionary equilibria of ζ can invariably occur with persistent direct directional 1083

selection on the geno-envo-phenotype, regardless of whether there is exogenous plastic response. 1084

Selection response is also relatively incompletely described by total immediate selection on the geno-phenotype. 1085

We can rewrite the selection response, so the evolutionary dynamics of ζ ∈ {x, y, z,εεε,m} (Layer 7, Eq. 1a) is equiva- 1086

lently given by 1087

dζ̄
dτ
≈

(
ιLζz

δw
δz

+
sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 4)

This equation now depends on total immediate selection on the geno-phenotype (δw/δz|y=ȳ), which measures total 1088

immediate directional selection on the geno-phenotype (or in a quantitative genetics framework, it is Lande’s (1979) 1089

selection gradient of the allele frequency and phenotype if environmental traits are not explicitly included in the 1090

analysis). We saw that the total immediate selection gradient of the geno-phenotype can be interpreted as pointing in 1091

the direction of steepest ascent on the fitness landscape in geno-phenotype space after the landscape is modified by 1092

the interaction of direct niche construction and environmental sensitivity of selection (Layer 3, Eq. 1). We also saw 1093

that the matrix Lζz is always singular if there is at least one phenotype (Layer 6, Eq. 11). Consequently, evolutionary 1094

equilibria can invariably occur with persistent directional selection on the geno-phenotype after niche construction 1095

has modified the geno-phenotype’s fitness landscape, regardless of whether there is exogenous plastic response. 1096

In contrast, selection response is relatively completely described by total genotypic selection. We can further 1097

rewrite selection response, so the evolutionary dynamics of ζ ∈ {x, y, z,εεε,m} (Layer 7, Eq. 1a) is equivalently given 1098

by 1099

dζ̄
dτ
≈

(
ιLζy

dw
dy

+
sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 5)

This equation now depends on total genotypic selection (dw/dy|y=ȳ), which measures total directional selection on 1100

the genotype considering downstream developmental effects (or in a quantitative genetics framework, it is Lande’s 1101

(1979) selection gradient of allele frequency if neither the phenotype nor environmental traits are explicitly included 1102

in the analysis). We saw that the total selection gradient of the genotype can be interpreted as pointing in the direction 1103

of steepest ascent on the fitness landscape in genotype space after the landscape is modified by the interaction of 1104

total developmental bias from the genotype and directional selection on the phenotype and by the interaction of total 1105

niche construction by the genotype and environmental sensitivity of selection (Layer 4, Eq. 22). In contrast to the 1106

other arrangements of selection response, in Appendix H and Appendix J we show that Lζy is non-singular for 1107

all ζ ∈ {y, z,m} if Hy is non-singular (i.e., if there is mutational variation in all directions of genotype space); this 1108

non-singularity of Lζy arises because genotypic traits are developmentally independent by assumption. Consequently, 1109

evolutionary equilibria of the genotype, geno-phenotype, or geno-envo-phenotype can only occur when total genotypic 1110
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selection vanishes if there is mutational variation in all directions of genotype space and if exogenous plastic response1111

is absent.1112

Importantly, although Layer 7, Eq. 1a and its equivalents describe the evolutionary dynamics of ζ, such equations1113

are guaranteed to be dynamically sufficient only for certain ζ. Layer 7, Eq. 1a and its equivalents are dynamically1114

sufficient if ζ is the genotype y, the geno-phenotype z, or the geno-envo-phenotype m, provided that the developmental1115

and environmental constrains are satisfied throughout. In contrast, Layer 7, Eq. 1a and its equivalents are dynamically1116

insufficient if ζ is the phenotype x or the environment εεε, because the evolution of the genotype is not followed but it1117

generally affects the system.1118

In particular, the system is generally dynamically insufficient if only the evolutionary dynamics of the phenotype1119

are considered. Let us temporarily assume that the following four conditions hold: (1) development is non-social1120

(dxᵀ/dz̄|y=ȳ = 0), and there is (2) no exogenous plastic response of the phenotype ([(dx/dεεεᵀ)(∂ε̄εε/∂τ)] |y=ȳ = 0), (3) no1121

total immediate selection on the genotype (δw/δy|y=ȳ = 0), and (4) no niche-constructed effects of the phenotype on1122

fitness ([(∂εεεᵀ/∂x)(∂w/∂εεε)] |y=ȳ = 0). Then, the evolutionary dynamics of the phenotype reduces to1123

dx̄
dτ
≈ ιHx

∂w
∂x

∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 6)

This is a mechanistic version of the Lande equation for the phenotype. The mechanistic additive genetic covariance1124

matrix of the phenotype (Layer 6, Eq. 5) in this equation is singular because the developmentally initial phenotype is1125

not affected by the genotype and the developmentally final genotypic traits do not affect the phenotype (so dxᵀ/dy|y=ȳ1126

has rows and columns that are zero; Appendix C, Eq. C16). This singularity might disappear by removing from1127

the analysis the developmentally initial phenotype and developmentally final genotypic traits, provided additional1128

conditions hold. Yet, the key point here is that a system describing the evolutionary dynamics of the phenotype1129

alone is dynamically insufficient because such system depends on the resident genotype whose evolution must also be1130

followed. In particular, setting dx̄/dτ = 0 does not generally imply an evolutionary equilibrium, or evolutionary stasis,1131

but only an evolutionary isocline in the phenotype, that is, a transient lack of evolutionary change in the phenotype.1132

To guarantee a dynamically sufficient description of the evolutionary dynamics of the phenotype, we simultaneously1133

consider the evolutionary dynamics of the phenotype and genotype, that is, the geno-phenotype.1134

Indeed, a dynamically sufficient system can be obtained by describing the dynamics of the geno-phenotype alone1135

if the environment is constant or has no evolutionary effect. Let us now assume that the following three condi-1136

tions hold: (i) development is non-social (dxᵀ/dz̄|y=ȳ = 0), and there is (ii) no exogenous plastic response of1137

the phenotype ([(dx/dεεεᵀ)(∂ε̄εε/∂τ)] |y=ȳ = 0), and (iii) no niche-constructed effects of the geno-phenotype on fitness1138

([(∂εεεᵀ/∂z)(∂w/∂εεε)] |y=ȳ = 0). Then, the evolutionary dynamics of the geno-phenotype reduces to1139

dz̄
dτ
≈ ιHz

∂w
∂z

∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 7)

This is an extension of the mechanistic version of the Lande equation to consider the geno-phenotype. The mecha-1140

nistic additive genetic covariance matrix of the geno-phenotype (Layer 6, Eq. 6) in this equation is singular because1141
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the geno-phenotype z includes the genotype y (so dzᵀ/dy has fewer rows than columns; Layer 4, Eq. 8). Hence, the 1142

degrees of freedom of genetic covariation in geno-phenotype space are at most given by the number of lifetime geno- 1143

typic traits, so these degrees of freedom are bounded by genotypic space in a necessarily larger geno-phenotype space. 1144

Thus, Hz is singular if there is at least one trait that is developmentally constructed according to the developmental 1145

map (Layer 7, Eq. 1b). The evolutionary dynamics of the geno-phenotype is now fully determined by Layer 7, Eq. 7 1146

provided that i-iii hold and that the developmental (Layer 7, Eq. 1b) and environmental (Layer 7, Eq. 1c) constraints 1147

are met. In such case, setting dz̄/dτ = 0 does imply an evolutionary equilibrium, but this does not imply absence of 1148

direct directional selection on the geno-phenotype (i.e., it is possible that ∂w/∂z|y=ȳ , 0) since Hz is always singular. 1149

Due to this singularity, if there is any evolutionary equilibrium, there is an infinite number of them. Kirkpatrick and 1150

Lofsvold (1992) showed that if G is singular and constant, then the evolutionary equilibrium that is achieved depends 1151

on the initial conditions. Our results extend the relevance of Kirkpatrick and Lofsvold’s (1992) observation by show- 1152

ing that Hz is always singular and remains so as it evolves. Moreover, since both the developmental (Eq. Layer 7, 1153

Eq. 1b) and environmental (Eq. Layer 7, Eq. 1c) constraints must be satisfied throughout the evolutionary process, 1154

the developmental and environmental constraints determine the admissible evolutionary trajectory and the admissible 1155

evolutionary equilibria if mutational variation exists in all directions of genotype space. Therefore, developmental 1156

and environmental constraints together with direct directional selection jointly define the evolutionary outcome if 1157

mutational variation exists in all directions of genotype space. 1158

Since selection response is relatively completely described by total genotypic selection, further insight can be 1159

gained by rearranging the extended mechanistic Lande equation for the geno-phenotype (Layer 7, Eq. 7) in terms of 1160

total genotypic selection. Using the rearrangement in Layer 7, Eq. 5 and making the assumptions i-iii in the previous 1161

paragraph, the extended mechanistic Lande equation in Layer 7, Eq. 7 becomes 1162

dz̄
dτ
≈ ιHzy

dw
dy

∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 8)

This equation is closely related to but different from Morrissey’s (2014) Eq. 4, which uses a different factorization of 1163

the constraining matrix (here Hz, there Lande’s G) in terms of a square total effect matrix of all traits on themselves 1164

(hisΦ in his Eq. 2) and so Morrissey’s equation is in terms of the total selection gradient of the phenotype rather than 1165

of the genotype. Also, being a rearrangement of the classic Lande equation, Morrissey’s equation refers to the selec- 1166

tion response of the phenotype rather than of the geno-phenotype and is thus dynamically insufficient. A dynamically 1167

sufficient equation with a factorization of the constraining matrix analogous to Morrissey’s factorization is obtained in 1168

Eq. (H4), which is in terms of the total selection gradient of the geno-phenotype premultiplied by a necessarily singu- 1169

lar matrix so such total selection gradient is not sufficient to identify evolutionary equilibria. In contrast, in Layer 7, 1170

Eq. 8, if the mutational covariance matrix Hy is non-singular, then the mechanistic additive genetic cross-covariance 1171

matrix between geno-phenotype and genotype Hzy is non-singular so evolutionary equilibrium (dz̄/dτ = 0) implies 1172

absence of total genotypic selection (i.e., dw/dy|y=ȳ = 0) to first order of approximation. Indeed, to first order, lack 1173

of total genotypic selection provides a necessary and sufficient condition for evolutionary equilibria in the absence of 1174
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exogenous environmental change and of absolute mutational constraints (Layer 7, Eq. 5) (see Supplementary Infor-1175

mation section 2.2 for a definition of absolute mutational or genetic constraints). Consequently, evolutionary equilibria1176

depend on development and niche construction since total genotypic selection depends on Wagner’s (1984, 1989) de-1177

velopmental matrix and on total niche construction by the genotype (Layer 4, Eq. 22). However, since dw/dy|y=ȳ = 01178

has only as many equations as there are lifetime genotypic traits and since not only the genotype but also the phenotype1179

and environmental traits must be determined, then dw/dy|y=ȳ = 0 provides fewer equations than variables to solve for.1180

Hence, absence of total genotypic selection still implies an infinite number of evolutionary equilibria. Again, only the1181

subset of evolutionary equilibria that satisfy the developmental (Layer 7, Eq. 1b) and environmental (Layer 7, Eq. 1c)1182

constraints are admissible, and so the number of admissible evolutionary equilibria may be finite. Therefore, admis-1183

sible evolutionary equilibria have a dual dependence on developmental and environmental constraints: first, by the1184

constraints’ influence on total genotypic selection and so on evolutionary equilibria; and second, by the constraints’1185

specification of which evolutionary equilibria are admissible.1186

Because we assume that mutants arise when residents are at carrying capacity, the analogous statements can be1187

made for the evolutionary dynamics of a resident vector in terms of lifetime reproductive success (Eq. 8). Using the1188

relationship between selection gradients in terms of fitness and of expected lifetime reproductive success (Eqs. S22),1189

the evolutionary dynamics of ζ ∈ {x, y, z,εεε,m} (Layer 7, Eq. 1a) are equivalently given by1190

dζ̄
dτ
≈

(
ι
1
T

Lζm
∂R0

∂m
+

sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

(Layer 7, Eq. 9a)

=

(
ι
1
T

Lζz
δR0

δz
+

sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

(Layer 7, Eq. 9b)

=

(
ι
1
T

Lζy
dR0

dy
+

sζ
sεεεᵀ

∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 9c)

To close, the evolutionary dynamics of the environment can be written in a particular form that is insightful. In1191

Appendix I, we show that the evolutionary dynamics of the environment is given by1192

dε̄εε
dτ

=

(
∂(εεε + ε̌εε)
∂zᵀ

dz̄
dτ

+
∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (Layer 7, Eq. 10)

Thus, the evolutionary change of the environment comprises “inclusive” endogenous environmental change and ex-1193

ogenous environmental change.1194

5. Example: allocation to growth vs reproduction1195

We now provide an example that illustrates some of the points above. To do this, we use a life-history model rather1196

than a model of morphological development as the former is simpler yet sufficient to illustrate the points. In particular,1197

this example shows that our results above enable direct calculation of the evo-devo dynamics and the evolution of the1198

constraining matrices H and L and provide an alternative method to dynamic optimization to identify the evolutionary1199

outcomes under explicit developmental constraints. We first describe the example where development is non-social1200

and then extend the example to make development social.1201
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5.1. Non-social development 1202

We consider the classic life-history problem of modeling the evolution of resource allocation to growth vs repro- 1203

duction (Gadgil and Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992; Kozłowski and Teriokhin, 1204

1999). Let there be one phenotype (or state variable), one genotypic trait (or control variable), and no environmental 1205

traits. In particular, let xa be a mutant’s phenotype at age a (e.g., body size or resources available) and ya ∈ [0, 1] be 1206

the mutant’s fraction of resource allocated to phenotype growth at that age. Let mutant survival probability pa = p be 1207

constant for all a ∈ {1, . . . ,Na − 1} with pNa = 0, so survivorship is `a = pa−1 for all a ∈ {1, . . . ,Na} with `Na+1 = 0. 1208

Let mutant fertility be 1209

fa = d(z̄)(1 − ya)xa,

where (1 − ya)xa is the resource a mutant allocates to reproduction at age a and d(z̄) is a positive density-dependent 1210

scalar that brings the resident population size to carrying capacity. Let the developmental constraint be 1211

xa+1 = ga(za, z̄) = xa + yaxa = (1 + ya)xa, (Example, Eq. 1)

where yaxa is the resource a mutant allocates to growth at age a. These equations are a simplification of those used 1212

in the classic life-history problem of finding the optimal resource allocation to growth vs reproduction in discrete age 1213

(Gadgil and Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992; Kozłowski and Teriokhin, 1999). 1214

In life-history theory, one assumes that at evolutionary equilibrium, a measure of fitness such as lifetime reproductive 1215

success is maximized by an optimal control y∗ yielding an optimal pair (x∗, y∗) that is obtained with dynamic pro- 1216

gramming or optimal control theory (Sydsæter et al., 2008). Instead, here we illustrate how the evolutionary dynamics 1217

of (x̄, ȳ) can be analysed with the equations derived in this paper, including identification of an optimal pair (x∗, y∗). 1218

Let us calculate the elements of Layers 2-4 that we need to calculate genetic covariation and the evolutionary 1219

dynamics. Because there are no environmental traits, total immediate effects equal direct effects. Also, because 1220

development is non-social, stabilized effects equal total effects (except for social feedback, which is simply the identity 1221

matrix). Iterating the recurrence given by the developmental constraint (Example, Eq. 1) yields the mutant phenotype 1222

at age a 1223

xa = x1

a−1∏
k=1

(1 + yk). (Example, Eq. 2)

To find the density-dependent scalar, we note that a resident at carrying capacity satisfies the Euler-Lotka equation 1224∑Na
a=1 f ◦a `a = 1 (Eq. S34), which yields 1225

d(z̄) =
1∑Na

a=1(1 − ȳa)x̄a`a
.

Using Eq. (5a), the entries of the direct selection gradients are given by 1226

∂w
∂xa

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

∂w j

∂xa

∣∣∣∣∣∣
y=ȳ

=
∂wa

∂xa

∣∣∣∣∣
y=ȳ
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=
1
T

(
φa
∂ fa
∂xa

+ πa
∂pa

∂xa

)∣∣∣∣∣∣
y=ȳ

=
1
T̃
`a(1 − ȳa),

∂w
∂ya

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

∂w j

∂ya

∣∣∣∣∣∣
y=ȳ

=
∂wa

∂ya

∣∣∣∣∣
y=ȳ

=
1
T

(
φa
∂ fa
∂ya

+ πa
∂pa

∂ya

)∣∣∣∣∣∣
y=ȳ

= −
1
T̃
`a x̄a. (Example, Eq. 3)

where the generation time without density dependence is1227

T̃ =

Na∑
j=1

j` j(1 − ȳ j)x̄ j.

Thus, there is always direct selection for increased phenotype and against allocation to growth (except at the bound-1228

aries where ȳa = 1 or x̄a = 0). The entries of the matrices of direct effects on the phenotype (a: row, j: column) are1229

given by1230

∂x j

∂xa

∣∣∣∣∣∣
y=ȳ

=


1 + ȳa if j = a + 1

1 if j = a

0 otherwise,

∂x j

∂ya

∣∣∣∣∣∣
y=ȳ

=


x̄a if j = a + 1

0 otherwise.

Using Layer 4, Eq. 2 and Eq. (C15), the entries of the matrices of total effects on the phenotype are given by1231

dx j

dxa

∣∣∣∣∣∣
y=ȳ

=



j−1∏
k=a

∂xk+1

∂xk

∣∣∣∣∣∣∣
y=ȳ

if j > a

1 if j = a

0 otherwise

=



j−1∏
k=a

(1 + ȳk) if j > a

1 if j = a

0 otherwise,

dx j

dya

∣∣∣∣∣∣
y=ȳ

=



∂xa+1

∂ya

j−1∏
k=a+1

∂xk+1

∂xk


∣∣∣∣∣∣∣
y=ȳ

if j > a + 1

∂xa+1

∂ya

∣∣∣∣∣
y=ȳ

if j = a + 1

0 otherwise
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=



x̄a

j−1∏
k=a+1

(1 + ȳk) if j > a + 1

x̄a if j = a + 1

0 otherwise.

(Example, Eq. 4)

Then, using Layer 4, Eq. 21 and Layer 4, Eq. 22, the entries of the total selection gradients are given by 1232

dw
dxa

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dxa

∂w
∂x

)∣∣∣∣∣∣
y=ȳ

=

Na∑
j=1

(
dx j

dxa

∂w
∂x j

)∣∣∣∣∣∣
y=ȳ

=

dxa

dxa

∂w
∂xa

+

Na∑
j=a+1

dx j

dxa

∂w
∂x j


∣∣∣∣∣∣∣∣
y=ȳ

=
1
T̃

`a(1 − ȳa) +

Na∑
j=a+1

` j(1 − ȳ j)
j−1∏
k=a

(1 + ȳk)

 ,
dw
dya

∣∣∣∣∣
y=ȳ

=

(
∂w
∂ya

+
dxᵀ

dya

∂w
∂x

)∣∣∣∣∣∣
y=ȳ

=

 ∂w
∂ya

+

Na∑
j=1

dx j

dya

∂w
∂x j


∣∣∣∣∣∣∣∣
y=ȳ

=

 ∂w
∂ya

+
dxa+1

dya

∂w
∂xa+1

+

Na∑
j=a+2

dx j

dya

∂w
∂x j


∣∣∣∣∣∣∣∣
y=ȳ

= −
1
T̃
`a x̄a + x̄a

1
T̃
`a+1(1 − ȳa+1)

+

Na∑
j=a+2

x̄a

j−1∏
k=a+1

(1 + ȳk)
1
T̃
` j(1 − ȳ j)

=
1
T̃

x̄a

−`a +

Na∑
j=a+1

` j(1 − ȳ j)
j−1∏

k=a+1

(1 + ȳk)

 , (Example, Eq. 5)

where we use the empty-product notation such that
∏a−1

k=a Fk = 1 and the empty-sum notation such that
∑a−1

k=a Fk = 0 1233

for any Fk. There is thus always total selection for increased phenotype (except at the boundaries), although total 1234

selection for allocation to growth may be positive or negative. 1235

Now, using Eqs. (1) and (3), the evo-devo dynamics are given by 1236

∆ȳ
∆τ
≈ ιHy

dw
dy

∣∣∣∣∣
y=ȳ

x̄a+1 = ga(z̄a, z̄).

(Example, Eq. 6)

Using Layer 7, Eq. 1a, Layer 7, Eq. 4, and Layer 7, Eq. 5, the evolutionary dynamics of the phenotype in the limit as 1237

∆τ→ 0 are given by 1238

dx̄
dτ
≈ ιHxz

∂w
∂z

∣∣∣∣∣
y=ȳ

= ιHxy
dw
dy

∣∣∣∣∣
y=ȳ

. (Example, Eq. 7)

Note these are not equations in Lande’s form. In particular, the mechanistic additive genetic-cross covariance matrices 1239

involved are not symmetric and the selection gradients are not those of the evolving trait in the left-hand side; Example, 1240
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Eq. 7 cannot be arranged in Lande’s form because the genotypic trait directly affects fitness (i.e., ∂w/∂y|y=ȳ , 0;1241

Example, Eq. 3). Importantly, Hxz and Hxy depend on ȳ because of gene-phenotype interaction in development (i.e.,1242

the developmental map involves a product yaxa such that the total effect of the genotype on the phenotype depends on1243

the genotype; Example, Eq. 4); consequently, Example, Eq. 7 is dynamically insufficient because the system does not1244

describe the evolution of ȳ. In turn, the evolutionary dynamics of the geno-phenotype are given by1245

dz̄
dτ
≈ ιHz

∂w
∂z

∣∣∣∣∣
y=ȳ

= ιHzy
dw
dy

∣∣∣∣∣
y=ȳ

. (Example, Eq. 8)

This system contains dynamic equations for all the evolutionarily dynamic variables, namely both the resident phe-1246

notype x̄ and the resident genotype ȳ, so it is determined and dynamically sufficient. The first equality in Example,1247

Eq. 8 is in Lande’s form, but Hz is always singular. In contrast, the matrix Hzy in the second equality is non-singular1248

if the mutational covariance matrix Hy is non-singular. Thus, the total selection gradient of the genotype provides a1249

relatively complete description of the evolutionary process of the geno-phenotype.1250

Let the entries of the mutational covariance matrix be given by1251

Hya,y j =


γȳa(1 − ȳa) if j = a

0 otherwise,

where 0 < γ � 1 so the assumption of marginally small mutational variance, namely 0 < tr(Hy) � 1, holds. Thus,1252

Hy is diagonal and becomes singular only at the boundaries where the resident genotype is zero or one. Then, from1253

Example, Eq. 6, the evolutionary equilibria of the genotypic trait at a given age and their stability are given by the1254

sign of its corresponding total selection gradient.1255

Let us now find the evolutionary equilibria and their stability for the genotypic trait. Using Example, Eq. 5, starting1256

from the last age, the total selection on the genotypic trait at this age is1257

dw
dyNa

∣∣∣∣∣∣
y=ȳ
∝ −`Na ,

which is always negative so the stable resident genotypic trait at the last age is1258

ȳ∗Na
= 0. (Example, Eq. 9a)

That is, no allocation to growth at the last age. Continuing with the second-to-last age, the total selection on the1259

genotypic trait at this age is1260

dw
dyNa−1

∣∣∣∣∣∣
y=ȳ
∝ − `Na−1 +

Na∑
j=Na

` j(1 − ȳ j)
j−1∏

k=Na

(1 + ȳk)

= − `Na−1 + `Na (1 − ȳNa ).

Evaluating at the optimal genotypic trait at the last age (Example, Eq. 9a) and substituting `a = pa−1 yields1261

dw
dyNa−1

∣∣∣∣∣∣
y=ȳ=ȳ∗

∝ − pNa−2 + pNa−1 ∝ −1 + p,
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which is negative (assuming p < 1) so the stable resident genotypic trait at the second-to-last age is 1262

ȳ∗Na−1 = 0. (Example, Eq. 9b)

Continuing with the third-to-last age, the total selection on the genotypic trait at this age is 1263

dw
dyNa−2

∣∣∣∣∣∣
y=ȳ
∝ − `Na−2 +

Na∑
j=Na−1

` j(1 − ȳ j)
j−1∏

k=Na−1

(1 + ȳk)

= − `Na−2 + `Na−1(1 − ȳNa−1)

+ `Na (1 − ȳNa )(1 + ȳNa−1).

Evaluating at the optimal genotypic trait at the last two ages (Example, Eq. 9a and Example, Eq. 9b) and substituting 1264

`a = pa−1 yields 1265

dw
dyNa−2

∣∣∣∣∣∣
y=ȳ=ȳ∗

∝ − pNa−3 + pNa−2 + pNa−1 ∝ −1 + p + p2,

which is positive if 1266

p > p∗Na−2 =
1
2

(−1 +
√

5) ≈ 0.62.

So the stable resident genotypic trait at the third-to-last age is 1267

ȳ∗Na−2 =


0 if p < p∗Na−2 = 1

2 (−1 +
√

5) ≈ 0.62

1 if p > p∗Na−2 = 1
2 (−1 +

√
5) ≈ 0.62.

(Example, Eq. 9c)

If p = p∗Na−2, the genotypic trait at such age is selectively neutral, but we ignore this case as without an evolutionary 1268

model for p it is biologically unlikely that survival is and remains at such precise value. Hence, there is no allocation 1269

to growth at this age for low survival and full allocation for high survival. Continuing with the fourth-to-last age, the 1270

total selection on the genotypic trait at this age is 1271

dw
dyNa−3

∣∣∣∣∣∣
y=ȳ
∝ − `Na−3 +

Na∑
j=Na−2

` j(1 − ȳ j)
j−1∏

k=Na−2

(1 + ȳk)

= − `Na−3 + `Na−2(1 − ȳNa−2)

+ `Na−1(1 − ȳNa−1)(1 + ȳNa−2)

+ `Na (1 − ȳNa )(1 + ȳNa−2)(1 + ȳNa−1).

