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ABSTRACT 

Invertebrate biodiversity remains poorly explored although it comprises much of the terrestrial animal 

biomass, more than 90% of the species-level diversity and supplies many ecosystem services. The main 

obstacle is specimen- and species-rich samples. Traditional sorting techniques require manual handling 

and are slow while molecular techniques based on metabarcoding struggle with obtaining reliable 

abundance information. Here we present a fully automated sorting robot, which detects each specimen, 

images and measures it before moving it from a mixed invertebrate sample to the well of a 96-well microplate 

in preparation for DNA barcoding. The images are then used by a newly trained convolutional neural network 

(CNN) to assign the specimens to 14 particularly common, usually family-level “classes” of insects in 

Malaise trap samples and an “other-class” (N=15). The average assignment precision for the classes is 

91.4% (75-100%). In order to obtain biomass information, the specimen images are also used to measure 

specimen length and estimate body volume. We outline how the DiversityScanner robot can be a key 

component for tackling and monitoring invertebrate diversity. The robot generates large numbers of images 

that become training sets for CNNs once the images are labelled with identifications based on DNA 

barcodes. In addition, the robot allows for taxon-specific subsampling of large invertebrate samples by only 

removing the specimens that belong to one of the 14 classes. We conclude that a combination of 

automation, machine learning, and DNA barcoding has the potential to tackle invertebrate diversity at an 

unprecedented scale. 

 

Keywords: automation, biodiversity, biomass, convolutional neural network, DNA barcoding, dark taxa 

  

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 27, 2021. ; https://doi.org/10.1101/2021.05.17.444523doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.17.444523
http://creativecommons.org/licenses/by/4.0/


3 

1 INTRODUCTION 

Biodiversity science is currently at an inflection point. For decades, biodiversity declines had been 

mostly an academic concern although many biologists already predicted that these declines would 

eventually threaten whole ecosystems. Unfortunately, we are now at this stage, which explains why the 

World Economic Forum considers biodiversity decline one of the top three global risks based on likelihood 

and impact for the next 10 years (World Economic Forum‘s Global Risk Initiative 2020). This new urgency 

is also leading to a reassessment of research priorities. Biologists traditionally focused on charismatic taxa 

(e.g., vertebrates, vascular plants, butterflies) with a preference for endangered species. However, with 

regard to quantitative arguments, many of these taxon biases were unfortunate. For example, if one were 

to adopt a biomass point of view to terrestrial animal diversity, invertebrates would receive most of the 

attention because they contribute >45 times the biomass of wild vertebrates (Table S23 in (Bar-On et al. 

2018)), contain >90% of the species diversity (Groombridge 1992), and much of the functional and 

evolutionary diversity. This means that efficient tools for assessing and monitoring invertebrate biodiversity 

are urgently needed in order to address the knowledge gaps in biodiversity science, which Robert May 

(2011) characterized as follows: “We are astonishingly ignorant about how many species are alive on earth 

today, and even more ignorant about how many we can lose (and) yet still maintain ecosystem services that 

humanity ultimately depends upon.” Much of the undiscovered and undescribed animal diversity belongs to 

clades that are nowadays called “dark taxa” which Hartop et al. (2021) recently defined as taxa “for which 

the undescribed fauna is estimated to exceed the described fauna by at least one order of magnitude and 

the total diversity exceeds 1,000 species.” Species discovery in these taxa is particularly difficult because it 

requires species-level sorting of thousands of small specimens that frequently need dissection for 

identification using morphological traits.  

Fortunately, there are three technical developments that promise relief. The first is cost-effective 

methods for obtaining barcode amplicons (Wang et al. 2018; Srivathsan et al. 2021) in conjunction with 2nd 

and 3rd generation sequencing technologies (Hebert et al. 2018; Srivathsan et al. 2019a; Srivathsan et al. 

2021) . In particular, portable nanopore sequencers by Oxford Nanopore Technologies are in the process 

of democratizing access to DNA sequence data (Pomerantz et al. 2018; Watsa et al. 2020; Buchner et al. 
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2021; Srivathsan et al. 2021). The two remaining developments remain underutilized. They are automation 

and data processing with neural networks. Currently, automation mostly exists in the form of pipetting robots 

in molecular laboratories, while data processing with neural networks is only widely used for monitoring 

charismatic taxa. Bulk invertebrate samples have benefited very little (but see (Ärje et al. 2020b)) although 

thousands of samples are collected every day. They include plankton samples in marine biology, 

macroinvertebrate samples used for assessing freshwater quality, and mass insect samples (Brown 2005; 

Borkent & Brown 2015; Brown et al. 2018; Karlsson et al. 2020b). The desirable end goal should be 

convolutional neural networks that use images (1) to identify the specimens to species, (2) provide specimen 

and species counts, (3) measure biomass, and (4) compare the results to samples previously obtained from 

the same sites. 

