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Abstract: Nature endows networks of spiking neurons in the brain with6

innate computing capabilities. But it has remained an open problem how7

the genome achieves that. Experimental data imply that the genome en-8

codes synaptic connection probabilities between neurons depending on their9

genetic types and spatial distance. We show that this low-dimensional pa-10

rameterization suffices for programming fundamental computing capabilities11

into networks of spiking neurons. However, this method is only effective if12

the network employs a substantial number of different neuron types. This13

provides an intriguing answer to the open question why the brain employs so14

many neuron types, many more than were used so far in neural network mod-15

els. Neural networks whose computational function is induced through their16

connectivity structure, rather than through synaptic plasticity, are distin-17

guished by short wire length and robustness to weight perturbations. These18

neural networks features are not only essential for the brain, but also for19

energy-efficient neuromorphic hardware.20

Keywords: cortical microcircuits, innate computing capabilities, structure/function re-21

lationship in neural networks22

Significance statement: Fundamental computing capabilities of neural networks in the23

brain are innate, i.e., they do not depend on experience-dependent plasticity. Examples24

are the capability to recognize odors of poisonous food, and the capability to stand up25

and walk right after birth. But it has remained unknown how the genetic code can26

achieve that. A prominent aspect of neural networks of the brain that is under genetic27

control is the connection probability between neurons of different types. We show that28

this low-dimensional code suffices for inducing substantial innate computing capabilities29

in neural networks, provided they have –like the brain– a fair number of different neuron30

types. Hence under this condition structure can induce computational function in neural31

networks.32
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1 Introduction

1 Introduction33

The common paradigm for bringing computational function into neural networks, in-34

cluding models for neural networks of the brain, is to tune their very large number of35

synaptic weights by a learning process, starting from a tabula rasa initial state. This36

typically requires very large numbers of training examples, which are for many tasks not37

readily available. Nature has invented a powerful alternative: The genetic code endows38

neural networks of the brain with an exquisite structure that induces numerous compu-39

tational capabilities without a need for experience-dependent plasticity, see Zador, 201940

for a review, and (Apfelbach et al., 2005, Yilmaz and Meister, 2013, Tinbergen, 2020,41

Weber and Hoekstra, 2009, Metz et al., 2017, Langston et al., 2010, Mckone, Crookes,42

and Kanwisher, 2009) for experimental data. In fact, innate functional capabilities, such43

as avoidance of poisonous food and the capability to stand up and walk right after birth,44

are in many cases crucial for survival. However, it has remained an open problem how45

the genetic code achieves that. Nature must have found a way to encode the compu-46

tational function through a low-dimensional parametrization, rather than by encoding47

individual synaptic weights, since even the human genome contains only about 1 GB of48

information (Zador, 2019). We show that known genetically encoded structural proper-49

ties of cortical microcircuits provide a solution to this problem. Experimental data on50

cortical microcircuits, such as Markram et al., 2015 and Billeh et al., 2020, prove that51

the genetic code determines connection probabilities in terms of the genetic type of the52

pre- and postsynaptic neuron and their spatial distance. We show that these structural53

features of networks of spiking neurons suffice for inducing specific computational func-54

tions. This insight provides simultaneously an answer to another open question: Why55

the brain employs so many neuron types, substantially more than we have commonly56

considered in neural network models.57

We base our answers to these open problems on a new type of generative model, a58

probabilistic skeleton. Neural networks that are generated by a probabilistic skeleton59

share a number of salient statistical features with neural networks in the brain that are60

under genetic control, such as the number and prevalence of neuron types, and connection61

probabilities in terms of these neuron types.62

Probabilistic skeletons generate just the architectures of neural networks, hence these63

can in principle employ any kinds of computational units. We focus here on networks that64

consist of excitatory and inhibitory spiking neurons (RSNNs). These are of particular65

interest for modelling neural networks of the brain because the activity of these units can66

be related directly to neural recordings from the brain, especially if the RSNN operates67

in an event-driven sparse firing regime where the timing of spikes can be used to encode68

salient information. However, it has turned out to be difficult to endow RSNNs with69

powerful computational capabilities through training, in particular if one wants that70

they operate in a spare firing regime. Hence inducing function through structure is71

a particularly desirable tool for RSNNs. Producing computationally powerful RSNN72

models that operate in a sparse firing regime is also of interest in the quest to design73

more energy-efficient computing hardware for AI, because hardware implementations of74

sparsely active RSNNs tend to consume substantially less energy than customary digital75
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2 Results

computing hardware (Plank et al., 2022).76

We will first define the concept of a probabilistic skeleton, and then show that they77

suffice to induce specific computing capabilities in RSNN. In particular, we consider78

examples for generic 2D computing capabilities of laminar cortical microcircuits, the79

capability to recognize particular spike patterns, and to carry out a generic motor con-80

trol task. Finally, we will elucidate principles of this new method to generate network81

function through network structure.82

2 Results83

2.1 Probabilistic skeletons provide a mathematical model for aspects of84

network generation that are under genetic control85

Current models of cortical microcircuits (Markram et al., 2015; Billeh et al., 2020) are86

based on two types of data: A set of neuron types -estimated to be well over 100 within87

a single neocortical area (Tasic et al., 2018) - and a table of connection probabilities88

for any pair of neuron types as in panel A of Fig. 4 in (Billeh et al., 2020), which is89

reproduced here as Fig. 1a. The entries of this table provide base connection probabil-90

ities that are valid if the somata have a horizontal distance of at most 75µm. If the91

horizontal distance is larger, these base connection probabilities are multiplied with an92

exponentially decaying function of their distance. Examples of such functions are shown93

in panel C of Fig. 4 in (Billeh et al., 2020), reproduced here as Fig. 1b.94

A probabilistic skeleton is a rigorous generative model for this indirect style of en-95

coding network architectures. It specifies the number K of neuron types, the prevalence96

of each neuron type (see the lower part of Fig. 1c), and base connection probabilities97

in dependence of neuron types (see the upper part of Fig. 1c). In addition, it specifies98

a parameter σ that scales the exponential decay of connection probabilities with the99

lateral distance between the somata according to equation 4 in Methods; see Fig. 1d for100

samples of exponential decays that were useful for tasks that we considered (although101

the precise shapes had little impact). A probabilistic skeleton does not specify the values102

of individual synaptic weights, but it specifies three parameters win, wE , wI that define103

the weight of each synaptic connection from an input neuron (i.e., a neuron that also104

receives synaptic input from outside of the RSNN), from an excitatory neuron that is not105

an input neuron, and from an inhibitory neuron that is not an input neuron. Input and106

output neurons (projection neurons) are from separate neuron types, and are assumed107

to be embedded into the RSNN (Fig. 1g). Neurons in the neocortex that are synaptically108

connected are usually connected by multiple synaptic connections, see e.g. Fig. 7A of109