Evaluating at the optimal genotypic trait at the last three ages (Example, Eq. 9a-Example, Eq. 9c) and substituting 1272

`a = pa−1 yields 1273

dw
dyNa−3

∣∣∣∣∣∣
y=ȳ=ȳ∗

∝ − pNa−4 + pNa−3(1 − y∗Na−2) + pNa−2(1 + y∗Na−2)
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+ pNa−1(1 + y∗Na−2)

∝ − 1 + p(1 − y∗Na−2) + p2(1 + p)(1 + y∗Na−2).

If p < p∗Na−2, this is1274

dw
dyNa−3

∣∣∣∣∣∣
y=ȳ=ȳ∗

∝ − 1 + p + p2(1 + p),

which is positive if1275

p > p∗Na−3 ≈ 0.54.

If p > p∗Na−2, the gradient is1276

dw
dyNa−3

∣∣∣∣∣∣
y=ȳ=ȳ∗

∝ − 1 + 2p2(1 + p),

which is positive if1277

p > p̃∗Na−3 ≈ 0.565.

Hence, the stable resident genotypic trait at the fourth-to-last age is1278

ȳ∗Na−3 =


0 if p < p∗Na−3 ≈ 0.54

1 if p > p∗Na−3 ≈ 0.54,
(Example, Eq. 9d)

for p , p∗Na−2 ≈ 0.62. Again, this is no allocation to growth for low survival, although at this earlier age survival can1279

be smaller for allocation to growth to evolve. Numerical solution for the evo-devo dynamics using Example, Eq. 6 is1280

given in Fig. 5. The associated evolution of the Hz matrix, plotting Layer 6, Eq. 6, is given in Fig. 6. The code used1281

to generate these figures is in the Supplementary Information.1282

5.2. Social development1283

Consider a slight modification of the previous example, so that development is social. Let the mutant fertility be1284

fa = d(z̄)(1 − ya)(xa + qx̄a+1),

where the available resource is now given by xa + qx̄a+1 for some constant q (positive, negative, or zero). Here the1285

source of social development can be variously interpreted, including that an immediately older resident contributes to1286

(positive q) or scrounges from (negative q) the resource of the focal individual, or that the focal individual learns from1287

the older resident (positive or negative q depending on whether learning increases or increases the phenotype). Let1288

the developmental constraint be1289

xa+1 = ga(za, z̄) = xa + ya(xa + qx̄a+1).
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Figure 5: Example. Numerical solution of evolutionary dynamics of the genotype and associated developmental dynamics of the phenotype. Large

plots give the resident genotype or phenotype vs age over evolutionary time for various p. Small plots give the associated direct and total selection

gradients. The numerical evolutionary outcomes match the analytical expressions for the genotype (Example, Eq. 9) and associated phenotype

(Example, Eq. 2). x1 = x̄1 = 1. From Eq. (S15a), the carrying capacity is n̄∗ = n̄∗1
∑4

a=1 pa−1. We let n̄∗1 = 2/(µγ), so ι = γ−1 ∑4
a=1 pa−1.

Note that setting the mutant genotype to the resident does not necessarily produce a resident phenotype. Indeed, the 1290

phenotype with resident genotype is 1291

¯̄xa+1 = ¯̄xa + ȳa( ¯̄xa + qx̄a+1).

which may not equal the resident phenotype x̄a+1. If the resident x̄ is at socio-devo equilibrium x̄∗∗, then the resident 1292

satisfies 1293

x̄∗∗a+1 = x̄∗∗a + ȳa(x̄∗∗a + qx̄∗∗a+1).

Solving for x̄∗∗a+1 yields a recurrence for the resident phenotype at socio-devo equilibrium 1294

x̄∗∗a+1 =
1 + ȳa

1 − qȳa
x̄∗∗a (Example, Eq. 10)

provided that 1 − qȳa , 0. Iterating Example, Eq. 10 yields the resident phenotype at socio-devo equilibrium 1295

x̄a = x̄1

a−1∏
k=1

1 + ȳk

1 − qȳk
, (Example, Eq. 11)
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Figure 6: Resulting evolutionary dynamics of the mechanistic additive genetic covariance matrix Hz. The upper-left quadrant (blue) is the mecha-

nistic additive genetic covariance matrix Hx of the phenotype, that is, of the state variable. For instance, at the initial evolutionary time, the genetic

variance for the phenotype is higher at later ages, and the phenotype at age 3 is highly genetically correlated with the phenotype at age 4. As

evolutionary time progresses, genetic covariation vanishes as mutational covariation vanishes (Hy becomes singular) as genotypic traits approach

their boundary values. p = 0.7. The evolutionary times τ shown correspond to those of Fig. 5.

where we drop the ∗∗ for simplicity. To determine when this socio-devo equilibrium is socio-devo stable, we find the1296

eigenvalues of dxᵀ/dx̄|y=ȳ as follows. The entries of the matrix of the direct social effects on the phenotype are given1297

by1298

∂x j

∂x̄a

∣∣∣∣∣∣
y=ȳ

=


ȳa−1q if j = a

0 otherwise.

Hence, from Eqs. G8 and G9, dxᵀ/dx̄|y=ȳ is upper-triangular, so its eigenvalues are the values in its main diagonal,1299

which are given by ∂xa/∂x̄a|y=ȳ = ȳa−1q. Thus, the eigenvalues of dxᵀ/dx̄|y=ȳ have absolute value strictly less than1300

one if |q| < 1, in which case the socio-devo equilibrium in Example, Eq. 11 is socio-devo stable.1301

Let x̄ be the SDS resident phenotype given by Example, Eq. 11 with |q| < 1. Then, the evo-devo dynamics are still1302

given by Example, Eq. 6. Using Layer 7, Eq. 1a, Layer 7, Eq. 4, and Layer 7, Eq. 5, the evolutionary dynamics of the1303

phenotype in the limit as ∆τ→ 0 are now given by1304

dx̄
dτ
≈ ιLxz

∂w
∂z

∣∣∣∣∣
y=ȳ

= ιLxy
dw
dy

∣∣∣∣∣
y=ȳ

. (Example, Eq. 12)

This system is dynamically insufficient as Lxz and Lxy depend on ȳ because of gene-phenotype interaction in devel-1305

opment. In turn, the evolutionary dynamics of the geno-phenotype are given by1306

dz̄
dτ
≈ ιLz

∂w
∂z

∣∣∣∣∣
y=ȳ

= ιLzy
dw
dy

∣∣∣∣∣
y=ȳ

. (Example, Eq. 13)

This system is dynamically sufficient as it contains dynamic equations for all evolutionarily dynamic variables, namely1307

both x̄ and ȳ. While Lz in the first equality is always singular, the matrix Lzy in the second equality is non-singular if1308
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the mutational covariance matrix Hy is non-singular. Thus, the total selection gradient of the genotype still provides a 1309

relatively complete description of the evolutionary process of the geno-phenotype. 1310

We can similarly find that the total selection gradient of the genotypic trait at age a is 1311

dw
dya

∣∣∣∣∣
y=ȳ

=
1
T̃

x̄a
1 + q

1 − qȳa

−`a +

Na∑
j=a+1

` j(1 − ȳ j)
j−1∏

k=a+1

(1 + ȳk)

 ,
where the generation time without density dependence is now 1312

T̃ =

Na∑
j=1

j` j(1 − ȳ j)x̄ j
1 + q

1 − qȳ j
.

This total selection gradient of the genotypic trait at age a has the same sign as that found in the model for non-social 1313

development (Example, Eq. 5). Hence, the stable evolutionary equilibria for the genotype are still given by Example, 1314

Eq. 9. Yet, the associated phenotype, given by Example, Eq. 11, may be different due to social development (Fig. 7). 1315

That is, social development here does not affect the evolutionary equilibria, as it does not affect the zeros of the 1316

total selection gradient of the genotype which gives the zeros of the evolutionary dynamics of the geno-phenotype 1317

(Example, Eq. 13). Instead, social development affects here the developmental constraint so it affects the admissible 1318

evolutionary equilibria of the phenotype. Numerical solution for the evo-devo dynamics using Example, Eq. 6 is given 1319

in Fig. 7. For the q chosen, the phenotype evolves to much larger values due to social feedback than with non-social 1320

development although the genotype evolves to the same values. The associated evolution of the Lz matrix, using 1321

Layer 6, Eq. 9, is given in Fig. 8. The code used to generate these figures is in the Supplementary Information. 1322

6. Discussion 1323

We have addressed the question of how development affects evolution by formulating a mathematical framework 1324

that integrates explicit developmental dynamics into evolutionary dynamics. The framework integrates age progres- 1325

sion, explicit developmental constraints according to which the phenotype is constructed across life, and evolutionary 1326

dynamics. This framework yields a description of the structure of genetic covariation, including the developmental 1327

matrix dxᵀ/dy|y=ȳ, from mechanistic processes. The framework also yields a dynamically sufficient description of 1328

the evolution of developed phenotypes in gradient form, such that their long-term evolution can be described as the 1329

climbing of a fitness landscape within the assumptions made. This framework provides a tractable method to model 1330

the evo-devo dynamics for a broad class of models. We also obtain formulas to compute the sensitivity of the solution 1331

of a recurrence (here, the phenotype) to perturbations in the solution or parameters at earlier times (here, ages), which 1332

are given by dxᵀ/dζ for ζ ∈ {x, y}. Overall, the framework provides a theory of constrained evolutionary dynamics, 1333

where the developmental and environmental constraints determine the admissible evolutionary path (Layer 7, Eq. 1). 1334

Previous understanding suggested that development affects evolution by inducing genetic covariation and genetic 1335

constraints, although the nature of such constraints had remained uncertain. We find that genetic constraints are nec- 1336

essarily absolute in a generally dynamically sufficient description of long-term phenotypic evolution in gradient form. 1337
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Figure 7: Example with social development. The genotype evolves to the same values as those with non-social development in Fig. 5. However, the

phenotype evolves to much larger values due to social development. Large plots give the resident genotype or phenotype vs age over evolutionary

time for various p. Small plots give the associated direct and total selection gradients. The numerical evolutionary dynamics of the genotype match

the analytical expressions for the genotype (Example, Eq. 9) and associated phenotype (Example, Eq. 11). ι is as in Fig. 5. q = 0.5.

This is because dynamic sufficiency in general requires that not only phenotypic but also genotypic evolution is fol-1338

lowed. Because the phenotype is related to the genotype via development, simultaneously describing the evolution of1339

the genotype and phenotype in gradient form entails that the associated constraining matrix (Hz or Lz) is necessarily1340

singular with a maximum number of degrees of freedom given by the number of lifetime genotypic traits (NaNg).1341

Consequently, genetic covariation is necessarily absent in as many directions of geno-phenotype space as there are1342

lifetime developed traits (NaNp). Since the constraining matrix is singular, direct directional selection is insufficient1343

to identify evolutionary equilibria in contrast to common practice. Instead, total genotypic selection, which depends1344

on development, is sufficient to identify evolutionary equilibria if there are no absolute mutational constraints and no1345

exogenous plastic response. The singularity of the constraining matrix associated to direct geno-phenotypic selec-1346

tion entails that if there is any evolutionary equilibrium and no exogenous plastic response, then there is an infinite1347

number of evolutionary equilibria that depend on development; in addition, development determines the admissible1348

evolutionary trajectory and so the admissible equilibria. The adaptive topography in phenotype space is often as-1349

sumed to involve a non-singular G-matrix where evolutionary outcomes occur at fitness landscape peaks (i.e., where1350

∂w/∂x|y=ȳ=ȳ∗ = 0). In contrast, we find that the evolutionary dynamics differ from that representation in that evolu-1351
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Figure 8: Resulting dynamics of the mechanistic additive socio-genetic cross-covariance matrix Lz. The structure and dynamics of Lz here are

similar to those of Hz in Fig. 8 but the magnitudes are an order of magnitude larger (compare bar legends). p = 0.7, q = 0.5. The evolutionary

times τ shown correspond to those of Fig. 7.

tionary outcomes occur at best (i.e., without absolute mutational constraints) at peaks in the admissible evolutionary 1352

path determined by development (i.e., where dw/dy|y=ȳ=ȳ∗ = 0), and that such path peaks do not typically occur at 1353

landscape peaks (so generally ∂w/∂z|y=ȳ=ȳ∗ , 0). 1354

The singularity of the constraining matrix (Hz or Lz) is not due to our adaptive dynamics assumptions. Under 1355

quantitative genetics assumptions, the additive genetic covariance matrix of phenotype x is Gx = αxcov[y, y]αᵀx as 1356

described in the introduction, and here we use the subscripts x to highlight that this α matrix is for the regression co- 1357

efficients of the phenotype with respect to gene content. Under quantitative genetics assumptions, the matrix cov[y, y] 1358

describes the observed covariance in allele frequency due to any source, so it describes standing covariation in allele 1359

frequency. Under our adaptive dynamics assumptions, we obtain an Hx matrix that has the same form of Gx, but where 1360

cov[y, y] describes the covariance in genotypic traits only due to mutation at the current evolutionary time step among 1361

the possible mutations, so it describes (expected) mutational covariation. Regardless of whether cov[y, y] describes 1362

standing covariation in allele frequency or mutational covariation, the additive genetic covariance matrix in geno- 1363

phenotype space Gz = αzcov[y, y]αᵀz is always singular because the developmental matrix of the geno-phenotype αᵀz 1364

has fewer rows than columns: that is, the degrees of freedom of Gz have an upper bound given by the number of 1365

loci (or genetic predictors) while the size of Gz is given by the number of loci and of phenotypes. Thus, whether one 1366

considers standing or mutational covariation, the additive genetic covariance matrix of the geno-phenotype is always 1367

singular. Eliminating traits from the analysis to render Gz non-singular as traditionally recommended (Lande, 1979) 1368

either renders the gradient system underdetermined and so dynamically insufficient in general (if allele frequency ȳ 1369

is removed), or prevents a description of phenotypic evolution as the climbing of a fitness landscape (if the mean 1370

phenotype x̄ is removed). The singularity of H and L in geno-phenotype space persists despite evolution of the devel- 1371

opmental map, regardless of the number of genotypic traits or phenotypes provided there is any phenotype, and in the 1372
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presence of endogenous or exogenous environmental change. Thus, we find that a dynamically sufficient description1373

of phenotypic evolution in gradient form generally requires a singular constraining matrix.1374

Dynamic sufficiency for phenotypic evolution in gradient form requires that the constraining matrix is in geno-1375

phenotype space particularly because of non-linear development. The H-matrix in phenotype space generally depends1376

on the resident genotype via both the mutational covariance matrix and the developmental matrix. The develop-1377

mental matrix depends on the resident genotype due to non-linear development, particularly gene-gene interaction,1378

gene-phenotype interaction, and gene-environment interaction (see text below Eq. Layer 6, Eq. 5). The analogous1379

dependence of G on allele frequency holds under quantitative genetics assumptions for the same reasons (Turelli,1380

1988; Service and Rose, 1985). If development is linear (i.e., the developmental map for all phenotypes is a linear1381

function in all its variables at all ages), the developmental matrix no longer depends on the resident genotype (or allele1382

frequency under quantitative genetics assumptions). If in addition the mutational covariance matrix is independent1383

of the resident genotype, then the constraining matrix H in phenotype space is no longer dependent on the resident1384

genotype. Thus, if one assumes linear development and both mutational covariation and phenotypic selection being1385

independent of the resident genotype (in addition to no social interactions, no exogenous plastic response, no total1386

immediate genotypic selection, and no niche-constructed effects of the phenotype on fitness (Layer 7, Eq. 6)), the H1387

matrix in phenotype space becomes constant and the mechanistic Lande equation (Layer 7, Eq. 6) becomes dynami-1388

cally sufficient. However, even simple models of explicit development involve non-linearities (e.g., Example, Eq. 1)1389

and mutational covariation depends on the resident genotype whenever the genotype is constrained to take values1390

within a finite range (e.g., between zero and one). Thus, consideration of even slightly realistic models of develop-1391

ment seems unlikely to allow for a dynamically sufficient mechanistic Lande equation (i.e., following only phenotypic1392

evolution).1393

Extensive research efforts have been devoted to determining the relevance of constraints in adaptive evolution1394

(Arnold, 1992; Hine and Blows, 2006; Hansen and Houle, 2008; Jones et al., 2014; Hine et al., 2014; Engen and1395

Sæther, 2021). Empirical research has found that the smallest eigenvalue of G in phenotype space is often close1396

to zero (Kirkpatrick and Lofsvold, 1992; Hine and Blows, 2006; McGuigan and Blows, 2007). Mezey and Houle1397

(2005) found a non-singular G-matrix for 20 morphological (so, developed) traits in fruit flies. Our results suggest G1398

singularity would still arise in all these studies if enough traits are included so as to guarantee a dynamically sufficient1399

description of phenotypic evolution on an adaptive topography (i.e., if allele frequency were included in the analysis1400

as part of the multivariate “geno-phenotype”).1401

Previous theory has offered limited predictions as to when the G-matrix would be singular. These include that1402

incorporating more traits in the analysis renders G more likely to be singular as the traits are more likely to be1403

genetically correlated, such as in infinite-dimensional traits (Gomulkiewicz and Kirkpatrick, 1992; Kirkpatrick and1404

Lofsvold, 1992). Suggestions to include gene frequency as part of the trait vector in the classic Lande equation (e.g.,1405

Barfield et al., 2011) have been made without noticing that doing so entails that the associated G-matrix is necessarily1406

singular. Kirkpatrick and Lofsvold (1992, p. 962 onwards) showed that, assuming that G in phenotypic space is1407
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singular and constant, then the evolutionary trajectory and equilibria depend on the evolutionarily initial conditions of 1408

the phenotype. In our framework, the evolutionarily initial conditions of the phenotype are given by the developmental 1409

constraint evaluated at the evolutionarily initial genotype and environment. Hence, the evolutionary trajectory and 1410

equilibria depend on the developmental constraint, which provides the admissible evolutionary path. Our results thus 1411

extend the relevance of Kirkpatrick and Lofsvold’s (1992) analysis by our observation that H is always singular in 1412

geno-phenotype space to yield a generally dynamically sufficient gradient system for the phenotype, even with few 1413

traits and evolving H. 1414

Multiple mathematical models have addressed the question of the singularity of G. Recently, simulation work 1415

studying the effect of pleiotropy on the structure of the G-matrix found that the smallest eigenvalue of G is very small 1416

but positive (Engen and Sæther, 2021, Tables 3 and 5). Our findings indicate that this model and others (e.g., Wagner, 1417

1984; Barton and Turelli, 1987; Wagner, 1989; Wagner and Mezey, 2000; Martin, 2014; Morrissey, 2014, 2015) would 1418

recover G-singularity by considering the geno-phenotype so both allele frequency and phenotype change are part of 1419

the gradient system. Other recent simulation work found that a singular G-matrix due to few segregating alleles still 1420

allows the phenotype to reach its unconstrained optimum if all loci have segregating alleles at some point over the long 1421

run, thus allowing for evolutionary change in all directions of phenotype space in the long run (Barton, 2017, Fig. 3). 1422

Our results indicate that such a model attains the unconstrained optimum because it assumes that fitness depends on a 1423

single phenotype at a single age, and that there is no direct genotypic selection and no niche-constructed effects of the 1424

genotype on fitness (i.e., there ∂w/∂y = 0 and (dεεεᵀ/dy)(∂w/∂εεε) = 0, so dw/dyia =
∑Na

j=1
∑Np

k=1(dxk j/dyia)(∂w/∂xk j), 1425

which since fitness depends on a single trait k at a single age j further reduces to (dxkj/dyia)(∂w/∂xkj); hence, dw/dyij = 1426

0 for any locus I(i) and nucleotide J(i) at the single age j there implies ∂w/∂xkj = 0; Eq. Layer 4, Eq. 22). Our results 1427

show that when at least one of these assumptions does not hold, the unconstrained optimum is not necessarily achieved 1428

(as illustrated in Example, Eq. 3 and Fig. 5). In our framework, phenotypic evolution converges at best to constrained 1429

fitness optima, which may under certain conditions coincide with unconstrained fitness optima. Convergence to 1430

constrained fitness optima under no absolute mutational constraints occurs even with the fewest number of traits 1431

allowed in our framework: two, that is, one genotypic trait and one phenotype with one age each (or in a standard 1432

quantitative genetics framework, allele frequency at a single locus and one quantitative trait that is a function of 1433

such allele frequency). Such constrained adaptation has important implications for biological understanding (see e.g., 1434

Kirkpatrick and Lofsvold, 1992; Gomulkiewicz and Kirkpatrick, 1992) and is consistent with empirical observations 1435

of lack of selection response in the wild despite selection and genetic variation (Merilä et al., 2001; Hansen and 1436

Houle, 2004; Pujol et al., 2018), and of relative lack of stabilizing selection (Kingsolver et al., 2001; Kingsolver and 1437

Diamond, 2011). 1438

Our results provide a mechanistic description of breeding value, thus allowing for insight regarding the structure 1439

and evolution of the constraining matrix, here H or L. We have defined mechanistic breeding value, not in terms of 1440

regression coefficients as traditionally done, but in terms of total derivatives with components mechanistically arising 1441

from lower level processes. This yields a mechanistic description of the constraining matrices in terms of total effects 1442
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of the genotype, which recover previous results in terms of regression coefficients and random matrices (Fisher, 1918;1443

Wagner, 1984; Barton and Turelli, 1987; Lynch and Walsh, 1998; Martin, 2014; Morrissey, 2014). Matrices of total1444

effects of the genotype are mechanistic analogues of Fisher’s (1918) additive effects of allelic substitution (his α)1445

and of Wagner’s (1984, 1989) developmental matrix (his B). Our formulas for total effects allow one to compute the1446

effect of a perturbation of the genotype, phenotype, or environment at an early age on the phenotype at a later age.1447

Yet, by being defined from derivatives rather than regression, mechanistic breeding values do not satisfy the classic1448

partitioning of phenotypic variance into genetic and “environmental” variances, and so mechanistic heritability can be1449

greater than one.1450

Evolutionary analysis might have been hindered by lack of a mechanistic theory of breeding value and thus of1451

the constraining matrix. Ever since Lande (1979) it has been clear that direct directional selection on the phenotype1452

would be insufficient to identify evolutionary equilibria if the G-matrix were singular (Lande, 1979; Via and Lande,1453

1985; Kirkpatrick and Lofsvold, 1992; Gomulkiewicz and Kirkpatrick, 1992). Wagner (1984, 1989) constructed and1454

analysed evolutionary models considering developmental maps, and wrote the G-matrix in terms of his developmental1455

matrix to assess its impact on the maintenance of genetic variation. Yet, without a mechanistic theory of the constrain-1456

ing matrix, Wagner (1984, 1988, 1989) and Wagner and Mezey (2000) did not simultaneously track the evolution of1457

genotypes and phenotypes, so did not conclude that the associated G-matrix is necessarily singular or that the devel-1458

opmental matrix affects evolutionary equilibria. Wagner’s (1984, 1989) models have been used to devise models of1459

constrained adaptation in a fitness landscape, borrowing ideas from computer science (Altenberg, 1995, his Fig. 2).1460

This and other models (Houle 1991, his Fig. 2 and Kirkpatrick and Lofsvold 1992, their Fig. 5) have suggested how1461

constrained evolutionary dynamics would proceed although they have lacked a mechanistic theory of breeding value1462

and thus of G and its evolutionary dynamics. Other models borrowing ideas from computer science have found that1463

epistasis can cause the evolutionary dynamics to take an exponentially long time to reach fitness peaks (Kaznatcheev,1464

2019). Our mechanistic treatment of genetic covariation finds that as the H-matrix in geno-phenotype space has at1465

least as many zero eigenvalues as there are lifetime phenotypes (i.e., NaNp), even if there were infinite time, the1466

population does not necessarily reach a fitness peak in geno-phenotype space. However, the population eventually1467

reaches a fitness peak in genotype space if there are no absolute mutational constraints after the landscape is modified1468

by the interaction of the total effects of the genotype on phenotype and direct phenotypic selection and by the total1469

niche-constructed effects of the genotype on fitness.1470

We find that total genotypic selection provides more information regarding selection response than direct direc-1471

tional selection or other forms of total selection. We show that evolutionary equilibria occur when total genotypic1472

selection vanishes if there are no absolute mutational constraints and no exogenous plastic response. Direct selection1473

or total selection on the phenotype need not vanish at evolutionary equilibria, even if there are no absolute mutational1474

constraints and no exogenous plastic response. As total genotypic selection depends on development rather than ex-1475

clusively on (unconstrained) selection, and as development determines the admissible evolutionary trajectory along1476

which developmental and environmental constraints are satisfied, our findings show that development has a major1477
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evolutionary role by sharing responsibility with selection for defining evolutionary equilibria and for determining the 1478

admissible evolutionary path. Future work should assess to what extent these conclusions depend on our assumptions, 1479

particularly that of deterministic development. 1480

Total selection gradients correspond to quantities that have received various names. Such gradients correspond to 1481

Caswell’s (1982, 2001) “total derivative of fitness” (denoted by him as dλ), Charlesworth’s (1994) “total differential” 1482

(of the population’s growth rate, denoted by him as dr), van Tienderen’s (1995) “integrated sensitivity” (of the popu- 1483

lation’s growth rate, denoted by him as IS), and Morrissey’s (2014, 2015) “extended selection gradient” (denoted by 1484

him as η). Total selection gradients measure total directional selection, so in our framework they take into account the 1485

downstream developmental effects of a trait on fitness. In contrast, Lande’s (1979) selection gradients measure direct 1486

directional selection, so in our framework’s terms they do not consider the developmentally immediate total effects 1487

of a trait on fitness nor the downstream developmental effects of a trait on fitness. We obtained compact expressions 1488

for total selection gradients as linear transformations of direct selection gradients, arising from the chain rule in ma- 1489

trix calculus notation (Layer 4, Eq. 20), analogously to previous expressions in terms of vital rates (Caswell, 2001, 1490