Currently, the most popular way to process bulk invertebrate samples is with metabarcoding but the 

technique is affected by taxonomic bias and struggles with providing abundance information (Creedy et al. 

2019). However, computer-based identification systems for invertebrates that could be used for specimen-

based approaches are starting to yield promising results (Feng et al. 2016; Perre et al. 2016; Knyshov et al. 

2021). Particularly attractive are deep convolutional neural networks with transfer learning (Ärje et al. 

2020b), but they require large sets of training images, which are hard to obtain for invertebrates given that 

most species are difficult to identify. It is here that robotics can have an impact when imaging is combined 

with DNA barcoding. The robot provides the images while the DNA barcodes can be used to sort the 

specimens to putative species (“MOTUs”). Comparing the barcodes with public databases will then reveal 

for which specimens the preliminary MOTU ID can be replaced with a scientific name. Imaging combined 

with labelling at species-level resolution will then provide the images for training convolutional neural 

networks for image-based identification. 

The first robots that can be used for insect sorting are becoming available. For example, one 

recently developed system can size and identify stoneflies (Plecoptera) that are routinely used for freshwater 

quality assessment (Sarpola et al. 2008). Another system is designed for processing samples consisting of 

soil mesofauna (Chamblin et al. 2011). However, Chamblin et al. use a robotic arm, which makes the system 

comparatively expensive. Other robots have been designed for specific, commercial insect sorting 
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purposes. This includes one that can separate intact mealworm larvae (Tenebrio molitor) from skins, feces, 

and dead worms (Kim 2014) and another one that sorts mosquitoes (Lepek et al. 2020) and is capable of 

distinguishing males from females. However, all these machines lack the ability to recognize a wide variety 

of insect specimens in bulk invertebrate samples. The machine closest to this capability is the 

BIODISCOVER by Ärje et al. (2020a), which can identify ethanol-preserved specimens which, however, 

have to be fed into the machine manually one by one. After identification, all specimens are returned into 

the same container.  

We here describe a new system that overcomes some of these shortcomings. It recognizes insect 

specimens based on an overview image of a sample. Specimens below 3 mm body length are then imaged 

and moved into the wells of a 96-well microplate. We here demonstrate that the images are of sufficient 

quality for using convolutional neural networks for classifying the specimens into 14 common groups of 

insects (usually family-level). Furthermore, the images yield length measurements and an estimation of 

biomass based on specimen volume. 

2 CONCEPT AND METHODS 

 The aim of the project is to develop an insect classification and sorting robot that is compact and 

that works reliably (Fig 1). Note that we here use to the term ”classification” in the machine learning context 

as assigning objects to different “classes”; i.e., the term “class” is here not used as a rank in a Linnean 

classification. Indeed, most of our “classes” are family-ranked taxa (N=10), two contain two families, and 

two are of higher rank (Calyptratae and the paraphyletic acalyptrate Diptera).  

Our robot relies mostly on standard components that all connected via parts that can be produced 

by a normal 3D printer. The basic design uses a cube-shaped frame (50 x 50 x 50cm) and three linear drives 

with accurately positioning stepper motors. It is based on a zebrafish embryo handling robot (Pfriem et al. 

2012). The robot is equipped with two high-resolution cameras with customized lenses, LED lighting and 

image recognition software. Furthermore, a transport system based on a suction pump is integrated to 

transfer insects into the wells of a standard 96-well microplate. Thus, the robot system can be divided into: 
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(1) the Transport System, (2) the Image Acquisition System, (3) the Image Processing System, and (4) a 

touch screen with graphical user interface (GUI). 

