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The genetic code endows neural networks of the brain with innate comput-
ing capabilities. But it has remained unknown how it achieves this. Exper-
imental data show that the genome encodes the architecture of neocortical
circuits through pairwise connection probabilities for a fairly large set of ge-
netically different types of neurons. We build a mathematical model for this
style of indirect encoding, a probabilistic skeleton, and show that it suffices
for programming a repertoire of quite demanding computing capabilities into
neural networks. These computing capabilities emerge without learning, but
are likely to provide a powerful platform for subsequent rapid learning. They
are engraved into neural networks through architectural features on the sta-
tistical level, rather than through synaptic weights. Hence they are specified
in a much lower dimensional parameter space, thereby providing enhanced
robustness and generalization capabilities as predicted by preceding work.

1 Introduction

Artificial neural networks typically receive their computational capabilities through adap-
tation of a very large set of parameters: through training of their synaptic weights with
a very large number of examples, starting from a tabula rasa initial state. In contrast,
neural networks of the brain are already at birth highly structured, and they have innate
computing capabilities [1], see [2], [3], [4], [5], [6], [7], [8] for experimental data. In fact,
it is necessary for the survival of many species that an individual does not have to learn
through trial and error which sources of food are nutritious and which are poisonous,

∗These authors contributed equally.

1

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.05.18.444689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444689


2 Results

and that they can stand up and walk right after birth. But it has remained an open
question how the genetic code achieves this.

We re-examine experimental data on the architecture of generic microcircuits in the
mammalian neocortex [9] [10]. Their architecture was found to be genetically encoded
through connection probabilities between a fairly large number of genetically different
types of neurons, i.e., classes of neurons with similar gene expression profiles [11]. We
show that these genetically encoded architectural features of neural networks of the
neocortex are in principle able to engrave substantial computing capabilities into these
networks. We create for that purpose a mathematical model for genetically controlled
features of neural network architectures, a probabilistic skeleton. We show that proba-
bilistic skeletons are able to install powerful computing capabilities in brain-like neural
network models: recurrent networks of spiking neurons (RSNNs). In fact, they provide
a surprisingly expressive ”programming language” for that. For example, the architec-
tural features that it controls can endow RSNNs with the capability to compute on spike
times, to recognize particular spike patterns that might for example represent poisonous
food odors, to carry out generic computations of stereotypical cortical microcircuits, and
to enable quadruped locomotion.

Probabilistic skeletons specify computing capabilities of neural networks in the low
dimensional parameter space of general architectural network features. The strength of
an individual synaptic connection in the network is only scaled through the connection
probabilities of the neurons involved. This biologically derived indirect code removes
some of the brittleness that plagues trained deep neural networks, as predicted by [1].
In particular, it makes them robust to weight perturbations and online noise in synap-
tic connections. Furthermore, it drastically reduces the required number of synapses
and wire length. These implications provide new perspectives for understanding biolog-
ical neural networks, but also suggests new design paradigms for highly energy-efficient
neuromorphic hardware with unreliable analog units.

We will first present the precise definition of a probabilistic skeleton, and then show
that it controls architectural features that suffice for endowing RSNNs with a variety of
computing capabilities that are conjectured to be innate. Finally, we analyze general
properties of this new method and suggest directions for further research.

2 Results

2.1 Probabilistic skeletons provide a mathematical model for
aspects of network architectures that are under genetic control

Current models of cortical microcircuits [9, 10] are based on two types of data: A set of
neuron types -estimated to be well over 100 within a single neocortical area [11] - and a
table of connection probabilities for any pair of neuron types as in panel A of Fig. 4 in
[10], that is reproduced here as Fig. 1a. The entries of this table provide base connection
probabilities that are valid if the somata have a horizontal distance of at most 75µm. If
the horizontal distance is larger, these base connection probabilities are multiplied with
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an exponentially decaying function of their distance. Examples for such functions are
shown in panel C of Fig. 4 in [10], reproduced here as Fig. 1b.

A probabilistic skeleton is a mathematical model for this indirect style of encoding
network architectures. It requires the specification of some number K of neuron types,
the prevalence of each neuron type (see lower part of Fig. 1c), and base connection
probabilities between a pair of neuron types (see upper part of Fig. 1c). In addition,
it specifies a parameter σ that scales the exponential decay of connection probabilities
with the horizontal distance between the somata according to equation 4 in Methods; see
Fig. 1d for samples of exponential decays that were used. A probabilistic skeleton does
not specify the values of individual synaptic weights, just three scaling parameters win,
wE, wI that scale the strength of connections from input neurons and from excitatory
and inhibitory connections in the recurrent network, see Fig. 1e. Importantly, a proba-
bilistic skeleton does not define any specific neural network. Rather, it is a probabilistic
generative model from which an unbounded number of different neural networks with
common architectural features can be sampled.

To sample a neural network from a probabilistic skeleton, one specifies its number
N of neurons and arranges them on a 2D sheet (because their spatial distances are
relevant for their connection probabilities). A suitable method for arranging neurons of
different types in a uniform manner is suggested by a well-known ontogenetic feature
of the neocortical 2D sheet: It is structured as an array of minicolumns that extend
vertically across all neocortical layers [12], [13], [14]. Each minicolumn in a cortical area,
see Fig. 1f for an illustration, contains about the same number of neurons, from all major
neuron types that are prevalent in that area. Fig. 1g shows the resulting 2D arrangement
of neurons in our model, where each minicolumn -appearing as a disk in the top-down
view of Fig. 1g- contains in general the same number M of neurons from all neuron
types, according to the prevalence bar of the probabilistic skeleton (see bottom part of
Fig. 1c). For tasks with small numbers of input or output neurons, they were placed
into selected subsets of the minicolumns. The horizontal distance between neurons that
are located in the same minicolumn (disk) is negligible, and hence provided by base
connection probabilities. Disks are arranged orthogonally for simplicity, with a distance
of 60 µm between neurons in neighboring disks.

Multiple synaptic connections are common in the neocortex, see Fig. 7A of [9]. Hence
we draw for each pair i, j of neurons not just once, but S times from the corresponding
connection probability, see equation 4. We used S = 8 in our experiments, but the
exact value had little impact. The resulting multiplicity mij of synaptic connections
from neuron i to neuron j enables a rough differentiation of connection strengths that
can be argued to arise from the genetic code. Examples for the binomial distributions
of these multiplicities are shown in Fig. 1h.