Eq. 9.38). Our mechanistic approach to total selection recovers the regression approach of Morrissey (2014) who 1491

defined the extended selection gradient as η = Φβ, where β is Lande’s selection gradient and Φ is the matrix of total 1492

effects of all traits on themselves (computed as regression coefficients between variables related by a path diagram 1493

rather than as total derivatives, which entails material differences with our approach as explained above). Morrissey 1494

(2014) used an equation for the total-effect matrixΦ (his Eq. 2) from path analysis (Greene, 1977, p. 380), which has 1495

the form of our matrices describing developmental feedback of the phenotype and the geno-phenotype (dxᵀ/dx|y=ȳ 1496

and dzᵀ/dz|y=ȳ; Layer 4, Eq. 1 and Layer 4, Eq. 9). Thus, interpreting Morrissey’s (2014) Φ as our dxᵀ/dx|y=ȳ 1497

(resp. dzᵀ/dz|y=ȳ) and β as our δw/δx|y=ȳ (resp. δw/δz|y=ȳ) (i.e., Lande’s selection gradient of the phenotype or the 1498

geno-phenotype if environmental traits are not explicitly included in the analysis), then Layer 4, Eq. 21 (resp. Layer 4, 1499

Eq. 24) shows that the extended selection gradient η = Φβ corresponds to the total selection gradient of the phenotype 1500

dw/dx|y=ȳ (resp. of the geno-phenotype dw/dz|y=ȳ). We did not show that dmᵀ/dm|y=ȳ has the form of the equation 1501

forΦ provided by Morrissey (2014) (his Eq. 2), but it might indeed hold. If we interpretΦ as our dmᵀ/dm|y=ȳ and β 1502

as our ∂w/∂m|y=ȳ (i.e., Lande’s selection gradient of the geno-envo-phenotype thus explicitly including environmental 1503

traits in the analysis), then Layer 4, Eq. 25 shows that the extended selection gradient η = Φβ corresponds to the total 1504

selection gradient of the geno-envo-phenotype dw/dm|y=ȳ. 1505

Not all total selection gradients provide a relatively complete description of the selection response. We show in 1506

Appendix H (Eq. H4) and Appendix J (Eq. J4) that the selection response of the geno-phenotype or the geno-envo- 1507

phenotype can respectively be written in terms of the total selection gradients of the geno-phenotype dw/dz|y=ȳ or the 1508

geno-envo-phenotype dw/dm|y=ȳ, but such total selection gradients are insufficient to predict evolutionary equilibria 1509

because they are premultiplied by a singular socio-genetic cross-covariance matrix. Also, the selection response of 1510

the phenotype can be written in terms of the total selection gradient of the phenotype dw/dx|y=ȳ, but this expression 1511

for the selection response has an additional term involving the total immediate selection gradient of the genotype 1512
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δw/δy|y=ȳ, so the total selection gradient of the phenotype is insufficient to predict evolutionary equilibria (even more1513

considering that following the evolutionary dynamics of the phenotype alone is generally dynamically insufficient).1514

In contrast, we have shown that the total selection gradient of the genotype dw/dy|y=ȳ predicts evolutionary equilibria1515

if there are no absolute mutational constraints and no exogenous plastic response. Thus, out of all total selection gra-1516

dients considered, only total genotypic selection provides a relatively complete description of the selection response.1517

Morrissey (2015) considers that the total selection gradient of the genotype (his “inputs”) and of the phenotype (his1518

“traits”) would be equal, but the last line of Layer 4, Eq. 22 shows that the total selection gradients of the phenotype1519

and genotype are different in general, particularly due to direct genotypic selection and the total effects of genotype1520

on phenotype.1521

Our results allow for the modelling of evo-devo dynamics in a wide array of settings. First, developmental and1522

environmental constraints (Layer 7, Eq. 1b and Layer 7, Eq. 1c) can mechanistically describe development, gene-1523

gene interaction, and gene-environment interaction, while allowing for arbitrary non-linearities and evolution of the1524

developmental map. Several previous approaches have modelled gene-gene interaction, such as by considering multi-1525

plicative gene effects, but general frameworks mechanistically linking gene-gene interaction, gene-environment inter-1526

action, developmental dynamics, and evolutionary dynamics have previously remained elusive (Rice, 1990; Hansen1527

and Wagner, 2001; Rice, 2002; Hermisson et al., 2003; Carter et al., 2005; Rice, 2011). A historically dominant1528

yet debated view is that gene-gene interaction has minor evolutionary effects as phenotypic evolution depends on1529

additive rather than epistatic effects (under normality or to a first-order of approximation), so epistasis would act by1530

influencing a seemingly effectively non-singular G (Hansen, 2013; Nelson et al., 2013; Paixão and Barton, 2016; Bar-1531

ton, 2017). Our finding that the constraining matrix H is necessarily singular in a dynamically sufficient phenotypic1532

adaptive topography entails that evolutionary equilibria depend on development and consequently on gene-gene and1533

gene-environment interactions. Hence, gene-gene and gene-environment interaction can generally have strong and1534

permanent evolutionary effects in the sense of defining together with selection what the evolutionary equilibria are1535

(e.g., via developmental feedbacks described by dxᵀ/dx|y=ȳ) even by altering the H-matrix alone. This contrasts with1536

a non-singular constraining matrix whereby evolutionary equilibria are pre-determined by selection.1537

Second, our results allow for the study of long-term evolution of the H-matrix as an emergent property of the1538

evolution of the genotype, phenotype, and environment (i.e., the geno-envo-phenotype). In contrast, it has been1539

traditional to study short-term evolution of G by treating it as another dynamic variable under constant allele frequency1540

(Bulmer, 1971; Lande, 1979; Bulmer, 1980; Lande, 1980; Lande and Arnold, 1983; Barton and Turelli, 1987; Turelli,1541

1988; Gavrilets and Hastings, 1994; Carter et al., 2005; Débarre et al., 2014). Third, our results allow for the study1542

of the effects of developmental bias, biased genetic variation, and modularity (Wagner, 1996; Pavlicev and Hansen,1543

2011; Pavlicev et al., 2011; Wagner and Zhang, 2011; Pavlicev and Wagner, 2012; Watson et al., 2013). While we1544

have assumed that mutation is unbiased for the genotype, our equations allow for the developmental map to lead1545

to biases in genetic variation for the phenotype. This may lead to modular effects of mutations, whereby altering a1546

genotypic trait at a given age tends to affect some phenotypes but not others.1547
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Fourth, our equations facilitate the study of life-history models with dynamic constraints. Life-history models 1548

with dynamic constraints have typically assumed evolutionary equilibrium, so they are analysed using dynamic opti- 1549

mization techniques such as dynamic programming and optimal control (e.g., León, 1976; Iwasa and Roughgarden, 1550

1984; Houston and McNamara, 1999; González-Forero et al., 2017; Avila et al., 2021). In recent years, mathemat- 1551

ically modelling the evolutionary dynamics of life-history models with dynamic constraints, that is, of what we call 1552

the evo-devo dynamics, has been made possible with the canonical equation of adaptive dynamics for function-valued 1553

traits (Dieckmann et al., 2006; Parvinen et al., 2013; Metz et al., 2016). However, such an approach poses substan- 1554

tial mathematical challenges by requiring derivation of functional derivatives and solution of associated differential 1555

equations for costate variables (Parvinen et al., 2013; Metz et al., 2016; Avila et al., 2021). By using discrete age, we 1556

have obtained closed-form equations that facilitate modelling the evo-devo dynamics. By doing so, our framework 1557

yields an alternative method to dynamic optimization to analyse a broad class of life-history models with dynamic 1558

constraints (see Example). 1559

Fifth, our framework allows for the modelling of the evo-devo dynamics of pattern formation by allowing the 1560

implementation of reaction-diffusion equations in discrete space in the developmental map, once equations are suit- 1561

ably written (e.g., Eq. 6.1 of Turing, 1952; Tomlin and Axelrod, 2007; Supplementary Information section S6). Thus, 1562

the framework may allow one to implement and analyse the evo-devo dynamics of existing detailed models of the 1563

development of morphology (e.g., Salazar-Ciudad and Jernvall, 2010; Salazar-Ciudad and Marı́n-Riera, 2013), to the 1564

extent that developmental maps can be written in the form of Eq. (1). Sixth, our framework also allows for the mech- 1565

anistic modelling of adaptive plasticity, for instance, by implementing reinforcement learning or supervised learning 1566

in the developmental map (Sutton and Barto, 2018; Paenke et al., 2007). In practice, to use our framework to model 1567

the evo-devo dynamics, it may often be simpler to compute the developmental dynamics of the phenotype and the 1568

evolutionary dynamics of the genotype (as in Fig. 5), rather than the evolutionary dynamics of the geno-phenotype 1569

or geno-envo-phenotype. When this is the case, after solving for the evo-devo dynamics, one can then compute 1570

the matrices composing the evolutionary dynamics of the geno-phenotype and geno-envo-phenotype to gain further 1571

understanding of the evolutionary factors at play, including the evolution of the H-matrix (as in Fig. 6). 1572

By allowing development to be social, our framework allows for a mechanistic description of extra-genetic in- 1573

heritance and indirect genetic effects. Extra-genetic inheritance can be described since the phenotype at a given age 1574

can be an identical or modified copy of the geno-phenotype of social partners. Thus, social development allows for 1575

the modelling of social learning (Sutton and Barto, 2018; Paenke et al., 2007) and epigenetic inheritance (Jablonka 1576

et al., 1992; Slatkin, 2009; Day and Bonduriansky, 2011). However, in our framework extra-genetic inheritance is 1577

insufficient to yield phenotypic evolution that is independent of both genetic evolution and exogenous plastic change 1578

(e.g., in the framework, there cannot be cultural evolution without genetic evolution or exogenous environmental 1579

change). This is seen by setting mutational covariation and exogenous environmental change to zero (i.e., Hy = 0 1580

and ∂ε̄εε/∂τ = 0), which eliminates evolutionary change (i.e., dm̄/dτ = 0). The reason is that although there is extra- 1581

genetic inheritance in our framework, there is no extra-genetic variation because both development is deterministic 1582
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and we use adaptive dynamics assumptions: without mutation, every SDS resident develops the same phenotype as1583

every other resident. Extensions to consider stochastic development might enable extra-genetic variation and possibly1584

phenotypic evolution that is independent of genetic and exogenously plastic evolution. Yet, we have only considered1585

social interactions among non-relatives, so our framework at present only allows for social learning or epigenetic1586

inheritance from non-relatives.1587

Our framework can mechanistically describe indirect genetic effects via social development because the developed1588

phenotype can be mechanistically influenced by the genotype or phenotype of social partners. Indirect genetic effects1589

mean that a phenotype may be partly or completely caused by genes located in another individual (Moore et al., 1997).1590

Indirect genetic effect approaches model the phenotype considering a linear regression of individual’s phenotype on1591

social partner’s phenotype (Kirkpatrick and Lande, 1989; Moore et al., 1997; Townley and Ezard, 2013), whereas1592

our approach constructs individual’s phenotype from development depending on social partners’ genotype and phe-1593

notypes. We found that social development generates social feedback (described by sx/sx̄ᵀ|y=ȳ, Eq. Layer 5, Eq. 1),1594

which closely though not entirely corresponds to social feedback found in the indirect genetic effects literature (Moore1595

et al., 1997, Eq. 19b and subsequent text). The social feedback we obtain depends on total social developmental bias1596

from the phenotype (dx/dx̄ᵀ|y=ȳ, Eq. Layer 4, Eq. 5); analogously, social feedback in the indirect genetic effects liter-1597

ature depends on the matrix of interaction coefficients (Ψ) which contains the regression coefficients of phenotype on1598

social partner’s phenotype. Social development leads to a generalization of mechanistic additive genetic covariance1599

matrices H = cov[b,b] into mechanistic additive socio-genetic cross-covariance matrices L = cov[bs,b]; similarly,1600

indirect genetic effects involve a generalization of the G-matrix, which includes Cax = cov[a, x], namely the cross-1601

covariance matrix between multivariate breeding value and phenotype (Kirkpatrick and Lande, 1989; Moore et al.,1602

1997; Townley and Ezard, 2013). However, there are differences between our results and those in the indirect genetic1603

effects literature. First, social feedback (in the sense of inverse matrices involving Ψ) appears twice in the evolution-1604

ary dynamics under indirect genetic effects (see Eqs. 20 and 21 of Moore et al. 1997) while it only appears once in1605

our evolutionary dynamics equations through sx/sx̄ᵀ|y=ȳ (Eq. Layer 6, Eq. 10). This difference may stem from the1606

assumption in the indirect genetic effects literature that social interactions are reciprocal, while we assume that they1607

are asymmetric in the sense that, since mutants are rare, mutant’s development depends on residents but resident’s1608

development does not depend on mutants (we thank J. W. McGlothlin for pointing this out). Second, our L matrices1609

make the evolutionary dynamics equations depend on total social developmental bias from the genotype (dx/dȳᵀ|y=ȳ,1610

Eq. Layer 5, Eq. 2a) in a non-feedback manner (specifically, not in an inverse matrix) but this type of dependence1611

does not occur in the evolutionary dynamics under indirect genetic effects (Eqs. 20 and 21 of Moore et al. 1997). This1612

difference might stem from the absence of explicit tracking of allele frequency in the indirect genetic effects litera-1613

ture in keeping with the tradition of quantitative genetics, whereas we explicitly track the genotype. Third, “social1614

selection” (i.e., ∂w/∂z̄) plays no role in our results consistently with our assumption of a well-mixed population, but1615

social selection plays an important role in the indirect genetic effects literature even if relatedness is zero (McGlothlin1616

et al., 2010, e.g., setting r = 0 in their Eq. 10 still leaves an effect of social selection on selection response due to1617
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“phenotypic” kin selection). 1618

Our framework offers formalizations to the notions of developmental constraints and developmental bias. The two 1619

notions have been often interpreted as equivalents (e.g., Brakefield, 2006), or with a distinction such that constraints 1620

entail a negative, prohibiting effect while bias entails a positive, directive effect of development on the generation of 1621

phenotypic variation (Uller et al., 2018; Salazar-Ciudad, 2021). We defined developmental constraint as the condition 1622

that the phenotype at a given age is a function of the individual’s condition at their immediately previous age, which 1623

both prohibits certain values of the phenotype and has a “directive” effect on the generation of phenotypic variation. 1624

We offered quantification of developmental bias in terms of the slope of the phenotype with respect to itself at subse- 1625

quent ages. No bias would lead to zero slopes thus to identity matrices (e.g., ∂xᵀ/∂x|y=ȳ = I and dxᵀ/dx|y=ȳ = I) and 1626

deviations from the identity matrix would constitute bias. 1627

Our results clarify the role of several developmental factors previously suggested to be evolutionarily important. 1628

We have arranged the evo-devo process in a layered structure, where a given layer is formed by components of 1629

layers below (Fig. 4). This layered structure helps see that several developmental factors previously suggested to 1630

have important evolutionary effects (Laland et al., 2014) but with little clear connection (Welch, 2017) can be viewed 1631

as basic elements of the evolutionary process. Direct-effect matrices (Layer 2) are basic in that they form all the 1632

components of the evolutionary dynamics (Layer 7) except mutational covariation and exogenous environmental 1633

change. Direct-effect matrices quantify direct (i) directional selection, (ii) developmental bias, (iii) niche construction, 1634

(iv) social developmental bias (e.g., extra-genetic inheritance and indirect genetic effects; Moore et al. 1997), (v) social 1635

niche construction, (vi) environmental sensitivity of selection (Chevin et al., 2010), and (vii) phenotypic plasticity. 1636

These factors variously affect selection and development, thus affecting evolutionary equilibria and the admissible 1637

evolutionary trajectory. 1638

Our approach uses discrete rather than continuous age, which substantially simplifies the mathematics. This treat- 1639

ment allows for the derivation of closed-form expressions for what can otherwise be a difficult mathematical challenge 1640

if age is continuous (Kirkpatrick and Heckman, 1989; Dieckmann et al., 2006; Parvinen et al., 2013; Metz et al., 2016; 1641

Avila et al., 2021). For instance, costate variables are key in dynamic optimization as used in life-history models 1642

(Gadgil and Bossert, 1970; León, 1976; Schaffer, 1983; Stearns, 1992; Roff, 1992; Kozłowski and Teriokhin, 1999; 1643

Sydsæter et al., 2008), but general closed-form formulas for costate variables were previously unavailable and their 1644

calculation often limits the analysis of such models. In Appendix K, we show that our results recover the key elements 1645

of Pontryagin’s maximum principle, which is the central tool of optimal control theory to solve dynamic optimization 1646

problems (Sydsæter et al., 2008). Under the assumption that there are no environmental traits (hence, no exogenous 1647

plastic response), in Appendix K, we show that an admissible locally stable evolutionary equilibrium solves a local, 1648

dynamic optimization problem of finding a genotype that both “totally” maximises a mutant’s lifetime reproductive 1649

success R0 and “directly” maximises the Hamiltonian of Pontryagin’s maximum principle. We show that this Hamilto- 1650

nian depends on costate variables that are proportional to the total selection gradient of the phenotype at evolutionary 1651

equilibrium (Eq. K3), and that the costate variables satisfy the costate equations of Pontryagin’s maximum principle. 1652
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Thus, our approach offers an alternative method to optimal control theory to find admissible evolutionary equilibria1653

for the broad class of models considered here. By exploiting the discretization of age, we have obtained various for-1654

mulas that can be computed directly for the total selection gradient of the phenotype (Layer 4, Eq. 21), so for costate1655

variables, and of their relationship to total genotypic selection (fifth line of Layer 4, Eq. 22), thus facilitating analytic1656

and numerical treatment of life-history models with dynamic constraints. Although discretization of age may induce1657

numerical imprecision relative to continuous age (Kirkpatrick and Heckman, 1989), numerical and empirical treat-1658

ment of continuous age typically involves discretization at one point or another, with continuous curves often achieved1659

by interpolation (e.g., Kirkpatrick et al., 1990). Numerical precision with discrete age may be increased by reducing1660

the age bin size (e.g., to represent months or days rather than years; Caswell, 2001), potentially at a computational1661

cost.1662

By simplifying the mathematics, our approach yields insight that may be otherwise challenging to gain. Life-1663

history models with dynamic constraints generally find that costate variables are non-zero under optimal controls1664

(Gadgil and Bossert, 1970; Taylor et al., 1974; León, 1976; Schaffer, 1983; Houston et al., 1988; Houston and McNa-1665

mara, 1999; Sydsæter et al., 2008). This means that there is persistent total selection on the phenotype at evolutionary1666

equilibrium. Our findings show that this is to be expected for various reasons including absolute mutational constraints1667

(i.e., active path constraints so controls remain between zero and one, as in the Example), the occurrence of direct1668

genotypic selection, and there being more state variables than control variables (in which case δxᵀ/δy is singular as1669

it has more rows than columns, even after removing initial states and final controls from the analysis; Eq. C10) (fifth1670

line of Layer 4, Eq. 22). Thus, zero total genotypic selection at equilibrium may involve persistent total phenotypic1671

selection. Moreover, life-history models with explicit developmental constraints have found that their predictions can1672

be substantially different from those found without explicit developmental constraints. In particular, without develop-1673

mental constraints, the outcome of parent-offspring conflict over sex allocation has been found to be an intermediate1674

between the outcomes preferred by mother and offspring (Reuter and Keller, 2001), whereas with developmental con-1675

straints, the outcome has been found to be that preferred by the mother (Avila et al., 2019). Our results show that1676

changing the particular form of the developmental map may induce substantial changes in predictions by influencing1677

total genotypic selection and the admissible evolutionary equilibria. In other words, the developmental map used1678

alters the evolutionary outcome because it modulates absolute socio-genetic constraints (i.e., the H or L matrices in1679

geno-phenotype space).1680

We have obtained a term that we refer to as exogenous plastic response, which is the plastic response to exogenous1681

environmental change over an evolutionary time step (Layer 7, Eq. 3). An analogous term occurs in previous equations1682

(Eq. A3 of Chevin et al. 2010). Additionally, our framework considers endogenous plastic response due to niche1683

construction (i.e., endogenous environmental change), which affects both the selection response and the exogenous1684

plastic response. Exogenous plastic response affects the evolutionary dynamics even though it is not ultimately caused1685

by change in the resident genotype (or in gene frequency), but by exogenous environmental change. In particular,1686

exogenous plastic response allows for a straightforward form of “plasticity-first” evolution (Waddington, 1942, 1961;1687

69

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


West-Eberhard, 2003) as follows. At an evolutionary equilibrium where exogenous plastic response is absent, the 1688

introduction of exogenous plastic response generally changes socio-genetic covariation or directional selection at a 1689

subsequent evolutionary time, thereby inducing selection response. This constitutes a simple form of plasticity-first 1690

evolution, whereby plastic change precedes genetic change, although the plastic change may not be adaptive and the 1691

induced genetic change may have a different direction to that of the plastic change. 1692

Empirical estimation of the developmental map may be facilitated by it defining a dynamic equation. Whereas the 1693

developmental map defines a dynamic equation to construct the phenotype, the genotype-phenotype map corresponds 1694

to the solution of such dynamic equation. It is often impractical or impossible to write the solution of a dynamic 1695

equation, even if the dynamic equation can be written in practice. Accordingly, it may often prove impractical to em- 1696

pirically estimate the genotype-phenotype map, whereas it may be more tractable to empirically infer developmental 1697

maps. Inference of developmental maps from empirical data can be pursued via the growing number of methods to 1698

infer dynamic equations from data (Schmidt and Lipson, 2009; Brunton et al., 2016; Ghadami and Epureanu, 2022, 1699

and papers in the special issue). 1700

To conclude, we have formulated a framework that synthesizes developmental and evolutionary dynamics yielding 1701

a theory of long-term phenotypic evolution on an adaptive topography by mechanistically describing the long-term 1702

evolution of genetic covariation. This framework shows that development has major evolutionary effects by showing 1703

that selection and development jointly define the evolutionary outcomes if mutation is not absolutely constrained and 1704

exogenous plastic response is absent, rather than the outcomes being defined only by selection. Our results provide a 1705

tool to chart major territory on how development affects evolution. 1706
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Appendix A. Matrix calculus notation1716

Following Caswell (2019), for vectors a ∈ Rn×1 and b ∈ Rm×1, we denote1717

∂a
∂bᵀ

=



∂a1

∂b1
· · ·

∂a1

∂bm
...

. . .
...

∂an

∂b1
· · ·

∂an

∂bm


∈ Rn×m,

so (∂a/∂bᵀ)ᵀ = ∂aᵀ/∂b. The same notation applies with total derivatives.1718

Appendix B. Total selection gradient of the phenotype1719

Here we derive the total selection gradient of the phenotype dλ/dx|y=ȳ, which is part of and simpler to derive than1720

the total selection gradient of the genotype dλ/dy|y=ȳ.1721

Appendix B.1. Total selection gradient of the phenotype in terms of direct fitness effects1722

We start by considering the total selection gradient of the i-th phenotype at age a. By this, we mean the total1723

selection gradient of a perturbation of xia taken as initial condition of the recurrence equation (1) when applied at the1724

ages {a, . . . , n}. Consequently, a perturbation in a phenotype at a given age does not affect phenotypes at earlier ages,1725

in short, due to the arrow of developmental time. By letting ζ in Eq. (S19) be xia, we have1726

dλ
dxia

∣∣∣∣∣
y=ȳ

=
dw
dxia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

dw j

dxia

∣∣∣∣∣∣
y=ȳ

. (B1)

Note that the total derivatives of a mutant’s relative fitness at age j in Eq. (B1) are with respect to the individ-1727

ual’s phenotype at possibly another age a. From Eq. (S17), we have that a mutant’s relative fitness at age j,1728

w j(z j,h j(z j, z̄, τ), m̄), depends on the individual’s phenotype at the current age (recall z j = (x j; y j)), but from the1729

developmental constraint (1) the phenotype at a given age depends on the phenotype at previous ages. We must then1730

calculate the total derivatives of fitness in Eq. (B1) in terms of direct (i.e., partial) derivatives, thus separating the1731

effects of phenotypes at the current age from those of phenotypes at other ages.1732

To do this, we start by applying the chain rule, and since we assume that genotypic traits are developmentally1733

independent (hence, they do not depend on the phenotype, so dy j/dxia = 0 for all i ∈ {1, . . . ,Np} and all a, j ∈1734

{1, . . . ,Na}), we obtain1735

dw j

dxia

∣∣∣∣∣∣
y=ȳ

=

 Np∑
k=1

∂w j

∂xk j

dxk j

dxia
+

Np∑
k=1

Ne∑
r=1

∂w j

∂εr j

∂εr j

∂xk j

dxk j

dxia


∣∣∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix A), this is1736

dw j

dxia

∣∣∣∣∣∣
y=ȳ

=

 dxᵀj
dxia

∂w j

∂x j
+

Np∑
k=1

∂εεεᵀj

∂xk j

∂w j

∂εεε j

dxk j

dxia


∣∣∣∣∣∣∣∣
y=ȳ

.
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Applying matrix calculus notation again yields 1737

dw j

dxia

∣∣∣∣∣∣
y=ȳ

=

 dxᵀ
j

dxia

∂w j

∂x j
+

dxᵀj
dxia

∂εεεᵀj

∂x j

∂w j

∂εεε j


∣∣∣∣∣∣∣
y=ȳ

.

