1 Title

2	A small molecule, ACAi-028, with anti-HIV-1 activity targets a novel
3	hydrophobic pocket on HIV-1 capsid
4	
5	Running title: Anti-HIV-1 agent targets novel pocket on HIV-1 capsid
6	
7	Travis Chia ^{a#} , Tomofumi Nakamura ^{a#} , Masayuki Amano ^{a*} , Nobutoki Takamune ^b , Masao
8	Matsuoka ^a , and Hirotomo Nakata ^{a*}
9	
10	^a Department of Hematology, Rheumatology, and Infectious Diseases, Graduate School of Medical
11	Sciences, Faculty of Life Sciences, Kumamoto University, Kumamoto 860-8556, Japan.
12	^b Kumamoto Innovative Development Organization, Kumamoto University, Kumamoto 860-0862,
13	Japan
14	
15	[#] co- <i>first</i> authors
16	*Author to whom correspondence should be addressed; E-Mail: mamano@kumamoto-u.ac.jp (M.A.)
17	and nakatahi@gpo.kumamoto-u.ac.jp (H.N.); Tel.: +81-096-373-5156; Fax: +81-096-373-5158.
18	

19 Abstract

20	The human immunodeficiency virus type 1 (HIV-1) capsid (CA) is an essential viral component of
21	HIV-1 infection, and an attractive therapeutic target for antivirals. We report that a small molecule,
22	ACAi-028, inhibits HIV-1 replication by targeting a hydrophobic pocket in the N-terminal domain of
23	CA (CA-NTD). ACAi-028 is one of more than 40 candidate anti-HIV-1 compounds identified by in
24	silico screening and 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assays. Our
25	binding model showed that ACAi-028 interacts with the Q13, S16, and T19 amino acid residues, via
26	hydrogen bonds, in the targeting pocket of CA-NTD. Using recombinant fusion methods, TZM-bl,
27	time-of-addition, and colorimetric reverse transcriptase (RT) assays, the compound was found to exert
28	anti-HIV-1 activity in the early stage between a reverse transcriptase inhibitor, azidothymidine (AZT),
29	and an integrase inhibitor, raltegravir (RAL), without any effect on RT activity, suggesting that this
30	compound may affect HIV-1 core disassembly (uncoating). Moreover, electrospray ionization mass
31	spectrometry (ESI-MS) also showed that the compound binds directly and non-covalently to the CA
32	monomer. CA multimerization and thermal stability assays showed that ACAi-028 decreased CA
33	multimerization and thermal stability via S16 or T19 residues.

34 Importance

These results indicate that ACAi-028 is a novel CA inhibitor that binds to the novel hydrophobic pocket of CA-NTD. This study demonstrates that a compound targeting the new hydrophobic pocket is a promising anti-HIV-1 inhibitor. The findings presented here may offer the development of a novel

38	class of anti-viral agents that can be used, providing HIV-1 patients with more options for Anti-
39	retroviral therapy (ART) treatment. Despite many years of successful pharmaceutical developments in
40	the area of anti-retroviral therapy, the prevalence of drug-resistant mutations in HIV-1, necessitates
41	the continued development of novel agents, such as ACAi-028.

43 Key words

44 HIV-1, anti-HIV-1 agent, HIV-1 capsid, *in silico* drug screening

45

46 Introduction

HIV-1 is a retrovirus that has affected humans for half a century, causing 700 000 deaths and 1.7 47 million new infections in 2019, according to the Joint United Nations Programme on HIV and AIDS 4849(https://www.unaids.org/en). Significant progress has been made in recent years to understand HIV infection and design drugs to counteract multiple stages of the viral life cycle. Anti-retroviral therapy 5051(ART) has largely allowed HIV-infected patients to have the same life expectancy as uninfected individuals (1, 2). Despite of the benefits of ART, HIV-1 often acquires drug-resistant mutations, (3) 5253resulting in treatment failure. High adherence to ART is required to sustain viral suppression during HIV clinical treatment (4). It is especially important that we continue to discover new anti-HIV-1 54agents that have potent antiviral activity with different mechanisms, providing HIV patients with more 55options for ART treatment. 56