(Markram et al., 2015). Hence we draw for each pair i, j of neurons not just once, but S110

times from the corresponding connection probability, see equation 4. We used S = 8 in111

the experiments that are reported here, but the exact value had little impact. The mul-112

tiplicity mij of synaptic connections between two neurons induces some differentiation113

in the effective strength (weight) by which two neurons are connected: One multiplies114

the corresponding parameter win, wE , wI that determines the uniform synaptic weight115

of all such synapses with the actual number of synaptic connections between the two116
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2 Results

neurons. Hence the effective strength of the connection between two neurons is drawn117

from binomial distributions for their connection probability, in dependence of their types118

and distance (Fig. 1f).119

To sample a neural network from a probabilistic skeleton, one needs to specify its120

number of neurons N . One also needs to specify their spatial positions, because their121

distances are relevant for their connection probabilities. Actually, in the neocortex pri-122

marily the horizontal (lateral) distance within the 2D neocortical sheet is relevant for123

that. Therefore it suffices to distribute the neurons of each type uniformly over a 2D124

sheet. A convenient method for doing that is to let the 2D sheet consist of a grid of discs125

that each contain the same number of neurons with the specified prevalence of different126

neuron types, see Fig. 1e for an illustration (for tasks with small numbers of input or127

output neurons these were placed into selected subsets of the discs). For measuring hor-128

izontal distances between neurons we assume for simplicity that the neurons are always129

positioned at the center of a disc. In terms of neural anatomy each disc can be seen as130

a 2D projection of a minicolumn. It is well-known that the neocortical sheet is made131

up of stereotypical minicolumns of diameter around 60 µm that extend vertically across132

all neocortical layers, and each contains a representative sample of together 80 - 120133

neurons of all types (Mountcastle, 1998, Cruz et al., 2005, DeFelipe, 2015).134

Since a probabilistic skeleton only captures aspects of the architecture of neocortical135

neural networks that are under genetic control, one can use this concept to examine136

the impact of genetically encoded architectural features on computational properties of137

a neural network. If a probabilistic skeleton endows with high probability its neural138

network samples with a specific computing capability, this computing capability can be139

argued to be within the reach of genetic control (i.e., ”innate”).140
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2 Results

Figure 1: Illustration of a probabilistic skeleton and the process by which RSNNs are
generated from it. a Base connection probabilities between 17 types of neurons in mouse
V1 (reproduced from (Billeh et al., 2020)). White table cells indicate unknown values.
b Scaling of connection probabilities with the horizontal distance of their somata for
mouse V1 (reproduced from (Billeh et al., 2020)). c Top: Sample base connection
probability table of a probabilistic skeleton for the case of K = 6 neuron types. White
table cells indicate here that the corresponding base connection probability has value
0. Rows and columns labeled ”in” refer to input neuron types, the label ”out” refers
to output neuron types, ”E” (”I”) to the other excitatory (inhibitory) types of neurons.
Bottom: Prevalence-bar of a probabilistic skeleton. Its length defines the number M
of neurons in a minicolumn. d Examples of distance-dependent scaling functions, with
slightly different values of σ in equation (4). These functions turned out to work well for
the computing tasks that we considered. e Illustration of the uniform distributions of
neurons of all types over a 2D sheet for the generation of an RSNN from a probabilistic
skeleton. Each disc can be seen as 2D projection of a stereotypical minicolumn in the
neocortical sheet. Sample arrows in purple indicate for some of them external inputs
(that arrive at the purple neurons in each disc). Network outputs from brown neurons in
all discs are indicated by brown arrows from a random sample. Synaptic connections are
not restricted to neurons in the same or neighboring disc, the blow-up might suggest,
but are drawn according to a distribution as shown in b. f Examples for binomial
distributions from which the number mij of synaptic connections (and hence the effective
connection strength) from a neuron i of type I to a neuron j of type J are drawn for the
case pI→J = 0.35 (two panels on the left) and pI→J = 0.85 (two panels on the right),
each for two different values of the spatial distance Dist(i, j) between their somata.141

142

We used evolution strategies (Schaul, Glasmachers, and Schmidhuber, 2011) to op-143

timize the parameters of a probabilistic skeleton for a given computational task, see144

Fig. 7 for an illustration. Note that a fitness function that measures the computational145

performance of RSNN samples from a probabilistic skeleton is not differentiable because146

RSNNs are sampled from it using a stochastic process.147

2.2 Generic 2D computing capabilities of cortical microcircuits148

The neocortex forms a 2D sheet composed of several parallel laminae or layers that each149

consist of different types of neurons (Mountcastle, 1998; Harris and Shepherd, 2015;150

Billeh et al., 2020). Sensory input streams and outputs from other brain areas also have151

a clear 2D structure, and they are mapped topographically onto specific layers of generic152

laminar cortical microcircuits. Of special importance is the capability to compare 2D153

patterns that arrive from lower brain areas and higher brain areas in hierarchical brain154

networks (Vezoli et al., 2021), typically with some time-gap in between. Hence we are155

focusing here on the task to decide whether two 2D patterns that arrive sequentially,156

with varying delays between them, in different 2D input layers, are similar or not (see157
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2 Results

Fig. 2a) . We demanded that a population of output neurons fires in the case of a158

non-match, in analogy to the error-reporting neurons found in the neocortex (Keller and159

Mrsic-Flogel, 2018). We found that a probabilistic skeleton with 7 recurrent neuron160

types, i.e., neuron types that are not marked as input or output neurons can solve this161

task convincingly (see Fig. 2). The resulting network connectivity of an RSNN sample162

is shown in section 1.1 in the Suppl. (Fig. S1), plotted in the same style (as chord163

diagram) as experimental data on network connectivity of the neocortex in Fig. 7C of164

Markram et al., 2015. The RSNN sample achieved an accuracy of 91.5%. Two trials,165

one of which should be judged as a ”match” on the left, and a non-match trial on the166

right, are shown in Fig. 2c. Further trial input patterns can be seen in Fig. 2d and e.167

A related task that is also arguably central to innate computing capabilities of cortical168

microcircuits is the identification of coincidences in two 2D input streams, that could169

arrive from different sensory areas, or from a higher and a lower cortical area -one170

indicating spatial attention and another visual input. An essential sub-computation,171

that is arguably innate, is to mark those locations where both 2D input patterns have172

substantial activity. This computational capability can also be induced by a probabilistic173

skeleton, using just 121 parameters, see Fig. S2 e - g.174

Another innate computing capability is likely to be contrast enhancement, which can175

also be induced by a probabilistic skeleton (see section 1.2 in the Suppl. and Fig. S2 a -176

b and Fig. S3).177

Altogether we found that fundamental 2D computing operations that are arguably178

central for computational operations in generic cortical microcircuits can be induced179

through genetically encoded network structure.180
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2 Results