Factorizing, we have 1738

dw j

dxia

∣∣∣∣∣∣
y=ȳ

=

 dxᵀj
dxia

∂w j

∂x j
+
∂εεεᵀj

∂x j

∂w j

∂εεε j


∣∣∣∣∣∣∣
y=ȳ

. (B2)

Eq. (B2) now contains only partial derivatives of age-specific fitness. 1739

We now write Eq. (B2) in terms of partial derivatives of lifetime fitness. Consider the direct selection gradient of 1740

the phenotype at age j defined as 1741

∂w
∂x j

∣∣∣∣∣∣
y=ȳ
≡

(
∂w
∂x1 j

, . . . ,
∂w
∂xNp j

)ᵀ∣∣∣∣∣∣
y=ȳ
∈ RNp×1.

Such selection gradient of the phenotype at age j forms the selection gradient of the phenotype at all ages 1742

(Layer 2, Eq. 1). Similarly, the direct selection gradient of the environment at age j is 1743

∂w
∂εεε j

∣∣∣∣∣∣
y=ȳ
≡

(
∂w
∂ε1 j

, . . . ,
∂w
∂εNe j

)ᵀ∣∣∣∣∣∣
y=ȳ
∈ RNe×1,

and the matrix of direct effects of a mutant’s phenotype at age j on her environment at age j is 1744

∂εεεᵀj

∂x j

∣∣∣∣∣∣∣
y=ȳ

≡



∂ε1 j

∂x1 j
· · ·

∂εNe j

∂x1 j
...

. . .
...

∂ε1 j

∂xNp j
· · ·

∂εᵀNe j

∂xNp j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNp×Ne .

From Eq. (S18), w only depends directly on x j, y j, and εεε j through w j. So, 1745

∂w j

∂x j
=
∂w
∂x j

(B3a)

∂w j

∂y j
=
∂w
∂y j

(B3b)

∂w j

∂εεε j
=
∂w
∂εεε j

, (B3c)

which substituted in Eq. (B2) yields 1746

dw j

dxia

∣∣∣∣∣∣
y=ȳ

=

 dxᵀj
dxia

 ∂w
∂x j

+
∂εεεᵀj

∂x j

∂w
∂εεε j


∣∣∣∣∣∣∣
y=ȳ

=

 dxᵀ
j

dxia

δw
δx j


∣∣∣∣∣∣∣
y=ȳ

, (B4)

where the total immediate selection gradient of the phenotype at age j is 1747

δw
δx j

∣∣∣∣∣∣
y=ȳ

=

 ∂w
∂x j

+
∂εεεᵀj

∂x j

∂w
∂εεε j


∣∣∣∣∣∣∣
y=ȳ

∈ RNp×1. (B5)
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Consider now the total immediate selection gradient of the phenotype at all ages. The block column vector of total1748

immediate effects of a mutant’s phenotype on fitness is1749

δw
δx

∣∣∣∣∣
y=ȳ
≡

(
δw
δx1

; · · · ;
δw
δxNa

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×1.

Using Layer 2, Eq. 2d, we have that1750

∂εεεᵀ

∂x
∂w
∂εεε

=

 Na∑
k=1

∂εεεᵀk
∂x j

∂w
∂εεεk

 =

∂εεεᵀj∂x j

∂w
∂εεε j

 (B6)

is a block column vector whose j-th entry equals the rightmost term in Eq. (B5). Thus, from (B5), Layer 2, Eq. 1, and1751

(B6), it follows that the total immediate selection gradient of the phenotype is given by Layer 3, Eq. 1.1752

Now, we write the total selection gradient of xia in terms of the total immediate selection gradient of the phenotype.1753

Substituting Eq. (B4) in Eq. (B1) yields1754

dw
dxia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

 dxᵀj
dxia

δw
δx j


∣∣∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dxia

δw
δx

)∣∣∣∣∣∣
y=ȳ

,

where we use the block row vector1755

dxᵀ

dxia
=

 dxᵀ
1

dxia
, . . . ,

dxᵀNa

dxia

 ∈ R1×NaNp .

Therefore, the total selection gradient of all phenotypes across all ages is1756

dw
dx

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dx
δw
δx

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×1, (B7)

where the total immediate selection gradient of the phenotype is given by Layer 3, Eq. 1 and the block matrix of total1757

effects of a mutant’s phenotype on her phenotype is1758

dxᵀ

dx

∣∣∣∣∣
y=ȳ
≡



dxᵀ
1

dx1
· · ·

dxᵀ
Na

∂x1
...

. . .
...

dxᵀ
1

dxNa

· · ·
dxᵀNa

dxNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNp .

Using Layer 3, Eq. 1, expression (B7) is now in terms of partial derivatives of fitness, partial derivatives of the1759

environment, and total effects of a mutant’s phenotype on her phenotype, dxᵀ/dx, which we now proceed to write in1760

terms of partial derivatives only.1761

Appendix B.2. Matrix of total effects of a mutant’s phenotype on her phenotype1762

From the developmental constraint (1) for the k-th phenotype at age j ∈ {2, . . . ,Na} we have that xk j =1763

gk, j−1(z j−1,h j−1(z j−1, z̄, τ), z̄), so using the chain rule and since genotypic traits are developmentally independent we1764

obtain1765

dxk j

dxia

∣∣∣∣∣∣
y=ȳ

=

( Np∑
l=1

∂gk, j−1

∂xl, j−1

dxl, j−1

dxia

73

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


+

Np∑
l=1

Ne∑
r=1

∂gk, j−1

∂εr, j−1

∂εr, j−1

∂xl, j−1

dxl, j−1

dxia

)∣∣∣∣∣∣
y=ȳ
.

Applying matrix calculus notation (Appendix A), this is 1766

dxk j

dxia

∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dxia

∂gk, j−1

∂x j−1
+

Np∑
l=1

∂εεεᵀj−1

∂xl, j−1

∂gk, j−1

∂εεε j−1

dxl, j−1

dxia


∣∣∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 1767

dxk j

dxia

∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dxia

∂gk, j−1

∂x j−1
+

dxᵀj−1

dxia

∂εεεᵀj−1

∂x j−1

∂gk, j−1

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

Factorizing, we have 1768

dxk j

dxia

∣∣∣∣∣∣
y=ȳ

=

dxᵀ
j−1

dxia

∂gk, j−1

∂x j−1
+
∂εεεᵀj−1

∂x j−1

∂gk, j−1

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

Rewriting gk, j−1 as xk j yields 1769

dxk j

dxia

∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dxia

 ∂xk j

∂x j−1
+
∂εεεᵀj−1

∂x j−1

∂xk j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

Hence, 1770

dxᵀ
j

dxia

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dxia

 ∂xᵀj
∂x j−1

+
∂εεεᵀj−1

∂x j−1

∂xᵀ
j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

, (B8)

where we use the matrix of direct effects of a mutant’s phenotype at age j on her phenotype at age j + 1 1771

∂xᵀj+1

∂x j

∣∣∣∣∣∣∣
y=ȳ

≡



∂x1, j+1

∂x1 j
· · ·

∂xNp, j+1

∂x1 j
...

. . .
...

∂x1, j+1

∂xNp j
· · ·

∂xNp, j+1

∂xNp j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNp×Np ,

and the matrix of direct effects of a mutant’s environment at age j on her phenotype at age j + 1 1772

∂xᵀj+1

∂εεε j

∣∣∣∣∣∣∣
y=ȳ

≡



∂x1, j+1

∂ε1 j
· · ·

∂xNp, j+1

∂ε1 j
...

. . .
...

∂x1, j+1

∂εNe j
· · ·

∂xNp, j+1

∂εNe j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Np .

We can write Eq. (B8) more succinctly as 1773

dxᵀj
dxia

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀ
j−1

dxia

δxᵀj
δx j−1


∣∣∣∣∣∣∣
y=ȳ

, (B9)
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where we use the matrix of total immediate effects of a mutant’s phenotype at age j on her phenotype at age j + 11774

δxᵀj+1

δx j

∣∣∣∣∣∣∣
y=ȳ

=

∂xᵀ
j+1

∂x j
+
∂εεεᵀj

∂x j

∂xᵀj+1

∂εεε j


∣∣∣∣∣∣∣
y=ȳ

∈ RNp×Np . (B10)

The block matrix of total immediate effects a mutant’s phenotype on her phenotype is1775

δxᵀ

δx

∣∣∣∣∣
y=ȳ
≡



δxᵀ1
δx1

· · ·
δxᵀ

Na

δx1
...

. . .
...

δxᵀ1
δxNa

· · ·
δxᵀ

Na

δxNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



I
δxᵀ

2

δx1
· · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I
δxᵀ

Na

δxNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(B11)

∈ RNaNp×NaNp .

The equality (B11) follows because total immediate effects of a mutant’s phenotype on her phenotype are only non-1776

zero at the next age (from the developmental constraint in Eq. 1) or when a variable is differentiated with respect to1777

itself. Using Layer 2, Eq. 2d and Layer 2, Eq. 2c, we have that1778

∂εεεᵀ

∂x
∂xᵀ

∂εεε
=

 Na∑
k=1

∂εεεᵀk
∂xa

∂xᵀ
j

∂εεεk

 =



∂εεεᵀa
∂xa

∂xᵀj
∂εεεa

for j = a + 1

0 for j , a + 1

 , (B12)

which equals the rightmost term in Eq. (B10) for j = a + 1. Thus, from (B10), Layer 2, Eq. 2a, (B11), and (B12), it1779

follows that the block matrix of total immediate effects of a mutant’s phenotype on her phenotype satisfies Layer 3,1780

Eq. 3.1781

Eq. (B9) gives the matrix of total effects of the i-th phenotype of a mutant at age a on her phenotype at age j.1782

Then, it follows that the matrix of total effects of all the phenotypes of a mutant at age a on her phenotype at age j is1783

dxᵀj
dxa

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dxa

δxᵀj
δx j−1


∣∣∣∣∣∣∣
y=ȳ

. (B13)

Eq. (B13) is a recurrence equation for dxᵀj /dxa over age j ∈ {2, . . . ,Na}. Because of the arrow of developmental time1784

(due to the developmental constraint (1)), perturbations in an individual’s late phenotype do not affect the individual’s1785

early phenotype (i.e., dxᵀj /dxa = 0 for j < a and j ∈ {1, . . . ,Na − 1})1. Additionally, from the arrow of developmental1786

1More specifically, we take the derivative dxᵀj /dxia as referring to the effect on xᵀj of a perturbation of the initial condition xa of the difference

equation (1) applied at the ages {a, . . . , n}. Hence, if j < a, xᵀj is unmodified by a change in the initial condition of (1) applied at the ages {a, . . . , n}.
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time (Eq. 1), a perturbation in an individual’s phenotype at a given age does not affect any other of the individual’s 1787

phenotypes at the same age (i.e., dxᵀa /dxa = I where I is the identity matrix). Hence, expanding the recurrence in 1788

Eq. (B13), we obtain for j ∈ {1, . . . ,Na} that 1789

dxᵀj
dxa

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀa
dxa

δxᵀa+1

δxa
· · ·

δxᵀj
δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j > a

dxᵀa
dxa

∣∣∣∣∣∣
y=ȳ

for j = a

0 for j < a

=



δxᵀ
a+1

δxa
· · ·

δxᵀ
j

δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j > a

I for j = a

0 for j < a.

(B14)

Thus, the block matrix of total effects of a mutant’s phenotype on her phenotype is 1790

dxᵀ

dx

∣∣∣∣∣
y=ȳ

=



dxᵀ1
dx1

· · ·
dxᵀNa

dx1
...

. . .
...

dxᵀ1
dxNa

· · ·
dxᵀNa

dxNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



I
dxᵀ

2

dx1
· · ·

dxᵀNa−1

dx1

dxᵀNa

dx1

0 I · · ·
dxᵀNa−1

dx2

dxᵀNa

dx2
...

...
. . .

...
...

0 0 · · · I
dxᵀNa

dxNa−1

0 0 · · · 0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(B15)

∈ RNaNp×NaNp ,

which is block upper triangular and its a j-th block entry is given by Layer 4, Eq. 2. Eq. (B15) and Layer 4, Eq. 2 write 1791

the matrix of total effects of a mutant’s phenotype on her phenotype in terms of partial derivatives, given Eq. (B10), 1792

as we sought. 1793

From Eq. (B15), it follows that the matrix of total effects of a mutant’s phenotype on her phenotype dxᵀ/dx|y=ȳ is 1794

invertible. Indeed, since dxᵀ/dx|y=ȳ is square and block upper triangular, then its determinant is 1795

det
(

dxᵀ

dx

∣∣∣∣∣
y=ȳ

)
= det

 dxᵀ1
dx1

∣∣∣∣∣∣
y=ȳ

 · · · det

 dxᵀ
Na

dxNa

∣∣∣∣∣∣∣
y=ȳ


(Horn and Johnson, 2013, p. 32). Since dxᵀa /dxa|y=ȳ = I, then det(dxᵀa /dxa|y=ȳ) = 1 for all a ∈ {1, . . . ,Na}. Hence, 1796

det(dxᵀ/dx|y=ȳ) , 0, so dxᵀ/dx|y=ȳ is invertible. 1797
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We now obtain a more compact expression for the matrix of total effects of a mutant’s phenotype on her phenotype1798

in terms of partial derivatives. From Eq. (B11), it follows that1799

δxᵀ

δx

∣∣∣∣∣
y=ȳ
− I =



0
δxᵀ

2

δx1
· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀNa

δxNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (B16)

which is block 1-superdiagonal (i.e., only the entries in its first block super diagonal are non-zero). By definition of1800

matrix power, we have that (δxᵀ/δx − I)0 = I. Now, from Eq. (B16), we have that1801

δxᵀ

δx
− I =



δxᵀj
δxa

if j = a + 1

0 otherwise

 .
Using Eq. (B16), taking the second power yields1802 (

δxᵀ

δx
− I

)2

=

(
δxᵀ

δx
− I

) (
δxᵀ

δx
− I

)

=



δxᵀa+1

δxa

δxᵀj
δxa+1

if j = a + 2

0 otherwise

 ,
which is block 2-superdiagonal. This suggests the inductive hypothesis that1803

(
δxᵀ

δx
− I

)i

=





y
j−1∏
k=a

δxᵀk+1

δxk
if j = a + i

0 otherwise

 (B17)

holds for some i ∈ {0, 1, . . .}, which is a block i-superdiagonal matrix. If this is the case, then we have that1804 (
δxᵀ

δx
− I

)i+1

=

(
δxᵀ

δx
− I

)i (
δxᵀ

δx
− I

)

=





y
a+i−1∏
k=a

δxᵀk+1

δxk

δxᵀj
δxa+i

if j = a + i + 1

0 otherwise


=





y
j−1∏
k=a

δxᵀk+1

δxk
if j = a + i + 1

0 otherwise

 .
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This proves by induction that Eq. (B17) holds for every i ∈ {0, 1, . . .}, which together with Layer 4, Eq. 2 proves that 1805

(
δxᵀ

δx
− I

)i

=




dxᵀj
dxa

if j = a + i

0 otherwise


holds for all i ∈ {0, 1, . . . ,Na}. Evaluating this result at various i, note that 1806

(
δxᵀ

δx
− I

)0

=




dxᵀj
dxa

if j = a

0 otherwise

 =




I if j = a

0 otherwise


is a block matrix of zeros except in its block main diagonal which coincides with the block main diagonal of Eq. (B15). 1807

Similarly, 1808

(
δxᵀ

δx
− I

)1

=




dxᵀa+1

dxa
if j = a + 1

0 otherwise


is a block matrix of zeros except in its first block super diagonal which coincides with the first block super diagonal 1809

of Eq. (B15). Indeed, 1810

(
δxᵀ

δx
− I

)i

=




dxᵀa+i

dxa
if j = a + i

0 otherwise


is a block matrix of zeros except in its i-th block super diagonal which coincides with the i-th block super diagonal of 1811

Eq. (B15) for all i ∈ {1, . . . ,Na − 1}. Therefore, since any non-zero entry of the matrix (δxᵀ/δx − I)i corresponds to a 1812

zero entry for the matrix (δxᵀ/δx − I) j for any i , j with i, j ∈ {0, . . . ,Na − 1}, it follows that 1813

dxᵀ

dx
=

Na−1∑
i=0

(
δxᵀ

δx
− I

)i

. (B18)

From the geometric series of matrices we have that 1814

Na−1∑
i=0

(
δxᵀ

δx
− I

)i

=

[
I −

(
δxᵀ

δx
− I

)]−1 I − (
δxᵀ

δx
− I

)Na


=

(
2I −

δxᵀ

δx

)−1

. (B19)

The last equality follows because δxᵀ/δx − I is strictly block triangular with block dimension Na and so δxᵀ/δx − I is 1815

nilpotent with index smaller than or equal to Na, which implies that (δxᵀ/δx − I)Na = 0. From Eq. (B11), the matrix 1816

2I − δxᵀ/δx is block upper triangular with only identity matrices in its block main diagonal, so all the eigenvalues of 1817

2I−δxᵀ/δx equal one and the matrix is invertible; thus, the inverse matrix in Eq. (B19) exists. Finally, using Eq. (B19) 1818

in (B18) yields Layer 4, Eq. 1, which is a compact expression for the matrix of total effects of a mutant’s phenotype 1819

on her phenotype in terms of partial derivatives only, once Layer 3, Eq. 3 is used. 1820
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Appendix B.3. Conclusion1821

Appendix B.3.1. Form 11822

Using Eqs. (B7) and (Layer 3, Eq. 1) for ζ = x, we have that the total selection gradient of the phenotype is1823

dw
dx

∣∣∣∣∣
y=ȳ

=

[
dxᵀ

dx

(
∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

)]∣∣∣∣∣∣
y=ȳ

.

Thus, using Layer 4, Eq. 10 yields the first line of Layer 4, Eq. 21.1824

Appendix B.3.2. Form 21825

Using Eq. (B7), the total selection gradient of the phenotype is given by the second line of Layer 4, Eq. 21.1826

Appendix B.3.3. Form 31827

Using Eqs. (B7), Layer 3, Eq. 1 for ζ = z, and Layer 4, Eq. 7, we have that the total selection gradient of the1828

phenotype is given by the third line of Layer 4, Eq. 21, where the total immediate selection gradient of the geno-1829

phenotype is1830

δw
δz

∣∣∣∣∣
y=ȳ
≡


δw
δx
δw
δy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng)×1. (B20)

Appendix B.3.4. Form 41831

Finally, using the first line of Layer 4, Eq. 21 and Layer 4, Eq. 14, we obtain the fourth line of Layer 4, Eq. 21.1832

Appendix C. Total selection gradient of the genotype1833

Appendix C.1. Total selection gradient of the genotype in terms of direct fitness effects1834

Here we derive the total selection gradient of the genotype following an analogous procedure to the one used in1835

Appendix B for the total selection gradient of the phenotype. The i-th genotypic trait value at age a is yia, so letting ζ1836

in Eq. (S19) be yia, we have1837

dλ
dyia

∣∣∣∣∣
y=ȳ

=
dw
dyia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

dw j

dyia

∣∣∣∣∣∣
y=ȳ

. (C1)

The total derivatives of a mutant’s relative fitness at age j in Eq. (C1) are with respect to the individual’s genotypic1838

trait at possibly another age a. We now seek to express such selection gradient entry in terms of partial derivatives1839

only.1840

From Eq. (S17), we have w j(z j,h j(z j, z̄, τ), m̄) with z j = (x j; y j), so applying the chain rule, we obtain1841

dw j

dyia

∣∣∣∣∣∣
y=ȳ

=

( Np∑
k=1

∂w j

∂xk j

dxk j

dyia
+

Ng∑
k=1

∂w j

∂yk j

dyk j

dyia
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+

Np∑
k=1

Ne∑
r=1

∂w j

∂εr j

∂εr j

∂xk j

dxk j

dyia

+

Ng∑
k=1

Ne∑
r=1

∂w j

∂εr j

∂εr j

∂yk j

dyk j

dyia

)∣∣∣∣∣∣
y=ȳ
.

Applying matrix calculus notation (Appendix A), this is 1842

dw j

dyia

∣∣∣∣∣∣
y=ȳ

=

(dxᵀj
dyia

∂w j

∂x j
+

dyᵀ
j

dyia

∂w j

∂y j
+

Np∑
k=1

∂εεεᵀj

∂xk j

∂w j

∂εεε j

dxk j

dyia

+

Ng∑
k=1

∂εεεᵀj

∂yk j

∂w j

∂εεε j

dyk j

dyia

)∣∣∣∣∣∣
y=ȳ
.

Applying matrix calculus notation again yields 1843

dw j

dyia

∣∣∣∣∣∣
y=ȳ

=

(dxᵀ
j

dyia

∂w j

∂x j
+

dyᵀj
dyia

∂w j

∂y j
+

dxᵀ
j

dyia

∂εεεᵀj

∂x j

∂w j

∂εεε j

+
dyᵀj
dyia

∂εεεᵀj

∂y j

∂w j

∂εεε j

)∣∣∣∣∣∣
y=ȳ
.

Factorizing, we have 1844

dw j

dyia

∣∣∣∣∣∣
y=ȳ

=

[dxᵀj
dyia

∂w j

∂x j
+
∂εεεᵀj

∂x j

∂w j

∂εεε j


+

dyᵀj
dyia

∂w j

∂y j
+
∂εεεᵀj

∂y j

∂w j

∂εεε j

 ]∣∣∣∣∣∣
y=ȳ
. (C2)

We now write Eq. (C2) in terms of partial derivatives of lifetime fitness. Consider the direct selection gradient of 1845

the genotype at age j 1846

∂w
∂y j

∣∣∣∣∣∣
y=ȳ
≡

(
∂w
∂y1 j

, . . . ,
∂w
∂yNg j

)ᵀ∣∣∣∣∣∣
y=ȳ
∈ RNg×1,

and the matrix of direct effects of a mutant’s genotype at age j on her environment at age j 1847

∂εεεᵀj

∂y j

∣∣∣∣∣∣∣
y=ȳ

≡



∂ε1 j

∂y1 j
· · ·

∂εNe j

∂y1 j
...

. . .
...

∂ε1 j

∂yNg j
· · ·

∂εᵀNe j

∂yNg j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNg×Ne .

Using Eqs. (B3) and (B5) in Eq. (C2) yields 1848

dw j

dyia

∣∣∣∣∣∣
y=ȳ

=

[dxᵀ
j

dyia

 ∂w
∂x j

+
∂εεεᵀj

∂x j

∂w
∂εεε j


+

dyᵀj
dyia

 ∂w
∂y j

+
∂εεεᵀj

∂y j

∂w
∂εεε j

 ]∣∣∣∣∣∣
y=ȳ
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=

dxᵀ
j

dyia

δw
δx j

+
dyᵀj
dyia

δw
δy j


∣∣∣∣∣∣∣
y=ȳ

, (C3)

where we use the total immediate selection gradient of the genotype at age j or, equivalently, the total immediate1849

effects of a mutant’s genotype at age j on fitness1850

δw
δy j

∣∣∣∣∣∣
y=ȳ

=

 ∂w
∂y j

+
∂εεεᵀj

∂y j

∂w
∂εεε j


∣∣∣∣∣∣∣
y=ȳ

∈ RNg×1. (C4)

Consider now the total immediate selection gradient of the genotype for all ages1851

δw
δy

∣∣∣∣∣
y=ȳ
≡

(
δw
δy1

; · · · ;
δw
δyNa

)∣∣∣∣∣∣
y=ȳ
∈ RNaNg×1.

Using Layer 2, Eq. 2d, we have that1852

∂εεεᵀ

∂y
∂w
∂εεε

=

 Na∑
k=1

∂εεεᵀk
∂y j

∂w
∂εεεk

 =

∂εεεᵀj∂y j

∂w
∂εεε j

 (C5)

is a block column vector whose j-th entry is the rightmost term in Eq. (C4). Thus, from (C4), Layer 2, Eq. 1, and1853

(C5), it follows that the total immediate selection gradient of the genotype satisfies Layer 3, Eq. 1.1854

Now, we write the total selection gradient of yia in terms of the total immediate selection gradient of the genotype.1855

Substituting Eq. (C3) in Eq. (C1) yields1856

dw
dyia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

dxᵀj
dyia

δw
δx j

+
dyᵀ

j

dyia

δw
δy j


∣∣∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dyia

δw
δx

+
dyᵀ

dyia

δw
δy

)∣∣∣∣∣∣
y=ȳ

,

where we use the block row vectors1857

dxᵀ

dyia
≡

dxᵀ
1

dyia
, . . . ,

dxᵀNa

dyia

 ∈ R1×NaNp

dyᵀ

dyia
≡

dyᵀ
1

dyia
, . . . ,

dyᵀNa

dyia

 ∈ R1×NaNg .

Therefore, the total selection gradient of the genotype for all genotypic traits across all ages is1858

dw
dy

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dy
δw
δx

+
dyᵀ

dy
δw
δy

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×1, (C6)

where we use the block matrix of total effects of a mutant’s genotype on her phenotype1859

dxᵀ

dy

∣∣∣∣∣
y=ȳ
≡



dxᵀ
1

dy1
· · ·

dxᵀ
Na

∂y1
...

. . .
...

dxᵀ
1

dyNa

· · ·
dxᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNg×NaNp ,
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and the block matrix of total effects of a mutant’s genotype on her genotype 1860

dyᵀ

dy

∣∣∣∣∣
y=ȳ
≡



dyᵀ
1

dy1
· · ·

dyᵀ
Na

∂y1
...

. . .
...

dyᵀ
1

dyNa

· · ·
dyᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNg×NaNg .