 

Figure 1. The DiversityScanner with 1: x-axis; 2: y-axis; 3: z-axis; 4: Petri dish; 5: Microwell plate; 
6: Overview camera (C1), 7: Detail camera (C2). The electronics box with Raspberry Pi, motor control unit, 
and the syringe pump are in the lower part of the sorting robot and therefore not visible in this view. The 
status of both, insect position determination and status of the sorting process are displayed on a touch 
screen, where the sorting process can also be started and stopped 

2.1 Transport System 

The x- and y-axes of the robot are realised by LEZ1 linear drives (Isel AG, Eichenzell, Germany) and 

connected to the outer frame of the robot at half height. Both linear drives are driven by high-precision 

stepper motors with little tolerance to ensure good positioning accuracy. The y-axis is connected 

orthogonally to the shaft slide of the x-axis and is transported by it. The shaft slide of the y-axis transports 
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the camera (C2) and the z-axis with the suction hose. In order to move the suction hose in the z-direction 

(=up and down) the z-axis is driven by an AR42H50 spindle drive with stepper motor (Nanotec Electronic 

GmbH & Co. KG, Feldkirchen, Germany). All three axes are controlled by a single TMCM-3110 motor 

controller (Trinamic, Hamburg, Germany) that allows for precise, fast and smooth movements. The motor 

controller is protected from water and ethanol droplets by being housed in a box at the bottom of the robot. 

The transport system is controlled by a Raspberry Pi single-board computer that was programmed in Python 

for the sorting robot. In order to pick up insects from a petri dish and discharge them in a well of a 96-well 

microplate, a suction hose with a pipette tip is positioned by the transportation system. The hose is 

connected to a LA100 syringe pump (Landgraf Laborsysteme HLL GmbH, Langenhagen, Germany), that is 

also controlled by the Raspberry Pi. The sorting process is illustrated in Figure 2.  

 

Figure 2. Process flowchart for classification and sorting  
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The sorting system includes two cameras with different lenses: the overview camera (C1) and the detailed 

view camera (C2). The first camera (C1) is a Ximea MQ042CG-CM camera with a CK12M1628S11 lens 

(Lensation GmbH, Karlsruhe, Germany) with a focal length of 16mm and an aperture of 2.8 is positioned 

directly above the petri dish to take a detailed overview image of all insects inside. This image is used for 

detecting insects and their position within the Petri dish for the sorting process (see Figure 3 left). The 

second camera (C2) is a Ximea MQ013CG-E2 with a telecentric Lensation TCST-10-40 lens with a 

magnification of 1x. This camera is moved by the x and y axes of the robot to a position above the insect to 

take a detailed image for classification and size measuring (Figs 4, 6). 

Image Processing Software: Three different software algorithms are used: The first algorithm determines 

the position of each object within the square petri dish. The second measures the length and volume of 

each insect. The third is an artificial neural network to classify insects into different classes. 

Determination of Object Position: Most objects in a sample are insects, but there are also insect parts 

and debris. After the overview image is taken, several image processing operations are used to detect 

insects that are suitable for processing: (1) A median filter removes noise from the image, (2) the RGB-

image is converted to grey scale, (3) an adaptive threshold filter segregates the objects, and (4) a contour 

finder identifies the boundaries of all objects. Three conditions must be met for an object to be considered 

for imaging and transfer: (1) the size must be within a specified interval, (2) the object has to be >10mm 

away from the petri dish edge (blue line in Fig. 3), and (3) its distance to other objects must exceed a 

minimum threshold value. Therefore, it is desirable that insects are evenly distributed in the Petri dish to 

avoid clusters because they reduce the number of insects that can be sorted by the robot. 

The coordinates of the detected objects are stored in a list, which is then used to control the position of the 

pipetting tip and the detailed camera. After an object is removed, a new overview image is taken to 

determine the new coordinates of the objects, as they might have moved due to the pipetting of an object. 

This position identifying process continues until no more suitable objects are detected or all wells of the 96-

well microplate are filled with one insect each. Due to the limited size of the Petri dish (120 x 120 mm), the 
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number of specimens available for one sorting process is currently limited. Experiments have shown that 

150 (+/-10) specimens is the optimum for sorting when approximately equally distributed. With this number, 

hardly any preparatory work, i.e. additional separation of the insects in the Petri dish, is necessary. Since 

the work of the robot is automatically interrupted after the 96-well-microplate is filled, new insects can also 

be added to the Petri dish during this work step. 

