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Abstract—The electro-phono-cardiogram (EPHNOGRAM)
project focused on the development of low-cost and low-power
devices for recording simultaneous electrocardiogram (ECG)
and phonocardiogram (PCG) data, with auxiliary channels for
capturing environmental audio noise, which could be used for
PCG quality enhancement through signal processing. The current
database, recorded by version 2.1 of the developed hardware, has
been acquired from 24 healthy adults aged between 23 and 29
(average: 25.4 + 1.9 years) in 30 min stress-test sessions during
resting, walking, running and biking conditions, using indoor
fitness center equipment. The dataset also contains several 30 s
sample records acquired during rest conditions. This data is
useful for simultaneous multi-modal analysis of ECG and PCG. It
provides interesting insights into the inter-relationship between
the mechanical and electrical mechanisms of the heart, under
rest and physical activity. The database is provided online on
PhysioNet.

Index Terms—Electrocardiogram; Phonocardiogram; Stress-
test

I. INTRODUCTION

Cardiac auscultation is one of the oldest and most basic
methods of cardiac function assessment. Even in the modern
cardiac monitoring and imaging era, the technique remains
popular among clinicians, as a preliminary step for screening
basic cardiac anomalies. Despite its long history, the visualiza-
tion, analysis and interpretation of the audio signals acquired
from the heart by the phonocardiogram (PCG) is not so
common in clinical training. Therefore, PCG-based diagnosis
is less common than its electrical counterpart, the electro-
cardiogram (ECG). Nevertheless, with recent developments
in mobile-health and tele-monitoring, the PCG and ECG are
again under the spotlight, as low-cost complementary modal-
ities for monitoring the mechanical and electrical functions
of the heart [1]. While most research in this domain have
used separate sessions of ECG and PCG acquisition (which are
useful for consistent cardiac anomalies), they do not provide a
beat-wise insight into the two cardiac modalities and the inter-
relationships between the electro-mechanical functions of the
heart.

The electro-phono-cardiogram (EPHNOGRAM) project
conducted at the Signal Processing Center of Shiraz University
(Shiraz, Iran) focused on the development of low-cost and low-
power devices for recording simultaneous ECG and PCG [2].
As part of this research a hand-held system was designed and
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used to acquire a dataset consisting of simultaneous ECG and
PCG of healthy adults in a stress-test study. The developed
hardware has various features including auxiliary channels for
capturing environmental audio noise, which could be used for
PCG quality enhancement through signal processing.

The gathered database is provided online on PhysioNet
[3], and the source codes for reading and analyzing the data
are available in the Open-Source Electrophysiological Toolbox
(OSET) [4].

In Section II, the architecture of the designed system is
detailed. The stress-test dataset and its acquisition protocol is
detailed in Section III. As proof of concept for the potential
outcomes of this study, some of the basic analysis on these
datasets are presented in Section IV. We have developed a
robust and accurate algorithm for calculating the heart-rate
(HR) from the ECG and PCG. The motivation is to show
that while the overall trend of the HR time-series obtained
from both modalities are identical, there are minor differences
between them, which reflect the differences between the
mechanical and electrical systems of the heart, during physical
activities.The paper is concluded with a discussion and future
perspectives for simultaneous ECG-PCG analysis.

II. THE EPCG DEVICE

The EPCG device designed for this study includes circuitry
for three-lead ECG, two digital stethoscope channels for PCG
acquisition and two auxiliary channels to capture the ambient
noise, as shown in Fig. 1. The auxiliary channels are used for
digital active noise cancellation (ANC) from the primary PCG
channels. The analog signals are filtered by an anti-aliasing
analog filter and sampled at 8 kHz with a resolution of 12-bits
(with 10.5 effective number of bits) and transferred to an on-
board low-power microcontroller for minimal preprocessing
and registration on a Secure Digital (SD) memory.

The device has an LCD and a keypad for basic file naming
and controlling the recording duration. Since the quality of
the ECG highly depends on the connection of the chest leads,
the device provides an online PC-based signal preview feature
via Bluetooth, to prevent low-quality signal recordings due to
loose body contact.