Expression (C6) is now in terms of partial derivatives of fitness, partial derivatives of the environment, total effects 1861

of a mutant’s genotype on her phenotype, dxᵀ/dy, and total effects of a mutant’s genotype on her genotype, dyᵀ/dy, 1862

once Layer 3, Eq. 1 is used. We now proceed to write dxᵀ/dy and dyᵀ/dy in terms of partial derivatives only. 1863

Appendix C.2. Matrix of total effects of a mutant’s genotype on her phenotype and her genotype 1864

From the developmental constraint (1) for the k-th phenotype at age j ∈ {2, . . . ,Na} we have that xk j = 1865

gk, j−1(z j−1,h j−1(z j−1, z̄, τ), z̄), so using the chain rule we obtain 1866

dxk j

dyia

∣∣∣∣∣∣
y=ȳ

=

( Np∑
l=1

∂gk, j−1

∂xl, j−1

dxl, j−1

dyia
+

Ng∑
l=1

∂gk, j−1

∂yl, j−1

dyl, j−1

dyia

+

Np∑
l=1

Ne∑
r=1

∂gk, j−1

∂εr, j−1

∂εr, j−1

∂xl, j−1

dxl, j−1

dyia

+

Ng∑
l=1

Ne∑
r=1

∂gk, j−1

∂εr, j−1

∂εr, j−1

∂yl, j−1

dyl, j−1

dyia

)∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix A), this is 1867

dxk j

dyia

∣∣∣∣∣∣
y=ȳ

=

(dxᵀj−1

dyia

∂gk, j−1

∂x j−1
+

dyᵀj−1

dyia

∂gk, j−1

∂y j−1

+

Np∑
l=1

∂εεεᵀj−1

∂xl, j−1

∂gk, j−1

∂εεε j−1

dxl, j−1

dyia

+

Ng∑
l=1

∂εεεᵀj−1

∂yl, j−1

∂gk, j−1

∂εεε j−1

dyl, j−1

dyia

)∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields 1868

dxk j

dyia

∣∣∣∣∣∣
y=ȳ

=

(dxᵀ
j−1

dyia

∂gk, j−1

∂x j−1
+

dyᵀj−1

dyia

∂gk, j−1

∂y j−1

+
dxᵀj−1

dyia

∂εεεᵀj−1

∂x j−1

∂gk, j−1

∂εεε j−1

+
dyᵀj−1

dyia

∂εεεᵀj−1

∂y j−1

∂gk, j−1

∂εεε j−1

)∣∣∣∣∣∣
y=ȳ

.

Factorizing, we have 1869

dxk j

dyia

∣∣∣∣∣∣
y=ȳ

=

[dxᵀj−1

dyia

∂gk, j−1

∂x j−1
+
∂εεεᵀj−1

∂x j−1

∂gk, j−1

∂εεε j−1


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+
dyᵀj−1

dyia

∂gk, j−1

∂y j−1
+
∂εεεᵀj−1

∂y j−1

∂gk, j−1

∂εεε j−1

 ]∣∣∣∣∣∣
y=ȳ
.

Rewriting gk, j−1 as xk j yields1870

dxk j

dyia

∣∣∣∣∣∣
y=ȳ

=

[dxᵀj−1

dyia

 ∂xk j

∂x j−1
+
∂εεεᵀj−1

∂x j−1

∂xk j

∂εεε j−1


+

dyᵀj−1

dyia

 ∂xk j

∂y j−1
+
∂εεεᵀj−1

∂y j−1

∂xk j

∂εεε j−1

 ]∣∣∣∣∣∣
y=ȳ
.

Hence,1871

dxᵀj
dyia

∣∣∣∣∣∣∣
y=ȳ

=

[dxᵀj−1

dyia

 ∂xᵀj
∂x j−1

+
∂εεεᵀj−1

∂x j−1

∂xᵀ
j

∂εεε j−1


+

dyᵀj−1

dyia

 ∂xᵀj
∂y j−1

+
∂εεεᵀj−1

∂y j−1

∂xᵀj
∂εεε j−1

 ]∣∣∣∣∣∣
y=ȳ
, (C7)

where we use the matrix of direct effects of a mutant’s genotypic trait values at age j on her phenotype at age j + 11872

∂xᵀj+1

∂y j

∣∣∣∣∣∣∣
y=ȳ

≡



∂x1, j+1

∂y1 j
· · ·

∂xNp, j+1

∂y1 j
...

. . .
...

∂x1, j+1

∂yNg j
· · ·

∂xNp, j+1

∂yNg j



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNg×Np .

We can write Eq. (C7) more succinctly as1873

dxᵀj
dyia

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dyia

δxᵀj
δx j−1

+
dyᵀj−1

dyia

δxᵀj
δy j−1


∣∣∣∣∣∣∣
y=ȳ

, (C8)

where we use the matrix of total immediate effects of a mutant’s genotypic trait values at age j on her phenotype at1874

age j + 11875

δxᵀj+1

δy j

∣∣∣∣∣∣∣
y=ȳ

=

∂xᵀ
j+1

∂y j
+
∂εεεᵀj

∂y j

∂xᵀj+1

∂εεε j


∣∣∣∣∣∣∣
y=ȳ

∈ RNg×Np . (C9)

We also define the corresponding matrix across all ages. Specifically, the block matrix of total immediate effects1876

of a mutant’s genotype on her phenotype is1877

δxᵀ

δy

∣∣∣∣∣
y=ȳ
≡



δxᵀ1
δy1

· · ·
δxᵀ

Na

δy1
...

. . .
...

δxᵀ1
δyNa

· · ·
δxᵀ

Na

δyNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=



0
δxᵀ

2

δy1
· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀ

Na

δyNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(C10)

∈ RNaNg×NaNp .

The equality (C10) follows because the total immediate effects of a mutant’s genotypic trait values on her phenotype 1878

are only non-zero at the next age (from the developmental constraint in Eq. 1). Using Layer 2, Eq. 2d and Layer 2, 1879

Eq. 2c, we have that 1880

∂εεεᵀ

∂y
∂xᵀ

∂εεε
=

 Na∑
k=1

∂εεεᵀk
∂ya

∂xᵀ
j

∂εεεk

 =



∂εεεᵀa
∂ya

∂xᵀj
∂εεεa

for j = a + 1

0 for j , a + 1

 , (C11)

which equals the rightmost term in Eq. (C9) for j = a + 1. Thus, from Eqs. (C9)–(C11), it follows that the block 1881

matrix of total immediate effects of a mutant’s genotype on her phenotype satisfies Layer 3, Eq. 3. 1882

Eq. (C8) gives the matrix of total effects of a mutant’s i-th genotypic trait value at age a on her phenotype at age 1883

j. Then, it follows that the matrix of total effects of a mutant’s genotypic traits for all genotypic traits at age a on her 1884

phenotype at age j is 1885

dxᵀ
j

dya

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀ
j−1

dya

δxᵀj
δx j−1

+
dyᵀ

j−1

dya

δxᵀj
δy j−1


∣∣∣∣∣∣∣
y=ȳ

. (C12)

Eq. (C12) is a recurrence equation for dxᵀj /dya over age j ∈ {2, . . . ,Na}. Since a given entry of the operator d/dy takes 1886

the total derivative with respect to a given yia while keeping all the other genotypic traits constant and genotypic traits 1887

are developmentally independent, a perturbation of an individual’s genotypic trait value t a given age does not affect 1888

any other of the individual’s genotypic trait value at the same or other ages (i.e., dyᵀa /dya = I and dyᵀj /dya = 0 for 1889

j , a). Thus, the matrix of total effects of a mutant’s genotype on her genotype is 1890

dyᵀ

dy
=



dyᵀ
1

dy1
· · ·

dyᵀNa

dy1
...

. . .
...

dyᵀ
1

dyNa

· · ·
dyᵀNa

dyNa


=



I 0 · · · 0 0

0 I · · · 0 0
...

...
. . .

...
...

0 0 · · · I 0

0 0 · · · 0 I


= I ∈ RNaNg×NaNg . (C13)

Moreover, because of the arrow of developmental time (due to the developmental constraint in Eq. 1), perturbations 1891

in an individual’s late genotypic trait values do not affect the individual’s early phenotype (i.e., dxᵀj /dya = 0 for 1892
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j < a and j ∈ {1, . . . ,Na − 1})2. Additionally, from the arrow of developmental time (Eq. 1), a perturbation in an1893

individual’s genotypic trait values at a given age does not affect any of the individual’s phenotypes at the same age1894

(i.e., dxᵀj /dya = 0 for j = a). Consequently, Eq. (C12) for j ∈ {1, . . . ,Na} reduces to1895

dxᵀj
dya

∣∣∣∣∣∣∣
y=ȳ

=




dxᵀ

j−1

dya

δxᵀj
δx j−1

+
dyᵀ

j−1

dya︸︷︷︸
0, from (C13)

δxᵀj
δy j−1


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a


dxᵀj−1

dya︸︷︷︸
0, from (1)

δxᵀj
δx j−1

+
dyᵀj−1

dya︸︷︷︸
I, from (C13)

δxᵀj
δy j−1


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

for j − 1 = a


dxᵀj−1

dya︸︷︷︸
0, from (1)

δxᵀj
δx j−1

+
dyᵀj−1

dya︸︷︷︸
0, from (C13)

δxᵀj
δy j−1


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

for j − 1 < a.

That is,1896

dxᵀj
dya

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀj−1

dya

δxᵀ
j

δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

δxᵀ
j

δy j−1

∣∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 < a.

Expanding this recurrence yields1897

dxᵀj
dya

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀa+1

dya

δxᵀ
a+2

δxa+1
· · ·

δxᵀ
j

δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

δxᵀ
a+1

δya

∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 < a.

(C14)

Evaluating Eq. (C14) at j = a + 1 yields1898

dxᵀ
a+1

dya

∣∣∣∣∣∣
y=ȳ

=
δxᵀa+1

δya

∣∣∣∣∣∣
y=ȳ

,

2Again, we take the derivative dxᵀj /dyia as referring to the effect on xᵀj of a perturbation of the initial condition ya of the difference equation (1)

applied at the ages {a, . . . , n}. Hence, if j < a, xᵀj is unmodified by a change in the initial condition of (1) applied at the ages {a, . . . , n}.
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which substituted back in the top line of Eq. (C14) yields 1899

dxᵀ
j

dya

∣∣∣∣∣∣∣
y=ȳ

=



δxᵀa+1

δya

δxᵀa+2

δxa+1
· · ·

δxᵀj
δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

δxᵀa+1

δya

∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 < a.

(C15)

Hence, the block matrix of total effects of a mutant’s genotype on her phenotype is 1900

dxᵀ

dy

∣∣∣∣∣
y=ȳ

=



dxᵀ1
dy1

· · ·
dxᵀNa

dy1
...

. . .
...

dxᵀ1
dyNa

· · ·
dxᵀNa

dyNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ

2

dy1
· · ·

dxᵀNa−1

dy1

dxᵀNa

dy1

0 0 · · ·
dxᵀNa−1

dy2

dxᵀNa

dy2
...

...
. . .

...
...

0 0 · · · 0
dxᵀNa

dyNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(C16)

∈ RNaNg×NaNp ,

whose a j-th block entry is given by 1901

dxᵀj
dya

=


δxᵀa+1

δya

dxᵀj
dxa+1

for j > a

0 for j ≤ a

=


δxᵀa+1

δya

y
j−1∏

k=a+1

δxᵀk+1

δxk
for j > a

0 for j ≤ a

=


δxᵀa+1

δya

δxᵀa+2

δxa+1
· · ·

δxᵀj
δx j−1

for j > a

0 for j ≤ a,

(C17)

where we use Layer 4, Eq. 2 and adopt the empty-product convention that 1902

dxᵀ
a+1

dxa+1
=

y
a∏

k=a+1

δxᵀk+1

δxk
= I.
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Eqs. (C16) and (C17) write the matrix of total effects of a mutant’s genotype on her phenotype in terms of partial1903

derivatives, given Eq. (C9), as we sought.1904

We now obtain a more compact expression for the matrix of total effects of a mutant’s genotype on her phenotype1905

in terms of partial derivatives. To do this, we note a relationship between the matrix of total effects of a mutant’s1906

genotype on her phenotype with the matrix of total effects of a mutant’s phenotype on her phenotype. Note that the1907

a j-th block entry of (δxᵀ/δy)(dxᵀ/dx) is1908 (
δxᵀ

δy
dxᵀ

dx

)
a j

=

Na∑
k=1

δxᵀk
δya

dxᵀ
j

dxk

=
δxᵀa+1

δya

dxᵀj
dxa+1

=
dxᵀ

j

dya
,

where we use Eq. (C10) in the second equality and Eq. (C17) in the third equality, noting that dxᵀj /dxa+1 = 0 and1909

dxᵀ
j /dya = 0 for j ≤ a. Hence, Layer 4, Eq. 3 follows, which is a compact expression for the matrix of total effects of1910

a mutant’s genotype on her phenotype in terms of partial derivatives only, once Layer 4, Eq. 1 and Layer 3, Eq. 3 are1911

used.1912

Appendix C.3. Conclusion1913

Appendix C.3.1. Form 11914

Using Eqs. (C6), (C13), and Layer 3, Eq. 1 for ζ ∈ {x, y}, we have that the total selection gradient of the genotype1915

is1916

dw
dy

∣∣∣∣∣
y=ȳ

=

[
dxᵀ

dy

(
∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

)
+
∂w
∂y

+
∂εεεᵀ

∂y
∂w
∂εεε

]∣∣∣∣∣∣
y=ȳ

.

Thus, using Layer 4, Eq. 11 yields the first line of Layer 4, Eq. 22.1917

Appendix C.3.2. Form 21918

Using Eqs. (C6) and (C13), the total selection gradient of the genotype is given by the second line of Layer 4,1919

Eq. 22.1920

Appendix C.3.3. Form 31921

Using Eqs. (C6), (B20), and Layer 4, Eq. 8, we have that the total selection gradient of the genotype is given by1922

the third line of Layer 4, Eq. 22.1923

Appendix C.3.4. Form 41924

Using the first line of Layer 4, Eq. 22 and Layer 4, Eq. 15, we obtain the fourth line of Layer 4, Eq. 22.1925
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Appendix C.3.5. Form 5 1926

Finally, we can rearrange total genotypic selection (Layer 4, Eq. 22) in terms of total selection on the phenotype. 1927

Using Layer 4, Eq. 3 in the second line of Layer 4, Eq. 22, and then using the second line of Layer 4, Eq. 21, we have 1928

that the total selection gradient of the genotype is given by the fifth line of Layer 4, Eq. 22. 1929

Appendix D. Total selection gradient of the environment 1930

Here proceed analogously to derive the total selection gradient of the environment, which allows us to write an 1931

equation describing the evolutionary dynamics of the geno-envo-phenotype. 1932

Appendix D.1. Total selection gradient of the environment in terms of direct fitness effects 1933

As before, we start by considering the total selection gradient entry for the i-th environmental trait at age a. By this, 1934

we mean the total selection gradient of a perturbation of εia taken as initial condition of the developmental constraint 1935

(1) when applied at the ages {a, . . . , n}. Consequently, an environmental perturbation at a given age does not affect the 1936

phenotype at earlier ages due to the arrow of developmental time. By letting ζ in Eq. (S19) be εia, we have 1937

dλ
dεia

∣∣∣∣∣
y=ȳ

=
dw
dεia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

dw j

dεia

∣∣∣∣∣∣
y=ȳ

. (D1)

The total derivatives of a mutant’s relative fitness at age j in Eq. (D1) are with respect to the individual’s environmental 1938

traits at possibly another age a. We now seek to express such selection gradient in terms of partial derivatives only. 1939

From Eq. (S17), we have w j(z j,εεε j, m̄) with z j = (x j; y j), so applying the chain rule and, since we assume that 1940

genotypic traits are developmentally independent (hence, genotypic trait values do not depend on the environment, so 1941

dy j/dεia = 0 for all i ∈ {1, . . . ,Np} and all a, j ∈ {1, . . . ,Na}), we obtain 1942

dw j

dεia

∣∣∣∣∣∣
y=ȳ

=

 Np∑
k=1

∂w j

∂xk j

dxk j

dεia
+

Ne∑
k=1

∂w j

∂εk j

dεk j

dεia


∣∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj
dεia

∂w j

∂x j
+

dεεεᵀj
dεia

∂w j

∂εεε j


∣∣∣∣∣∣∣
y=ȳ

.

In the last equality we applied matrix calculus notation (Appendix A). Using Eq. (B3) we have 1943

dw j

dεia

∣∣∣∣∣∣
y=ȳ

=

dxᵀ
j

dεia

∂w
∂x j

+
dεεεᵀj
dεia

∂w
∂εεε j


∣∣∣∣∣∣∣
y=ȳ

. (D2)

Substituting Eq. (D2) in (D1) yields 1944

dw
dεia

∣∣∣∣∣
y=ȳ

=

Na∑
j=1

dxᵀj
dεia

∂w
∂x j

+
dεεεᵀj
dεia

∂w
∂εεε j


∣∣∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dεia

∂w
∂x

+
dεεεᵀ

dεia

∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

.
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Therefore, the total selection gradient of all environmental traits across all ages is1945

dw
dεεε

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dεεε
∂w
∂x

+
dεεεᵀ

dεεε
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ
∈ RNaNe×1, (D3)

where we use the block matrix of total effects of a mutant’s environment on her phenotype1946

dxᵀ

dεεε

∣∣∣∣∣
y=ȳ
≡



dxᵀ1
dεεε1

· · ·
dxᵀNa

∂εεε1
...

. . .
...

dxᵀ
1

dεεεNa

· · ·
dxᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNe

and the block matrix of total effects of a mutant’s environment on her environment1947

dεεεᵀ

dεεε

∣∣∣∣∣
y=ȳ
≡



dεεεᵀ1
dεεε1

· · ·
dεεεᵀNa

∂εεε1
...

. . .
...

dεεεᵀ1
dεεεNa

· · ·
dεεεᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNaNe×NaNe .

Expression (D3) is now in terms of partial derivatives of fitness, total effects of a mutant’s environment on her phe-1948

notype, dxᵀ/dεεε, and total effects of a mutant’s environment on her environment, dεεεᵀ/dεεε. We now proceed to write1949

dxᵀ/dεεε and dεεεᵀ/dεεε in terms of partial derivatives only.1950

Appendix D.2. Matrix of total effects of a mutant’s environment on her environment1951

From the environmental constraint (2) for the k-th environmental trait at age j ∈ {1, . . . ,Na} we have that εk j =1952

hk j(z j, z̄, τ), so using the chain rule since genotypic traits are developmentally independent yields1953

dεk j

dεia

∣∣∣∣∣∣
y=ȳ

=



 Np∑
l=1

∂hk j

∂xl j

dxl j

dεia


∣∣∣∣∣∣∣∣
y=ȳ

for j > a

∂εk j

∂εia

∣∣∣∣∣∣
y=ȳ

for j = a

0 for j < a

=



dxᵀj
dεia

∂εk j

∂x j


∣∣∣∣∣∣∣
y=ȳ

for j > a

∂εk j

∂εia

∣∣∣∣∣∣
y=ȳ

for j = a

0 for j < a.

In the last equality we used matrix calculus notation and rewrote hk j as εk j. Since we assume that environmental traits1954

are mutually independent, we have that ∂εka/∂εia = 1 if i = k or ∂εka/∂εia = 0 otherwise; however, we leave the partial1955
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derivatives ∂εka/∂εia unevaluated as it is conceptually useful. Hence, 1956

dεεεᵀj
dεia

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀj
dεia

∂εεεᵀj

∂x j


∣∣∣∣∣∣∣
y=ȳ

for j > a

∂εεεᵀj

∂εia

∣∣∣∣∣∣∣
y=ȳ

for j = a

0 for j < a.

Then, the matrix of total effects of a mutant’s environment at age a on her environment at age j is 1957

dεεεᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀj
dεεεa

∂εεεᵀj

∂x j


∣∣∣∣∣∣∣
y=ȳ

for j > a

∂εεεᵀj

∂εεεa

∣∣∣∣∣∣∣
y=ȳ

for j = a

0 for j < a.

(D4)

Hence, the block matrix of total effects of a mutant’s environment on her environment is 1958

dεεεᵀ

dεεε

∣∣∣∣∣
y=ȳ
≡



dεεεᵀ1
dεεε1

· · ·
dεεεᵀNa

dεεε1
...

. . .
...

dεεεᵀ1
dεεεNa

· · ·
dεεεᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



∂εεεᵀ1
∂εεε1

dεεεᵀ2
dεεε1

· · ·
dεεεᵀNa−1

dεεε1

dεεεᵀNa

dεεε1

0
∂εεεᵀ2
∂εεε2

· · ·
dεεεᵀNa−1

dεεε2

dεεεᵀNa

dεεε2
...

...
. . .

...
...

0 0 · · ·
∂εεεᵀNa−1

∂εεεNa−1

dεεεᵀNa

dεεεNa−1

0 0 · · · 0
∂εεεᵀNa

∂εεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(D5)

∈ RNaNe×NaNe .

Note that the a j-th block entry of (dxᵀ/dεεε)(∂εεεᵀ/∂x) for j > a is 1959(
dxᵀ

dεεε
∂εεεᵀ

∂x

)
a j

=

Na∑
k=1

dxᵀ
k

dεεεa

∂εεεᵀj

∂xk
=

dxᵀ
j

dεεεa

∂εεεᵀj

∂x j
,

where we use Layer 2, Eq. 2d in the second equality. Note also that since environmental traits are mutually inde- 1960

pendent, ∂εεεᵀj /∂εεεa = 0 for j , a from the environmental constraint (2). Finally, note that because of the arrow of 1961

developmental time, ∂xᵀj /∂εεεa = 0 for j < a due to the developmental constraint (1). Hence, Layer 4, Eq. 13 follows, 1962

which is a compact expression for the matrix of total effects of a mutant’s environment on itself in terms of partial 1963

90

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


derivatives and the total effects of a mutant’s environment on her phenotype, which we now write in terms of partial1964

derivatives only.1965

Appendix D.3. Matrix of total effects of a mutant’s environment on her phenotype1966

From the developmental constraint (1) for the k-th phenotype at age j ∈ {2, . . . ,Na} we have that xk j =1967

gk, j−1(z j−1,εεε j−1, z̄), so using the chain rule and since genotypic traits are developmentally independent yields1968

dxk j

dεia

∣∣∣∣∣∣
y=ȳ

=

 Np∑
l=1

∂gk, j−1

∂xl, j−1

dxl, j−1

dεia
+

Ne∑
l=1

∂gk, j−1

∂εl, j−1

dεl, j−1

dεia


∣∣∣∣∣∣∣∣
y=ȳ

=

dxᵀ
j−1

dεia

∂xk j

∂x j−1
+

dεεεᵀj−1

dεia

∂xk j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

In the last equality we used matrix calculus notation and rewrote gk, j−1 as xk j. Hence,1969

dxᵀ
j

dεia

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dεia

∂xᵀj
∂x j−1

+
dεεεᵀj−1

dεia

∂xᵀ
j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

Then, the matrix of total effects of a mutant’s environment at age a on her phenotype at age j is1970

dxᵀ
j

dεεεa

∣∣∣∣∣∣∣
y=ȳ

=

dxᵀj−1

dεεεa

∂xᵀj
∂x j−1

+
dεεεᵀj−1

dεεεa

∂xᵀ
j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

.

Using Eq. (D4) yields1971

dxᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ
j−1

dεεεa

∂xᵀj
∂x j−1

+
dxᵀ

j−1

dεεεa

∂εεεᵀj−1

∂x j−1

∂xᵀj
∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a


dxᵀa
dεεεa︸︷︷︸

0, from (1)

∂xᵀa+1

∂xa
+
∂εεεᵀa
∂εεεa

∂xᵀa+1

∂εεεa


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

for j − 1 = a


dxᵀj−1

dεεεa︸︷︷︸
0, from (1)

∂xᵀ
j

∂x j−1


∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

=



dxᵀj−1

dεεεa

 ∂xᵀj
∂x j−1

+
∂εεεᵀj−1

∂x j−1

∂xᵀ
j

∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

∂εεεᵀa∂εεεa

∂xᵀj
∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 > a.
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Using Eq. (B10), this reduces to 1972

dxᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀj−1

dεεεa

δxᵀ
j

δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1

∂εεεa

)∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 > a.

Expanding this recurrence yields 1973

dxᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



dxᵀa+1

dεεεa

δxᵀ
a+2

δxa+1
· · ·

δxᵀ
j

δx j−1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1

∂εεεa

)∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 > a,

which using Layer 4, Eq. 2 yields 1974

dxᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



∂εεεᵀa∂εεεa

∂xᵀa+1

∂εεεa

dxᵀj
dxa+1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

(
∂εεεᵀa
∂εεεa

∂xᵀa+1

∂εεεa

)∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 > a.

(D6)

It will be useful to denote the matrix of total immediate effects of a mutant’s environment at age j on her phenotype 1975

at age j for j > 0 as 1976

δxᵀj
δεεε j−1

∣∣∣∣∣∣∣
y=ȳ

=
∂εεεᵀj−1

∂εεε j−1

∂xᵀj
∂εεε j−1

∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Np . (D7)

The matrix of direct effects of a mutant’s environment on itself is given by Layer 2, Eq. 3. In turn, the block matrix of 1977

total immediate effects of a mutant’s environment on her phenotype is 1978

δxᵀ

δεεε

∣∣∣∣∣
y=ȳ
≡



δxᵀ1
δεεε1

· · ·
δxᵀNa

δεεε1
...

. . .
...

δxᵀ1
δεεεNa

· · ·
δxᵀNa

δεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
δxᵀ2
δεεε1

· · · 0 0

0 0 · · · 0 0
...

...
. . .

...
...

0 0 · · · 0
δxᵀ

Na

δεεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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∈ RNaNe×NaNp , (D8)

so Layer 3, Eq. 4 follows from Eqs. (D7), Layer 2, Eq. 3, and Layer 2, Eq. 2c.1979

Using Eq. (D7), Eq. (D6) becomes1980

dxᵀj
dεεεa

∣∣∣∣∣∣∣
y=ȳ

=



δxᵀ
a+1

δεεεa

dxᵀ
j

dxa+1


∣∣∣∣∣∣∣
y=ȳ

for j − 1 > a

δxᵀa+1

δεεεa

∣∣∣∣∣∣
y=ȳ

for j − 1 = a

0 for j − 1 > a.