 

 

Figure 3. Sample image obtained with the detail camera (C2) before (left) and after processing (right). Left: 
The square Petri dish has a size of 120 x 120mm. Right: Blue line defines the area in which the object 
positions are determined (10 mm from edge); circles represent detected objects (green = meet size and 
distance conditions for imaging and movement; red = size too large and/or distance to small) 

 

The robot excludes specimens from sorting that are too large for automatic processing. For efficient 

operation, it is thus preferable to only place small specimens (body length < 3 mm) into the Petri dish. Size 

pre-sorting of whole samples can either be done manually or by employing the methods described by 

Buffington and Gates (2013). The use of sieves enables fast and uncomplicated pre-sorting of insects into 

different size classes. With regard to cleaning the DiversityScanner, only the central petri-dish, the 

microplate, and the suction tube have contact to specimens. The dishes and microplates can be autoclaved 

while the suction tube can either be flushed with bleach or a new tube can be used for each new sample. 
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Object Dimensions: Lengths and volume of insect bodies are useful for estimating biomass. Several image 

processing operations are used to make such measurements. First, the contour is determined using 

morphological operators. Only those surfaces are selected which have a minimum value. If more than one 

surface is found (e.g. two body parts of the same specimen separated by a light area), they are connected 

so that there is only one contour. Within this contour, points are placed randomly, which are used to create 

a regression. The more points are used, the more accurate the regression and thus the estimate of the 

insect length will be. To find the dividing lines of the head, thorax and abdomen, straight lines are placed at 

right angles to and along the regression line. Only those points of a line are considered that lie within the 

contour in the process. Subsequently, the dividing line between the head and thorax or between the thorax 

and abdomen is determined by examining the changes in length. As not all species have a clear dividing 

line between the body regions, some dividing lines are set incorrectly or need to be adjusted manually before 

the total volume can be determined (see Results for details). To estimate the volume, a straight line is drawn 

through each body part and then additional perpendicular straight lines which must be within the body 

contour. Now the distance and length of the straight lines can be used to determine the volume slice by 

slice. The lengths and estimated volumes of the individual body parts as well as the total length can be 

displayed on the screen of the sorting robot and the measurements are stored. Figure 3 shows an example 

of a detailed picture before (a) and after (b) the volume estimation, as well as the necessary steps (i - vi). 

All operations use the free OpenCV program library (version 4.5.1) and Python scripts (version 3.8.6). 

Currently, volume estimates are mostly satisfying for body parts that are rotationally symmetrical and the 

method works better for insects with rotationally symmetrical morphology such as Hymenoptera. 
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Figure 4. Specimen image obtained with the detail camera (C2) before (a) and after processing (b). As well 
as the individual image-processing steps for determining the individual regions (i - vi). (i) & (ii) Contour 
determination; (iii) Connecting surfaces; (iv) Placing random points; (v) Regression; (vi) Defining dividing 
lines 
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Figure 5. Class activation maps for specimens belonging to four different insect classes. The warmer the 
colour, the more important the region is for classifying the insects (red = very important – blue: less 
important). (a) Hymenoptera Diapriidae: The focus is on the antennae, head, mesosoma and the wing 
venation; (b) Diptera Calyptratae: Here, the focus is on the head and the eye; (c) Diptera Keroplatidae and 
Mycetophilidae: The focus is on the thorax and the legs; (d) Diptera Psychodidae: in this class, the focus is 
only on the wings 
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Figure 6. Sample images for the 15 classes (a-p). (a) acalyptrate Diptera; (b) Diptera Calyptratae; (c) 
Diptera Cecidomyiidae; (d) Diptera Chironomidae; (e) Diptera Dolichopodidae; (f) Diptera Empididae & 
Hybotidae; (g) Diptera Keroplatidae &Mycetophilidae; (h) Diptera Phoridae; (i) Diptera Psychodidae; (j) 
Diptera Sciaridae; (k) Hemiptera Cicadellidae; (l) Hymenoptera Braconidae; (m) Hymenoptera Diapriidae; 
(n) Hymenoptera Ichneumonidae; (o) Other Insects (e.g. Hemiptera Aphididae; (p) Other objects 

2.2 Insect Classification 

In order to recognize different classes of insects and assign specimens to classes, machine learning 

algorithms based on convolutional neural networks (CNN) are applied. 

Data Set: We here use 5,083 colour images in 15 classes split into 3,182 for training (~62.5 %), 777 for 

validation (~15 %) and 1,124 images for testing (22.5 %; Table 1). 
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Class (Taxon) Training Validation Testing Total 

acalyptrate Diptera 377 69 148 594 

Diptera Calyptratae 57 10 12 79 

Diptera Cecidomyiidae 280 70 117 467 

Diptera Chironomidae 140 20 32 192 

Diptera Dolichopodidae 112 14 14 140 

Diptera Empididae & 
Hybotidae 

254 80 112 446 

Diptera Mycetophilidae & 
Keroplatidae 

251 79 110 440 

Diptera Phoridae 461 167 209 837 

Diptera Psychodidae 91 19 19 129 

Diptera Sciaridae 219 54 90 363 

Hemiptera Cicadellidae 102 14 21 137 

Hymenoptera Braconidae 74 17 22 113 

Hymenoptera Diapriidae 166 38 51 255 
Hymenoptera 
Ichneumonidae 

100 13 20 133 

Other 498 113 147 758 

Total 3182 777 1124 5083 
Table 1. Classes and number of images available for training, validation and testing 