Since a probabilistic skeleton only captures aspects of the architecture of neocortical
neural networks that are under genetic control, one can use this concept to examine the
impact of genetically encoded architectural features on computational properties of a
neural network. If a probabilistic skeleton endows its neural network samples with a
specific computing capability, this computing capability can be argued to be within the
reach of genetic control (”innate”).
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2 Results

Figure 1: | Illustration of the concept of a probabilistic skeleton. a Base connection
probabilities between 17 types of neurons in mouse V1 (reproduced from [10]). White
grid cells indicate unknown values. b Scaling of connection probabilities with the hor-
izontal distance of their somata for mouse V1 (reproduced from [10]). c Top: Sample
base connection probability table of a probabilistic skeleton for the case of K = 6 neuron
types. White grid cells indicate here that the corresponding base connection probability
has the value 0. Rows and columns labeled ”in” refer to input neuron types, the label
”out” refers to output neuron types. Bottom: Prevalence-bar of a probabilistic skeleton.
Its length defines the number M of neurons in a minicolumn. d Sample options for
distance-dependent scaling functions, with different values of σ in equation (4). These
functions turned out to work well for computing tasks that we considered. e Large-scale
architecture of a neural network sample from a probabilistic skeleton, with the recurrent
network in the center, as well as unidirectional synaptic connections from all input neu-
ron types and to all output neuron types. f Sketch of a cortical minicolumn according
[12], showing somata of neurons on different layers and vertically running dendrites. g
Topdown view of our 2D arrangement of neurons, each containing the same combination
of neurons of different types (color code as in panel c). Horizontal displacements of neu-
rons within a minicolumn (disk) are just for illustration, they are actually placed at the
center. h Examples for binomial distributions from which the number mij of synaptic
connections from a neuron i of type I to a neuron j of type J are drawn for the case
pI→J = 0.35 (two panels on the left) and pI→J = 0.85 (two panels on the right), each for
two different values of the spatial distance Dist(i, j) between their somata. |

2.2 Algorithmic approach for optimizing probabilistic skeletons

The iterative method illustrated in Fig. 2 is used to examine whether a specific com-
puting capability can be induced by a probabilistic skeleton. Since the fitness function
is in general not differentiable, we have used evolution strategies [15] as optimization
algorithm for probabilistic skeletons. This algorithm combines elements of stochastic
search with empirical estimates of gradients of the fitness function. It is used to opti-
mize a parameter vector θ that consists of the base connection probabilities pI→J and
prevalences pI for all neuron types I and J , and the 3 scaling parameters win, wE, wI for
synaptic weights. The remaining parameters K and σ of a probabilistic skeleton were
separately optimized.
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Figure 2: |Illustration of our algorithmic approach for optimizing a probabilistic skele-
ton for a computing task. The motor control task of Fig. 6 is used as illustration.
Several RSNNs are sampled from the current probabilistic skeleton, and their capability
to solve the given task, i.e., their fitness, is measured. Evolution strategies modify the
probabilistic skeleton based on these fitness values. Then the loop is iterated.|

One can use probabilistic skeletons to generate any type of neural network. We exam-
ine here applications to recurrent networks of spiking neurons (RSNNs). Among simple
neural network models, these can be argued to be the most brain-like. In addition, it
is more difficult to construct or train RSNNs for a specific computing task, so the task
becomes more challenging. One reason is that -in contrast to artificial neural networks-
their computations are event-based rather than clocked: A spike represents an event
in space and time, and time can be used as additional resource for representing and
transforming salient information. It is also substantially more difficult to induce compu-
tational function in RSNNs through gradient descent of their synaptic weights because
of the non-differentiability of spiking neuron models.

2.3 Computations on spike times.

We want to install in RSNNs through their architecture the capability to classify and
remember the time interval between two waves of input spikes, see the top row of Fig. 3a.
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The first wave of input spikes arrives right at the beginning of a trial, and the second
wave can arrive anytime during the subsequent 200ms. These 200ms are partitioned
into 4 bins of 50ms length, indicated by yellow vertical boundaries in the top row of
Fig. 3a. There are 4 output neurons types, each assigned to one of the 4 bins, and that
one which produces the most spikes during the last 30ms of the 200ms long trial encodes
the decision of the network. The time scale of this task is in the range of behavioral
responses, but a clever network organization is needed in order to enable a network
of standard neuron and synapse models to discern and classify such fairly large time
differences up to 200ms, and to produce the decision at a specific time after the onset of
a trial, without an external clock or prompt.

We found that RSNN samples from a probabilistic skeleton with just 10 types of
neurons in the recurrent network and altogether 164 parameters, shown in Fig. 3b, can
solve this task with a classification accuracy of 97% (standard deviation 2.1%). The
fitness of the probabilistic skeleton was tested during its optimization on RSNN samples
with 304 neurons. Thus the number of parameters of the probabilistic skeleton (164)
represented just a tiny fraction of the 59,904 parameters (= number of potential synaptic
connections of the RSNN samples) that would have to be adjusted during training of
the RSNN. A typical spike raster of an RSNN sample is shown in Fig. 3a. One sees
that temporal distances between the two waves of input spikes and the decision time are
bridged by persistent activity in specific recurrent neuron types.

Fig. 3b, c suggest that the logic of interactions between the neuron types is quite
complex. The 4 rightmost columns of the table of base connection probabilities in Fig. 3b
show that each of the 4 types of output neurons receives synaptic inputs from 4 different
-although overlapping- sets of recurrent neuron types. The complex interactions within
the recurrent network manage to activate during the decision period just the right set
of recurrent neuron types. In the trial shown in Fig. 3a the 3rd output type is correctly
activated during the decision period, because the neuron types E2, E6, E7 from which
it receives the most synaptic connections all fire persistently during this period. This is
facilitated by the fact that E2 and E7 have strong internal recurrent connections, and
E6 is activated by them. During the last 10ms also E5 start to fire, which activates the
2nd output type, without being able to cause an incorrect decision. Spike rasters from
further sample trials are shown in the Supplement (Fig. S1, S2, S3). Altogether we see
that architectural features that are under genetic control are able to induce in RSNNs
sophisticated computational capabilities on spike times.
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Figure 3: |Induction of innate computing capability on spike times through a proba-
bilistic skeleton. a The task is to classify the time of the 2nd wave of input spikes into
4 bins of length 50 ms, indicated by dotted lines in the top row. The network is sup-
posed to indicate its decision through stronger firing of the corresponding type of output
neurons during the last 30ms of a trial, indicated as a red frame at the bottom. Firing
activity is shown for all 304 neurons of an RSNN sample of the probabilistic skeleton.
Emergent sequential activation of different assemblies of neurons is clearly visible. b
Probabilistic skeleton for this task that was optimized using RSNN samples with 304
neurons. c The connectivity graph induced by this probabilistic skeleton. It is plotted in
the same style (chord diagram) as connectivity data for cortical microcircuits in Fig. 7C
of [9]. The thickness of ribbons is proportional to the number of synaptic connections;
the thickness of their arrow-heads encodes for the target neuron type the distribution of
incoming connections over source neuron types. The lengths of arcs for different neuron
types reflect their expected fraction of incoming and outgoing synaptic connections.|
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2.4 Can the genetic program install the capability to recognize
specific spike patterns in RSNNs?

We are addressing here the question of whether the genetic code can install in RSNNs
the capability to recognize specific sensory input patterns, even without prior experience.
These especially salient sensory input patterns could represent odors of poisonous food,
views of predators, or faces of conspecifics [8]. Most sensory inputs, including olfactory
inputs (see e.g., Fig. 5 of [16]), arrive in RSNNs of the brain in the form of spatio-
temporal spike patterns. Hence we wondered whether a probabilistic skeleton can endow
RSNNs with the capability to recognize variations of specific but arbitrarily chosen
spatio-temporal spike patterns, such as the ones shown for classes 1 and 2 in Fig. 4a. At
the same time, the RSNN should not respond in the same way to other spatio-temporal
spike patterns, even if they have the same firing rates, such as the samples of class 3 in
Fig. 4a. The spike pattern templates for classes 1 and 2 were frozen Poisson spike trains.
Samples from the corresponding classes were generated by adding, deleting, and shifting
spikes of these templates in time. Spike patterns of class 3 were freshly generated with
the same Poisson firing rates as the spike templates for classes 1 and 2. The network
decision was expected to be encoded like in the preceding task: There are 3 output
neuron types, and the one that produces the most spikes during the last 30ms of a trial
determines the network decision.