Figure 2: Induction of a fundamental computational capability of laminar cortical mi-
crocircuits, to decide whether the sequentially presented 2D network inputs are similar,
through network structure, i.e., through a probabilistic skeleton. a Temporal structure of
the task. b A probabilistic skeleton that induces high RSNN performance on this task.
c Network inputs and firing activity of an RSNN sample from this probabilistic skeleton
for two trials, with varying delay between the two input patterns. In the first trial the
two patterns are correctly judged by the RSNN to be similar, indicated by withholding
of firing of output neurons (shown at the bottom) during the response window (indi-
cated by red frame). In the second trial the two input patterns were correctly judged
by the network to be dissimilar. Note that information about the first pattern had to
be retained within the network until the second pattern arrived. This working memory
aspect was nontrivial because each pattern consisted of 25 gray values. Persistent firing
of neurons of type E1 emerged as a mechanism for that. d Two further correctly classi-
fied samples of matching input patterns of activity. The delay between the first pair was
62ms while the delay between the second pair was 122ms. e Two additional correctly
classified samples for non-matching input patterns. The delay between the first pair was
64ms and the delay between the second pair was 133 ms.181

182

2.3 Innate recognition of particular stimuli.183

We know that numerous species have innate capabilities to recognize particular stimuli,184

such as odors and/or views of poisonous food and predators. Since such stimuli arrive in185

the brain in the form of specific spatio-temporal spike patterns, we need to understand186

how the genetic code can install in RSNNs the capability to recognize specific spatio-187

temporal patterns, such as those depicted in Fig. 3a. We show that templates for any188

such patterns can be encoded in features of RSNN structures that are under genetic189

control. We fixed two randomly generated spatio-temporal spike pattern templates, and190

generated by adding, deleting, and shifting spikes noisy variations of these templates as191

inputs of class 1 and 2. We also created a class 3 of distractor patterns that were not192

similar to any of the two frozen template patterns but used the same firing rates as these.193

Three output neuron types were selected that were supposed the class membership of194

patterns from any of these 3 classes of spatio-temporal spike patterns. A probabilistic195

skeleton with 9 types of neurons (besides input- and output neuron types) with altogether196

157 parameters (see Fig. 3b) is capable of achieving 91% accuracy on this task. A sample197

run of an RSNN sample from this skeleton, consisting of 144 neurons, for a pattern of198

class 1 is shown in Fig. 3c.199

One may wonder whether also the capability to distinguish purely temporal patterns200

can be induced through the structure of RSNNs. We used as test inputs two waves of201

input spikes with temporal distances from 1 to 200ms, where the task is to classify in202

which of the four time bins of 50ms each the second spike wave arrived. A probabilistic203

skeleton with just 10 neuron types (besides input and output neuron types) is capable204

of achieving an accuracy of 97% on this task. A typical spike raster of an RSNN sample205

is shown in Fig. 3d. One sees that temporal distances between the two waves of input206
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2 Results

spikes and the decision time are bridged by persistent activity in specific recurrent neuron207

types. Further spike rasters can be found in Fig. S6, S7 and S8. Altogether the results208

of this section demonstrate that also all-important capability of RSNNs to recognize and209

compute with temporal differences between spikes can be engraved into them through210

their structure.211
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2 Results

Figure 3: Innate spike pattern classification capability. a Two samples from each of the
three classes of spike input patterns. The first two classes consist of variations of specific
but arbitrarily chosen spike patterns, the third class consists of distractor spike patterns
with the same firing rates. b Optimized probabilistic skeleton for this task. c Firing
activity is shown for all neurons of RSNN samples with 144 neurons, in sample trials for
spike inputs from class 2 . The 30 ms time window during which the network decision
is expected is indicated by the red frame at the bottom of the spike rasters. d Firing
activity on the temporal pattern classification task, where the model tries to classify in
which of the four time bins (50ms each) the second spike wave has arrived.11
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2 Results

The time scale of this task is in the range of behavioral responses, but a clever network212

organization is needed in order to enable a network of standard neuron and synapse213

models to discern and classify such fairly large time differences up to 200ms, and to214

produce the decision at a specific time after the onset of a trial, without an external215

clock or prompt.216

2.4 A probabilistic skeleton can endow neural networks with innate motor217

control capability.218

Innate rudimentary motor control capability, for example, to stand up and walk right af-219

ter birth, is essential for survival in many species. In contrast to the previously discussed220

computing tasks, biological motor control requires a transformation of multiple spike-221

input streams -that represent sensory inputs and feedback- into multiple time-varying222

spike output streams that control muscles in a closed loop, hence in real-time. We chose223

a standard benchmark task for motor control: Enabling a quadruped (”ant”) to walk by224

controlling the 8 joints of its 4 legs through a suitable stream of torques. The RSNN225

controller received 9 spike input streams that encoded -with a delay of 60 ms to make226

the task more challenging and biologically realistic- through population coding 9 dy-227

namically varying variables: The angles of the 8 joints as well as the vertical position of228

the torso, see Fig. 4a. Further information about population coding can be found in the229

Suppl. in section 1.9 and in Fig. S5. We found that a probabilistic skeleton with just230

15 types of neurons in the recurrent network, specified by 635 parameters, see Fig. 4b, is231

able to encode this motor control capability. We refer to movie of the ant locomotion1 for232

the resulting locomotion of the quadruped when its joints were controlled by an RSNN233

sample from this probabilistic skeleton. One can see in the input/output sample shown234

in Fig. 4d that the computational transformation which this task requires is quite com-235

plex. A sample spike raster of this RSNN in Fig. 4c shows that the population coding236

of the continuous-valued input variables induced a rather complex spatial dynamics of237

firing activity in most of the neuron types.238

We employed RSNN samples from the probabilistic skeleton whose recurrent network239

consisted of 250 neurons. Direct tuning of their synaptic weights for this control task240

would result in a 114, 500 dimensional encoding of the control algorithm. The compressed241

encoding of the control strategy into just 635 parameters enhanced, as expected, the242

robustness of the RSNN controller: After randomly deleting 30% of the recurrent and243

output neurons of the RSNN, it was still able to control the ant locomotion, although the244

ant was walking somewhat slower, see (Movie of ant after 30% deletion)2. Altogether we245

have seen in this section that also demanding real-time computing capabilities in a closed246

loop with the environment, as required for locomotion, can be encoded in a relatively247

low-dimensional parameter space and induced in RSNNs through their structure.248

1https://cloud.tugraz.at/index.php/s/iXDSo6Q7HDmDyX6
2https://cloud.tugraz.at/index.php/s/WpyRncz62p9PnTc
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2 Results