 

The images were obtained with the detailed camera for insects from five Malaise trap samples: three from 

Germany near Rastatt, Kitzing and Framersbach and two from Italy (Province of L’Aquila: Valle di Teve and 

Foresta Demaniale Chiarano-Sparvera). The images reflect the abundances of each taxon that are typical 

for Malaise trap samples (Karlsson et al. 2020b). Only the common classes are covered by the trained CNN. 

Insects that do not belong to these are assigned to residual class (N=758), which also includes images of 

body parts (mainly legs and wings). 

Data Augmentation: Data augmentation was performed to increase the number of images and the 

invariance within a class. The following processing operations are applied randomly to the images: rotation, 

width shift, height shift, shear, zoom, horizontal flip and fill mode nearest. 

Network Architecture: The VGG19 architecture is used as base model for classification, (Simonyan & 

Zisserman 2014). The model is initialized with pre-trained ImageNet weights and the last layer is removed. 

For the new classification layer, a global average pooling, a dense layer with 1024 units and a reLU-
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activation, and a linear layer with a dropout rate during training of 0.4 are added. For the final classification, 

a softmax and a L2-regularization with a value of 0.02 are applied. In total the model has about 20.5 million 

parameters and the input size of an image is 224x224 pixels. The number of nodes in the last layer 

corresponds to the number of classes in the experiment. For training, the parameters of the original model 

are frozen and only the classification layer is trained. Afterwards, the whole model is optimized, whereby 

training is applied to all layers. Class activation maps are obtained by a global average pooling layer to 

illustrate the decisive features used by the neural network (Fig, 5 a-d). 

Setup: The model is implemented in Keras (version 2.4.3) based on Tensorflow (version 2.2.1) and all 

experiments are conducted in the Python programming language (version 3.8.6). The networks are trained 

on a single board computer (Nvidia, Santa Clara, California, USA) as well as on more powerful GPUs using 

the online tool Colabatory. The working principles of the robot are illustrated in the following video clip: 

https://www.youtube.com/watch?v=ElJ5VSHa4OI. 

3 RESULTS 

Currently, the sorting robot images and pipettes insects up to 3 mm length (Fig. 6 a-o), because larger 

insects do not fit through the pipetting tip. Detected insects are classified by the algorithm into 14 different 

classes of insects. All other insect classes and non-insect objects are combined in the class ”other” 

(Table 2). A lower-bound size limit does not exist in terms of handling but is defined by the visibility of the 

specimens on the overview image. However, if the smallest insects (<1mm) are to be identified and sorted, 

the detailed specimen images should be used to avoid the processing of small body parts of insects. 

Karlsson et al. (2020a) examined the distribution of species in Malaise traps in the Swedish Malaise trap 

program. The results show that 75% of the specimens belong to Diptera families with small specimens (e.g. 

Chironomidae, Sciaridae, Phoridae, Cecidomyiidae, Mycetophilidae). Brown (2005) documented the same 

bias towards small Diptera families (64-84%) for several Neotropical samples. In addition, ca. 50% of 

Hymenoptera are small, which means that in many samples >60% of the specimens are suitable for the 

DiversityScanner.  
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Class (Taxon) Result Class (Taxon) Result 

acalyptrate Diptera 91% Diptera Psychodidae 89% 

Diptera Calyptratae 83% Diptera Sciaridae 92% 

Diptera Cecidomyiidae 91% Hemiptera Cicadellidae 100% 

Diptera Chironomidae 97% Hymenoptera Braconidae 82% 

Diptera Dolichopodidae 86% Hymenoptera Diapriidae 100% 

Diptera Empididae & Hybotidae 87% Hymenoptera Ichneumonidae 75% 

Diptera Mycetophilidae & Keroplatidae 99% Other 81% 

Diptera Phoridae 97% Overall result
‡
 91.4% 

‡ The number of images used is included in the calculation of the overall result, which is why it differs from the arithmetic mean of all 
individual results. 
Table 2. Classification accuracy (predicted label = true label) for each class in percent 

 