We found that a probabilistic skeleton with 9 recurrent neuron types (shown in Fig. 4b,
c) can install this capability in RSNNs samples with a classification accuracy of 91%
(standard deviation 3.1%). The spike rasters of RSNN samples with 144 neurons are
shown in Fig. 4d, e, f. One sees again that each type of output neurons receives synaptic
inputs from somewhat different recurrent neuron types. For example, output neurons of
type 3 are excited through strong connections from recurrent type E5, yielding in the
trial shown in Fig. 4f the correct network decision. Type E5 is also highly active in the
trial shown in Fig. 4d. But output neurons of type 3 also receive inhibitory input from
type I2, whose activation prevents them from firing incorrectly in this trial. Altogether
we see again that emergent assembly activations bridge the delay until the network has
to make a decision.

The probabilistic skeleton for this task had 157 parameters, which is very efficient
given that the specification of the spike templates for classes 1 and 2 requires already a
substantial number of parameters. In contrast, the RSNN samples that were considered
during the optimization of the probabilistic skeleton had 144 neurons, hence 13,392
potential synaptic connections. Altogether we see that low-dimensional architectural
features of neural networks are able to imprint into them special handling of particular
spatio-temporal spike patterns, a feat that one would have expected to require fine-tuning
of synaptic weights through training in a high-dimensional parameter space.
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2 Results

Figure 4: |Innate spike pattern classification capability. a Two samples from each of
the three classes of spike input patterns. The first two classes consist of variations of
specific but arbitrarily chosen spike patterns, the third class consists of distractor spike
patterns with the same firing rates. b Optimized probabilistic skeleton for this task. c
The connectivity graph induced by this probabilistic skeleton, plotted in the same style
as in Fig. 3c. d-f Firing activity is shown for all neurons of RSNN samples with 144
neurons, in sample trials for spike inputs from classes 1-3. The 30 ms time window during
which the network decision is expected is indicated by the red frame at the bottom of
the spike rasters.|
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2.5 Generic 2D computing capabilities.

The neocortex forms a 2D sheet, with topographic maps between cortical areas and
from peripheral sensory neurons. Hence it is commonly conjectured that the neocortex
is genetically endowed with basic computing capabilities that make use of this 2D orga-
nization [12]. We wondered whether a probabilistic skeleton can capture such basic 2D
computing capabilities. Contrast enhancement and amplification of local maxima, i.e.,
applying a Mexican hat filter, is a standard example for such a 2D computing capability.
We found that a probabilistic skeleton with just 4 recurrent neuron types (shown in
Fig. 8a) endows RSNN samples with the capability to approximate the computation of
a Mexican hat filter, achieving for example for 5x5 input patterns a correlation of 0.89
with this target (standard deviation 0.01). Fig. 5 c and d depict two examples for the
resulting transformation of the input patterns shown at the top to the outputs shown
at the bottom by an RSNN sample from the probabilistic skeleton with 1152 neurons.
The grey values of pixels in the input- and output patterns were encoded through fir-
ing rates. While this RSNN sample had 1152 neurons and 995, 328 potential synaptic
connections, the probabilistic skeleton encoded this computation with just 32 parame-
ters. Although this probabilistic skeleton had been optimized for computations on 5x5
inputs (red square in Fig. 5b), RSNN samples could also process the shown 12x12 input
patterns very well (cross correlation 0.71 with target). Hence one can argue that the
underlying probabilistic skeleton captures a generic 2D computing capability. In partic-
ular, the probabilistic skeleton managed to organize the somewhat delicate interaction of
excitatory and inhibitory neurons that is needed to execute this task. The phasic firing
pattern of the output neurons in Fig. 5a suggests that the resulting RSNN implements
the local contrast enhancement through an iterated temporal competition between exci-
tatory neurons in the recurrent network, where the strongest activated neurons fire first,
thereby inhibiting weaker competitors -but transiently also themselves.

Cortical areas typically receive synaptic inputs in the form of multiple topographic
maps from other cortical areas, and also from the visual or somatasensory periphery.
Coincidence detection between bottom-up and top-down projections is conjectured to
be a fundamental operation in perception [17], see Fig. 5e for an illustration. This com-
putation requires the RSNN to approximate the computation of products of input values
at the same location in the two input patterns (see Methods and target outputs at the
bottom of Fig. 5g and h), rather than sums: Hence is somewhat nontrivial to imple-
ment with spiking neurons. Fig. 5f-h shows that also this fundamental 2D computing
capability can be induced through a probabilistic skeleton (shown in Fig. 8b). Fig. 5g
depicts the computation of an RSNN sample on the two 2D patterns input1 and input2
shown at the top and middle of panel h. Input- and output values were again encoded
by firing rates. The RSNN produced the output shown below them. The target output
is depicted at the bottom. Panel i shows another example of this computation by the
RSNN. The RSNN achieved on 5x5 patterns a correlation with the target output of
0.777 (standard deviation 0.014), which is not optimal, but substantially higher than
what is achievable with a linear computation (sum), see Fig. 8a. This probabilistic
skeleton had 121 parameters. It had been optimized, like the one for local contrast
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enhancement, for 5x5 input patterns, but also achieved for 12x12 input patterns a cross-
correlation of 0.71 with the target. The RSNNs for the 12x12 inputs had 2160 neurons
and 3,732,480 potential synaptic weights. Altogether the results of this section provide
evidence that fundamental computational operations that have been conjectured to be
employed by cortical microcircuits throughout the neocortical sheet can very well be
engraved into these circuits by genetically controlled features of their architecture, in a
quite low-dimensional parameter space.
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Figure 5: |Generic 2D computations: Local contrast enhancement and detection of
coincidences in two input streams. a, c Spike raster plot of an RSNN sample solving
the local contrast enhancement task, for the 2D input pattern shown at the top of panel
c, producing the 2D output shown at the bottom of panel c. Grey values were encoded
through Poisson firing rates. b The red box in the 12x12 grid indicates the 5x5 pattern
size for which the probabilistic skeleton had been optimized, the 12x12 grid the pattern
size on which its RSNN sample had been tested. d A different 2D input and output
pattern for the same RSNN as in c. e Motivation of the coincidence detection task as
fundamental computational primitive of generic brain computations on expectations and
multi-modal sensory inputs; figure adapted from [18]. f Spike raster of an RSNN sample
of the probabilistic skeleton for solving the 2D coincidence detection task. g Pairs of 2D
input patterns, for which this RSNN produced the 2D output patterns shown below
them. Target output is shown at the bottom. h Another sample for the same RSNN.|