The front-end anti-aliasing and baseline wander rejection
filter consists of a first-order passive high-pass filter with a
-3 dB cutoff frequency of 0.1 Hz, followed by an active
5th order low-pass Butterworth filter, which form bandpass
filters that cover the major ECG and PCG bandwidths. For
the ECG front-end, the upper —3 dB cutoff frequency was set
to 150 Hz, with 30 dB of attenuation at 1 kHz and a 30 dB
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Fig. 1. The ECG-PCG acquisition system block diagram

gain in the passband'. For the PCG channels, the same active
filter topology was used, but with an upper cutoff frequency
of 1 kHz, 30 dB of attenuation at 5 kHz, and a passband
gain of 5 dB. As a result, the ECG and PCG channel filter
attenuations are respectively 90 dB and 25 dB in the Nyquist
frequency of the digital front-end ADCs (4 kHz), which are
practically sufficient to avoid aliasing. Note that although the
front-end filters are nonlinear phase, the group delays are
rather constant over the passbands of the front-end filters.
Additional filtering, including powerline cancellation (50 Hz
for the current database) is performed in the digital domain.

During the prototyping process of the device, various con-
figurations of the hardware and several hand-made stetho-
scopes were developed and tested. The hardware design
Version 2.1 was the latest of several progressive improved
redesigns, in which the auxiliary channels were added (useful
for digital active noise cancellation algorithms) and the signal
quality was significantly improved through the redesign of the
analog front-end and the printed circuit board (PCB).

For the stethoscopes, the objective was convert low-price
off-the-shelf stethoscopes into high-quality digital ones with
minimal engineering effort and by using advances signal
processing. The different designs that were prototyped and
tested include: 1) embedding microphones inside standard
stethoscope chest-piece (directly under the diaphragm); 2)
embedding two microphones inside a standard microphone
chest-piece (back-to-back, one facing the diaphragm, the other
one facing the bell hole); 3) embedding microphones at the
end of the tubing (at the junction of the ear tubes); 4) em-
bedding microphones inside the tube, a few centimeters after
the stem, plus auxiliary microphones inside the device case,
for picking environmental noises. The latter configuration, as

'Note that while the ECG contains diagnostic information in a range of
0.7 Hz to 150 Hz, according to the IEC standard [5], if an ECG device
is used for ST-segment measurements, a lower cutoff frequency of 0.05 Hz
would be required.
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demonstrated in in Fig. 2, was found to be the most robust
and resulted in high quality signals, with various advantages:

1) Arbitrary stethoscope diaphragms can be used with this
device and modifications are only applied to the tubing
section.

2) The acoustic frequency response of the mechanical parts
of the chest-piece (diaphragm and bell) is not altered.
In fact, the chest-piece is the most sophisticated piece
of a stethoscope, in terms of its frequency response and
the impact of its shape on the quality of the PCG. By
embedding the microphone inside the tube (after the
stem), the frequency response of the PCG undergoes the
minimal change, compared to what clinicians hear with
a classical stethoscope.

3) Along the stethoscope tube, the transfer function of the
audio channel is approximately linear. Therefore, the
audio quality is less susceptible to the precise position
of the microphone (in orders of millimeters) inside the
tube, which is an important factor for mass production.

4) The auxiliary channels uniquely pick the environmental
sounds, which can be used in the software to implement
adaptive noise cancellers or advanced source separation
algorithms.

It should be noted that various versions of this stethoscope
were built, using capacitive, piezoelectric and MEMS micro-
phones. The datasets introduced in the sequel was acquired by
the capacitive microphone version of the stethoscope.

III. THE DATABASE

The acquisition of signals with the developed device was
approved by the Biomedical Engineering Review Committee
(IRB equivalent) of Shiraz University School of Electrical and
Computer Engineering. A total number of 24 male subjects
aged between 23 and 29 (average: 25.4+1.9 years) attended
the study. The individuals gave informed consent to participate
in the study.
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Fig. 2. A schematic of the designed stethoscope with a microphone embedded
in the tubing

The acquired dataset consists of 69 simultaneous ECG
and PCG recordings, each with a duration of 30 seconds (8
records) and 30 minutes (61 records), acquired synchronously
from a three lead ECG and a single PCG stethoscope. Each
volunteer performed a specific task once (as detailed in the
sequel). In a few cases where the data quality was poor
(due to electrode/stethoscope detachment and analog front-
end saturation), the test was repeated to obtain acceptable
data. However, even the poor quality samples have been
included in the dataset for noise research purposes and labeled
as low quality in the spreadsheet accompanying the dataset.
In addition to the main PCG channel, for some subjects
the auxiliary audio channels PCG2, AUX1, and AUX2 were
recorded for audio processing research purposes; although
these auxiliary channels are mostly at quantization noise level
for the majority of the recorded sessions.

Cardiac auscultation is commonly performed from four
major chest areas. The Mitral valve (M) sound is heard better
at the distal end of the heart, anatomically landmarked between
the fifth and sixth ribs on the body surface. The Tricuspid valve
(T) sound is heard well on the left side of the heart, between
the fourth and sixth ribs. Therefore, we chose the location
between the Tricuspid and Mitral landmarks to record the heart
sound, to obtain both the first and second heart sounds to a
good extent, as shown in Fig. 3. The placement of the three
ECG leads are also shown in Fig. 3.