Figure 4: Example for innate motor control capability through a probabilistic skeleton. a
System architecture, indicating network inputs and outputs, as well as the 8 joints that
are controlled by the RSNN outputs. b Probabilistic skeleton for solving this motor
control task (base connection probabilities for its numerous input- and output neuron
types are shown in the Suppl., Fig S9) c Spike raster of an RSNN sample with 458
neurons drawn from this probabilistic skeleton. Population coding of the 9 continuous-
valued input variables induced spatially structured firing activity in most of the neuron
types. d Sample dynamics of input and output variables of the RSNN controller on a
larger time scale. 13
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2 Results

2.5 Principles of structure-induced network function.249
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2 Results

Figure 5: Empirical results underpinning Principles 1.- 3. a Performance achieved by op-
timizing probabilistic skeletons with different numbers of recurrent neuron types. One
sees a qualitative jump in computational performance when substantially more than 2
neuron types are considered. Black stars mark the numbers of neuron types of the prob-
abilistic skeletons that were discussed for each task in preceding sections. Performance
of RSNN was measured relative to random guessing as a common baseline for the tasks
considered in sections 2.2 and 2.3, see Methods for details. b The computational per-
formance of the RSNNs degrades gracefully when the strengths of synaptic connections,
defined by the number of synaptic connections between two neurons, is randomly per-
turbed. c Comparison of the frequency of three neuron network motifs occurrence in
a generic RSNN sampled from a probabilistic skeleton (the one from Fig. 4) and in a
randomly connected graph with the same number of nodes and directed edges.250

251

Principle 1: A qualitative jump in computational performance of RSNN-samples oc-252

curs for many tasks when substantially more than 2 types of neurons are allowed.253

Fig. 5a for the tasks considered in sections 2.2 and 2.3. Also the probabilistic skeleton254

that controls locomotion of a quadruped (section 2.4) requires substantially more than255

2 neuron types.256

257

Principle 2: Structure-induced network function is inherently robust to noise in synap-258

tic strength. Different strengths of synaptic connections arise in a RSNN generated by259

a probabilistic skeleton from multiple synaptic connections between two neurons. One260

sees that the network performance is quite robust to random perturbations of these261

synaptic strengths, as can be seen in Fig. 5b. This may explain why the performance262

of the RSNNs in the neocortex is little affected by continuously ongoing spine motility263

(Yasumatsu et al., 2008; Holtmaat and Svoboda, 2009)264

265

Principle 3: Probabilistic skeletons with an exponential decay of connection probabili-266

ties generate RSNNs whose number of synapses and total wire length grow just linearly267

with the number of neurons, and which have more strongly interconnected clusters of268

neurons than randomly connected graphs.269

The over-expression of strongly interconnected network motifs in RSNNs that are sam-270

pled from a probabilistic skeleton arises from the fact that the majority of synaptically271

connected neurons in such an RSNN have small distance. This strongly increases the272

chance of having also a synaptic connection in the opposite direction, and also favors the273

emergence of stongly interconnected clusters of neurons (see Fig. 5 c for a sample). This274

is consistent with experimental data on the connectivity structure of neural networks in275

the cortex, where one finds a similar over-expression of strongly interconnected groups276

of neurons Song et al., 2005 and Perin, Berger, and Markram, 2011.277

We refer to Suppl. sections 1.7 and 1.8 for concrete estimates of the expected number278

of synapses and wire length per neuron in RSNNs that are sampled from a probabilistic279

skeleton.280

281
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2 Results

Principle 4: Activity patterns and computations in network samples from probabilistic282

skeletons can be arbitrarily complex. Any cellular automaton, in fact more powerful283

versions where cells can have connections not only to the immediately adjacent cells but284

to a larger neighborhood of cells, arise as special cases of networks that can be gener-285

ated from a probabilistic skeleton. This is demonstrated in Fig. 6 for a particularly286

well-known cellular automaton, the Game-of-Life. It has attracted substantial interest287

because it can emulate any Turing machine, and hence any digital algorithm (Soare,288

2016). Each cell of this cellular automaton can assume two states: Dead or alive. It is289

alive at some time step if and only if either exactly 3 of its 8 neighbors in a 2D grid (one290

counts here also neighbors that just share a corner) were alive at the preceding time291

step, or if the cell itself and exactly 2 of its neighbors were alive at the preceding time292

step. In the RSNN that arises from the probabilistic skeleton with 5 neuron types shown293

in Fig. 6a, a neuron of type E1 indicates at every second time step through firing or294

not firing whether the cell of the cellular automaton that is induced by the probabilistic295

skeleton in each mini-column (Fig. 6b) is dead or alive. Fig. 6d shows an example of a296

wandering activity pattern that typically arises in this cellular automaton. In fact, also297

very complex periodic and transient activity patterns, reminiscent of dynamic activity298

patterns in the neocortex (see e.g. Han, Caporale, and Dan, 2008), are known to arise in299

this particular cellular automaton (Rendell, 2011) for a suitable external network input300

at the during step 1.301
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3 Discussion

Figure 6: Generation of a spike-based cellular automaton, the Game-of-Life, through a
probabilistic skeleton. a A probabilistic skeleton that generates the Game-of-Life (only
probability values 1 and 0 are needed). b Resulting network of spiking neurons within a
mini-column. c Distance-dependent scaling function for this probabilistic skeleton. The
gray curve scales connections from neurons of type E1 to neurons of types E3, E4, I1,
the black curve all other connections. d Sample traveling activity patterns in an RSNN
sample (the patterns shown at the top are encoded by the firing of E1 neurons), and the
spiking activity of all neurons in this implementation of the Game-of-Life in a RSNN.302

303

Obviously, any finite automaton can be induced in the same way by a special case of304

a probabilistic skeleton where all connection probabilities have values 0 or 1. Further-305

more, also enhanced versions of cellular automata can be induced through a probabilistic306

skeleton if one allows distance-dependent scaling of connection probabilities that covers307

a wider range than the simple one needed for the Game-of-Life (Fig. 6c). In particu-308

lar, also cellular automata that are able to carry out image segmentation through an309

efficient parallel computation (Sandler et al., 2020), or which can classify external input310

patterns in a highly parallel manner through intercommunication between cells (Ran-311

dazzo et al., 2020), can be induced by probabilistic skeletons. Probabilistic skeletons312

whose connection probabilities are not constrained to the extreme values 0 and 1 are313

able to induce stochastic versions of such cellular automata that may have additional314

computational properties such as the capability to solve constraint satisfaction problems,315

see e.g. Habenschuss, Jonke, and Maass, 2013.316

3 Discussion317

We have addressed two key open problems in theoretical neuroscience: How the genetic318

code is able to induce complex innate computing capabilities in neural networks of the319

brain with a small number of parameters, and why the brain employs a fair number320

of genetically different neuron types. We have shown that distance-modulated neuron-321

type specific connection probabilities between neurons, as found in experimental data322

on the anatomy of cortical microcircuits Billeh et al., 2020, suffice to induce innate323

complex computational functions in networks of spiking neurons, provided there exists324

a substantial number of different neuron types. We have demonstrated that this holds325

even for the simplest case where neurons of different (genetic) types have the same interal326

dynamics. The concept of a probabilistic skeleton turned out to be useful for providing327

this insight, since it encapsulates a known fragment of the programming language which328

is available to the genetic code for determining the structure of neural circuits. We329

have shown that probabilistic skeletons are able to induce generic 2D computational330

operations in cortical microcircuits through their structure. They also allowed us to show331

that innate pattern recognition capabilities, such as recognition of odors from poisonous332

food, and innate motor control capabilities can be induced through genetically encoded333

structure of neural circuits. Surprisingly, also fundamental capabilities to compute with334

spiking neurons on temporal patterns can be induced through the network structure.335
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3 Discussion