2.6 A probabilistic skeleton can endow neural networks with innate
motor control capability.

Innate rudimentary motor control capability, for example, to stand up and walk right
after birth, is essential for survival in many species. In contrast to the previously dis-
cussed computing tasks, biological motor control requires a transformation of multiple
spike-input streams -that represent sensory inputs and feedback- into multiple time-
varying spike output streams that control mussels in a closed loop, hence in real-time.
We chose a standard benchmark task for motor control: Enabling a quadruped (”ant”)
to walk by controlling the 8 joints of its 4 legs through a suitable stream of torques. The
RSNN controller received 9 spike input streams that encoded -with a delay of 60 ms to
make the task more challenging and biologically realistic- through population coding 9
dynamically varying variables: The angles of the 8 joints as well as the vertical position
of the torso, see Fig. 6a. Further information about population coding can be found in
the Suppl. in section 2.7 We found that a probabilistic skeleton with just 15 types of
neurons in the recurrent network, specified by 635 parameters, see Fig. 6b, is able to
encode this motor control capability. We refer to movie of the ant locomotion for the
resulting locomotion of the quadruped when its joints were controlled by an RSNN sam-
ple from this probabilistic skeleton. One can see in the input/output sample shown in
Fig. 6d that the computational transformation which this task requires is quite complex.
A sample spike raster of this RSNN in Fig. 6c shows that the population coding of the
continuous-valued input variables induced a rather complex spatial dynamics of firing
activity in most of the neuron types.

Note that the 635 parameters of the probabilistic skeleton correspond to the number
of synaptic weights of a recurrent neural network with 25 neurons. However, this would
hardly be able to transform the 9 time series of feedback signals into the required 8 time
series of output signals. We employed RSNN samples from the probabilistic skeleton
whose recurrent network consisted of 250 neurons. Direct tuning of their synaptic weights
for this control task would result in a 114, 500 dimensional encoding of the control
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algorithm. The compressed encoding of the control strategy enhanced the robustness of
the RSNN controller: After randomly deleting 30% of the recurrent and output neurons
of the RSNN, it was still able to control the ant locomotion, although the ant was
walking somewhat slower, see (Movie of ant after 30% deletion). Altogether we have
seen in this section that also demanding real-time computations in a closed loop with the
environment, as required for locomotion, can very well be genetically encoded, through
means that are already known.
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Figure 6: |Example for innate motor control capability through a probabilistic skeleton.
a System architecture, indicating network inputs and outputs, as well as the 8 joints that
are controlled by the RSNN outputs. b Probabilistic skeleton for solving this motor
control task (base connection probabilities for its numerous input- and output neuron
types are shown in the Suppl., Fig S5) c Spike raster of an RSNN sample with 458
neurons drawn from this probabilistic skeleton. Population coding of the 9 continuous-
valued input variables induced spatially structured firing activity in most of the neuron
types. d Sample dynamics of input and output variables of the RSNN controller on a
larger time scale.|
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2.7 General results and principles for designing neural networks
through probabilistic skeletons.

The number of recurrent neuron types is a new measure for gauging the complexity of
the connection structure of neural networks that results from the probabilistic skeleton
approach. Fig. 7a shows that the performance of RSNN samples tends to depend above
some rather small threshold very little on the exact number of neuron types for which
the probabilistic skeleton has been optimized. Note that we excluded the motor control
task from the control experiments in this section because of its substantially higher
computing demands.

It is reasonable to assume that the connectivity structure of neural networks in the
brain was not optimized for a specific number N of neurons, both because of differ-
ences in brain sizes between and within species, and because of changing network sizes
during ontogeny. Fig. 7b shows that even if the probabilistic skeleton is optimized just
for a single number N of neurons in RSNN samples (indicated by a star), computing
capabilities that are induced through a probabilistic skeleton tend to generalize to sub-
stantially larger neural networks. The decays in performance for large values of N arise
partially because neural representations and spatial distributions of network inputs did
not grow accordingly. If these grow with the network size, and even more if the proba-
bilistic skeleton is optimized for RSNN samples of different sizes, even better invariance
of computational performance can be expected.

Biological neural networks are subject to continuously ongoing spine motility, i.e.,
pruning of synaptic connections and generation of new connections, both spontaneously
and during learning [19, 20] Hence we wondered whether probabilistic skeletons provide
robustness to random changes in the strengths of synaptic connections. Fig. 7c shows
that the computational performance of RSNN samples is little affected by pruning up
to 10% of their synapses, and decays gracefully for more radical pruning. If pruning
is accompanied by simultaneous random generation of new synaptic connections, as
suggested by the experimental data for biological neural networks, robustness of perfor-
mance becomes even better. If one changes the number of synaptic connections for each
connected pair of neurons randomly up or down, the RSNN samples tolerated pertur-
bations of up to 75% in the number of synaptic connections for each pair of neurons
without significant changes in performance, see Fig. 7d.

Another characteristic feature of neural networks of the brain is that they have to
carry out their computations in the presence of a substantial amount of noise in synap-
tic transmission, caused by the fact that the probability of presynaptic release of a vesicle
of neurotransmitters in response to a spike of the presynaptic neuron is in the neocor-
tex typically around 0.5 [21]; in other words, synaptic transmission is highly unreliable.
Since neural networks that have been trained in the traditional way typically have prob-
lems with that, we wondered whether probabilistic skeletons endow RSNN samples with
more robustness to noise in synaptic transmission. Fig. 7e shows that their computing
capability is little affected by random changes up to 75% in the strengths of individual
synaptic connections for each presynaptic spike, and decays gracefully for even larger
noise amplitudes. This result suggests that encoding computational function through
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the architecture, rather than through individual synaptic weights, automatically endows
neural networks in the brain with high tolerance to continuously ongoing noise due to
spine motility. Altogether the results shown in Fig. 7 illustrate a new range of proper-
ties that emerge in RSNNs when one installs their basic computational capabilities by
methods that appear to be employed by nature.

A further inherent property of RSNN samples from probabilistic skeletons is that their
number of synapses and total wire length grow linearly with the number of neurons (see
Suppl. section 2.5 and 2.6), rather than quadratically as in most neural network designs.
Furthermore, since these RSNN samples have a well-defined spatial structure, one can
relate the number of neurons per square mm, the number of synapses per neuron, and
their total wire length to experimental data. It turns out that they stay in all three
counts below the measured numbers from the neocortex, by a 1-3 orders of magnitude
(see Methods). One reason is that the number M of neurons in a minicolumn was in
our examples well below the 80 -120 neurons that are typically found in a neocortical
minicolumn. Also, the number K of neuron types stayed in our examples well below
the 111 neuron types identified in mouse V1 [11]. Hence brain data are consistent with
a hypothesis that a generic cortical microcircuit can be understood as a superposition
of several RSNN samples, each from a different probabilistic skeleton that endows the
microcircuit with an additional innate computing capability.
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3 Discussion

Figure 7: |General functional properties of RSNN samples from probabilistic skeletons.
Performance of RSNN is measured relative to random guessing as a common baseline for
all tasks, see Methods for details. a Mean performance values achieved by optimizing
probabilistic skeletons with different numbers of recurrent neuron types. b Generaliza-
tion capability of probabilistic skeletons to RSNN samples with different neuron numbers
N . The value of N that was considered during the optimization of the probabilistic skele-
ton is marked by a star. c Degradation of computing capabilities through pruning of
synapses (elimination of synapses with the smallest connection probabilities). The x-
axis depicts the average number of synapses per neuron. The star marks the number
of synapses per neuron before pruning. d Performance after random perturbation of
the strengths of synaptic connections, plotted as a function of the maximal amount of
change in the number of synaptic connections for each neuron pair (i,j), expressed as
a fraction of the original number mij of synaptic connections. e Performance in the
presence of independent noise in synaptic transmission for each presynaptic spike and
each synapse. Noise amplitude was measured similarly as for panel d; see Methods for
details. |