Note that the a j-th entry of (δxᵀ/δεεε)(dxᵀ/dx) is1981 (
δxᵀ

δεεε

)
a j

=

Na∑
k=1

δxᵀk
δεεεa

dxᵀj
dxk

=
δxᵀa+1

δεεεa

dxᵀj
dxa+1

=
dxᵀ

j

dεεεa
, (D9)

where we use Eq. (D8) in the second equality. Hence, Layer 4, Eq. 4 follows, where the block matrix of total effects1982

of a mutant’s environment on her phenotype is1983

dxᵀ

dεεε

∣∣∣∣∣
y=ȳ

=



dxᵀ1
dεεε1

· · ·
dxᵀNa

dεεε1
...

. . .
...

dxᵀ1
dεεεNa

· · ·
dxᵀNa

dεεεNa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ2
dεεε1

· · ·
dxᵀNa−1

dεεε1

dxᵀNa

dεεε1

0 0 · · ·
dxᵀNa−1

dεεε2

dxᵀNa

dεεε2
...

...
. . .

...
...

0 0 · · · 0
dxᵀNa

dεεεNa−1

0 0 · · · 0 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

(D10)

∈ RNaNe×NaNp .

Layer 4, Eq. 4, (D8), and Layer 4, Eq. 1 write the matrix of total effects of a mutant’s environment on her phenotype1984

in terms of partial derivatives. This is a compact expression for the matrix of total effects of a mutant’s environment1985

on her phenotype in terms of partial derivatives only.1986

Appendix D.4. Conclusion1987

Appendix D.4.1. Form 11988

Eq. (D3) gives the total selection gradient of the environment as in the first line of Layer 4, Eq. 23.1989
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Appendix D.4.2. Form 2 1990

Using Eq. (D3) and Layer 4, Eq. 13 yields 1991

dw
dεεε

∣∣∣∣∣
y=ȳ

=

[
dxᵀ

dεεε
∂w
∂x

+

(
∂εεεᵀ

∂εεε
+

dxᵀ

dεεε
∂εεεᵀ

∂x

)
∂w
∂εεε

]∣∣∣∣∣∣
y=ȳ

.

Collecting for dxᵀ/dεεε and using Layer 3, Eq. 1 for ζ = x as well as Layer 3, Eq. 2, we have that the total selection 1992

gradient of the environment is given by the second line of Layer 4, Eq. 23. 1993

Appendix D.4.3. Form 3 1994

Using the first line of Layer 4, Eq. 23 and Layer 4, Eq. 16, we obtain the third line of Layer 4, Eq. 23. 1995

Appendix D.4.4. Form 4 1996

Finally, we can rearrange total selection on the environment in terms of total selection on the phenotype. Using 1997

Layer 4, Eq. 4 in the second line of Layer 4, Eq. 23, and then using the second line of Layer 4, Eq. 21, we have that 1998

the total selection gradient of the environment is given by the fourth line of Layer 4, Eq. 23. 1999

Appendix E. Total selection gradient of the geno-phenotype 2000

We have that the mutant geno-phenotype is z = (x; y). We first define the (direct), total immediate, and total 2001

selection gradients of the geno-phenotype and write the total selection gradient of the geno-phenotype in terms of 2002

the total immediate selection gradient of the geno-phenotype and of the partial selection gradient of the geno-envo- 2003

phenotype. 2004

Appendix E.1. Total selection gradient of the geno-phenotype in terms of direct fitness effects 2005

We have the selection gradient of the geno-phenotype 2006

∂w
∂z

∣∣∣∣∣
y=ȳ
≡

(
∂w
∂x

;
∂w
∂y

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×1,

the total immediate selection gradient of the geno-phenotype 2007

δw
δz

∣∣∣∣∣
y=ȳ
≡

(
δw
δx

;
δw
δy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×1,

and the total selection gradient of the geno-phenotype 2008

dw
dz

∣∣∣∣∣
y=ȳ
≡

(
dw
dx

;
dw
dy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×1.

Now, we write the total immediate selection gradient of the geno-phenotype as a linear combination of the selection 2009

gradients of the geno-phenotype and environment. Using Layer 3, Eq. 1 for ζ ∈ {x, y}, we have that the total immediate 2010
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selection gradient of the geno-phenotype is2011

δw
δz

∣∣∣∣∣
y=ȳ
≡


δw
δx
δw
δy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


∂w
∂x

+
∂εεεᵀ

∂x
∂w
∂εεε

∂w
∂y

+
∂εεεᵀ

∂y
∂w
∂εεε


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



∂w
∂x
∂w
∂y

 +


∂εεεᵀ

∂x
∂w
∂εεε

∂εεεᵀ

∂y
∂w
∂εεε



∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

. (E1)

Using Layer 2, Eq. 7, we have that2012

(
∂εεεᵀ

∂z
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ

=



∂εεεᵀ

∂x
∂εεεᵀ

∂y

 ∂w
∂εεε


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


∂εεεᵀ

∂x
∂w
∂εεε

∂εεεᵀ

∂y
∂w
∂εεε


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Therefore, Eq. (E1) becomes Layer 3, Eq. 1 for ζ = z.2013

Appendix E.1.1. Form 22014

Now we bring together the total selection gradients of the phenotype and genotype to write the total selection2015

gradient of the geno-phenotype as a linear transformation of the total immediate selection gradient of the geno-2016

phenotype.2017

Using the third lines of Layer 4, Eq. 21 and Layer 4, Eq. 22, we have2018

dw
dz

∣∣∣∣∣
y=ȳ
≡


dw
dx
dw
dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


dzᵀ

dx
δw
δz

dzᵀ

dy
δw
δz


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=




dzᵀ

dx
dzᵀ

dy

 δwδz

∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
δw
δz

)∣∣∣∣∣∣
y=ȳ

,

which is the second line of Layer 4, Eq. 24.2019

Appendix E.1.2. Form 32020

Now we use the expressions of the total selection gradients of the phenotype and genotype as linear transformations2021

of the geno-envo-phenotype to write the total selection gradient of the geno-phenotype. Using the fourth lines of Layer2022

4, Eq. 21 and Layer 4, Eq. 22, we have2023

dw
dz

∣∣∣∣∣
y=ȳ
≡


dw
dx
dw
dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


dmᵀ

dx
∂w
∂m

dmᵀ

dy
∂w
∂m


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=




dmᵀ

dx
dmᵀ

dy

 ∂w
∂m


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dz
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

,

which is the third line of Layer 4, Eq. 24. 2024

Appendix E.1.3. Form 1 2025

Now, we obtain the total selection gradient of the geno-phenotype as a linear combination of selection gradients 2026

of the geno-phenotype and environment. Using Layer 3, Eq. 1 for ζ = z, the second line of Layer 4, Eq. 24 becomes 2027

dw
dz

∣∣∣∣∣
y=ȳ

=

[
dzᵀ

dz

(
∂w
∂z

+
∂εεεᵀ

∂z
∂w
∂εεε

)]∣∣∣∣∣∣
y=ȳ

. (E2)

We define the block matrix of total effects of a mutant’s geno-phenotype on her environment as 2028

dεεεᵀ

dz

∣∣∣∣∣
y=ȳ
≡


dεεεᵀ

dx
dεεεᵀ

dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng)×NaNe ,

which using Layer 4, Eq. 10 and Layer 4, Eq. 11 yields 2029

dεεεᵀ

dz

∣∣∣∣∣
y=ȳ

=


dzᵀ

dx
∂εεεᵀ

∂z
dzᵀ

dy
∂εεεᵀ

∂z


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=




dzᵀ

dx
dzᵀ

dy

 ∂ε
εεᵀ

∂z


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
dzᵀ

dz
∂εεεᵀ

∂z

)∣∣∣∣∣∣
y=ȳ

,

which is Layer 4, Eq. 12, where in the second equality we factorized and in the third equality we used Layer 4, Eq. 9. 2030

Using this in Eq. (E2), the first line of Layer 4, Eq. 24 follows. 2031

Appendix E.2. Matrix of total effects of a mutant’s geno-phenotype on her geno-phenotype 2032

Here we obtain a compact expression for dzᵀ/dz|y=ȳ. Before doing so, let us obtain the block matrix of total 2033

immediate effects of a mutant’s geno-phenotype on her geno-phenotype 2034

δzᵀ

δz
≡


δxᵀ

δx
δyᵀ

δx
δxᵀ

δy
δyᵀ

δy

 =


δxᵀ

δx
0

δxᵀ

δy
I

 (E3)

∈ RNa(Np+Ng)×Na(Np+Ng),

where the equality follows from the assumption that genotypic traits are developmentally independent. Using Layer 2035

2, Eq. 6, Layer 2, Eq. 7, and Layer 2, Eq. 9 we have that 2036

∂zᵀ

∂z
+
∂εεεᵀ

∂z
∂zᵀ

∂εεε
=


∂xᵀ

∂x
0

∂xᵀ

∂y
I

 +


∂εεεᵀ

∂x
∂εεεᵀ

∂y


(
∂xᵀ

∂εεε
0
)
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=


∂xᵀ

∂x
0

∂xᵀ

∂y
I

 +


∂εεεᵀ

∂x
∂xᵀ

∂εεε
0

∂εεεᵀ

∂y
∂xᵀ

∂εεε
0


=


∂xᵀ

∂x
+
∂εεεᵀ

∂x
∂xᵀ

∂εεε
0

∂xᵀ

∂y
+
∂εεεᵀ

∂y
∂xᵀ

∂εεε
I

 ,
which equals the right-hand side of Eq. (E3) so Layer 3, Eq. 5 holds.2037

Now, motivated by Layer 4, Eq. 1 and the equation for total effects in path analysis (Greene, 1977), suppose that2038

dzᵀ

dz
= (I − Ez)−1 ,

for some matrix Ez to be determined. Then,2039

Ez = I −
(

dzᵀ

dz

)−1

. (E4)

Using Layer 4, Eq. 9 and a formula for the inverse of a 2 × 2 block matrix (Horn and Johnson, 2013, Eq. 0.7.3.1), we2040

have2041

(
dzᵀ

dz

)−1

=


(

dxᵀ

dx

)−1

0

−
dxᵀ

dy

(
dxᵀ

dx

)−1

I

 .
Using Layer 4, Eq. 3 yields2042

(
dzᵀ

dz

)−1

=


(

dxᵀ

dx

)−1

0

−
δxᵀ

δy
dxᵀ

dx

(
dxᵀ

dx

)−1

I

 .
Simplifying and using Layer 4, Eq. 1 yields2043

(
dzᵀ

dz

)−1

=


2I −

δxᵀ

δx
0

−
δxᵀ

δy
I

 .
Substituting in Eq. (E4) and simplifying yields2044

Ez = I −


2I −

δxᵀ

δx
0

−
δxᵀ

δy
I

 =


−I +

δxᵀ

δx
0

δxᵀ

δy
0

 =


δxᵀ

δx
0

δxᵀ

δy
I

 − I.

Hence,2045

Ez =
δzᵀ

δz
− I,

and so Layer 4, Eq. 9 holds.2046
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Appendix F. Total selection gradient of the geno-envo-phenotype 2047

We have that the mutant geno-envo-phenotype is m = (x; y;εεε). We now define the direct, total immediate, and 2048

total selection gradients of the geno-envo-phenotype and write the total selection gradient of the geno-envo-phenotype 2049

in terms of the partial selection gradient of the geno-envo-phenotype. 2050

We have the selection gradient of the geno-envo-phenotype 2051

∂w
∂m

∣∣∣∣∣
y=ȳ
≡

(
∂w
∂x

;
∂w
∂y

;
∂w
∂εεε

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng+Ne)×1,

the total immediate selection gradient of the geno-envo-phenotype 2052

δw
δm

∣∣∣∣∣
y=ȳ

=

(
δw
δx

;
δw
δy

;
δw
δεεε

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng+Ne)×1,

and the total selection gradient of the geno-envo-phenotype 2053

dw
dm

∣∣∣∣∣
y=ȳ

=

(
dw
dx

;
dw
dy

;
dw
dεεε

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng+Ne)×1.

Now we use the expressions of the total selection gradients of the phenotype, genotype, and environment as linear 2054

transformations of the geno-envo-phenotype to write the total selection gradient of the geno-envo-phenotype. Using 2055

the fourth lines of Layer 4, Eq. 21 and Layer 4, Eq. 22 and the third line of Layer 4, Eq. 23, we have 2056

dw
dm

∣∣∣∣∣
y=ȳ
≡



dw
dx
dw
dy
dw
dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dmᵀ

dx
∂w
∂m

dmᵀ

dy
∂w
∂m

dmᵀ

dεεε
∂w
∂m



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=





dmᵀ

dx
dmᵀ

dy
dmᵀ

dεεε


∂w
∂m



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

(
dmᵀ

dm
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

,

which is Layer 4, Eq. 25. 2057

To see that dmᵀ/dm|y=ȳ is non-singular, we factorize it as follows. We define the block matrix 2058

γmᵀ

γm

∣∣∣∣∣
y=ȳ

=



I 0
∂εεεᵀ

∂x

0 I
∂εεεᵀ

∂y

0 0
∂εεεᵀ

∂εεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne),
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which is non-singular since it is square, block upper triangular, and ∂εεεᵀ/∂εεε = I (Layer 2, Eq. 3). We also define the2059

block matrix of2060

βmᵀ

βm

∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0 0

dxᵀ

dy
I 0

dxᵀ

dεεε
0 I



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne),

which is non-singular since it is square, block lower triangular, and dxᵀ/dx is non-singular (Eq. B15). Note that2061

(
βmᵀ

βm
γmᵀ

γm

)∣∣∣∣∣∣
y=ȳ

=





dxᵀ

dx
0 0

dxᵀ

dy
I 0

dxᵀ

dεεε
0 I





I 0
∂εεεᵀ

∂x

0 I
∂εεεᵀ

∂y

0 0
∂εεεᵀ

∂εεε





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dxᵀ

dx
∂εεεᵀ

∂x
dxᵀ

dy
I

dxᵀ

dy
∂εεεᵀ

∂x
+
∂εεεᵀ

∂y
dxᵀ

dεεε
0

dxᵀ

dεεε
∂εεεᵀ

∂x
+
∂εεεᵀ

∂εεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

,

where the last equality follows from Layer 4, Eq. 10, Layer 4, Eq. 11, and Layer 4, Eq. 13. Using Layer 4, Eq. 18, we2062

thus have that2063

dmᵀ

dm

∣∣∣∣∣
y=ȳ

=

(
βmᵀ

βm
γmᵀ

γm

)∣∣∣∣∣∣
y=ȳ

.

Hence, dmᵀ/dm|y=ȳ is non-singular since βmᵀ/βm|y=ȳ and γmᵀ/γm|y=ȳ are square and non-singular.2064

Appendix G. Evolutionary dynamics of the phenotype2065

Here we derive an equation describing the evolutionary dynamics of the resident phenotype.2066

From Eqs. (S10) and (S19), we have that the evolutionary dynamics of the resident genotype satisfy the canonical2067

equation2068

∆ȳ
∆τ
≈ ιHy

dw
dy

∣∣∣∣∣
y=ȳ

, (G1)
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whereas the developmental dynamics of the resident phenotype satisfy the developmental constraint 2069

x̄a+1 = g◦a,

for a ∈ {1, . . . ,Na − 1}. 2070

Let z̄(τ) be the resident geno-phenotype at evolutionary time τ, specifically at the point where the socio-devo 2071

stable resident is at carrying capacity, marked in Fig. 3. The i-th mutant phenotype at age j + 1 at such evolutionary 2072

time τ is xi, j+1 = gi j(z j(τ),h j(z j(τ), z̄(τ), τ), z̄(τ)). Then, evolutionary change in the i-th resident phenotype at age 2073

a ∈ {2, . . . ,Na} is 2074

∆x̄ia

∆τ
=

1
∆τ

[
gi,a−1

(
za−1(τ + ∆τ),

ha−1(za−1(τ + ∆τ), z̄(τ + ∆τ), τ + ∆τ),

z̄(τ + ∆τ)
)

− gi,a−1 (za−1(τ),ha−1(za−1(τ), z̄(τ), τ), z̄(τ))
]∣∣∣∣∣∣

y=ȳ
.

Taking the limit as ∆τ→ 0, this becomes 2075

dx̄ia

dτ
=

dgi,a−1(za−1(τ),ha−1(za−1(τ), z̄(τ), τ), z̄(τ))
dτ

∣∣∣∣∣
y=ȳ

.

Applying the chain rule, we obtain 2076

dx̄ia

dτ
=( Np∑

j=1

∂gi,a−1

∂x j,a−1

dx j,a−1

dτ
+

Ng∑
j=1

∂gi,a−1

∂y j,a−1

dy j,a−1

dτ

+

Np∑
j=1

Ne∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂x j,a−1

dx j,a−1

dτ
+

Ng∑
j=1

Ne∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂y j,a−1

dy j,a−1

dτ

+

Na∑
k=1

Np∑
j=1

Ne∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂x̄ jk

dx̄ jk

dτ

+

Na∑
k=1

Ng∑
j=1

Ne∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂ȳ jk

dȳ jk

dτ
+

Ne∑
r=1

∂gi,a−1

∂εr,a−1

∂εr,a−1

∂τ

+

Na∑
k=1

Np∑
j=1

∂gi,a−1

∂x̄ jk

dx̄ jk

dτ
+

Na∑
k=1

Ng∑
j=1

∂gi,a−1

∂ȳ jk

dȳ jk

dτ

)∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation (Appendix A), this is 2077

dx̄ia

dτ
=(

∂gi,a−1

∂xᵀa−1

dxa−1

dτ
+
∂gi,a−1

∂yᵀa−1

dya−1

dτ
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+

Np∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂x j,a−1

dx j,a−1

dτ
+

Ng∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂y j,a−1

dy j,a−1

dτ

+

Na∑
k=1

Np∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂x̄ jk

dx̄ jk

dτ

+

Na∑
k=1

Ng∑
j=1

∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂ȳ jk

dȳ jk

dτ
+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂τ

+

Na∑
k=1

∂gi,a−1

∂x̄ᵀ
k

dx̄k

dτ
+

Na∑
k=1

∂gi,a−1

∂ȳᵀk

dȳk

dτ

)∣∣∣∣∣∣
y=ȳ

.

Applying matrix calculus notation again yields2078

dx̄ia

dτ
=(

∂gi,a−1

∂xᵀa−1

dxa−1

dτ
+
∂gi,a−1

∂yᵀa−1

dya−1

dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

dxa−1

dτ
+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

dya−1

dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂x̄ᵀ

dx̄
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂ȳᵀ

dȳ
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂τ

+
∂gi,a−1

∂x̄ᵀ

dx̄
dτ

+
∂gi,a−1

∂ȳᵀ
dȳ
dτ

)∣∣∣∣∣∣
y=ȳ

.

Factorizing, we have2079

dx̄ia

dτ
=[ (

∂gi,a−1

∂xᵀa−1

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂xᵀa−1

)
dxa−1

dτ

+

(
∂gi,a−1

∂yᵀa−1

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂yᵀa−1

)
dya−1

dτ

+

(
∂gi,a−1

∂x̄ᵀ
+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂x̄ᵀ

)
dx̄
dτ

+

(
∂gi,a−1

∂ȳᵀ
+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂ȳᵀ

)
dȳ
dτ

+
∂gi,a−1

∂εεεᵀa−1

∂εεεa−1

∂τ

]∣∣∣∣∣∣
y=ȳ

.

Rewriting gi,a−1 as xia yields2080

dx̄ia

dτ
=[ (

∂xia

∂xᵀa−1

+
∂xia

∂εεεᵀa−1

∂εεεa−1

∂xᵀ
a−1

)
dxa−1

dτ

+

(
∂xia

∂yᵀ
a−1

+
∂xia

∂εεεᵀa−1

∂εεεa−1

∂yᵀ
a−1

)
dya−1

dτ

+

(
∂xia

∂x̄ᵀ
+

∂xia

∂εεεᵀa−1

∂εεεa−1

∂x̄ᵀ

)
dx̄
dτ
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+

(
∂xia

∂ȳᵀ
+

∂xia

∂εεεᵀa−1

∂εεεa−1

∂ȳᵀ

)
dȳ
dτ

+
∂xia

∂εεεᵀa−1

∂εεεa−1

∂τ

]∣∣∣∣∣∣
y=ȳ

.

Hence, for all resident phenotypes at age a ∈ {2, . . . ,Na}, we have 2081

dx̄a

dτ
=

[ (
∂xa

∂xᵀa−1

+
∂xa

∂εεεᵀa−1

∂εεεa−1

∂xᵀ
a−1

)
dxa−1

dτ

+

(
∂xa

∂yᵀ
a−1

+
∂xa

∂εεεᵀa−1

∂εεεa−1

∂yᵀ
a−1

)
dya−1

dτ

+

(
∂xa

∂x̄ᵀ
+

∂xa

∂εεεᵀa−1

∂εεεa−1

∂x̄ᵀ

)
dx̄
dτ

+

(
∂xa

∂ȳᵀ
+

∂xa

∂εεεᵀa−1

∂εεεa−1

∂ȳᵀ

)
dȳ
dτ

+
∂xa

∂εεεᵀa−1

∂εεεa−1

∂τ

]∣∣∣∣∣∣
y=ȳ

.

(G2)

Here we used the following series of definitions. The matrix of direct effects of social partner’s phenotype at age 2082

a on the mutant’s phenotype at age j is 2083

∂xᵀj
∂x̄a

∣∣∣∣∣∣∣
y=ȳ

≡



∂x1 j

∂x̄1a
· · ·

∂xNp j

∂x̄1a
...

. . .
...

∂x1 j

∂x̄Npa
· · ·

∂xNp j

∂x̄Npa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNp×Np ,

and the block matrix of direct effects of social partners’ phenotype on a mutant’s phenotype is given by Layer 2, Eq. 4 2084

with ζ̄ = x̄. The matrix ∂xᵀa /∂x̄ is the a-th block column of ∂xᵀ/∂x̄. 2085

Similarly, the matrix of direct effects of social partners’ genotypic trait values at age a on a mutant’s phenotype 2086

at age j is 2087

∂xᵀj
∂ȳa

∣∣∣∣∣∣∣
y=ȳ

≡



∂x1 j

∂ȳ1a
· · ·

∂xNp j

∂ȳ1a
...

. . .
...

∂x1 j

∂ȳNga
· · ·

∂xNp j

∂ȳNga



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNg×Np ,

and the block matrix of direct effects of social partners’ genotype on a mutant’s phenotype is given by 2088

Eq. (Layer 2, Eq. 4) with ζ̄ = ȳ. The matrix ∂xᵀa /∂ȳ is the a-th block column of ∂xᵀ/∂ȳ. 2089

In turn, the matrix of direct effects of social partners’ phenotype at age a on a mutant’s environment at age j is 2090

∂εεεᵀj

∂x̄a

∣∣∣∣∣∣∣
y=ȳ

≡



∂ε1 j

∂x̄1a
· · ·

∂εNe j

∂x̄1a
...

. . .
...

∂ε1 j

∂x̄Npa
· · ·

∂εNe j

∂x̄Npa



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Np ,

and the block matrix of direct effects of social partners’ phenotype on a mutant’s environment is given by Layer 2, 2091

Eq. 5 with ζ̄ = x̄. The matrix ∂εεεᵀa /∂x̄ is the a-th block column of ∂εεεᵀ/∂x̄. 2092
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Similarly, the matrix of direct effects of social partners’ genotypic trait values at age a on a mutant’s environment2093

at age j is2094

∂εεεᵀj

∂ȳa

∣∣∣∣∣∣∣
y=ȳ

≡



∂ε1 j

∂ȳ1a
· · ·

∂εNe j

∂ȳ1a
...

. . .
...

∂ε1 j

∂ȳNga
· · ·

∂εNe j

∂ȳNga



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

∈ RNe×Ng ,

and the block matrix of direct effects of social partners’ genotype on a mutant’s environment is given by Layer 2,2095

Eq. 5 with ζ̄ = ȳ. The matrix ∂εεεᵀa /∂ȳ is the a-th block column of ∂εεεᵀ/∂ȳ.2096

Having made these definitions explicit, we now write Eq. (G2) as2097

dx̄a

dτ
=

(
δxa

δxᵀa−1

dxa−1

dτ
+

δxa

δyᵀa−1

dya−1

dτ

+
δxa

δx̄ᵀ
dx̄
dτ

+
δxa

δȳᵀ
dȳ
dτ

+
δxa

δεεεᵀa−1

∂εεεa−1

∂τ

)∣∣∣∣∣∣
y=ȳ

, (G3)

where we used the transpose of the total immediate effects of a mutant’s phenotype and genotype on her phenotype2098

(Eqs. B10 and C9), and the the matrix of total immediate effects of social partners’ phenotype or genotype at age a2099

on a mutant’s phenotype at age j2100

δxᵀj
δζ̄a

∣∣∣∣∣∣∣
y=ȳ

=


∂xᵀj
∂ζ̄a

+
∂εεεᵀj−1

∂ζ̄a

∂xᵀj
∂εεε j−1


∣∣∣∣∣∣∣
y=ȳ

for j > 1

0 for j = 1,

(G4)

for ζ̄ ∈ {x̄, ȳ} since the initial phenotype x1 is constant by assumption. We also define the corresponding matrix of2101

total immediate effects of social partners’ phenotype on a mutant’s phenotype as2102

δxᵀ

δζ̄

∣∣∣∣∣∣
y=ȳ
≡



δxᵀ1
δζ̄1

· · ·
δxᵀ

Na

δζ̄1
...

. . .
...

δxᵀ1
δζ̄Na

· · ·
δxᵀ

Na

δζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
δxᵀ2
δζ̄1

· · ·
δxᵀ

Na

δζ̄1

0
δxᵀ2
δζ̄1

· · ·
δxᵀ

Na

δζ̄1
...