Probabilistic skeletons suggest a particular method for meeting the challenge of Zador,336

2019: Understanding the functional impact of the ”genomic bottleneck”, i.e., of the fact337

that the number of bits which the genome uses for encoding neural networks in the338

brain is really small in comparison with the number of their synapses. A quite different339

response to this challenge has been addressed by (Koulakov, Shuvaev, and Zador, 2021)340

on a more abstract level, based on the assumption that the existence of a synaptic con-341

nection between two neurons can be determined by linear operations on binary codes for342

these neurons. The model of (Barabási and Beynon, 2021) is less abstract, and assumes343

instead that connections between neurons can be formulated as compatibility rules in344

terms of transcription factors. Implications of the genomic bottleneck on the functional345

level was demonstrated in these approaches in terms of enhanced generalization capabil-346

ities of trained feedforward artificial neural networks.347

Our analyses suggests that one should view the neocortex not just as a special case348

of a deep neural network (DNNs) that acquires its sophisticated computing capabilities,349

starting with a randomly structured configuration, through supervised gradient descent350

learning, like DNNs in AI. Rather the cortex can better be captured by computational351

models that merge aspects of DNNs with aspects of cellular automata (CA), a common352

model for explaining the emergence of function through structure in 2D arrays of repeat-353

ing stereotypical ”cells”. We have shown that having a fair number of different neuron354

types enables the genetic code to encode through connection probabilities between dif-355

ferent neuron types the computational function of finite automata into neural circuits.356

Cellular automata are therefore special cases of 2D sheets of neural circuits that can be357

induced through a probabilistic skeleton, and therefore in principle through the genetic358

code. Hence probabilistic skeletons, and more generally the principle to encode neural359

circuits through connection probabilities between different types of neurons, creates a360

link between RSNNs and cellular automata as dual paradigms for the organization of361

computational function in the neocortex. Since RSNNs that are generated by a prob-362

abilistic skeleton are, unlike cellular automata, not constrained to have only synaptic363

connections between neurons within the same or in neighboring ”cells”, they represent364

more powerful computational models, especially for fast parallel computation. It should365

also be noted here that according to experimental data there are also numerous long-366

range connections in the neocortex, especially between different cortical areas, that are367

likely to give rise to advanced versions of probabilistic skeletons and RSNN samples with368

additional innate computing and fast learning capabilities.369

Neural networks that are derived as samples of a probabilistic skeletons differ in an-370

other aspect from commonly considered network architectures: Their number of synapses371

and total wire length grows just linearly with the number of neurons. This property is372

obviously essential for any physical implementation of neural network connections, both373

in brains and in neuromorphic hardware. In addition, their resilience to weight pertur-374

bations supports an implementation of synapses through memristors. Another possible375

technological application of probabilistic skeletons arises in the domain of organoids376

(Bhaduri et al., 2020), where it is highly desirable to induce computational function377

in brain-like organoids through their genetically controlled structure, without invoking378

synaptic plasticity. Their style of indirect encoding by using different neuron types is379

19

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted July 6, 2022. ; https://doi.org/10.1101/2021.05.18.444689doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.18.444689


4 Methods

also likely to enhance already existing indirect coding approaches in the area of neu-380

roevolution (Ha, A. Dai, and Le, 2016; Stanley et al., 2019). On a more general level,381

the result that network structure acquires a substantially stronger impact on network382

function if the network units consist of a fair number of different types suggests a new383

research direction in network science.384

4 Methods385

Neuron types386

There are 3 kinds of neuron types: input types, recurrent types, and output types. The387

neurons from these three categories are referred to as input neurons, recurrent neurons,388

and output neurons.389

Input neurons provide external inputs in the form of spike trains. They have no390

internal states, and there are no recurrent connections from recurrent neurons or output391

neurons back to the input neurons. The output neurons receive their input from the392

recurrent neurons (see Fig. 1e).393

Recurrent neurons can have connections from input neurons and other recurrent neu-394

rons. Each recurrent neuron can only give rise to excitatory neurons or only of inhibitory395

neurons. Note that input or output types only consist of excitatory neurons.396

Neuron and synapse models397

Recurrent and output neurons are modelled as discrete-time versions of standard Leaky-398

Integrate-and-Fire (LIF) neuron models, More precisely of the GLIF1 model from (Teeter399

et al., 2018). The definition of the continuous neuron model, on which the discrete-time400

model is based on, can be found in the Suppl. in section 1.3. Control experiments with401

the GLIF3 model from (Billeh et al., 2020) produced qualitatively similar results.402

For the discrete time version of neuron j ∈ {1, . . . , N} of type J the membrane poten-
tial is denoted by Vj and the input current by Ij . We assume that currents are constant
on small intervals [t, t+δt], which have been set to a length of 1 ms. The neural dynamics
of the model in discrete time can then be given as

Vj(t+ δt) =

{
αVj(t) + (1− α)(EL + 1

Cm
Ij(t)) if zj(t) = 0

Vr else
(1)

(2)

where α = exp
(
− δt
τ

)
and

zj(t) = H (Vj(t)− vth(t)) (3)

with the Heaviside function H(x) =

{
0 x < 0
1 else

. Here τ ∈ R is the membrane time403

constant, EL ∈ R is the resting potential, Cm ∈ R is the membrane conductance and404
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4 Methods

vth is the threshold voltage. After spiking the neuron enters a refractory period, lasting405

tref > 0, in which zj(t) is fixed to zero.406

The previously defined neuron model use the following set of parameters:

H = {CJm, τJ , V J
r , v

J
th, t

J
ref | J = 1, . . . ,K}.