3 Discussion

We have shown that a simple mathematical model for genetically controlled neural net-
work features suffices for endowing RSNNs with substantial computing capabilities, in
particular with standard examples of innate computing capabilities. This method pro-
vides a highly compressed indirect code for specifying network function that is diametri-
cally opposed to the standard procedure in machine learning, where computing capabil-
ities are directly induced in the very large parameter space of synaptic weights through
extensive training on huge datasets, starting from a tabula rasa initial state. Our results
imply that a largely overlooked structural difference between biological and artificial
neural networks plays an essential role for that: Biological neural networks consist of a
fairly large number of genetically different neuron types, whereas artificial neural net-
works usually consist of just one or very few neuron types. Surprisingly, this structural
difference is relevant even if one ignores the diverse morphological and neurophysiological
features of different biological neuron types: Just the possibility to define network ar-
chitectures in terms of connection probabilities between different neuron types provides
a powerful method for programming computational function into neural networks.

The concept of a probabilistic skeleton provides a rigorous basis for exploring this
biological link from network architecture to network function. It defines a probabilis-
tic generative model that can generate an unbounded number of neural networks -with
different numbers of neurons and different synaptic weights- whose architectures share
some functionally salient features on the statistical level. Arguably, such a probabilistic
model better captures the impact of the genetic code on network function than determin-
istic models. They also raise an interesting theoretical question: Are there functionally
desirable network architectures that can be generated with significant probability by a

20

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 1, 2021. ; https://doi.org/10.1101/2021.05.18.444689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444689


3 Discussion

suitable generative model, but are hard to construct deterministically? It is already
known that certain graphs with attractive information routing capabilities, such as ex-
panders and concentrators, are hard to generate through deterministic wiring rules, but
have a non-zero probability of being generated through probabilistic wiring rules [22].

Neural network samples from probabilistic skeletons differ in another aspect from
commonly considered network architectures: Their number of synapses and total wire
length grow just linearly with the number of neurons. This appears to be essential
for physical implementations of large neural network instances, both in brains and in
neuromorphic hardware, but is rarely met by existing design methodologies. It arises in
samples from probabilistic skeletons through extensive uses of topographic maps between
different neuron types and external inputs, which enable an interesting style of 2D in-
place-computing.

Our concept of a probabilistic skeleton only aims at capturing a minimal fragment of
the functionally relevant genetically encoded program for neural network architectures.
It will be interesting to see which further computing capabilities of neural networks
emerge if one allows neurons of different types to have different electrophysiological
and/or morphological properties, as they have in the neocortex [9, 10]. We found that
allowing different neuron types to use different GLIF3 point neuron models of [10] did
not enhance performance for the tasks that we considered. Additional extensions of
the concept of a probabilistic skeleton can phase in different spatial decay constants for
connection probabilities for different neuron types, as indicated in Fig. 4 of [10], as
well as selected long-range connections between spatially separated network modules.
Furthermore, it is well-known that cortical microcircuits employ not only genetically
different types of neurons, but also many genetically different synapse types [23], [24].
Different synapse types were found to exhibit important differences in their short term
[25], [26] and long term dynamics [27]. Hence they are likely to affect both computing
capabilities and learning aspects of neural network samples.

Probabilistic skeletons provide an approach for meeting the challenge of [1]: Under-
stand the functional impact of the ”genomic bottleneck”, i.e., of the fact that the number
of bits which the genome uses for encoding the neural networks is really small in com-
parison with their number of synapses. This challenge has also been addressed by other
recent work. [28] models its impact on a more abstract level, assuming that the ex-
istence of synaptic connections can be inferred deterministically from binary codes for
neurons through linear operations. The model of [29] is less abstract than ours and
that of [28]. It is based on individual neuron-to-neuron compatibility rules based on
transcription factors that are especially salient in smaller brains. A functional advan-
tage of the genomic bottleneck was demonstrated in both of these approaches in terms
of enhanced generalization capabilities of trained feedforward artificial neural networks.
We have demonstrated in Fig. 7 implications of the genomic bottleneck for more brain
like recurrent networks of spiking neurons, such as robustness to changes in the number
of neurons or synapses, changes in the strengths of synaptic connections, and noise in
synaptic transmission. This inherent robustness should be contrasted with the inherent
brittleness of deep neural networks [30]. It also suggests a new approach for the design
of neuromorphic chips that are based on extremely energy-efficient but imprecise mem-
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ristors or other novel physical devices [31]. Another possible technological application
arises in the domain of organoids [32].

Probabilistic skeletons provide a biologically derived method for indirect encoding
of functional neural networks. It will be interesting to compare this biological style of
indirect encoding with approaches that have recently been proposed in machine learning,
especially in the context of meta-learning [33] [34]. Their style of indirect encoding
is also likely to produce nice expansions of indirect coding approaches in the area of
neuroevolution [35, 36].

4 Methods

Neuron types

There are 3 kinds of neuron types: input types, recurrent types, and output types. The
neurons from these three categories are referred to as input neurons, recurrent neurons,
and output neurons.

Input neurons provide external inputs in the form of spike trains. They have no
internal states, and there are no recurrent connections from recurrent neurons or output
neurons back to the input neurons. The output neurons receive their input from the
recurrent neurons (see Fig. 1g).

Recurrent neurons can have connections from input neurons and other recurrent neu-
rons. Each recurrent neuron type consists only of excitatory neurons or only of inhibitory
neurons. Note that input or output types only consist of excitatory neurons.

Neuron and synapse models

Recurrent and output neurons are modelled as discrete-time versions of standard Leaky-
Integrate-and-Fire (LIF) neuron models, More precisely of the GLIF1 model from [37].
The definition of the continuous neuron model can be found in the Suppl. in section
2.1. Control experiments with the GLIF3 model from [10] produced qualitatively similar
results.

For the discrete time version of neuron j ∈ {1, . . . , N} of type J the membrane
potential is denoted by Vj and the input current by Ij. We assume that currents are
constant on small intervals [t, t+δt], which have been set to a length of 1 ms. The neural
dynamics of the model in discrete time can then be given as

Vj(t+ δt) =

{
αVj(t) + (1− α)(EL + 1

Cm
Ij(t)) if zj(t) = 0

Vr else
(1)

(2)

where α = exp
(
− δt

τ

)
and

zj(t) = H (Vj(t)− vth(t)) (3)
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with the Heaviside function H(x) =

{
0 x < 0
1 else

. Here τ ∈ R is the membrane time

constant, EL ∈ R is the resting potential, Cm ∈ R is the membrane conductance and
vth is the threshold voltage. After spiking the neuron enters a refractory period, lasting
tref > 0, in which zj(t) is fixed to zero.

The previously defined neuron model use the following set of parameters:

H = {CJ
m, τ

J , V J
r , v

J
th, t

J
ref | J = 1, . . . , K}.