A. Acquisition protocol

The 30 s records were recorded during the development
phase of the device and the participants were seated in an
armchair during their acquisition.

The 30 minutes records (62 records) were acquired in an
indoor sports center. A structured interview determined that the
participants were in good physical condition and none reported
symptoms of autonomic or cardiovascular disorder. Each sub-
ject participated in one or a number of the physical scenarios,
detailed below. Accordingly, ten subjects participated in the
first scenario. Five of the participants of the first scenario
did not attend the rest of the stages. With the addition of six
new volunteers, a total number of eleven subjects contributed
in each of the three other scenarios. Only in the bicycle
exercise stress-test (Scenario D), two volunteers failed the
test due to physical fatigue. In order to prepare for each test,
volunteers avoided eating food, drinking caffeine, alcoholic

RA = white LA = black

RL= green

Fig. 3. ECG lead configuration and PCG stethoscope position for Dataset]

drinks and smoking for three hours before the test. But they
were permitted to drink water regularly.
The four tested scenarios are as follows:

1) Scenario A (rest condition): The participant laid horizon-
tally on a bed in a quiet room while ECG and PCG signals
were recorded for thirty minutes.

2) Scenario B (walking condition): The participant walked on
a treadmill at a constant speed of 3.7 km/h at an inclination
angle of one degree. The process lasted thirty minutes at
constant speed and slope.

3) Scenario C (treadmill stress-test): The modified Bruce
protocol was used for the treadmill stress-test [6], as shown
in Table I. This modified stress-test started at a lower
workload as compared to the standard test. The test lasted
thirty minutes and the increase in speed and treadmill
slope continued until the subjects reached excessive fatigue,
excessive heart-rate or chest pain. Whenever the subjects
reached this (subject dependent) extreme point, in order
to avoid a sudden decrease in the heart-rate, the speed was
gradually decreased to 3 km/h and the slope was decreased
to horizontal position. After a few minutes of walking in
this state, the participant sat in a chair until the end of the
test. The signals were acquired up to the end of the test.

4) Scenario D (bicycle stress-test): The bicycle stress-test
protocol is detailed in Table II. The test lasted thirty
minutes. The participant first rested for two minutes on
a stationary exercise bicycle without pedaling, then started
pedaling at a workload of 25 Watts/min. At the beginning
of the test, according to Table II, the external load was
gradually increased and the subject was asked to match the
power consumption to the power specified in the standard
test. Note that it is practically not possible to keep the
pedal speed at a constant value. Therefore, the power
consumption is only an approximation of the desired power
consumption. The participants continued the test until they
reached excessive fatigue, excessive heart-rate, or chest
pain. Next, in order to prevent a sudden decrease in the
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TABLE I
MODIFIED BRUCE TREADMILL STRESS-TEST PROTOCOL

Stage | Speed (Km/h) | Angle (degrees) | Duration (min)
0 2.7 0 3
0.5 2.7 5 3
1 2.7 10 3
2 4.0 12 3
3 54 14 3
4 6.7 16 3
5 8.0 18 3
6 8.8 20 3
7 9.6 22 3
TABLE II

BICYCLE EXERCISE STRESS-TEST PROTOCOL

Stage | Power consumption (Watts/min) | Duration (min)
0 2
25
25
50
75
100
125
150
175
200
225
250
275
300

O = 3]0 00| < o »| | W | = —| ©
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heart-rate, the external load level was gradually decreased
to 25 Watts/min. The subject remained in this state for
several minutes, then rested on a stationary bicycle until the
end of the test period, while the signals were continuously
recorded.

B. Data files on PhysioNet

The complete dataset is available online on Phys-
ioNet [3]. The data files are presented in both MATLAB
(ECGPCGO0XY.mat where XY = 01,...,69) and WFDB
(ECGPCGO0XY .dat and ECGPCGO0XY .hea) formats, with
identical base names. The MATLAB files are in double-
precision floating point format. Each file was covered into
16-bit WFDB format by using the mat2wfdb.m function
from the WFDB Toolbox [7], [8]. The accuracy of conversion
between MATLAB and WFDB formats was assessed per file
and per channel, by comparing the signal-to-noise ratio (SNR)
of the original MATLAB files versus the WFDB files read
by the rdsamp function of WFDB. All 16-bit WFDB files
had an SNR of above 60 dB per channel, as compared to the
original MATLAB files. Although 60 dB is fully acceptable
for most applications, researchers seeking double-precision
floating point accuracy are advised to use the MATLAB files.