57	The HIV-1 capsid protein (CA) plays an essential role in both the early and late stages of the HIV-1
58	life cycle. One of the key periods in the early stage is HIV-1 capsid core disassembly, also known as
59	uncoating (5, 6). After HIV-1 infection of the host cell via CD4 and CXCR4/CCR5 molecules,
60	uncoating occurs in a regulated manner. The exact mechanism of uncoating remains unclear. Previous
61	studies have suggested several hypotheses regarding the time and location of uncoating (7). Electron
62	microscopy results suggest that uncoating occurs near the surface of the plasma membrane (8), while
63	other studies have suggested that uncoating occurrs in the cytoplasm, or tethered to nuclear import (9).
64	However, recent studies have indicated the possibility that uncoating actually occurs in the nucleus,
65	and might be coupled with both reverse transcription and integration (10, 11, 12). A new inhibitor of
66	CA uncoating has the potential to provide novel insights and tools for further research in this field.
67	Representative anti-CA compounds such as CAP-1 (13, 14), PF-3450074 (PF74) (15, 16), ebselen
68	(17), BD-1, BM-1 (18), I-XW-053 (19), and C1 (20) have been discovered, although none have been
69	approved for clinical use by the FDA. In this study, we used PF74 and ebselen as control drugs. PF74
70	is a lead compound of GS-CA1 (21) and lenacapavir, formerly known as GS-6207, (22, 23) that have
71	been developed by Gilead Sciences, Inc. These compounds interact with the CTD-NTD interface and
72	hinges between CA monomers, inducing hyperstabilization of the HIV-1 core and inhibiting the
73	interaction of co-factors, such as Nup153 and CPSF6 (16). Lenacapavir has advanced to phase 2/3 of
74	the clinical CAPELLA trial (ClinicalTrials.gov Identifier: NCT04150068), and preliminary reports
75	from this trial indicate that it is effective at reducing the viral load of patients on failing treatment

93	the HIV-1 capsid
92	Identification of candidate compounds that target a novel hydrophobic cavity of
91	Results
90	
89	the identified binding pocket hold potential therapeutic and research applications.
88	characteristics, which possess potent anti-HIV-1 activity. It is anticipated that both this compound and
87	preventing HIV-1 replication. Here, we highlight ACAi-028, a CA inhibitor with unique molecular
86	simulations. We identified several compounds as candidate HIV-1 inhibitors that were capable of
85	from a library containing millions of commercially available compounds via in silico docking
84	In this study, we searched for new compounds capable of interacting with the hydrophobic pocket
83	this hydrophobic cavity.
82	To the best of our knowledge, none of the other published anti-CA compounds are known to target
81	hydrophobic cavity near this region on the surface of CA-NTD, which could be a potential drug target.
80	of decreased its stability, inducing abnormal CA degradation (24), and identified an adequate
79	We previously reported that the insertion of a short amino acid sequence near the Arg18/Thr19 region
78	CA via Cysteine residues, inhibiting HIV-1 activity (17).
77	compounds. Ebselen is also a unique CA inhibitor that covalently binds to the C-terminal domain of
76	regimens, strongly suggesting that the CA is a viable target for the development of novel anti-HIV-1

94	CA protein consists of the N-terminal domain (CA-NTD, amino acid residues 1-145) and the C-
95	terminal domain (CA-CTD, residues 151-231) linked via a short flexible region (residues 149-150)
96	(25, 26, 27). CA-NTD comprises one β -hairpin, seven α -helices, and a cyclophilin binding loop
97	(CypA-BL), while CA-CTD has a 3_{10} -helix and four α -helices, as shown in Fig. 1A. Recently, CA
98	inhibitors have attracted attention due to the development of lenacapavir, whose lead compound is
99	PF74 (15), which exhibits a long-acting, strong anti-HIV profile. We have reported that the insertion
100	of a short amino acid sequence into the CA-NTD, specifically near the R18 and T19 residues, results
101	in spontaneous CA degradation (24).
102	To identify new capsid inhibitors, we selected a novel hydrophobic pocket (Fig. 1A) near this position
103	as a potential interaction site for drug candidates with the CA-NTD. In silico docking simulations were
104	performed to search for new compounds that interact with this pocket from a database of over eight
105	million commercially available compounds. The selection process is illustrated in Figure 1B. More
106	than 40 compounds were identified as candidate HIV-1 inhibitors that prevented HIV- 1_{LAI} replication,
107	using the MTT assay.
108	In this study, we identified ACAi-028 (Fig. 1C), which has a small molecular weight (MW) of 381