The values for {CJ
m, τ

J , V J
r , v

J
th, t

J
ref | J = 1, . . . , K} are taken from [10], and the raw

data is available in [38]. A good overview of these neuron types has been made available
online in the database of the Allen institute. Detailed biological and modelling data
for the prototype of the excitatory neuron can be found at Excitatory neuron and the
prototype for the inhibitory neuron at Inhibitory neuron. We have seen no evidence that
the exact values of the GLIF1 parameters are essential for the results reported in this
paper.

The same synapse model as in [10] has been used. Additional information about the
synapse model can be found in the Suppl. in section 2.2.

Details to the definition of a probabilistic skeleton

A probabilistic skeleton consists of

(i) A natural number K (the number of neuron types in the model; we have set K = 6
in the illustrations of the model in Fig. 1c.

(ii) Base connection probabilities pI→J for neurons of type I to neurons of type J ,
for the case that they are located within the same minicolumn (see upper part of
Fig. 1c for a sample table of such base connection probabilities).

(iii) The prevalence pI of each neuron type I, i.e., a number representing the fraction
of neurons belonging to type I in a generic minicolumn, see the bottom plot of
Fig. 1c. Further details can be found in the Suppl., section 2.3.

(iv) The common weight win of all synapses from input neurons, as well as the common
weight wE of all synapses from excitatory and the common weight wI of all synapses
from inhibitory neurons in the recurrent network.

(v) A scaling parameter σ that controls the decay of connection probabilities with the
horizontal distance between somata.

A probabilistic skeleton is a generative model, which defines a distribution over neural
networks of different sizes and with different synaptic connections that share common
architectural features.

One samples a neural network from a probabilistic skeleton according to the following
rules:
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4 Methods

1. Pick a number nmcol of minicolumns and a number M ≥ K of neurons per mini-
column. This determines the number of neurons N = nmcol · M in the sample
network.

2. Draw S times for any pair (i, j) of neurons with i of type I and j of type J from
the binomial distribution with probability:

P[Synapse from i to j] = pI→J e
−Dist(i,j)2

σ2 . (4)

This yields the number mij of synaptic connections from i to j.

The functional form of the dependence of connection probabilities on Dist(i, j) ap-
proximates the corresponding data from [10], see panels b and d in Fig. 1. We have set
S = 8 in all our experiments, thereby allowing up to 8 synaptic connections between
any pair of neurons. According to Fig. 7A in [9] most synaptically connected neurons do
in fact have multiple synaptic connections. The effective strength (weight) of a synaptic
connection from neuron i to neuron j is then the product of the general scaling parameter
win, wE, or wI , that depends on the type of neuron i, and the number mij of synaptic
connections from i to j that results from drawing S = 8 times from the distribution
given in equ. (4).

Optimization method

Probabilistic skeletons were optimized for specific computing tasks with the Separable
Natural Evolution Strategy (Separable NES), which had been introduced in [15]. The
algorithm is given below in pseudo code. For the optimization of the d-dimensional vector
θ of parameters of the probabilistic skeleton the algorithm uses a Gaussian distribution
in every dimension, with means µ ∈ Rd and variances σ ∈ Rd. The basic idea is that
one samples λ times from this distributions, then evaluates the fitness values of the
so-called offsprings, i.e. the vectors θj ∼ N (µ, Iσ), and finally adapts the Gaussian
distributions to capture more of those parts of the parameter space where the fitness of
the offsprings is higher. The fitness function F depends on the computational task for
which the probabilistic skeleton is optimized. The mean values of the parameters are
initialized by truncated normal random variables with mean zero and variance 1.0 and
the variance values are initialized as ones. We found that choosing the learning rate for
µ as ηµ = 1.0 yields good results, which is consistent with the suggested value in [39]
and [40]. The learning rate for σ was chosen as ησ = 0.01. As suggested in [40] mirrored
sampling has been employed, see, e.g., [41]. That is, for every Gaussian noise vector
s ∈ Rd also the offspring, which results from using −s, will be evaluated.
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Algorithm 1 Separable NES

Require: λ ∈ N,µ ∈ Rd,σ ∈ Rd, ηµ, ησ, F
Ensure: λ ≡ 0 mod 2, ηµ > 0, ησ > 0

for epoch=1,. . . ,N do
for k=1,. . . ,λ/2 do

Init s ∈ R(λ,d) as sk ∼ N (0, I), s(k+λ/2) = −sk
θk ← µ + σ � sk
Compute Fitness F (θk)

end for

Compute gradients
∇µ ←

∑λ
k=1 F (θk)sk

∇σ ←
∑λ

k=1 F (θk)(s
T
k sk − 1)

Update parameters
µ← µ + ηµσ∇µ

σ ← σ exp
{
ησ
2
∇σ

}
end for

For the optimization of the base connection probabilities pI→J one needs to make sure
that they are always assigned values in [0, 1]. For that purpose real valued auxiliary
parameters κIJ ∈ R are optimized, from which the base connection probabilities are
obtained by using the sigmoid function:

pI→J =
1

1 + e−κIJ
. (5)

The value of the number K of neuron types and of the scaling parameter σ from
equation (4) were optimized through a separate hyperparameter search.

Details to the construction of the connectivity graph (chord
diagram) of a probabilistic skeleton

The chord diagrams in Fig. 3c and Fig. 4c are drawn in the style of Fig. 7C of [9],
using the base connection probabilities pI→J . The thickness of each chord reflects the
value of the corresponding base connection probability and the length of each segment
(arc) on the perimeter is proportional to the expected fraction of synapses from and to
the corresponding neuron type. Such a chord graph of a probabilistic skeleton should
not be confused with the connectivity graphs of individual RSNN samples from this
probabilistic skeleton. The latter also depends on the selected number N of neurons, the
value of σ, and numerous outcomes of random drawings. More precisely, the arc length
of the type I is proportional to: ∑

J pI→J +
∑

J pJ→I
2
∑

IJ pI→J

.
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Experiments

Details to computations on spike times.

Task description: The goal is here to classify the temporal distance between two waves
of input spikes. There is a fixed time interval of 200 ms, which is divided into four bins
of 50 ms. For each class the first spike occurs at the beginning t = 0 and the second
spike is uniformly drawn from the four bins, which results in four classes of input spike
trains. The precise timing of the second spike is again uniformly sampled within the
time interval of the chosen bin.

Input: The network receives as input a wave of spikes at the beginning of a 200ms
long trial, and the second wave at any other time during the trial. For each input neu-
ron some Gaussian noise with mean zero and variance 1 ms has been added to the spike
times to avoid that all input neurons spike at the exact same time.

Performance measure: The percentage of correctly classified distances between the two
waves of input spikes is used as a performance measure. The standard deviation of the
performance on this and the subsequent tasks was obtained by averaging over the per-
formance of 50 different RSNNs sampled from the same probabilistic skeleton evaluated
on 100 inputs each.