The best classification result is for “Hymenoptera Diapriidae” and “Hemiptera Cicadellidae”, where all insects 

were correctly classified (100 %), whereas insects of the class Hymenoptera Ichneumonidae had the lowest 

correct classification rate (75 %). Table 3 shows the confusion matrix for the testing images by comparing 

the “predicted” (CNN) with the “true” labels (taxonomists). The diagonal (grey) shows the percentage of 

images in a class that were correctly assigned. The table furthermore specifies the proportion of images 

incorrectly assigned. For the class Diptera Chironomidae, for example, 97% are correctly predicted, but 3% 

are assigned to the class Diptera Cecidomyiidae. 
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acalyptrate Dipt. 
0.912 0.020 0.000 0.000 0.014 0.014 0.000 0.007 0.000 0.000 0.007 0.000 0.000 0.000 0.027 

Dipt. Calyptratae 
0.083 0.833 0.000 0.000 0.083 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dipt. Cecidomyiidae 
0.000 0.000 0.915 0.017 0.000 0.000 0.000 0.000 0.009 0.051 0.000 0.000 0.000 0.000 0.009 

Dipt. Chironomidae 
0.000 0.000 0.031 0.939 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dipt. Dolichopodidae 
0.143 0.000 0.000 0.000 0.857 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 
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Dipt. Empididae & 
Hybotidae 0.027 0.000 0.000 0.000 0.000 0.866 0.009 0.009 0.000 0.018 0.009 0.018 0.000 0.000 0.045 

Dipt. Mycetophilidae 
& Keroplatidae 0.000 0.000 0.000 0.000 0.000 0.000 0.991 0.009 0.000 0.000 0.000 0.000 0.000 0.000 0.000 

Dipt. Phoridae 
0.014 0.000 0.000 0.005 0.000 0.000 0.005 0.967 0.005 0.005 0.000 0.000 0.000 0.000 0.000 

Dipt. Psychodidae 
0.053 0.000 0.000 0.053 0.000 0.000 0.000 0.000 0.895 0.000 0.000 0.000 0.000 0.000 0.000 

Dipt. Sciaridae 
0.000 0.000 0.056 0.022 0.000 0.000 0.000 0.000 0.000 0.922 0.000 0.000 0.000 0.000 0.000 

Hemiptera 
Cicadellidae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 0.000 0.000 

Hymenoptera 
Braconidae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.818 0.000 0.091 0.091 

Hymenoptera 
Diapriidae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 1.000 0.000 0.000 

Hymenoptera 
Ichneumonidae 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.000 0.150 0.000 0.750 0.100 

Other 
0.034 0.000 0.000 0.027 0.000 0.034 0.000 0.007 0.020 0.014 0.020 0.020 0.014 0.000 0.810 

Table 3. Confusion matrix for 15 classes including the “other” class. The true label is shown on the y-axis, 
the predicted label on the x-axis 

 

In terms of taxon-specific processing, the DiversityScanner currently supports two processes: Either all 

insects are classified and sorted until the last well of the 96-well microplate is filled or only insects belonging 

to a predefined class are pipetted into the plates. 

To determine the times required for sorting and classifying, the times required for each specimen were 

determined (Fig. 7a). The average time is 38 seconds (well plate #1) and 37 seconds for the second well 

plate with some specimens (e.g., #1, #8, #35) requiring significantly more time. For this test, the biomass 

determination was deactivated; i.e., the total time required per object consisted of the time for the calculation 

of the GUI, the write operations on the SD card of the Raspberry Pi, the movement time of the axes, the 

runtimes of the algorithms for object detection and classification as well as the times for moving the syringe 

pump. Faster sorting is feasible, but reduces quality because specimens are not allowed to settle for imaging 

and expulsion into the well. Note that classification and object recognition only account for a small proportion 

of the total time required per specimen (Fig 7 b, c). The average time for classification is 4.28 seconds for 
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the first well plate and 4.24 seconds for the second (total average: 4.26 seconds). The average time for 

object detection is <1.30 seconds. Thus, most of the time shown in Fig 7 (a) is needed for the actual sorting 

as well as the other operations described above. 

The image processing for volume estimation takes significantly longer and shows the greatest differences 

in the time required per specimen. On the Raspberry Pi in particular 108.06 seconds on average for 144 

specimens. The times are shown in Fig 7 (d). As the biomass determination would slow down the otherwise 

fast sorting and classification of individual specimens, it is recommended not to run it during the sorting 

process. If it is necessary to estimate the volume, it is advisable to apply the algorithm to the images 

afterwards and to transfer this process to a faster computer. For example, on a notebook with Intel Core i7-

4510U with 2.0 GHz, the average processing time for the same data set is only 12.24 seconds per specimen. 