The values for {CJm, τJ , V J
r , v

J
th, t

J
ref | J = 1, . . . ,K} are taken from (Billeh et al., 2020),407

and the raw data is available in (V1 Network Models from the Allen Institute n.d.). A408

good overview of these neuron types has been made available online in the database of the409

Allen institute. Detailed biological and modelling data for the prototype of the excitatory410

neuron can be found at Excitatory neuron3 and the prototype for the inhibitory neuron411

at Inhibitory neuron4. We have seen no evidence that the exact values of the GLIF1412

parameters are essential for the results reported in this paper.413

The same synapse model as in (Billeh et al., 2020) has been used. Additional infor-414

mation about the synapse model as well as a mathematically more precise description415

can be found in the Suppl. in section 1.4 and in Fig. S4.416

Details to the definition of a probabilistic skeleton417

A probabilistic skeleton consists of418

(i) A natural number K (the number of neuron types in the model; we have set K = 6419

in the illustrations of the model in Fig. 1c.420

(ii) Base connection probabilities pI→J for neurons of type I to neurons of type J ,421

for the case that they are located within the same minicolumn (see upper part of422

Fig. 1c for a sample table of such base connection probabilities).423

(iii) The prevalence pI of each neuron type I, i.e., a number representing the fraction424

of neurons belonging to type I in a generic minicolumn, see the bottom plot of425

Fig. 1c. Further details can be found in the Suppl., section 1.5.426

(iv) The common weight win of all synapses from input neurons, as well as the common427

weight wE of all synapses from excitatory and the common weight wI of all synapses428

from inhibitory neurons in the recurrent network.429

(v) A scaling parameter σ that controls the decay of connection probabilities with the430

horizontal distance between somata.431

A probabilistic skeleton is a generative model, which defines a distribution over neural432

networks of different sizes and with different synaptic connections that share common433

architectural features.434

One samples a neural network from a probabilistic skeleton according to the following435

rules:436

3https://celltypes.brain-map.org/experiment/electrophysiology/501848315
4https://celltypes.brain-map.org/experiment/electrophysiology/313862167
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4 Methods

1. Pick a number nmcol of minicolumns and a number M ≥ K of neurons per mini-437

column. This determines the number of neurons N = nmcol ·M in the sample438

network.439

2. Draw S times for any pair (i, j) of neurons with i of type I and j of type J from440

the binomial distribution with probability:441

P[Synapse from i to j] = pI→J e
−Dist(i,j)2

σ2 . (4)

This yields the number mij of synaptic connections from i to j.442

The functional form of the dependence of connection probabilities on Dist(i, j) ap-443

proximates the corresponding data from (Billeh et al., 2020), see panels b and d in444

Fig. 1. We have set S = 8 in all our experiments, thereby allowing up to 8 synaptic con-445

nections between any pair of neurons. According to Fig. 7A in (Markram et al., 2015)446

most synaptically connected neurons do in fact have multiple synaptic connections. The447

effective strength (weight) of a synaptic connection from neuron i to neuron j is then448

the product of the general scaling parameter win, wE , or wI , that depends on the type449

of neuron i, and the number mij of synaptic connections from i to j that results from450

drawing S = 8 times from the distribution given in equ. (4).451

Optimization method452

Probabilistic skeletons were optimized for specific computing tasks with the Separable453

Natural Evolution Strategy (Separable NES), which had been introduced in (Schaul,454

Glasmachers, and Schmidhuber, 2011). The algorithm is given below in pseudo code. For455

the optimization of the d-dimensional vector θ of parameters of the probabilistic skeleton456

the algorithm uses a Gaussian distribution in every dimension, with means µ ∈ Rd and457

variances σ ∈ Rd. The basic idea is that one samples λ times from this distributions, then458

evaluates the fitness values of the so-called offsprings, i.e. the vectors θj ∼ N (µ, Iσ), and459

finally adapts the Gaussian distributions to capture more of those parts of the parameter460

space where the fitness of the offsprings is higher. The fitness function F depends on the461

computational task for which the probabilistic skeleton is optimized. The mean values of462

the parameters are initialized by truncated normal random variables with mean zero and463

variance 1.0 and the variance values are initialized as ones. We found that choosing the464

learning rate for µ as ηµ = 1.0 yields good results, which is consistent with the suggested465

value in (Wierstra et al., 2008) and (Salimans et al., 2017). The learning rate for σ was466

chosen as ησ = 0.01. As suggested in (Salimans et al., 2017) mirrored sampling has been467

employed, see, e.g., (Brockhoff et al., 2010). That is, for every Gaussian noise vector468

s ∈ Rd also the offspring, which results from using −s, will be evaluated.469
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4 Methods

Algorithm 1 Separable NES

Require: λ ∈ N,µ ∈ Rd,σ ∈ Rd, ηµ, ησ, F
Ensure: λ ≡ 0 mod 2, ηµ > 0, ησ > 0

for epoch=1,. . . ,N do
for k=1,. . . ,λ/2 do

Init s ∈ R(λ,d) as sk ∼ N (0, I), s(k+λ/2) = −sk
θk ← µ + σ � sk
Compute Fitness F (θk)

end for

Compute gradients
∇µ ←

∑λ
k=1 F (θk)sk

∇σ ←
∑λ

k=1 F (θk)(s
T
k sk − 1)

Update parameters
µ← µ + ηµσ∇µ

σ ← σ exp
{ησ

2 ∇σ

}
end for

For the optimization of the base connection probabilities pI→J one needs to make sure
that they are always assigned values in [0, 1]. For that purpose real valued auxiliary
parameters κIJ ∈ R are optimized, from which the base connection probabilities are
obtained by using the sigmoid function:

pI→J =
1

1 + e−κIJ
. (5)

The value of the number K of neuron types and of the scaling parameter σ from470

equation (4) were optimized through a separate hyperparameter search.471
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4 Methods

Figure 7: Illustration of our algorithmic approach for optimizing a probabilistic skeleton
for a computing task. The motor control task of Fig. 4 is used as illustration. Sev-
eral RSNNs are sampled from the current probabilistic skeleton, and their capability
to solve the given task, i.e., their fitness, is measured. Evolution strategies modify the
probabilistic skeleton based on these fitness values. Then the loop is iterated.

Experiments472

Details to the delayed pattern matching task473

Task description: In this task two 2D patterns are presented to a RSNN with a variable474

delay. The goal of the task is for the network to decide whether the two patterns are475

similar or different. Similar in this context means that the patterns have been sampled476

from the similar pattern probability distribution, while different would indicate that the477

patterns originated from two different probability distributions.478

479

Input generation480
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4 Methods

Figure 8: Visualization of the input pattern generation process In the first step a random
center of activity is drawn uniformly on a 2D sheet. Subsequently, a convolution with a
Gaussian kernel is applied and the resulting values are scaled and interpreted as firing
probabilities. Lastly, these firing probabilities are associated to input neurons and used
to sample a spike pattern.