Fitness function: Best optimization results are achieved when a different fitness measure
than accuracy is used. To compute the fitness the softmax function was applied to the
vector (r1, r2, r3, r4)

T of spike counts of the 4 output neuron types during the last 30ms of
a trial to obtain the class probabilities (p1, p2, p3, p4)

T . To compute the fitness the target
class y was first one-hot encoded to the target class vector y, i.e. to a vector where all
entries are 0 except the element at position y− 1, which has the value 1. An example of
one-hot encoding can be found in the Suppl., section 2.4. The fitness function is given
by the negative cross entropy loss. For a single example with one-hot-encoded target
class y the fitness is defined as:

F (θ) =
4∑

k=1

yk log(pk). (6)

Details of the probabilistic skeleton and its optimization process: A decay constant
of σ = 77.7 was used for this task. The scaling parameters for synaptic strengths were
win = 14.6, wE = 15.49, wI = 6.92. The 304 neurons of RSNN samples during optimiza-
tion were arranged in nmcol = 16 minicolumns on a 4x4 grid, where M = 19. In every
minicolumn there are two input neurons and there is one output neuron per type.

During the optimization of the probabilistic skeleton the activity of output neurons
was not only considered during the last 30ms. Instead, initially all spikes of output
neurons were counted during the full 200ms of a trial. In the course of the optimization
this period was gradually reduced to the last 30ms.
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Details to installing in RSNNs the capability to recognize specific
spike patterns?

Generation of spike inputs: Two clearly distinct ensembles of Poisson spike trains from
4 neurons with a rate of 50 Hz were frozen as templates. Spike input patterns of classes
1 and 2 were generated by creating variations of these spike templates: For every input
neuron two time steps from the first 50ms were chosen, and a new spike was inserted at
them or the spike was deleted if there was a spike at this time step. Subsequently the
spike times of all spikes in the template were shifted by a random amount drawn from a
Gaussian with mean zero and variance 0.5 ms and rounded to the nearest integer value.
The third class consisted of random Poisson spike trains over 50ms with a rate of 50 Hz.

Input: The network received as input a spike pattern of 4 input neurons over 50ms
from one of the three classes, drawn with uniform probability from the three classes.

Performance Measure: The same performance measure as for the preceding task was
used.

Fitness function: A corresponding fitness function as for the preceding task was used.

Details of the probabilistic skeleton and its optimization process Parameters win =
14.38, wE = 7.85, wI = 7.90 and σ = 129.73 were used. RSNN samples that were tested
during the optimization of the probabilistic skeleton consisted of 148 neurons, which
were arranged in a 3x4 grid of nmcol = 12 minicolumns, each minicolumn consisting of
M = 12 neurons. There was one input neuron in every corner of the grid, hence the
corresponding columns had one neuron more than M .

Details to local contrast enhancement

Task description: In this task 2D patterns x ∈ [0, 1]
√
nmcol×

√
nmcol are presented to the

network, where nmcol is the number of minicolumns; these are arranged in a square grid.
For optimizing the probabilistic skeletons, nmcol = 25 was selected, resulting in a 5x5
grid.

Input generation To generate a pattern x first a fixed number Npoints of coordinate
pairs (m,n) ∈ {2, . . . ,√nmcol − 1}2 were drawn randomly. In a second step, the value
1.0 was assigned to these points, all other points were set to zero. Finally, a discrete
2D Gaussian filter with variance 1.25 is applied to this binary matrix and the result
is normalized to [c, 1], where c is a baseline intensity, which is drawn uniformly from
[0.05, 0.15]. For the 12x12 patterns that can be seen in Fig. 5 Npoints = 6 was used.
Npoints = 2 was used for 5x5 input patterns. The resulting 2D patterns were presented
to the RSNN through corresponding 2D arrays of Poisson spike trains. Their rates be-
tween 0 and 200 Hz were linearly scaled by the grey-values of the corresponding grid
cells of the 2D pattern. The length of a trial was 300 ms.
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Targets for the computation: Target values were computed by applying the Mexican
hat filter defined below, with symmetric padding to the 2D input pattern, followed by
clipping at zero and normalization to [0, 1]. The Mexican was defined by:

filter =

 0 −1 0
−1 4 −1

0 −1 0

 (7)

Output: There were nmcol output neurons, one in each minicolumn, which were ar-
ranged in a square grid. The output value of each output neuron i was computed by
counting its spikes and normalizing that value:

ŝi =
∑
t

zi(t), (8)

si =
ŝi

max(ŝ)
. (9)

Performance Measure and fitness function: Fitness was the normalized cross corre-
lation between target signal y and output signal s:

F (θ) = NCC =

∑nmcol
k=1 skyk√∑nmcol

k=1 s2k
∑nmcol

k=1 y2k

This value can easily be interpreted: A value of 0.0 would indicate that the two patterns
are totally different while a value of 1.0 would show that the two patterns are identical.
Hence we used it also for measuring performance.

Details of the probabilistic skeleton and its optimization process: The probabilistic
skeleton, shown in Fig. 8a, had K = 4 types and was optimized for RSNN samples with
nmcol = 25 minicolumns (arranged in a square grid) and M = 8 neurons per column,
resulting in N = 200 neurons of RSNN samples. Other parameters of the probabilistic
skeleton were win = 1.70, wE = 1.71, wI = 2.15, and σ = 73.6.

Details to the coincidence detection

Task description: Two 12x12 input patterns were simultaneously presented to the net-
work. The goal was to mark positions in the 12x12 grid where both input patterns were
reasonably strong, using a product operation.

Input: The input patterns were generated using the same algorithm as for the con-
trast enhancement task, with the only difference that a minimum distance of 3 was
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imposed on the points used to generate the input pattern.

Computing the targets: The target outputs of the coincidence detection task were
computed by the following formula:

y =
φ(x1 � x2)

max(φ(x1 � x2))
(10)

where x1 and x2 are the two input patterns. � refers to the element wise product, and
φ is a function that returns element wise the identity of the input if the element is higher
than the average of all vector coordinates of the input vector, else it returns zero, as
described in equation 11:

φ(v) =

φ(v1)
...

φ(vn)

 , φ(vk) =

{
vk vk ≥ mean(v)

0 else.
(11)

Output, performance measure and fitness function: The same output convention and
fitness function, and performance measure as for the contrast enhancement task were
used.

Details of the probabilistic skeleton and its optimization process: The probabilistic
skeleton, shown in Fig. 8b, used K = 12 neuron types and M = 15 neurons per mini-
column. Its other parameters were win = 2.28, wE = 3.08, wI = 1.92, and σ = 70.

Note, that in the coincidence detection task, the target output is not the sum of two
input values, but their product. This is salient, since simply computing a sum and
thresholding its value is a trivial task for an RSNN. However, approximating a product
is substantially more challenging. In Fig. 8c it becomes apparent that simply computing
the sum would not be a good strategy, as it would yield a low fitness value.
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Figure 8: |Details to the induction of 2D computing capabilities through probabilis-
tic skeletons. a Probabilistic skeleton for local contrast enhancement task. b
Probabilistic skeleton for the coincidence detection task. c Normalized cross
entropy between the output of the RSNN for the coincidence detection task,
the target and the average of the two input patterns. This shows that ap-
proximating the coincidence detection target with a linear operation yields a
substantially smaller correlation. d and e show 2D input patterns for the coin-
cidence detection task along with the RSNN output and the target output. A
5x5 grid was used in this figure, the format for which the probabilistic skeleton
had been optimized.|

Details to innate motor control capabilities through probabilistic
skeletons

Task description: For the simulation of the environment (AntMuJoCoEnv-v0) the Py-
Bullet physics engine [42] was used. The agent is a quadruped walker and is usually
referred to as ’ant’ in the literature. It consists of four legs with four joints, which are
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attached by another four joints to a torso, modelled as a sphere. The center of the sphere
defines the location of the plant on a 2D plane. The goal of this task is to achieve a high
movement speed over the whole trial period, while also avoiding to touch the ground.
An episode is terminated if the center of its torso moves below a height of 0.2m, or if
the maximum number of time steps has been reached.