...
. . .

...

0
δxᵀ2
δζ̄Na

· · ·
δxᵀ

Na

δζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (G5)

for ζ̄ ∈ {x̄, ȳ}. The matrix δxᵀ
a /δζ̄ is the a-th block column of δxᵀ/δζ̄. Using Layer 2, Eq. 2c and since the initial2103
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phenotype x1 is constant by assumption, we have that 2104

∂εεεᵀ

∂ζ̄

∂xᵀ

∂εεε
=

 Na∑
k=1

∂εεεᵀk
∂ζ̄a

∂xᵀj
∂εεεk

 =



∂εεεᵀj−1

∂ζ̄a

∂xᵀj
∂εεε j−1

for j > 1

0 for j = 1

 , (G6)

for ζ̄ ∈ {x̄, ȳ}, which equals the rightmost term in Eq. (G4). Thus, from Eqs. (G4), (G5), and (G6), it follows that the 2105

block matrix of total immediate effects of social partners’ phenotype or genotype on a mutant’s phenotype satisfies 2106

Layer 3, Eq. 3. 2107

Noting that δxa/δz̄ᵀ = (δxa/δx̄ᵀ, δxa/δȳᵀ) and that evaluation of dza/dτ and ∂εεεa/∂τ at y = ȳ is dz̄a/dτ and ∂ε̄εεa/∂τ 2108

respectively, Eq. (G3) can be written as 2109

dx̄a

dτ
=

(
δxa

δxᵀa−1

dx̄a−1

dτ
+

δxa

δyᵀa−1

dȳa−1

dτ

+
δxa

δz̄ᵀ
dz̄
dτ

+
δxa

δεεεᵀa−1

∂ε̄εεa−1

∂τ

)∣∣∣∣∣∣
y=ȳ

,

which is a recursion for dx̄a/dτ over a. Expanding this recursion two steps yields 2110

dx̄a

dτ
=

{
δxa

δxᵀa−1

[
δxa−1

δxᵀa−2

(
δxa−2

δxᵀa−3

dx̄a−3

dτ
+
δxa−2

δyᵀa−3

dȳa−3

dτ

+
δxa−2

δz̄ᵀ
dz̄
dτ

+
δxa−2

δεεεᵀa−3

∂ε̄εεa−3

∂τ

)
+
δxa−1

δyᵀa−1

dȳa−2

dτ
+
δxa−1

δz̄ᵀ
dz̄
dτ

+
δxa−1

δεεεᵀa−2

∂ε̄εεa−2

∂τ

]
+

δxa

δyᵀa−1

dȳa−1

dτ
+
δxa

δz̄ᵀ
dz̄
dτ

+
δxa

δεεεᵀa−1

∂ε̄εεa−1

∂τ

}∣∣∣∣∣∣
y=ȳ

.

Collecting the derivatives with respect to τ yields 2111

dx̄a

dτ
=[(

δxa

δxᵀa−1

δxa−1

δxᵀa−2

δxa−2

δxᵀ
a−3

)
dx̄a−3

dτ

+

(
δxa

δxᵀ
a−1

δxa−1

δxᵀa−2

δxa−2

δyᵀa−3

)
dȳa−3

dτ

+

(
δxa

δxᵀ
a−1

δxa−1

δyᵀa−1

)
dȳa−2

dτ
+

δxa

δyᵀa−1

dȳa−1

dτ

+

(
δxa

δxᵀ
a−1

δxa−1

δxᵀa−2

δxa−2

δεεεᵀa−3

)
∂ε̄εεa−3

∂τ

+

(
δxa

δxᵀ
a−1

δxa−1

δεεεᵀa−2

)
∂ε̄εεa−2

∂τ
+

δxa

δεεεᵀa−1

∂ε̄εεa−1

∂τ

+

(
δxa

δxᵀ
a−1

δxa−1

δxᵀa−2

δxa−2

δz̄ᵀ
+

δxa

δxᵀ
a−1

δxa−1

δz̄ᵀ
+
δxa

δz̄ᵀ

)
dz̄
dτ

]∣∣∣∣∣∣
y=ȳ

.
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Inspection shows that by expanding the recursion completely and since we assume that initial phenotype does not2112

evolve (i.e., dx̄1/dτ = 0), the resulting expression can be succinctly written as2113

dx̄a

dτ
=

( a−1∑
j=1

x
a−1∏

k= j+1

δxk+1

δxᵀk

δx j+1

δyᵀ
j

dȳ j

dτ

+

a−1∑
j=1

x
a−1∏

k= j+1

δxk+1

δxᵀk

δx j+1

δεεεᵀj

∂ε̄εε j

∂τ

+

a−1∑
j=1

x
a−1∏

k= j+1

δxk+1

δxᵀk

δx j+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣∣
y=ȳ
,

where the x denotes left multiplication. Note that the products over k are the transpose of the total effects of a2114

mutant’s phenotype at age j + 1 on her phenotype at age a (Layer 4, Eq. 2). Hence,2115

dx̄a

dτ
=

( a−1∑
j=1

dxa

dxᵀj+1

δx j+1

δyᵀj

dȳ j

dτ
+

a−1∑
j=1

dxa

dxᵀj+1

δx j+1

δεεεᵀj

∂ε̄εε j

∂τ

+

a−1∑
j=1

dxa

dxᵀj+1

δx j+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣∣
y=ȳ
. (G7)

Before simplifying Eq. (G7), we introduce a series of matrices that are analogous to those already provided, based2116

on Eq. (C17). The matrix of total effects of social partners’ phenotype or genotypic traits at age a on a mutant’s2117

phenotype at age j is2118

dxᵀ
j

dζ̄a

∣∣∣∣∣∣∣
y=ȳ

=


Na∑
l=1

δxᵀl
δζ̄a

dxᵀ
j

dxl


∣∣∣∣∣∣∣
y=ȳ

for j > 1

0 for j = 1,

(G8)

for ζ̄ ∈ {x̄, ȳ}. The block matrix of total effects of social partners’ phenotype or genotype on a mutant’s phenotype is2119

thus2120

dxᵀ

dζ̄

∣∣∣∣∣∣
y=ȳ
≡



dxᵀ
1

dζ̄1
· · ·

dxᵀ
Na

dζ̄1
...

. . .
...

dxᵀ
1

dζ̄Na

· · ·
dxᵀ

Na

dζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
dxᵀ

2

dζ̄1
· · ·

dxᵀ
Na

dζ̄1

0
dxᵀ

2

dζ̄2
· · ·

dxᵀ
Na

dζ̄2
...

...
. . .

...

0
dxᵀ

2

dζ̄Na

· · ·
dxᵀ

Na

dζ̄Na



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

, (G9)
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for ζ̄ ∈ {x̄, ȳ}. Then, from Eq. (G8), the block matrix in Eq. (G9) satisfies Layer 4, Eq. 5. 2121

Using Eqs. (C17) and (D9) and given the property of transpose of a product (i.e., (AB)ᵀ = BᵀAᵀ), Eq. (G7) can 2122

be written more succinctly as 2123

dx̄a

dτ
=

( a−1∑
j=1

dxa

dyᵀ
j

dȳ j

dτ
+

a−1∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ

+

a−1∑
j=1

dxa

dxᵀj+1

δx j+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣∣
y=ȳ
.

Note that from Eq. (C16), we have that dxa/dyᵀj = 0 for j ≥ a, from Eq. (D10), we have that dxa/dεεε
ᵀ
j = 0 for j ≥ a, 2124

and from Eq. (B15), we have that dxa/dxᵀj+1 = 0 for j + 1 ≥ a. Hence, the same expression holds extending the upper 2125

bounds of the sums to the last possible age: 2126

dx̄a

dτ
=

( Na∑
j=1

dxa

dyᵀ
j

dȳ j

dτ
+

Na∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ

+

Na−1∑
j=1

dxa

dxᵀj+1

δx j+1

δz̄ᵀ
dz̄
dτ

)∣∣∣∣∣∣
y=ȳ
.

Changing the sum index for the rightmost sum yields 2127

dx̄a

dτ
=

 Na∑
j=1

dxa

dyᵀj

dȳ j

dτ
+

Na∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ
+

Na∑
j=2

dxa

dxᵀj

δx j

δz̄ᵀ
dz̄
dτ


∣∣∣∣∣∣∣∣
y=ȳ

.

Expanding the matrix calculus notation for the entries of z̄ in the rightmost sum yields 2128

dx̄a

dτ
=

( Na∑
j=1

dxa

dyᵀj

dȳ j

dτ
+

Na∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ

+

Na∑
j=2

dxa

dxᵀj

δx j

δx̄ᵀ
dx̄
dτ

+

Na∑
j=2

dxa

dxᵀj

δx j

δȳᵀ
dȳ
dτ

)∣∣∣∣∣∣
y=ȳ
.

Expanding again the matrix calculus notation for the entries of x̄ and ȳ in the two rightmost sums yields 2129

dx̄a

dτ
=

( Na∑
j=1

dxa

dyᵀj

dȳ j

dτ
+

Na∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ

+

Na∑
l=1

Na∑
j=2

dxa

dxᵀj

δx j

δx̄ᵀl

dx̄l

dτ
+

Na∑
l=1

Na∑
j=2

dxa

dxᵀj

δx j

δȳᵀl

dȳl

dτ

)∣∣∣∣∣∣
y=ȳ
.

Using the transpose of the matrix in Eq. (G8) in the two rightmost terms, noting that δx j/δx̄ᵀ
l = 0 and δx j/δȳᵀl = 0 for 2130

j = 1 (from Eq. G5), yields 2131

dx̄a

dτ
=

( Na∑
j=1

dxa

dyᵀj

dȳ j

dτ
+

Na∑
j=1

dxa

dεεεᵀj

∂ε̄εε j

∂τ

+

Na∑
l=1

dxa

dx̄ᵀl

dx̄l

dτ
+

Na∑
l=1

dxa

dȳᵀl

dȳl

dτ

)∣∣∣∣∣∣
y=ȳ
.
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Applying matrix calculus notation to each term yields2132

dx̄a

dτ
=

(
dxa

dyᵀ
dȳ
dτ

+
dxa

dεεεᵀ
∂ε̄εε

∂τ
+

dxa

dx̄ᵀ
dx̄
dτ

+
dxa

dȳᵀ

dȳ
dτ

)∣∣∣∣∣∣
y=ȳ

,

for a ∈ {2, . . . ,Na}. Since dx̄1/dτ = 0, it follows that2133

dx̄
dτ

=

(
dx

dyᵀ

dȳ
dτ

+
dx
dεεεᵀ

∂ε̄εε

∂τ
+

dx
dx̄ᵀ

dx̄
dτ

+
dx

dȳᵀ
dȳ
dτ

)∣∣∣∣∣∣
y=ȳ

, (G10)

which contains our desired dx̄/dτ on both sides of the equation.2134

The matrix premultiplying dx̄/dτ on the right-hand side of Eq. (G10) is dx/dx̄ᵀ|y=ȳ, which is square. We now2135

make use of our assumption that the absolute value of all the eigenvalues of dx/dx̄ᵀ|y=ȳ is strictly less than one, which2136

guarantees that the resident geno-phenotype is socio-devo stable (Eq. S3 and following text). Given this property of2137

dx/dx̄ᵀ|y=ȳ, then I − dx/dx̄ᵀ|y=ȳ is invertible. Hence, we can define the transpose of the matrix of stabilized effects of2138

a focal individual’s phenotype on a social partners’ phenotype (second equality of Layer 5, Eq. 1). Thus, solving for2139

dx̄/dτ in Eq. (G10), we finally obtain an equation describing the evolutionary dynamics of the phenotype2140

dx̄
dτ

=

[
sx

sx̄ᵀ

(
dx

dyᵀ
+

dx
dȳᵀ

)
dȳ
dτ

+
sx

sx̄ᵀ
dx
dεεεᵀ

∂ε̄εε

∂τ

]∣∣∣∣∣∣
y=ȳ

.

Let us momentarily write x = g̃(y, ȳ) for some differentiable function g̃ to highlight the dependence of a mutant’s2141

phenotype x on her genotype y and on the genotype ȳ of resident social partners. Consider the resident phenotype that2142

develops in the context of the mutant genotype, denoted by x̌ = g̃(ȳ, y). Hence,2143

dx̌
dyᵀ

∣∣∣∣∣
y=ȳ

=
dg̃(ȳ, y)

dyᵀ

∣∣∣∣∣
y=ȳ

=
dg̃(y, ȳ)

dȳᵀ

∣∣∣∣∣
y=ȳ

=
dx

dȳᵀ

∣∣∣∣∣
y=ȳ

, (G11)

where the second equality follows by exchanging dummy variables. Then, the transpose of the matrix of total social2144

effects of a mutant’s genotype on her and a partner’s phenotypes is2145

d(x + x̌)
dyᵀ

∣∣∣∣∣
y=ȳ

=

(
dx

dyᵀ
+

dx̌
dyᵀ

)∣∣∣∣∣∣
y=ȳ

=

(
dx

dyᵀ
+

dx
dȳᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×NaNg . (G12)

Similarly, let us momentarily write x = ˜̃g(x, x̄) for some differentiable function ˜̃g to highlight the dependence of a2146

mutant’s phenotype x on her (developmentally earlier) phenotype x and on the phenotype x̄ of resident social partners.2147

Consider the resident phenotype that develops in the context of the mutant phenotype, denoted by x̌ = ˜̃g(x̄, x). Hence,2148

dx̌
dxᵀ

∣∣∣∣∣
y=ȳ

=
d˜̃g(x̄, x)

dxᵀ

∣∣∣∣∣∣
y=ȳ

=
d˜̃g(x, x̄)

dx̄ᵀ

∣∣∣∣∣∣
y=ȳ

=
dx

dx̄ᵀ

∣∣∣∣∣
y=ȳ

, (G13)

where the second equality follows by exchanging dummy variables. Then, the transpose of the matrix of total social2149

effects of a mutant’s phenotype on her and a partner’s phenotypes is2150

d(x + x̌)
dxᵀ

∣∣∣∣∣
y=ȳ

=

(
dx

dxᵀ
+

dx̌
dxᵀ

)∣∣∣∣∣∣
y=ȳ
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=

(
dx

dxᵀ
+

dx
dx̄ᵀ

)∣∣∣∣∣∣
y=ȳ
∈ RNaNp×NaNp . (G14)

Thus, from Eq. (G13) and the second equality of Layer 5, Eq. 1, the transpose of the matrix of stabilized effects of a 2151

focal individual’s phenotype on social partners’ phenotype may also be written as 2152

sx
sx̄ᵀ

∣∣∣∣∣
y=ȳ

=

(
I −

dx̌
dxᵀ

∣∣∣∣∣
y=ȳ

)−1

=

∞∑
θ=1

(
dx̌

dxᵀ

)θ−1
∣∣∣∣∣∣∣
y=ȳ

∈ RNaNp×NaNp ,

where the last equality follows from the geometric series of matrices. This equation is the first and third equalities of 2153

Layer 5, Eq. 1. 2154

Therefore, using Layer 5, Eq. 2 and Layer 5, Eq. 2b, the evolutionary dynamics of the phenotype are given by 2155

dx̄
dτ

=

(
sx

sx̄ᵀ
d(x + x̌)

dyᵀ

dȳ
dτ

+
sx

sx̄ᵀ

dx
dεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

≈

(
ι

sx
syᵀ

Hy
dw
dy

+
sx
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

=

(
ιLxy

dw
dy

+
sx
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

, (G15)

where the second line follows by using Eq. (G1) in the limit ∆τ→ 0, and the third line follows from Layer 6, Eq. 13. 2156

The first line of Eq. G15 describing evolutionary change of the phenotype in terms of evolutionary change of the 2157

genotype is a generalization of previous equations describing the evolution of a multivariate phenotype in terms of 2158

allele frequency change (e.g., the first equation on p. 49 of Engen and Sæther 2021). Eq. (G15) is Layer 7, Eq. 5 for 2159

ζ = x. Using the third line of Layer 4, Eq. 22 and Layer 6, Eq. 11 yields Layer 7, Eq. 4 for ζ = x, whereas using the 2160

fourth line of Layer 4, Eq. 22 and Layer 6, Eq. 12 yields Layer 7, Eq. 1a for ζ = x. 2161

Appendix H. Evolutionary dynamics of the geno-phenotype 2162

Appendix H.1. In terms of total genotypic selection 2163

Here we obtain an equation describing the evolutionary dynamics of the resident geno-phenotype, that is, dz̄/dτ. 2164

In this section, we write such an equation in terms of the total genotypic selection. Since dz̄/dτ = (dx̄/dτ; dȳ/dτ), 2165

from Eqs. (G15) and (S10a), we can write the evolutionary dynamics of the resident geno-phenotype z̄ as 2166

dz̄
dτ
≈

ι
Lxy

Hy

 dw
dy

+


sx
sεεεᵀ

0

 ∂ε̄εε∂τ

∣∣∣∣∣∣∣∣∣∣
y=ȳ

. (H1)

Using Layer 6, Eq. 13 and Layer 5, Eq. 3, this is 2167

dz̄
dτ
≈

ι


sx
syᵀ
sy

syᵀ

 Hy
dw
dy

+


sx
sεεεᵀ

sy
sεεεᵀ

 ∂ε̄εε∂τ

∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.
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Using Layer 5, Eq. 4, this reduces to2168

dz̄
dτ
≈

(
ι

sz
syᵀ

Hy
dw
dy

+
sz

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Using Layer 6, Eq. 13 yields Layer 7, Eq. 5 for ζ = z. Using the third line of Layer 4, Eq. 22 and Layer 6, Eq. 112169

yields Layer 7, Eq. 4 for ζ = z, whereas using the fourth line of Layer 4, Eq. 22 and Layer 6, Eq. 12 yields Layer 7,2170

Eq. 1a for ζ = z.2171

In contrast to other arrangements, the premultiplying matrix Lzy is non-singular if Hy is non-singular. Indeed, if2172

sz
syᵀ

∣∣∣∣∣
y=ȳ

r = 0

for some vector r, then from Layer 5, Eq. 4a and Layer 5, Eq. 3b we have2173 
sx

syᵀ

I


∣∣∣∣∣∣∣∣∣
y=ȳ

r = 0.

Doing the multiplication yields2174 
sx

syᵀ

∣∣∣∣∣
y=ȳ

r

r

 = 0,

which implies that r = 0, so sz/syᵀ|y=ȳ is non-singular. Thus, Lzy is non-singular if Hy is non-singular.2175

Appendix H.2. In terms of total selection on the geno-phenotype2176

Here we write the evolutionary dynamics of the geno-phenotype in terms of the total selection gradient of the2177

geno-phenotype.2178

First, using Layer 6, Eq. 2, we define the mechanistic additive genetic covariance matrix of the unperturbed2179

geno-phenotype ẑ ≡ (x̄; y) as2180

Hẑ ≡ cov[bẑ,bẑ] =

(
dẑ

dyᵀ
Hy

dẑᵀ

dy

)∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng)×Na(Np+Ng).

By definition of ẑ, we have2181

Hẑ =




dx̄
dyᵀ

dy
dyᵀ

 Hy

(
dx̄ᵀ

dy
dyᵀ

dy

)
∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

From Eq. (S10c), the resident phenotype is independent of mutant genotype, so2182

Hẑ =


0I

 Hy

(
0 I

)
∣∣∣∣∣∣∣∣
y=ȳ

.
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Doing the matrix multiplication yields 2183

Hẑ =


0I

 (0 Hy

)
∣∣∣∣∣∣∣∣
y=ȳ

=

0 0

0 Hy

 . (H2)

The matrix Hẑ is singular because the unperturbed geno-phenotype includes the genotype (i.e., dẑᵀ/dy|y=ȳ has fewer 2184

rows than columns). For this reason, the matrix Hẑ would still be singular even if the zero block entries in Eq. (H2) 2185

were non-zero (i.e., if dx̄ᵀ/dy|y=ȳ , 0). 2186

Now, we write an alternative factorization of Lz in terms of Hẑ. Using Layer 4, Eq. 9 and Layer 5, Eq. 5, consider 2187

the matrix 2188(
sz

szᵀ
Hẑ

dzᵀ

dz

)∣∣∣∣∣∣
y=ȳ

=




sx
sxᵀ

sx
syᵀ

0 I


0 0

0 Hy




dxᵀ

dx
0

dxᵀ

dy
I



∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 2189

(
sz

szᵀ
Hẑ

dzᵀ

dz

)∣∣∣∣∣∣
y=ȳ

=




sx
sxᵀ

sx
syᵀ

0 I


 0 0

Hy
dxᵀ

dy
Hy



∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


sx

syᵀ
Hy

dxᵀ

dy
sx

syᵀ
Hy

Hy
dxᵀ

dy
Hy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Using Layer 5, Eq. 3b, we have 2190

(
sz

szᵀ
Hẑ

dzᵀ

dz

)∣∣∣∣∣∣
y=ȳ

=


sx

syᵀ
Hy

dxᵀ

dy
sx

syᵀ
Hy

dyᵀ

dy
sy

syᵀ
Hy

dxᵀ

dy
sy

syᵀ
Hy

dyᵀ

dy


∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Notice that the matrix on the right-hand side is 2191(
sz

syᵀ
Hy

dzᵀ

dy

)∣∣∣∣∣∣
y=ȳ

= Lz.

Hence, we obtain an alternative factorization for Lz as 2192

Lz =

(
sz

szᵀ
Hẑ

dzᵀ

dz

)∣∣∣∣∣∣
y=ȳ

.

Thus, we can write the selection response of the geno-phenotype (in the form of Layer 7, Eq. 4) as 2193

ιLz
δw
δz

∣∣∣∣∣
y=ȳ

= ι

(
sz

szᵀ
Hẑ

dzᵀ

dz
δw
δz

)∣∣∣∣∣∣
y=ȳ

.
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Using the relationship between the total and total immediate selection gradients of the geno-phenotype (second line2194

of Layer 4, Eq. 24), this becomes2195

ιLz
δw
δz

∣∣∣∣∣
y=ȳ

= ι

(
sz

szᵀ
Hẑ

dw
dz

)∣∣∣∣∣∣
y=ȳ

.

We can further simplify this equation by noticing the following. Using Layer 6, Eq. 10 and ẑ = (x̄; y), we have2196

that the mechanistic additive socio-genetic cross-covariance matrix of the geno-phenotype and the unperturbed geno-2197

phenotype is2198

Lzẑ =

(
sz

syᵀ
Hy

dẑᵀ

dy

)∣∣∣∣∣∣
y=ȳ
∈ RNa(Np+Ng)×Na(Np+Ng). (H3)

Expanding, we have2199

Lzẑ =




sx
syᵀ
sy

syᵀ

 Hy

(
dx̄ᵀ

dy
dyᵀ

dy

)
∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Using Layer 5, Eq. 3b and since the resident phenotype does not depend on mutant genotype, then2200

Lzẑ =




sx
syᵀ

I

 Hy

(
0 I

)
∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields2201

Lzẑ =




sx
syᵀ

I


(
0 Hy

)
∣∣∣∣∣∣∣∣∣∣
y=ȳ

=

0
sx

syᵀ
Hy

0 Hy


∣∣∣∣∣∣∣∣∣
y=ȳ

.

Notice that the last matrix equals2202 ( sz
szᵀ

Hẑ

)∣∣∣∣∣
y=ȳ

.

We can then write the evolutionary dynamics of the resident geno-phenotype z̄ in terms of the total selection2203

gradient of the geno-phenotype as2204

dz̄
dτ
≈

(
ιLzẑ

dw
dz

+
sz

sεεεᵀ
∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (H4)

The cross-covariance matrix Lzẑ is singular because dẑᵀ/dy|y=ȳ has fewer rows than columns since the unperturbed2205

geno-phenotype includes the genotype. For this reason, Lzẑ would still be singular even if the zero block entries in2206

Eq. (H3) were non-zero (i.e., if dx̄ᵀ/dy|y=ȳ , 0). Then, evolutionary equilibria of the geno-phenotype do not imply2207

absence of total selection on the geno-phenotype, even if exogenous plastic response is absent.2208
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Appendix I. Evolutionary dynamics of the environment 2209

Appendix I.1. In terms of endogenous and exogenous environmental change 2210

Here we derive an equation describing the evolutionary dynamics of the environment. Let z̄(τ) be the resident 2211

geno-phenotype at evolutionary time τ, specifically at the point where the socio-devo stable resident is at carrying 2212

capacity, marked in Fig. 3. From the environmental constraint (2), the i-th environmental trait experienced by a mutant 2213

of age a at such evolutionary time τ is εia = hia(za(τ), z̄(τ), τ)). Then, evolutionary change in the i-th environmental 2214

trait experienced by residents at age a ∈ {1, . . . ,Na} is 2215

∆ε̄ia

∆τ
=

1
∆τ

[
hia (za(τ + ∆τ), z̄(τ + ∆τ), τ + ∆τ)

− hai (za(τ), z̄(τ), τ)
]∣∣∣∣∣∣

y=ȳ
.

Taking the limit as ∆τ→ 0, this becomes 2216

dε̄ia

dτ
=

dhia(za(τ), z̄(τ), τ)
dτ

∣∣∣∣∣
y=ȳ

.

Applying the chain rule, we obtain 2217

dε̄ia

dτ
=

( Np∑
j=1

∂hia

∂x ja

dx ja

dτ
+

Ng∑
j=1

∂hia

∂y ja

dy ja

dτ
+

Na∑
k=1

Np∑
j=1

∂hia

∂x̄ jk

dx̄ jk

dτ

+

Na∑
k=1

Ng∑
j=1

∂hia

∂ȳ jk

dȳ jk

dτ
+
∂hia

∂τ

)∣∣∣∣∣∣
y=ȳ
.