The input generation process is visualized in Fig. 8. To generate a pattern probabil-481

ity distribution a random point with coordinates (m,n) ∈ {2, ...,
√
nmcol − 1} is drawn482

randomly. Subsequently, a value of 1 is assigned at the coordinates of this point, while483

all other points have a value of 0, as can be seen in the first part of Fig. 8. This point484

represents the center of activity. Next, the pattern is convolved with a 2D Gaussian485

kernel, and scaled to obtain firing probabilities, where the highest probability amounts486

to 0.2. These firing probabilties are associated with neurons of the input type and can487

be used to sample input patterns, where spikes are drawn independently for every mil-488

lisecond. Two pattern probability distributions are considered similar if the centers of489

activity have a distance of less than 2, while dissimilar pattern probability distributions490

have a greater distance between the centers of activity.491

492

Performance measure: The performance measure for this task is the classification accu-493

racy.494

495

Fitness function: As a fitness function cross-entropy was used. Furthermore rate regu-496

larization was employed to keep the RSNNs from moving to biologically unrealistic firing497

regimes.498

499

Details of probabilistic skeleton and its optimization process: A decay constant of500

σ = 80 was used for this task. The scaling parameters were win = 8.66, wE = 17.6501

and wI = 8.22. The 275 neurons of the RSNN were arranged in nmcol = 25 minicolumns502

on a 5x5 grid, where M = 11. In every minicolumn there was one input and one out-503

put neuron. The probabilistic skeleton contains 74 parameters, whereas the full RSNN504

contains 61, 875 synaptic weights.505

Details to computations on spike times.506

Task description: The goal is here to classify the temporal distance between two waves
of input spikes. There is a fixed time interval of 200 ms, which is divided into four bins
of 50 ms. For each class the first spike occurs at the beginning t = 0 and the second
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spike is uniformly drawn from the four bins, which results in four classes of input spike
trains. The precise timing of the second spike is again uniformly sampled within the
time interval of the chosen bin.

Input: The network receives as input a wave of spikes at the beginning of a 200ms
long trial, and the second wave at any other time during the trial. For each input neu-
ron some Gaussian noise with mean zero and variance 1 ms has been added to the spike
times to avoid that all input neurons spike at the exact same time.

Performance measure: The percentage of correctly classified distances between the two
waves of input spikes is used as a performance measure. The standard deviation of the
performance on this and the subsequent tasks was obtained by averaging over the per-
formance of 50 different RSNNs sampled from the same probabilistic skeleton evaluated
on 100 inputs each.

Fitness function: Best optimization results are achieved when a different fitness measure
than accuracy is used. To compute the fitness the softmax function was applied to the
vector (r1, r2, r3, r4)

T of spike counts of the 4 output neuron types during the last 30ms
of a trial to obtain the class probabilities (p1, p2, p3, p4)

T . To compute the fitness the
target class y was first one-hot encoded to the target class vector y, i.e. to a vector
where all entries are 0 except the element at position y − 1, which has the value 1. An
example of one-hot encoding can be found in the Suppl., section 1.6. The fitness function
is given by the negative cross entropy loss. For a single example with one-hot-encoded
target class y the fitness is defined as:

F (θ) =
4∑

k=1

yk log(pk). (6)

507

508

Details of the probabilistic skeleton and its optimization process: A decay constant509

of σ = 77.7 was used for this task. The scaling parameters for synaptic strengths were510

win = 14.6, wE = 15.49, wI = 6.92. The 304 neurons of RSNN samples during opti-511

mization were arranged in nmcol = 16 minicolumns on a 4x4 grid, where M = 19. In512

every minicolumn there are two input neurons and there is one output neuron per type.513

During the optimization of the probabilistic skeleton the activity of output neurons514

was not only considered during the last 30ms. Instead, initially all spikes of output515

neurons were counted during the full 200ms of a trial. In the course of the optimization516

this period was gradually reduced to the last 30ms.517

Details to installing in RSNNs the capability to recognize specific spike518

patterns519

Generation of spike inputs: Two clearly distinct ensembles of Poisson spike trains from520

4 neurons with a rate of 50 Hz were frozen as templates. Spike input patterns of classes521
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1 and 2 were generated by creating variations of these spike templates: For every input522

neuron two time steps from the first 50ms were chosen, and a new spike was inserted at523

them or the spike was deleted if there was a spike at this time step. Subsequently, the524

spike times of all spikes in the template were shifted by a random amount drawn from a525

Gaussian with mean zero and variance 0.5 ms and rounded to the nearest integer value.526

The third class consisted of random Poisson spike trains over 50ms with a rate of 50 Hz.527

528

Input: The network received as input a spike pattern of 4 input neurons over 50ms529

from one of the three classes, drawn with uniform probability from the three classes.530

531

Performance Measure: The same performance measure as for the preceding task was532

used.533

534

Fitness function: A corresponding fitness function as for the preceding task was used.535

536

Details of the probabilistic skeleton and its optimization process Parameters win = 14.38,537

wE = 7.85, wI = 7.90 and σ = 129.73 were used. RSNN samples that were tested during538

the optimization of the probabilistic skeleton consisted of 148 neurons, which were ar-539

ranged in a 3x4 grid of nmcol = 12 minicolumns, each minicolumn consisting of M = 12540

neurons. There was one input neuron in every corner of the grid, hence the corresponding541

columns had one neuron more than M .542

Details to innate motor control capabilities through probabilistic skeletons543

Task description: For the simulation of the environment (AntMuJoCoEnv-v0) the Py-
Bullet physics engine (Coumans and Bai, 2016–2021) was used. The agent is a quadruped
walker and is usually referred to as ’ant’ in the literature. It consists of four legs with
four joints, which are attached by another four joints to a torso, modelled as a sphere.
The center of the sphere defines the location of the plant on a 2D plane. The goal
of this task is to achieve a high movement speed over the whole trial period, while
also avoiding to touch the ground. An episode is terminated if the center of its torso
moves below a height of 0.2m, or if the maximum number of time steps has been reached.

Spatial structure of RSNN samples The population coding of continuous-valued input
variables induced a prominent 1D dynamics in populations of input neurons, and there
seems to be no natural way to map these 2D input arrays properly into a 2D structured
RSNN for computational processing. For this reason, and because such basic motor
control capabilities are likely to be encoded in the spinal cord and other subcortical
structures, we used for this task a 1D arrangement of neurons in order to define their
spatial distances, rather than neocortical minicolumns. More precisely, the neurons of
input and recurrent types were evenly-spaced distributed over a 1D line segment [0, 660]
µm. The locations of output neurons, organized for each output variable into two output
types consisting of 4 neurons at the same location (see below), were optimized alongside
the other parameters of the probabilistic skeleton. The distance measure Dist(i, j) for
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neurons i and j was computed as the absolute value of the difference between their 1D
coordinates.