- 109 g/mol, and potent anti-HIV-1_{LAI} activity (EC₅₀, 0.55 μ M), among the candidate HIV-1 inhibitors.
- 110 Therefore, we examined the anti-HIV profile of ACAi-028.
- 111 The crystal structure of CA-NTD_{1-146/ Δ 87-99G} was produced (15) (Fig. S1), and the binding profile of
- 112 ACAi-028 to the CA-NTD was elucidated using a docking model (Fig. 1D). The binding profile of

113	ACAi-028 with the CA-NTD is similar to that of ACAi-028 with full-length CA (Protein Data Bank
114	[PDB] accession number 4XFX) (28) (Fig. S2). ACAi-028 is estimated to form two hydrogen bonding
115	(H-bond) interactions with the side-chains of Q13 and T19 (inter-atomic distances of 1.87 and 1.89 Å,
116	respectively), and one H-bond interaction with the main chain of S16 (inter-atomic distance of 2.06
117	Å). This structural arrangement suggests that ACAi-028 could potentially bind to the newly identified
118	hydrophobic cavity in CA-NTD.
119	
120	ACAi-028 inhibits the early stage of the HIV-1 life cycle
121	Next, we determined the anti-HIV activity (EC ₅₀ s) of ACAi-028 against various HIV-1 and HIV-2
122	strains, in comparison with several compounds that have been previously reported as capsid inhibitors,
123	such as PF74 (15) and ebselen (17), and an RT inhibitor, AZT (29) (Table 1).
124	ACAi-028 exerted potent anti-HIV-1 activity against single-round HIV-1 infection using VSV-G
125	pseudo-typed HIV- 1_{NL4-3} (HIV- $1_{VSV-G dENV}$), suggesting that ACAi-028 inhibits the early stage of the
126	HIV-1 life cycle. ACAi-028 also prevented multiple-round HIV-1 infection using HIV-1 strains (HIV-
127	1_{NL4-3} and HIV- 1_{LAI}), except for HIV-2 strain (HIV- 2_{ROD}), at a concentration similar to that of PF74,
128	ebselen, and AZT. In addition, ACAi-028 inhibited the replication of various types of HIV-1 strains
129	(HIV-1 _{104pre} , HIV-1 _{MDR/B} (30) in peripheral blood mononuclear cells (PBMCs) and HIV-1 _{ATV^R5µM} in
130	MT-4 cells (Table 2), and had negligible cytotoxicity in all the cell lines we tested (Table 3).

131	To examine the details of early stage inhibition by ACAi-028, we performed fusion (31), TZM-bl,
132	time-of-addition (32), and colorimetric RT activity assays. ACAi-028 did not significantly inhibit the
133	entry step of HIV- 1_{LAI} , in comparison to the entry inhibitor, AMD3100 (33) (Fig. 2A). ACAi-028 also
134	displayed strong anti-HIV-1 activity against HIV-1 R5 strains, including HIV-1 _{Ba-L} , and HIV-1 _{JR-FL} ,
135	and X4 strains, except for HIV-2 _{ROD} , using the TZM-bl assay (Fig. 2B).
136	A time-of-addition assay was conducted to compare the inhibition time of ACAi-028 with that of
137	the other classes of anti-HIV-1 drugs. As expected, AMD3100 ceased displaying anti-HIV-1 activity
138	when it was added more than 2 h post-infection, while an integrase inhibitor, RAL, significantly
139	prevented HIV-1 infection beyond10 h post-infection (Fig. 2C).
140	We observed that ACAi-028 inhibited anti-HIV-1 activity at a similar time as RT inhibitors, AZT and
141	efavirenz (EFV) (34), as well as a CA inhibitor, PF74. Fifty percent inhibition induced by these drugs
142	occurred between 4 and 8 h post-infection, which is consistent with a previous report (15). Moreover,
143	we examined whether ACAi-028 prevents HIV-1 RT activity using a colorimetric RT activity assay
144	and found that ACAi-028 and PF74 did not have a significant impact on HIV-1 RT activity, in
145	comparison to EFV (Fig. 2D) in vitro. This suggests that ACAi-028 is unlikely to be an RT inhibitor.
146	Taken together these results indicate that ACAi-028 may have a similar level of potency as a CA
147	inhibitor as PF74, which affects the CA uncoating process.