Applying matrix calculus notation, this is 2218

dε̄ia

dτ
=

(
∂hia

∂xᵀa
dxa

dτ
+
∂hia

∂yᵀ
a

dya

dτ
+

Na∑
k=1

∂hia

∂x̄ᵀk

dx̄k

dτ

+

Na∑
k=1

∂hia

∂ȳᵀ
k

dȳk

dτ
+
∂hia

∂τ

)∣∣∣∣∣∣
y=ȳ
.

Applying matrix calculus notation again yields 2219

dε̄ia

dτ
=

(
∂hia

∂xᵀa
dxa

dτ
+
∂hia

∂yᵀ
a

dya

dτ
+
∂hia

∂x̄ᵀ
dx̄
dτ

+
∂hia

∂ȳᵀ
dȳ
dτ

+
∂hia

∂τ

)∣∣∣∣∣
y=ȳ
.

Rewriting hia as εia, we obtain 2220

dε̄ia

dτ
=

(
∂εia

∂xᵀa
dxa

dτ
+
∂εia

∂yᵀa
dya

dτ
+
∂εia

∂x̄ᵀ
dx̄
dτ

+
∂εia

∂ȳᵀ

dȳ
dτ

+
∂εia

∂τ

)∣∣∣∣∣
y=ȳ
.
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Hence, for all environmental traits at age a, we have2221

dε̄εεa

dτ
=

(
∂εεεa

∂xᵀa
dxa

dτ
+
∂εεεa

∂yᵀa
dya

dτ
+
∂εεεa

∂x̄ᵀ
dx̄
dτ

+
∂εεεa

∂ȳᵀ
dȳ
dτ

+
∂εεεa

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Note that evaluation of dza/dτ and ∂εεεa/∂τ at y = ȳ is dz̄a/dτ and ∂ε̄εεa/∂τ, respectively. Using Layer 2, Eq. 2d and2222

Layer 2, Eq. 2d yields2223

∂εεεa

∂xᵀ
dx̄
dτ

=

Na∑
j=1

∂εεεa

∂xᵀ
j

dx̄ j

dτ
=
∂εεεa

∂xᵀa
dx̄a

dτ

∂εεεa

∂yᵀ
dȳ
dτ

=

Na∑
j=1

∂εεεa

∂yᵀ
j

dȳ j

dτ
=
∂εεεa

∂yᵀa
dȳa

dτ
.

Then, we have2224

dε̄εεa

dτ
=

(
∂εεεa

∂xᵀ
dx̄
dτ

+
∂εεεa

∂yᵀ
dȳ
dτ

+
∂εεεa

∂x̄ᵀ
dx̄
dτ

+
∂εεεa

∂ȳᵀ
dȳ
dτ

+
∂ε̄εεa

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Now note that ∂εεεa/∂zᵀ = (∂εεεa/∂xᵀ, ∂εεεa/∂yᵀ), so2225

dε̄εεa

dτ
=

(
∂εεεa

∂zᵀ
dz̄
dτ

+
∂εεεa

∂z̄ᵀ
dz̄
dτ

+
∂ε̄εεa

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Hence, for all environmental traits over all ages, we have2226

dε̄εε
dτ

=

(
∂εεε

∂zᵀ
dz̄
dτ

+
∂εεε

∂z̄ᵀ
dz̄
dτ

+
∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

=

[(
∂εεε

∂zᵀ
+
∂εεε

∂z̄ᵀ

)
dz̄
dτ

+
∂ε̄εε

∂τ

]∣∣∣∣∣∣
y=ȳ

,

where we use Layer 2, Eq. 7 and the block matrix of direct effects of social partners’ geno-phenotype on a mutant’s2227

environment (Layer 2, Eq. 8; see also Layer 2, Eq. 5).2228

Let us momentarily write εεε = h̃(z, z̄) for some differentiable function h̃ to highlight the dependence of a mu-2229

tant’s environment εεε on her geno-phenotype z and on the geno-phenotype z̄ of resident social partners. Consider the2230

environment a resident experiences when she is in the context of mutants, denoted by ε̌εε = h̃(z̄, z). Hence,2231

∂ε̌εε

∂zᵀ

∣∣∣∣∣
y=ȳ

=
∂h̃(z̄, z)
∂zᵀ

∣∣∣∣∣∣
y=ȳ

=
∂h̃(z, z̄)
∂z̄ᵀ

∣∣∣∣∣∣
y=ȳ

=
∂εεε

∂z̄ᵀ

∣∣∣∣∣
y=ȳ

, (I1)

where the second equality follows by exchanging dummy variables. Then, the transpose of the matrix of direct social2232

effects of a mutant’s geno-phenotype on her and a partner’s environment is2233

∂(εεε + ε̌εε)
∂zᵀ

∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+
∂ε̌εε

∂zᵀ

)∣∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂zᵀ
+
∂εεε

∂z̄ᵀ

)∣∣∣∣∣∣
y=ȳ

∈ RNaNe×Na(Np+Ng). (I2)

Similarly, the transpose of the matrix of direct social effects of a mutant’s phenotype on her and a partner’s environ-2234

ment is2235

∂(εεε + ε̌εε)
∂xᵀ

∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂xᵀ
+

∂ε̌εε

∂xᵀ

)∣∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂xᵀ
+

∂εεε

∂x̄ᵀ

)∣∣∣∣∣∣
y=ȳ

113

.CC-BY-NC 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted September 7, 2022. ; https://doi.org/10.1101/2021.05.17.444499doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444499
http://creativecommons.org/licenses/by-nc/4.0/


∈ RNaNe×NaNp , (I3)

and the transpose of the matrix of direct social effects of a mutant’s genotype on her and a partner’s environment is 2236

∂(εεε + ε̌εε)
∂yᵀ

∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂yᵀ
+

∂ε̌εε

∂yᵀ

)∣∣∣∣∣∣
y=ȳ

=

(
∂εεε

∂yᵀ
+

∂εεε

∂ȳᵀ

)∣∣∣∣∣∣
y=ȳ

∈ RNaNe×NaNg . (I4)

Consequently, the evolutionary dynamics of the environment are given by Layer 7, Eq. 10. 2237

Appendix I.2. In terms of total genotypic selection 2238

Using the expression for the evolutionary dynamics of the geno-phenotype (Layer 7, Eq. 5 for ζ = z) in that for 2239

the environment (Layer 7, Eq. 10) yields 2240

dε̄εε
dτ
≈

[
∂(εεε + ε̌εε)
∂zᵀ

(
ιLzy

dw
dy

+
sz

sεεεᵀ
∂εεε

∂τ

)
+
∂εεε

∂τ

]∣∣∣∣∣∣
y=ȳ

.

Using Layer 6, Eq. 13 for ζ = z yields 2241

dε̄εε
dτ
≈

[
∂(εεε + ε̌εε)
∂zᵀ

(
ι

sz
syᵀ

Hy
dw
dy

+
sz

sεεεᵀ
∂εεε

∂τ

)
+
∂εεε

∂τ

]∣∣∣∣∣∣
y=ȳ

.

Collecting for ∂εεε/∂τ and using Layer 5, Eq. 6 yields 2242

dε̄εε
dτ
≈

(
ι

sεεε
syᵀ

Hy
dw
dy

+
sεεε

sεεεᵀ
∂εεε

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Using Layer 6, Eq. 13 yields Layer 7, Eq. 5 for ζ = εεε. Using the third line of Layer 4, Eq. 22 and Layer 6, Eq. 11 2243

yields Layer 7, Eq. 4 for ζ = εεε, whereas using the fourth line of Layer 4, Eq. 22 and Layer 6, Eq. 12 yields Layer 7, 2244

Eq. 1a for ζ = εεε. 2245

Appendix J. Evolutionary dynamics of the geno-envo-phenotype 2246

Appendix J.1. In terms of total genotypic selection 2247

Here we obtain an equation describing the evolutionary dynamics of the resident geno-envo-phenotype, that 2248

is, dm̄/dτ. In this section, we write such an equation in terms of total genotypic selection. Since dm̄/dτ = 2249

(dx̄/dτ; dȳ/dτ; dε̄εε/dτ), from (G15), (S10a), and Layer 7, Eq. 5 for ζ = εεε, we can write the evolutionary dynamics 2250

of the resident geno-envo-phenotype m̄ as 2251

dm̄
dτ
≈


ι


Lxy

Hy

Lεεεy


dw
dy

+



sx
sεεεᵀ

0
sεεε

sεεεᵀ


∂ε̄εε

∂τ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

. (J1)
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Using Layer 6, Eq. 10 and Layer 5, Eq. 3, this is2252

dm̄
dτ
≈


ι



sx
syᵀ
sy

syᵀ
sεεε

syᵀ


Hy

dw
dy

+



sx
sεεεᵀ

sy
sεεεᵀ

sεεε
sεεεᵀ


∂ε̄εε

∂τ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Using Layer 5, Eq. 7, this reduces to2253

dm̄
dτ
≈

(
ι
sm
syᵀ

Hy
dw
dy

+
sm
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

.

Using Layer 6, Eq. 13 yields Layer 7, Eq. 5 for ζ = m.. Using the third line of Layer 4, Eq. 22 and Layer 6, Eq. 112254

yields Layer 7, Eq. 4 for ζ = m, whereas using the fourth line of Layer 4, Eq. 22 and Layer 6, Eq. 12 yields Layer 7,2255

Eq. 1a for ζ = m.2256

In contrast to other arrangements, the premultiplying matrix Lmy is non-singular if Hy is non-singular. Indeed, if2257

sm
syᵀ

∣∣∣∣∣
y=ȳ

r = 0

for some vector r, then from Layer 5, Eq. 7a and Layer 5, Eq. 3b we have2258 
sx

syᵀ

I
sεεε

syᵀ



∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

r = 0.

Doing the multiplication yields2259 

sx
syᵀ

∣∣∣∣∣
y=ȳ

r

r
sεεε

syᵀ

∣∣∣∣∣
y=ȳ

r


= 0,

which implies that r = 0, so sm/syᵀ|y=ȳ is non-singular. Thus, Lmy is non-singular if Hy is non-singular.2260

Appendix J.2. In terms of total selection on the geno-envo-phenotype2261

Here we write the evolutionary dynamics of the geno-envo-phenotype in terms of the total selection gradient of2262

the geno-envo-phenotype.2263

First, using Layer 6, Eq. 2, we define the mechanistic additive genetic covariance matrix of the unperturbed2264

geno-envo-phenotype m̂ = (x̄; y; ε̄εε) as2265

Hm̂ ≡ cov[bm̂,bm̂] =

(
dm̂
dyᵀ

Hy
dm̂ᵀ

dy

)∣∣∣∣∣∣
y=ȳ

∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne).
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By definition of m̂, we have 2266

Hm̂ =





dx̄
dyᵀ

dy
dyᵀ

dε̄εε
dyᵀ


Hy

(
dx̄ᵀ

dy
dyᵀ

dy
dε̄εεᵀ

dy

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

From Eqs. (S10c) and (S10d), the resident phenotype and environment are independent of the mutant genotype, so 2267

Hm̂ =



0

I

0

 Hy

(
0 I 0

)
∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 2268

Hm̂ =



0

I

0


(
0 Hy 0

)
∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=


0 0 0

0 Hy 0

0 0 0

 . (J2)

The matrix Hm̂ is singular because the unperturbed geno-envo-phenotype includes the genotype (i.e., dm̂ᵀ/dy|y=ȳ has 2269

fewer rows than columns). For this reason, the matrix Hm̂ would still be singular even if the zero block entries in 2270

Eq. (J2) were non-zero (i.e., if dx̄ᵀ/dy|y=ȳ , 0 and dε̄εεᵀ/dy|y=ȳ , 0). 2271

Now, we write an alternative factorization of Lm in terms of Hm̂. Using Layer 4, Eq. 18 and Layer 5, Eq. 8, we 2272

have 2273

(
sm

smᵀ
Hm̂

dmᵀ

dm

)∣∣∣∣∣∣
y=ȳ

=





sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0
sεεε

sxᵀ

sεεε
syᵀ

sεεε
sεεεᵀ




0 0 0

0 Hy 0

0 0 0




dxᵀ

dx
0

dεεεᵀ

dx
dxᵀ

dy
I

dεεεᵀ

dy
dxᵀ

dεεε
0

dεεεᵀ

dεεε





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 2274(
sm

smᵀ
Hm̂

dmᵀ

dm

)∣∣∣∣∣∣
y=ȳ

=





sx
sxᵀ

sx
syᵀ

sx
sεεεᵀ

0 I 0
sεεε

sxᵀ

sεεε
syᵀ

sεεε
sεεεᵀ




0 0 0

Hy
dxᵀ

dy
Hy Hy

dεεεᵀ

dy

0 0 0





∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ
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=



sx
syᵀ

Hy
dxᵀ

dy
sx

syᵀ
Hy

sx
syᵀ

Hy
dεεεᵀ

dy

Hy
dxᵀ

dy
Hy Hy

dεεεᵀ

dy
sεεε

syᵀ
Hy

dxᵀ

dy
sεεε

syᵀ
Hy

sεεε
syᵀ

Hy
dεεεᵀ

dy



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

Using Layer 5, Eq. 3b, this is2275 (
sm

smᵀ
Hm̂

dmᵀ

dm

)∣∣∣∣∣∣
y=ȳ

=



sx
syᵀ

Hy
dxᵀ

dy
sx

syᵀ
Hy

dyᵀ

dy
sx

syᵀ
Hy

dεεεᵀ

dy
sy

syᵀ
Hy

dxᵀ

dy
sy

syᵀ
Hy

dyᵀ

dy
sy

syᵀ
Hy

dεεεᵀ

dy
sεεε

syᵀ
Hy

dxᵀ

dy
sεεε

syᵀ
Hy

dyᵀ

dy
sεεε

syᵀ
Hy

dεεεᵀ

dy



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

Notice that the matrix on the right-hand side is2276 (
sm
syᵀ

Hy
dmᵀ

dy

)∣∣∣∣∣∣
y=ȳ

= Lm.

Hence, we obtain an alternative factorization for Lm as2277

Lm =

(
sm

smᵀ
Hm̂

dmᵀ

dm

)∣∣∣∣∣∣
y=ȳ

.

We can now write the selection response of the geno-envo-phenotype (in the form of Layer 7, Eq. 1a) as2278

ιLm
∂w
∂m

∣∣∣∣∣
y=ȳ

= ι

(
sm

smᵀ
Hm̂

dmᵀ

dm
∂w
∂m

)∣∣∣∣∣∣
y=ȳ

.

Using the relationship between the total and partial selection gradients of the geno-envo-phenotype (Layer 4, Eq. 25),2279

this becomes2280

ιLm
∂w
∂m

∣∣∣∣∣
y=ȳ

= ι

(
sm

smᵀ
Hm̂

dw
dm

)∣∣∣∣∣∣
y=ȳ

.

We can further simplify this equation by noticing the following. Using Layer 6, Eq. 10 and m̂ = (x̄; y; ε̄εε), we have2281

that the mechanistic additive socio-genetic cross-covariance matrix of the geno-envo-phenotype and the unperturbed2282

geno-envo-phenotype is2283

Lmm̂ =

(
sm
syᵀ

Hy
dm̂ᵀ

dy

)∣∣∣∣∣∣
y=ȳ

(J3)

∈ RNa(Np+Ng+Ne)×Na(Np+Ng+Ne).

Expanding, we have2284

Lmm̂ =





sx
syᵀ

sy
syᵀ

sεεε
syᵀ


Hy

(
dx̄ᵀ

dy
dyᵀ

dy
dε̄εεᵀ

dy

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.
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Using Layer 5, Eq. 3b and since the resident phenotype and environment do not depend on the mutant genotype, then 2285

Lmm̂ =





sx
syᵀ

I

sεεε
syᵀ


Hy

(
0 I 0

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the matrix multiplication yields 2286

Lmm̂ =





sx
syᵀ

I

sεεε
syᵀ


(
0 Hy 0

)


∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

=



0
sx

syᵀ
Hy 0

0 Hy 0

0
sεεε

syᵀ
Hy 0



∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣∣
y=ȳ

.

Notice that the last matrix equals 2287( sm
smᵀ

Hm̂

)∣∣∣∣∣
y=ȳ

.

Thus, 2288

Lmm̂ =

( sm
smᵀ

Hm̂

)∣∣∣∣∣
y=ȳ

.

We can then write the evolutionary dynamics of the resident geno-envo-phenotype m̄ in terms of the total selection 2289

gradient of the geno-envo-phenotype as 2290

dm̄
dτ
≈

(
ιLmm̂

dw
dm

+
sm
sεεεᵀ

∂ε̄εε

∂τ

)∣∣∣∣∣∣
y=ȳ

. (J4)

The cross-covariance matrix Lmm̂ is singular because dm̂ᵀ/dy|y=ȳ has fewer rows than columns since the unperturbed 2291

geno-envo-phenotype includes the genotype. For this reason, Lmm̂ would still be singular even if the zero block entries 2292

in Eq. (J3) were non-zero (i.e., if dx̄ᵀ/dy|y=ȳ , 0 and dε̄εεᵀ/dy|y=ȳ , 0). Then, evolutionary equilibria of the geno-envo- 2293

phenotype do not imply absence of total selection on the geno-envo-phenotype, even if exogenous plastic response is 2294

absent. 2295

Appendix K. Connection to dynamic optimization 2296

Life-history models often consider genetically controlled traits (controls) that depend on an underlying variable 2297

(e.g., age) together with traits (states) constructed via dynamic (e.g., developmental) constraints over the underlying 2298
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variable. When such a model is simple enough, analytical solution (i.e., identification of evolutionarily stable strate-2299

gies) is possible using optimal control or dynamic programming methods (Sydsæter et al., 2008). A key tool from2300

optimal control theory that enables finding such analytical solutions (i.e., optimal controls) is Pontryagin’s maximum2301

principle. The maximum principle is a theorem that essentially transforms the dynamic optimization problem into a2302

simpler problem of maximizing a function called the Hamiltonian, which depends on control, state, and costate (or ad-2303

joint) variables. The problem is then to maximize the Hamiltonian with respect to the controls, while state and costate2304

variables can be found from associated dynamic equations. We now show that our results imply the key elements of2305

Pontryagin’s maximum principle for a standard life-history problem.2306

First, we state the optimization problem. Let y and x respectively denote the control and state variables over age,2307

and assume that there are no environmental traits. Let survivorship be a state variable, denoted by x`a = `a, so it2308

satisfies the developmental constraint x`,a+1 = g`a(za, z̄) = x`a pa(za, z̄) with initial condition x`1 = x̄`1 = 1. Thus,2309

using Eq. 8, we can write the expected lifetime number of offspring of a mutant with pair z = (x; y) in the context of2310

a resident with pair z̄ = (x̄; ȳ) as2311

R0(z, z̄) =

Na∑
a=1

x`a fa(za, z̄). (K1a)

Consider the optimization problem of finding an optimal pair z∗ = (x∗; y∗) such that2312

y∗ ∈ arg max
y

R0(z, z∗), (K1b)

subject to the dynamic constraint2313

xa+1 = ga(za, z̄), (K1c)

for a ∈ {1, . . . ,Na}, with x1 = x̄1 given and xNa free. Hence, z∗ is a best response to itself under the best response2314

function R0, where y∗ is an optimal control and x∗ is its associated optimal state. The optimization problem in (K1) is a2315

standard life-history problem generalized to include social interactions. From Layer 7, Eq. 5 for ζ = z and Eq. (S22b),2316

it follows that since there is no exogenous environmental change, an admissible locally stable evolutionary equilibrium2317

z∗ locally solves the problem (K1).2318

Second, we define the costate variables and show that they are proportional to the total selection gradient of states2319

evaluated at an admissible locally stable evolutionary equilibrium. The costate variable of the i-th state variable at age2320

a for problem (K1) is defined as2321

kxia ≡
dR0

dxia

∣∣∣∣∣
z=z̄=z∗

(K2)

(section 9.6 of Sydsæter et al. 2008). Hence, from Eq. (S22b), we have that the costate for the i-th state variable at2322

age a is2323

kxia = T
dw
dxia

∣∣∣∣∣
z=z̄=z∗

. (K3)
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That is, costate variables are proportional to the total selection gradient of state variables at an admissible locally 2324

stable evolutionary equilibrium z∗. The total selection gradient of states thus generalizes the costate notion to the 2325

situation where controls and states are outside of evolutionary equilibrium for the life-history problem of R0 max- 2326

imization. We have obtained various equations (Layer 4, Eq. 21) that enable direct calculation of such generalized 2327

costates in age structured models with R0 maximization. Moreover, we have obtained an equation that relates such 2328

generalized costates to the evolutionary dynamics (fifth line of Layer 4, Eq. 22). Since we are assuming that there are 2329

no environmental traits, total immediate effect matrices reduce to direct effect matrices. Thus, the fifth line of Layer 2330

4, Eq. 22 shows that such generalized costates affect the evolutionary dynamics indirectly by being transformed by 2331

the direct effects of controls on states, ∂xᵀ/∂y. 2332

Third, we show that total maximization of R0 is equivalent to direct maximization of the Hamiltonian, which is 2333

the central feature of Pontryagin’s maximum principle. We have that the total selection gradient of controls can be 2334

written in terms of the total selection gradients of states (fifth line of Layer 4, Eq. 22), so for the controls at age a we 2335

have 2336

dw
dya

∣∣∣∣∣
y=ȳ

=

(
∂xᵀ

∂ya

dw
dx

+
∂w
∂ya

)∣∣∣∣∣∣
y=ȳ

,

where we substituted total immediate derivatives for partial derivatives because we are assuming that there are no 2337

environmental traits. Using Eqs. (S22) yields 2338

dR0

dya

∣∣∣∣∣
y=ȳ

=

(
∂xᵀ

∂ya

dR0

dx
+
∂R0

∂ya

)∣∣∣∣∣∣
y=ȳ

.

From Eqs. (C10) and (K1a) given that the partial derivative ignores the dynamic constraint (K1c), it follows that 2339

dR0

dya

∣∣∣∣∣
y=ȳ

=

(
∂xᵀ

a+1

∂ya

dR0

dxa+1
+
∂(x`a fa)
∂ya

)∣∣∣∣∣∣
y=ȳ

.

Using Eqs. (K2) and (K1c) and evaluating at optimal controls yields 2340

dR0

dya

∣∣∣∣∣
y=ȳ=y∗

=

(
∂gᵀ

a

∂ya
kxa+1 +

∂(x`a fa)
∂ya

)∣∣∣∣∣∣
y=ȳ=y∗

. (K4)

This suggests to define 2341

Ha ≡ gᵀa kxa+1 + x`a fa, (K5)

which recovers the Hamiltonian of Pontryagin’s maximum principle in discrete time (section 12.5 of Sydsæter et al. 2342

2008) for the objective function (K1a). Then, the total derivative of the objective function with respect to the controls 2343

at a given age equals the partial derivative of the Hamiltonian when both derivatives are evaluated at optimal controls: 2344

dR0

dya

∣∣∣∣∣
y=ȳ=y∗

=
∂Ha

∂ya

∣∣∣∣∣
y=ȳ=y∗

.

This is the essence of Pontryagin’s maximum principle: the signs of the left-hand side derivatives are the same as the 2345

signs of the derivatives on the right-hand side, which are simpler to compute (although one must then compute costate 2346

variables). 2347
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Fourth, we show that the formulas we found for the costate variables (K2) imply the costate equations of Pontrya-2348

gin’s maximum principle for discrete time. Such costate equations are dynamic equations that allow one to calculate2349

the costate variables. Using Layer 4, Eq. 21 and Eqs. (S22), we have that2350

dR0

dxa

∣∣∣∣∣
y=ȳ

=

(
dxᵀ

dxa

∂R0

∂x

)∣∣∣∣∣∣
y=ȳ

.

Expanding the matrix multiplication on the right-hand side, this is2351

dR0

dxa

∣∣∣∣∣
y=ȳ

=

 Na∑
j=1

dxᵀj
dxa

∂R0

∂x j


∣∣∣∣∣∣∣∣
y=ȳ

=

∂R0

∂xa
+

Na∑
j=a+1

dxᵀ
j

dxa

∂R0

∂x j


∣∣∣∣∣∣∣∣
y=ȳ

,

where we used Eq. (B15). Using the expression of the total effect of states on themselves as a product (Layer 4, Eq. 2)2352

yields2353

dR0

dxa

∣∣∣∣∣
y=ȳ

=

∂R0

∂xa
+

Na∑
j=a+1

∂xᵀa+1

∂xa

dxᵀj
dxa+1

∂R0

∂x j


∣∣∣∣∣∣∣∣
y=ȳ

.

Doing the sum over j yields2354

dR0

dxa

∣∣∣∣∣
y=ȳ

=

∂R0

∂xa
+
∂xᵀa+1

∂xa

Na∑
j=a+1

dxᵀj
dxa+1

∂R0

∂x j


∣∣∣∣∣∣∣∣
y=ȳ

=

(
∂R0

∂xa
+
∂xᵀ

a+1

∂xa

dxᵀ

dxa+1

∂R0

∂x

)∣∣∣∣∣∣
y=ȳ

.

Using the second line of Layer 4, Eq. 21 and Eqs. (S22) again yields2355

dR0

dxa

∣∣∣∣∣
y=ȳ

=

(
∂R0

∂xa
+
∂xᵀa+1

∂xa

dR0

dxa+1

)∣∣∣∣∣∣
y=ȳ

. (K6)

This equals the partial derivative of the Hamiltonian with respect to the states at age a. Indeed, using (K5) we have2356

∂Ha

∂xa

∣∣∣∣∣
y=ȳ

=

(
∂xᵀa+1

∂xa

dR0

dxa+1
+
∂R0

∂xa

)∣∣∣∣∣∣
y=ȳ

.

Substituting this in Eq. (K6) and evaluating at optimal controls yields2357

ka =
∂Ha

∂xa

∣∣∣∣∣
y=ȳ=y∗

.

This is the costate equation of Pontryagin’s maximum principle in discrete time (Eq. 4 in section 12.5 of Sydsæter2358

et al. 2008).2359
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