Spatial structure of RSNN samples The population coding of continuous-values in-
put variables induced a prominent 1D dynamics in populations of input neurons, and
there seems to be no natural way to map these 2D input arrays properly into a 2D
structured RSNN for computational processing. For this reason, and because such basic
motor control capabilities are likely to be encoded in the spinal cord and other subcorti-
cal structures, we used for this task a 1D arrangement of neurons in order to define their
spatial distances, rather than neocortical minicolumns. More precisely, the neurons of
input and recurrent types were evenly-spaced distributed over a 1D line segment [0, 660]
µm. The locations of output neurons, organized for each output variable into two output
types consisting of 4 neurons at the same location (see below), were optimized alongside
the other parameters of the probabilistic skeleton. The distance measure Dist(i, j) for
neurons i and j was computed as the absolute value of the difference between their 1D
coordinates.

Input: Time in the simulated environment was discretized to time steps of 17 ms
length. For this reason the network received each continuous-valued input value for
17 ms through population coding in one of the 9 input neuron types, each having 16
neurons. It should be noted that population coding is commonly employed in the brain
to encode continuous-valued variables [43]. The input was provided by the current state
of the simulated environment. Its state space was 111 dimensional. We excluded most of
them, for example angular velocities, to have a more compact and arguably biologically
more realistic network input.

Output: The action space of the controller is given by A = [−1, 1]8, which corresponds
to 8 torques applied to the 8 joints of the ant. An output torque y ∈ [−1, 1] of the
model is computed by using two output neuron types, each consisting of 4 output neu-
rons, representing negative and positive torques to a joint, denoted by J− and J+. This
corresponds to motor commands in the form of firing rates to 2 antagonistic muscles
for a joint. Firing activity of output neurons of the RSNN were decoded as signal to
the simulated environment by computing the normalized linear combination of the spike
rates over a 17 ms time step of the environment:

y =

17∑
t=1

e
− 17−t
τout

(
sJ−(t)− sJ+(t)

)
17∑
t=1

e
− 17−t
τout max (sJ−(t), sJ+(t))

, (12)

where τout = 10.
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Performance measure and fitness function: The performance measure was the same
as the fitness value. The fitness was given by the total reward received from the envi-
ronment, summed up over time. At every time step of 17ms length the agent received a
reward

F (θ) = vfwd − 0.1jl + 1, (13)

where vfwd is the velocity of the center of the ant in the x direction, jl := number of joints
which are at the limit. A constant reward of 1 was added for each time step in order to
induce long lasting locomotion without premature abortion of an episode because the
torso touched the ground.

RSNN samples with 458 neurons from the optimized probabilistic skeleton produced
an average fitness of 517 (standard deviation of 51.85) using 250 steps in the environ-
ment, where the average was computed over 100 trials. The version of the model where
30% of the recurrent and output neurons are randomly deleted achieved a fitness of 421.

Details of the probabilistic skeleton: The probabilistic skeleton consisted of K = 40
types, and was optimized for RSNN samples with N = 458 neurons. Every input
type was constrained to only form connections to one recurrent type, which did not
receive synaptic inputs from another input type. The other parameters were win = 4.75,
wE = 4.5, wI = 2.3 and σ = 80.0.

Note: The version of the ant locomotion task that we considered differed somewhat
from the version that is commonly considered in the literature [44]. There one does not
assume a delay in feedback from the environment. Also, the more limited observation
space that we used made it harder for the model to know in which direction it was facing,
especially at a later point in the trial. This made it harder to move especially along the
x-axis, which was the only direction in which locomotion was rewarded.

Details to Figure 7 (General results and principles)

To compare the different tasks it is necessary to use for different computing tasks a
common performance scale. This can be achieved by defining the baseline for every task
as the performance level of a random output. For example, the computations on spike
times task required a decision between 4 classes, hence picking a random class would
give for a uniform distribution of classes an expected accuracy of 25%. Analogously
the baseline accuracy for the spike pattern classification, which involves three classes,
is 33.33%. For the contrast enhancement task and the coincidence detection task it is
possible that a probabilistic skeleton has a fitness of 0.0, hence this was chosen to be the
baseline for these tasks.

The performances on these different tasks were scaled by calculating for each task
the difference between the theoretically best possible performance (either accuracy or
normalized cross correlation) to the baseline performance and normalizing this difference
to [0, 1].
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Panel a: For each number of recurrent neuron types 80 probabilistic skeletons were
optimized for every task, and the best performing ones were used for the plot.

For panel b the number of neurons N was varied by increasing the number of mini-
columns nmcol. The number of neurons per column M was not changed.

The pruning experiments for panel c were done by deleting synapses that had a con-
nection probability below a certain threshold, where the threshold was raised until the
average number of synaptic connections was at the desired levels needed for a value on
the x-axis.

Panel d: Each value mij was perturbed by a positive or negative value drawn uniformly
from the range around mij bounded by the fraction marked on the x-axis. The resulting
value was rounded to the next non-negative integer.

For panel e, the effective weight of each individual synapse was independently per-
turbed for each presynaptic spike. The amplitude of this perturbation was measured as
fraction x of its current value, and the maximal fraction is indicated on the x-axis of
the panel. For each value of x the noise value was drawn uniformly from the interval
[−x, x]. The resulting perturbed weight was set to zero if the perturbation caused its
sign to change.

Details to the comparison of neuron density, synapses numbers, and wire length with
experimental data from the neocortex. According to Fig. 2B of [45] the number of
neurons under a square mm of the neocortical sheet is in the mammalian brain around
100,000. The number of synapses per neuron was estimated in [46] to be 7777, and the
total length of axons per neuron was estimated to be 4.4cm. We have compared these
experimental data with corresponding estimates that arise for RSNN samples from prob-
abilistic skeletons for the computing tasks that we considered (see Table 1 in the Suppl.).
For example, the RSNN for coincidence detection, whose firing activity and performance
was shown in Fig. 5 f-h, has 2160 neurons, occupies a square patch of 0.5184mm2, has
360, 100 synapses, and a total wire length of 17.5m. Thus its number of neurons per
square mm is by a factor 22 smaller than in the mammalian brain, the number of synapses
is by a factor 1008 smaller, and its total wire length is by a factor 118 smaller than in the
data. Thus, these numbers are in a reasonable range, but significantly smaller than in
the experimental data. The main reason for that is that the number of neuron types that
are needed for each of the computing tasks that we considered is substantially smaller
than the estimated 111 neuron types in mouse V1 [11]. Consistent with that, the num-
ber M of neurons in a minicolumn was in our examples well below the 80 -120 neuron
in a typical neocortical minicolumn. Note that the number of synapses and total wire
length grow superlinearly with the number of neuron types, (see Suppl. section 2.5 and
2.6). In addition, we only counted wire length in the horizontal direction, and ignored
long-range connections.
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