149 ACAi-028 does not affect the late stage of the HIV-1 life cycle

150	To examine the effect of ACAi-028 on late-stage inhibition, we examined whether ACAi-028
151	affects the process of HIV-1 production, including Gag proteolytic processing and maturation. Forty-
152	eight hours after transfection of pHIV- 1_{NL4-3} into 293T cells in the presence of ACAi-028 (10 μ M),
153	PF74 (10 μ M), ebselen (10 μ M) or, a protease inhibitor, darunavir (DRV) (2 μ M) (35). Gag proteins
154	within the cells were observed by western blotting, and viral production was evaluated comparison to
155	p24 expression levels in the culture supernatant. ACAi-028, PF74, and ebselen did not affect Gag
156	proteins in the cells, unlike DRV (Fig. 3A), whereas ACAi-028 (88.7%), and ebselen (75.2%), PF74
157	(62.9%), and DRV (15.7%) reduced HIV-1 production, which is consistent with previous reports (15,
158	17) (Fig. 3B). Additionally, the effect of ACAi-028 on Gag proteolytic processing and maturation of
159	HIV-1 virions was investigated using western blotting and the TZM-bl assay. ACAi-028 did not affect
160	HIV-1 maturation, as observed via western blotting, using anti-Gag or anti-IN antibodies as well as a
161	DMSO control (Fig. 3C). ACAi-028 did not reduce the viable virions (111.8%), as opposed to DRV
162	(3.6%) (Fig. 3D), suggesting that ACAi-028 does not have any effect on HIV-1 production and
163	maturation. On the other hand, a high concentration of PF74 (10 μ M) did not affect Gag proteins in
164	the cell lysate (Fig. 3A), but the production level of virions in the presence of PF74 significantly
165	decreased by 62.9% compared to that of the DMSO control. Furthermore, the infectivity of the virions
166	was reduced to 6.9% (Fig. 3B and D), suggesting that PF74 affects both the early and late stages, in
167	agreement with previous reports (15). It has been reported that ebselen does not exhibit late-stage
168	inhibition (17). Interestingly, premature products such as Gag-pol (p160), Gag-pol intermediate (p120),

169	Gag (p55), and Gag intermediates were found in the virion lysate that was produced at a high
170	concentration (10 μ M) of Ebselen, via the western blotting with anti-Gag or anti-IN antibodies, which
171	is similar to DRV (Fig. 3C). Additionally, the infectivity of the virions produced in the presence of
172	ebselen (10 μ M) was significantly reduced by 64.6 % of their normal level (Fig. 3D). These results
173	suggest that ebselen may interfere with HIV-1 maturation. These results indicate that ACAi-028 is
174	unlikely to affect the late stage of the HIV-1 life cycle.

176 Conformational difference of targeting the hydrophobic pocket between HIV-1 177 and HIV-2

178ACAi-028 did not show anti-HIV activity against the HIV-2_{ROD} strain (Table 1). We compared the 179amino acid sequences of experimental HIV-1 strains, such as HIV-1_{NL4-3}, HIV-1_{HXB (LAI)}, HIV-1_{Ba-L}, 180 and HIV-1_{JR-FL}, which are all closely related to simian immunodeficiency virus from chimpanzees 181 (SIV cpz). Similarly, comparisons of experimental HIV-2 strains, such as HIV-2_{ROD} and HIV-2_{EHO}, 182which are related to SIV sooty mangabeys (SIV smn), as shown in Fig. 4A, were also undertaken. The 183 Q13, S16, and T19 residues, which are expected to play important roles in ACAi-028 binding to CA 184 (Fig. 1D), are conserved among all HIV-1 strains and SIV cpz, whereas most of the amino acids from residues 2 to 15 of HIV-2 are different from those of HIV-1 (Fig. 4A). Moreover, Q13, S16, and T19 185186 residues were highly conserved across 6144 sequences from all HIV-1 subtypes (HIV sequence