Input: Time in the simulated environment was discretized to time steps of 17 ms length.
For this reason, the network received each continuous-valued input value for 17 ms
through population coding in one of the 9 input neuron types, each having 16 neurons.
It should be noted that population coding is commonly employed in the brain to encode
continuous-valued variables (Georgopoulos, Schwartz, and Kettner, 1986). The input
was provided by the current state of the simulated environment. Its state space was 111
dimensional. We excluded most of them, for example angular velocities, to have a more
compact and arguably biologically more realistic network input.

Output: The action space of the controller is given by A = [−1, 1]8, which corresponds
to 8 torques applied to the 8 joints of the ant. An output torque y ∈ [−1, 1] of the
model is computed by using two output neuron types, each consisting of 4 output neu-
rons, representing negative and positive torques to a joint, denoted by J− and J+. This
corresponds to motor commands in the form of firing rates to 2 antagonistic muscles
for a joint. Firing activity of output neurons of the RSNN were decoded as signal to
the simulated environment by computing the normalized linear combination of the spike
rates over a 17 ms time step of the environment:

y =

17∑
t=1

e
− 17−t
τout

(
sJ−(t)− sJ+(t)

)
17∑
t=1

e
− 17−t
τout max (sJ−(t), sJ+(t))

, (7)

where τout = 10.

Performance measure and fitness function: The performance measure was the same
as the fitness value. The fitness was given by the total reward received from the envi-
ronment, summed up over time. At every time step of 17ms length the agent received a
reward

F (θ) = vfwd − 0.1jl + 1, (8)

where vfwd is the velocity of the center of the ant in the x direction, jl := number of joints544

which are at the limit. A constant reward of 1 was added for each time step in order545

to induce long lasting locomotion without premature abortion of an episode because the546

torso touched the ground.547

RSNN samples with 458 neurons from the optimized probabilistic skeleton produced548

an average fitness of 517 (standard deviation of 51.85) using 250 steps in the environ-549

ment, where the average was computed over 100 trials. The version of the model where550

30% of the recurrent neurons are randomly deleted achieved an average fitness of 331.551

552

Details of the probabilistic skeleton: The probabilistic skeleton consisted of K = 40553
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types, and was optimized for RSNN samples with N = 458 neurons. Every input554

type was constrained to only form connections to one recurrent type, which did not re-555

ceive synaptic inputs from another input type. The other parameters were win = 4.75,556

wE = 4.5, wI = 2.3 and σ = 80.0.557

558

Note: The version of the ant locomotion task that we considered differed somewhat559

from the version that is commonly considered in the literature (Schulman et al., 2015).560

There one does not assume a delay in feedback from the environment. Also, the more561

limited observation space that we used made it harder for the model to know in which562

direction it was facing, especially at a later point in the trial. This made it harder to563

move especially along the x-axis, which was the only direction in which locomotion was564

rewarded.565

Details to game of life566

Task description: The goal of this task is to demonstrate that a PS can generate an567

arbitrarily large RSNN which is capable of simulating the cellular automata game of life.568

569

Input generation There is no input for this task. One could consider the initial state of570

the recurrent network to be the input.571

572

Performance measure: There is no performance measure for this task.573

574

Fitness function: There is no fitness function for this task.575

576

Details of the probabilistic skeleton and its optimization process: For this task a differ-577

ent paradigm for spatially dependent probability scaling has been considered, see Fig.578

6c. The scaling parameters were wE = 1 and wI = 1. There are no input and output579

types for this task. The baseline connection probabilities pI→J have not been optimized580

using ES. Instead they have been computed analytically. Note, that for this task very581

simple McCulloch-Pitts neurons have been considered. In theory, game of life should582

be played on an infinitely large cellular automata, but as this would require an infinite583

amount of resources to simulate. As our simulations only use a finite cellular automata584

the behavior at the boundaries can diverge from what would be expected from an infinite585

field.586

Details to Figure 5587

To compare the different tasks it is necessary to use for different computing tasks a588

common performance scale. This can be achieved by defining the baseline for every task589

as the performance level of a random output. For example, the computations on spike590

times task required a decision between 4 classes, hence picking a random class would591

give for a uniform distribution of classes an expected accuracy of 25%. Analogously592

the baseline accuracy for the spike pattern classification, which involves three classes, is593
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33.33%. The baseline for the ant was considered to be a reward of 150, which amounts594

to the reward received after 250 time steps without moving forward. For the highest595

performance was defined by the performance of the best probabilistic skeleton.596

The performances on these different tasks were scaled by calculating for each task597

the difference between the theoretically best possible performance (either accuracy or598

normalized cross correlation) to the baseline performance and normalizing this difference599

to [0, 1].600

For panel a, each number of recurrent neuron types 80 probabilistic skeletons were601

optimized for every task, and the best performing ones were used for the plot.602

For panel b, the effective weight of each individual synapse was independently per-603

turbed for each presynaptic spike. The amplitude of this perturbation was measured as604

fraction x of its current value, and the maximal fraction is indicated on the x-axis of605

the panel. For each value of x the noise value was drawn uniformly from the interval606

[−x, x]. The resulting perturbed weight was set to zero if the perturbation caused its607

sign to change.608

609

Details to the comparison of neuron density, synapses numbers, and wire length with610

experimental data from the neocortex. According to Fig. 2B of (Carlo and Stevens,611

2013) the number of neurons under a square mm of the neocortical sheet is in the mam-612

malian brain around 100,000. The number of synapses per neuron was estimated in613

(Braitenberg and Schüz, 2013) to be 7777, and the total length of axons per neuron was614

estimated to be 4.4cm. We have compared these experimental data with corresponding615

estimates that arise for RSNN samples from probabilistic skeletons for the computing616

tasks that we considered (see Table 1 in the Suppl.). For example, the RSNN for coinci-617

dence detection, whose firing activity and performance was shown in Fig. S2 f-h, has 2160618

neurons, occupies a square patch of 0.5184mm2, has 360, 100 synapses, and a total wire619

length of 17.5m. Thus its number of neurons per square mm is by a factor 22 smaller620

than in the mammalian brain, the number of synapses is by a factor 1008 smaller, and621

its total wire length is by a factor 118 smaller than in the data. Thus, these numbers622

are in a reasonable range, but significantly smaller than in the experimental data. The623

main reason for that is that the number of neuron types that are needed for each of624

the computing tasks that we considered is substantially smaller than the estimated 111625

neuron types in mouse V1 (Tasic et al., 2018). Consistent with that, the number M626

of neurons in a minicolumn was in our examples well below the 80 -,120 neurons in a627

typical neocortical minicolumn. Note that the number of synapses and total wire length628

grow superlinearly with the number of neuron types, (see Suppl. section 1.7 and 1.8). In629

addition, we only counted wire length in the horizontal direction, and ignored long-range630

connections.631

632

633
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