The description of the corresponding physical activities
and the unique IDs of the participants are provided in the
spreadsheet ECGPCGSpreadsheet .csv, which accompa-
nies the dataset. For basic heart-rate extraction and analysis
from the ECG and PCG channels a sample MATLAB script
TestHeartRateCalculation.mis also provided online.

Additional source codes for analyzing this data are available
in the Open-Source Electrophysiological Toolbox (OSET) [4].

IV. ANALYSIS

The gathered database can be used for various ECG and
PCG analysis under physical activities. For proof of concept,
we present only some of the basic analysis, which can be
performed on the heart-rate time-series obtained from the
simultaneous ECG and PCG. The hypothesis is that while
the heart-rate time-series obtained from the ECG and PCG
are coarsely identical, there are “micro-deviations” between
the two time-series, which are rich in information. In fact,
apart from the methodologically different algorithms used for
heart-rate calculation from the ECG and PCG time-series
(due to the difference in their time and frequency domain
specifications), the micro-deviations between the two time-
series reflect the differences and the minor time-lags between
the electrical and mechanical functions of the heart. These
minor deviations are not random, and vary from case to
case and under physical workloads. In order to assess this
hypothesis, the signal processing steps shown in Fig. 4 were
applied to the ECG and PCG channels. The outputs of the
processing scheme in Fig. 4 are the heart-rate time-series. Each
stage of the processing units is detailed in the sequel.

A. Pre-processing

For the ECG channels, a cascade of a moving median filter
of length 0.6 s, and a moving average filter of length 0.3 s
are used to remove the baseline wander. This combination
has been previously shown to be very effective and robust for
ECG baseline wander removal. As an acoustic signal, the PCG
does not physically have a baseline drift and therefore does not
require baseline removal. However, in order to keep the ECG
and PCG synchronous, the delay of the two-stage baseline
wander removal filters in the ECG signal path (which is half
the total window lengths, or 0.45 s) is added to the PCG signal
path, by zero-padding the beginning of the PCG signals.

Since the signals have been acquired indoor, the powerline
noise (50 Hz in this dataset) was inevitable and appeared in
variable amplitude throughout the thirty minute acquisition
sessions. As specified in the dataset spreadsheet, the power-
line has in cases appeared as bust noise of short duration.
Therefore, a fixed notch filter was insufficient for powerline
cancellation in these cases. Instead, an adaptive Kalman notch
filter developed in [9] was used, which adapts the notch filter’s
quality-factor (Q-factor) over time, depending on the level of
powerline interference. The source codes for this notch filter
are online available in the open-source electrophysiological
toolbox (OSET) [4].

B. ECG-based heart-rate calculation

A modified version of the Pan-Tompkins algorithm was used
for R-peak detection from the ECG channels. Accordingly, a
bandpass filter with a passband between 10 Hz and 40 Hz
was applied to the ECG. Next, the signal energy envelope was
calculated over a sliding window of length 75 ms. The R-peaks
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Fig. 4. Signal processing block diagram for heart-rate calculation from ECG and PCG signals

were obtained by local peak detection of the energy envelopes
over windows of 0.5 s. This R-peak detection scheme was
very effective for the current database and was approved
by visual inspection of the R-peak locations on the ECG
signals. Despite its accuracy, due to the physical activity of
the subjects, a small fraction of the R-peaks were mis-detected
or dropped. These cases were identified by studying the heart-
rate time-series trend and by detecting outlier peaks in the
RR-interval sequence. In these cases, the misdetected R-peaks
were manually corrected by an expert analyzer during post-
processing.

C. PCG-based heart-rate calculation

ECG peak detection algorithms are directly applicable to
the PCG. A major advantage of simultaneous ECG and PCG
acquisition is that the R-peaks can be obtained from the ECG
and used as a reference for beat segmentation and detection
of the PCG components (S1, S2, etc.), which are otherwise
not trivial to detect. For this study, the ECG R-peaks were
first estimated from the ECG and used as initial reference
points for estimating the S1 and S2 segments of the PCG.
These major PCG components are characterized by bumpy
shapes modulated over rather narrow band oscillatory waves.
Therefore, contrary to the ECG, the local peaks of the PCG
are not good indicators of the beat point. Instead, the energy

envelopes in the S1 and S2 frequency bands are more robust
indicators of the peak points of these events.