- database filtered web alignment) at conservation rates of 99.89%, 97.85%, and 99.72 %, respectively
 (Fig. 4B).
- 189 The crystal structures of the ACAi-028 target hydrophobic pocket of HIV-1_{NL4-3} ([PDB] accession
- 190 number 4XFX) (28) and HIV-2_{ROD} ([PDB] accession number 2WLV) (36) are shown in Fig. 4C. This
- 191 HIV- 1_{NL4-3} pocket seems to have a sufficient volume for ACAi-028 binding, while that of HIV- 2_{ROD}
- appears to be too shallow for binding (Fig. 4C and Fig. S3). The cavity of CA-NTD_{NL4-3} is covered by
- 193 that of the CA-NTD_{ROD} in the overlay of these crystal structures, as shown in Fig. 4C, suggesting that
- the ACAi-028 target volume of HIV-2 is clearly smaller than that of HIV-1.
- 195 Moreover, we examined the binding ability of ACAi-028 to CA-NTD_{ROD} using a binding model. As
- 196 shown in Fig. 4D, there were no bridging H-bonds between ACAi-028 and the amino acid residues of
- 197 CA-NTD_{ROD}, corresponding to the lack of inhibition (EC₅₀ > 10 μ M) of ACAi-028 against HIV-2 _{ROD}
- 198 (Table 1). These results indicate that ACAi-028 may fail to interact with HIV- 2_{ROD} CA, resulting in
- 200

201 Binding profiles of ACAi-028 to CA proteins.

no anti-HIV-2 activity.

In order to observe the direct binding of ACAi-028 to CA, we produced recombinant HIV-1_{NL4-3}derived CA proteins using *E. coli*, and examined the binding of ACAi-028 to these proteins using an electrospray ionization mass spectrometry (ESI-MS) (37). The ESI-MS spectra of the CA monomer with 1% methanol revealed nine peaks of charged ions in the range of mass/charge ratio (m/z) range

206	of 1,100–1,900 (Fig. 5A). The MW estimated from the peaks of charged irons (deconvoluted ESI-MS
207	spectrum) was 25601.9 Da, corresponding to the theoretical MW of intact CA monomer (25602.5 Da),
208	as calculated by Peptide Mass Calculator v3.2 (Fig. 5A). After treatment of CA with ACAi-028, peaks
209	associated with ACAi-028 binding to CA emerged in the m/z range of 1,300–1,900 next to each
210	spectrum of the CA monomer (Fig. 5B). The deconvoluted ESI-MS spectrum revealed a peak
211	associated with CA and ACAi-028 at 25984.1 Da, which was similar to the sum of the MW of a CA
212	monomer (25601.9 Da) and ACAi-028 (381 Da) (Fig. 5B). Additionally, we examined whether ACAi-
213	028 binds covalently to CA. After treatment of CA with ACAi-028 or ebselen, the samples were
214	denatured by acetonitrile and trifluoroacetic acid. The binding peak of CA with ACAi-028 was not
215	detected in Fig. 5C, while two strong peaks of CA with ebselen (25922.03 and 26120.59 Da,
216	representing CA combined with one or two ebselen molecules, respectively) were observed (Fig. 5D).
217	These results are in line with a previous report (17), suggesting that ACAi-028 binds non-covalently
218	to CA, unlike ebselen. Thus, ACAi-028 binds directly and non-covalently to the CA monomer.
219	

ACAi-028 affects the molecular characterization of CA proteins via S16 and T19 residues.

ACAi-028 was shown to interact directly with the CA proteins using ESI-MS. To investigate how ACAi-028 interacts with CA proteins, we produced CA variants carrying S16E (CA_{S16E}) or T19A (CA_{T19A}) amino acid substitutions, which were intend to alter the binding ability of ACAi-028 to CA. CA_{M185A}, carrying an M185A amino acid substitution was also produced as previously reported (38),
as a control.