To ensure that the individual volume of the head, thorax and abdomen was always determined for the 

runtime tests and not the total volume, only images of the class Hymenoptera Diapriidae were used for the 

test as these often show a clear dividing line. Note, however, that for those cases where an automatic 

determination of the body tagmata is not possible, the images are labelled so that the user can manually 

set areas. 
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Figure 7: Times of the process steps of the Diversity Scanner. (a) Time per specimen for sorting (b) Time 
per specimen for classification (c) Time per overview image for object detection (d) Time per specimen for 
volume estimation 
 

4 DISCUSSION 

The use of CNNs for the identification of charismatic species is becoming a routine procedure (Fairbrass et 

al. 2019; Stowell et al. 2019; Tabak et al. 2019; Milošević et al. 2020). However, these methods have been 

largely unavailable for small invertebrates although they comprise much of the multicellular animal species 
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diversity (Groombridge 1992; Stork et al. 2015) and contribute many ecosystem services (Wagner 2020). 

The main problem is the lack of trained CNNs, which cannot be obtained without first producing sets of 

training images for thousands of species. We believe that the best strategy for obtaining these training 

images is combining automated specimen imaging with DNA barcoding. A DiversityScanner can image 

1,000 specimens per day so that a laboratory equipped with a few DiversityScanner will be able to process 

several full invertebrate samples per day. Each contains thousands of specimens that can be imaged with 

minimal manual labour. After imaging, the specimens are moved to microplates for DNA barcoding. Once 

barcoded, the images can be re-labeled with approximately species-level resolution given that most animal 

species have species-specific barcodes, even when congruence with morphology is rigorously assessed by 

barcoding thousands of specimens (Wang et al. 2018; Yeo et al. 2018). Common species, genera, and 

families rapidly acquire sufficiently large numbers of training images. Indeed, for the most common 14 

“classes” of insects in Malaise traps, we already had enough images for creating such networks after 

partially imaging only five Malaise trap samples (5083 images, see 2.3 Insect Classification - Data Set). 

A further useful feature of the DiversityScanner is that for particularly hyperabundant taxa, it can be 

instructed to only transfer a limited number of specimens for a particular class. For example, the robot can 

be told to move only 1-2 microplates’ worth of non-biting midges (Chironomidae), if this taxon is too 

abundant. This ability to only find and move some taxa also helps with implementing clade-specific 

molecular recipes (e.g., different DNA extraction or PCR recipes for taxa that are difficult to barcode: e.g. 

Hymenoptera) and restricting barcoding to either males or females given that often only one sex has 

species-specific morphological differences (Eberhard 2010). 

With regard to classification accuracy rates, we observe only a very weak correlation between the 

number of training images, morphological heterogeneity and classification accuracy. There are classes with 

large numbers of training images that perform better than classes with lower numbers (e.g., Diptera 

Calyptratae 57 training images: 83% vs. Diptera Phoridae 64 training images: 97%), but the better 

performance of Phoridae could also be due to higher morphological uniformity. However, this is not in line 

with the observation of a comparatively high classification accuracy obtained for the class “others” that has 

the highest heterogeneity. Indeed, this class performed better than Hymenoptera Ichneumonidae (6% 
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better: 81%) whereby it is conceivable that Ichneumonidae performed poorly because it may have suffered 

from incomplete imaging given that the specimens are often at the upper limit of the manageable size for 

the DiversityScanner. Overall, we need more data to understand fully which factors improve classification 

accuracy. 

Some biologists doubt that CNNs will be sufficiently powerful to yield species-level identifications 

for closely related species and we agree that it remains unclear to what extent species-level identifications 

can be achieved (Ärje et al. 2020b; Knyshov et al. 2021). However, we predict that the main limitation will 

be the number, quality, and orientation of training images. Figure 6 illustrates the latter problem.  

The insects are imaged in very different positions so that an even larger number of training images would 

be needed in order to have a realistic chance for achieving high accuracy at high taxonomic resolution. One 

solution for this problem is imaging identified specimens in many orientations. Fortunately, this is now 

feasible because high-quality cameras are available for obtaining large numbers of images at different 

magnifications and orientations. This is particularly straightforward once specimens have been pre-sorted 

to putative species based on DNA barcodes. As illustrated by the BIODISCOVER robot, inserting these 

specimens into a cuvette allows for imaging from many angles. We predict that once large numbers of 

species have been extensively imaged and included in CNNs, the DiversityScanner will be able to identify 

many specimens based on images only. DNA barcoding would be restricted to those specimens that are 

not identifiable based on visual information; i.e., the DiversityScanner would learn how to sort specimen to 

species, but also learn how to identify those specimens that still require barcoding. This will make the robot 

a powerful tool for discovering rare new species in large samples. This ability would be particularly important 

in the 21st century because new species continue to arrive at well-characterized sampling sites (Parmesan 

2006). Some of these species recently shifted their distribution in response to climate change (Wilson et al. 