A typical PCG and its time-frequency representation is
shown in Fig. 6. Accordingly, the major Frequency compo-
nents, for both first heart sound (S1) and second heart sound
(S2) are below 200 Hz. This property was approved through
visual inspection of all data files. Therefore, for PCG-based
beat detection, a Butterworth bandpass filter with 35 Hz-
200 Hz passband frequency was applied to the PCG. The
resulting signal was used to calculate the local energy envelope
peaks, located after each ECG-based R-peak. The first and
second local peaks in the PCG envelope, which occurred
between successive R-peaks were assigned as the S1 and S2
components, respectively (cf. Fig. 5).

D. ECG versus PCG Heart-Rate Parameters

Having the R-peaks from the ECG and the S1 and S2 peaks
of the PCG, the following time intervals were calculated per
record: 1) R-R: from one R-peak to the next R-peak, 2) S1-
S1: from one S1-peak to the next S1-peak, 3) S2-S2: from one
S2-peak to the next S2-peak, 4) R-S1: from one R-peak to the
S1-peak of the same beat, 5) R-S2: from one R-peak to the
S2-peak of the same beat, 6) S1-S2: from one S1-peak to the
S2-peak of the same beat (systolic time interval), 7) S2-S1:
from one S2-peak to the S1-peak of the next beat (diastolic
time interval).
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An example of the resulting time sequences is shown in
Fig. 7, for one of the stationary biking samples of our dataset.

The power spectrum of a typical heart rate variability (HRV)
time-series calculated from the R-R intervals (from the ECG)
and the S1-S1 intervals (from the PCG) are shown in Fig. 8.

As a sample nonlinear analysis the approximate entropy
of the HRV time-series were calculated and compared for a
subject at rest, as shown in Fig. 9. Accordingly, the time-series
of the ECG-based HRV for smaller values of the tolerance
parameter () has a higher entropy than the time series of the
corresponding PCG.

V. DISCUSSION

This current dataset is useful for simultaneous multimodal
analysis of ECG and PCG, as it provides interesting insights
into the inter-relationship between the mechanical and electri-
cal mechanisms of the heart, under rest and physical activity.
Only as proof of concept, the dataset was used to compare the
heart-rate time-series and the heart-rate variabilities (HRVs)
of the subjects during the aforementioned stress-test. It was
shown that while the overall trend of the heart-rate time-series
obtained from the ECG and PCG are exactly identical (as
expected), there are considerable “micro-variations” between
them, which reflects the differences between the electrical and
mechanical functions of the heart during different levels of
physical activity. Specifically, as the heart-rate increases and
the RR-intervals of the ECG become shorter, the differences
between the R-peaks and the first and second heart sounds
(namely S1 and S2) obtained from the PCG channels do
not scale at the same rate. There are also notable differences

between stochastic features such as the sample entropy of the
ECG- and PCG-driven heart-rate time-series.

Another application for the dataset is to use the simulta-
neous ECG and PCG channels to develop mathematical PCG
models for generating synthetic signals. Previous research in
electrocardiography, have shown how synthetic ECG gener-
ators [10], can be used to develop algorithms for Bayesian
filtering and parameter extraction from highly noisy ECG
recordings [11]. The current dataset can help researchers
to develop similar algorithms for de-noising and automatic
parameter extraction from the PCG.

As noted in the data description, the three channels PCG2,
AUXI1, and AUX2 (which are available for some of the
records), are mostly very weak in amplitude (at quantization
noise level). However, through visual inspection and by lis-
tening to these audio channels, it is noticed that they have
captured some of the electronic device noises and the weak
background sounds in the environment. Therefore, although
they are not useful for direct utilization, researchers interested
in the signal processing aspects of the dataset might find these
channels useful for designing adaptive noise cancellers or mul-
tichannel blind and semi-blind source separation algorithms.

Due to the type of available chest braces used in this study
and the anatomical points selected for better auscultation of
the heart sounds, the setup was found to be inappropriate
for females during stress tests (multiple attempts in recording
signals from female volunteers were unsuccessful). This issue
is addressed in future versions of our design, by developing a
customized chest brace that would be comfortable for stress
tests, while fixing the stethoscope and ECG leads in place.

VI. CONCLUSION AND FUTURE WORK

The methodological aspects of the current research can be
extended from various aspects. We can for example study the
mutual information shared between the ECG and the PCG, and
the unique information through each modality, by using time
and frequency domain features. Apparently, the mutual/unique
information between the two modalities are extensively rich in
information and may be used to study the micro-variations
between the electrical and mechanical mechanisms of the
heart. We can also develop a Kalman filter based heart-rate
tracker, which uses the local peaks of the ECG and the PCG as
complementary measurements, similar to the approach adopted
in [12].
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