2007; Fartmann et al. 2021) while others may be new anthropogenic introductions (Bertelsmeier 2021). For 

both it would be desirable to have an early-warning system based on automated workflows. Note also, that 

we here implicitly assumed that the biologists want species-level identifications for entire samples, but for 

many purposes it would be sufficient to have CNNs that provide family- genus- or species-group level 
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identifications for some taxa (e.g., those where external morphology is insufficient for species-level 

identification). 

This first version of the DiversityScanner still struggles with several aspects of complex Malaise trap 

samples. Specimens often clump so that they may be erroneously recognised as one insect on the overview 

image. This may lead to the pick-up of several specimens, but improved object detection algorithms and 

additional scrutiny of the specimen images is likely to resolve such cases in future versions of the scanner. 

Such algorithms would also avoid instances where no insect is picked up although the overview image had 

identified an object. Here, further optimizati Classes and number of images available for training, validation 

and testing on of the volume and the volume flow by the syringe pump may be needed. An additional 

modification of the DiverstiyScanner that is currently under consideration is the handling of larger 

specimens. The suction tip diameter of the tube can be increased or one can install a gripper with a sensor-

based feedback system. These changes could be accommodated within the current design because they 

only require changes with regard to the maximum size and minimum distance parameters. Larger 

specimens could also be imaged completely by installing an additional lens. 

One major goal is to keep the design of the DiversityScanner simple and comparatively low-cost 

(<5,000 €), so that eventually many robots can sort a large number of insects simultaneously in many 

laboratories. Robotic handling is desirable, because parataxonomists fatigue and make unpredictable errors 

(Krell 2004). Furthermore, parataxonomists “only” sort but do not image. Compare this to having several 

DiversityScanners running in parallel. One operator would be able to feed them with trap samples and 

handle the DNA barcoding of filled plates. Thousands of imaged and barcoded specimens could be obtained 

every week. This makes robotic specimen handling an attractive alternative to manual sorting. 

Currently, the robot only handles and images small invertebrates, because we wanted the robot to 

cover the most abundant specimen size class. In comparison, the BIODISCOVER robot (Ärje et al. 2020a) 

allows for the imaging of larger specimens. Other systems such as the light trap for photographing alive 

moths presented by Bjerge et al. (2021) are also capable of photographing much larger insects. However, 

what these systems have in common is that large images are taken from which the areas containing a 

specimen are cropped. As a result, the resolution of the images is comparatively low. (BIODISCOVER (Ärje 
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et al. 2020a): 496x496 pixels; Moth light trap (Bjerge et al. 2021) average size: 368 × 353). The 

DiversityScanner moves the camera over the insect which can then be photographed at high resolution 

(here: 1280x1024 pixels). For classification using neural networks, a lower resolution is sufficient. However, 

higher resolution is important for determining the volume as well as for taxonomic work on the specimens. 

In addition, the BIODISCOVER robot requires that all insects are fed manually one after the other and that 

they are returned to a common tray. In this regard, the setup presented by Chamblin et al. (2011) for 

photographing and sorting soil mesofauna is more promising because it is able to remove individual 

specimens from a Petri dish and place them into a 96-well microplate.  It has similar size restrictions as the 

DiversityScanner but is comparatively expensive because it uses a microscope and a 6-axis robot arm. 

Overall, we believe that robots like the DiversityScanner have the potential to solve some of the 

problems that Robert May mentioned when he bemoaned our lack of biodiversity knowledge. Automation 

can expedite biodiversity discovery and monitoring of neglected ”dark taxa”. Of course, the DiversityScanner 

can only address some of the challenges. For example, newly discovered species will still need description 

and described species identification. Moreover, even when all species have been described, we will still 

know very little about the ecological roles that these species play in the ecosystems. Fortunately, molecular 

approaches to diet analysis and life history stage matching can help fill these gaps (Yeo et al. 2018; 

Srivathsan et al. 2019b). However, given that ecosystems routinely consist of thousands of species, 

automation and data analysis will also be needed for high-throughput species interaction research.  
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