227	CA thermal stability in the presence of ACAi-028 was examined using differential scanning
228	fluorimetry (DSF) (39, 40) (Fig. 6). The melting temperature (Tm) value for proteins generally
229	indicates the temperature at which the protein is unfolded by 50% folded (Tm 50). Tm 50 of wild-type
230	CA (CA _{WT}) increased in the presence of PF74, while that of ACAi-028 clearly decreased by 6.8° C and
231	7.1°C at 10 and 50 μ M, respectively (Fig. 6A and B). Tm 50 of CA _{S16E} showed a mild reduction of
232	3.9° C at 50 μ M, while that of CA _{T19A} was seen to remain unchanged in the presence of ACAi-028 (Fig.
233	6C and D), suggesting that S16 and T19 residues may be associated with the binding of ACAi-028 to
234	the target pocket of CA-NTD. Additionally, a CA multimerization assay was performed in the presence
235	of ACAi-028. The treatment of CA_{WT} with PF74 increased CA multimerization as previously
236	described (15), whereas ACAi-028 decreased CA_{WT} multimerization at 4 and 40 μM in a
237	concentration-dependent manner (Fig. 7A). M185A greatly decreased the CA multimerization, in
238	agreement with, a previous report (38). The addition of S16E substitution to CA proteins slightly
239	reduced CA_{S16E} multimerization, while T19A slightly increased CA_{T19A} multimerization in comparison
240	to CA _{WT} (Fig. 7B) at the same sodium concentration, suggesting that these residues significantly affect
241	the CA multimerization. In the presence of ACAi-028, CA _{S16E} multimerization was similar to that of
242	CA _{WT} (Fig. 7C). However, CA _{T19A} multimerization was not affected by the presence of ACAi-028,
243	even at a higher concentration (40 μ M) (Fig. 7D), suggesting that the T19A mutant may inhibit ACAi-

244	028 binding to the target pocket under these conditions. These results strongly indicate that ACAi-028
245	may interact with CA proteins via S16 and T19 residues in the target pocket of CA-NTD.
246	

ACAi-028 potentially interacts with the binding pockets of CA in the hexameric

248 **state.**

ACAi-028 exerted anti-HIV-1 activity in the early stages of the HIV-1 life cycle. In the early stage, 249CA proteins constitute a capsid lattice (HIV core), which is composed of approximately 250 hexamers 250251and exactly 12 pentamers (41). To confirm the location and space of the binding pocket in a CA 252hexamer, we analyzed a CA hexamer model in complex with, or without, ACAi-028, based on CA crystal structures ([PDB] accession number 3H4E (42), and 5MCX (32)). In the model, the ACAi-028 253can bind to the pocket located at inside the CA hexamer ([PDB], 3H4E) (Fig. 8A). Additionally, the 254255ACAi-028 binding profile to the pocket in a CA dimer extract from the CA hexameric state ([PDB], 5MCX) was predicted using our docking model. ACAi-028 can putatively interact with the pocket in 256257the CA dimer of the CA hexameric state, without affecting the paired CA monomer, via two H-bonds 258with L43 and E45 (Fig. 8B). This suggests that ACAi-028 can potentially interact with the binding 259pockets of the CA hexameric state, in the HIV-1 core. Taken together, ACAi-028 is a novel capsid 260inhibitor that binds to the new hydrophobic pocket in CA-NTD, thereby inhibiting the early stage of HIV-1 replication. 261

263 **Discussion**

264	Based on the results described above, we concluded that ACAi-028 is a small molecular CA
265	inhibitor of HIV-1 that interacts with CA via the novel region, which has not been previously reported
266	(Fig. 9 and Table 4). The ACAi-028 binding pocket is formed by key residues, namely at Gln13, Ser16,
267	and Thr19, which constitute the β -hairpin end, flexible linker, and front edge of α -helix 1 (Fig.1). To
268	understand the mechanisms of action of CA inhibitors previously described (43), we categorized
269	several candidate CA inhibitors based on their molecular characterization into groups A, B, C, and D
270	(Fig. 9 and Table 4). CAP-1 (group A) is a late-stage inhibitor, without early stage inhibition of the
271	HIV-1 life cycle (13, 14), possibly because the hexameric association of CA proteins in the mature
272	HIV-1 core requires tight molecular packing, prevent access of CAP-1 to this pocket. Indeed, the other
273	small molecules, including BD-1 and BM-1 (18), which share the CAP-1 binding region, are all late-
274	stage inhibitors. Therefore, the inhibitory mechanism of group A is likely different from that of ACAi-
275	028. PF74 (group B) interacts with a region distinct from ACAi-028 and CAP-1, as shown in Fig. 9
276	and Table 4, and binds to the pocket formed between CA-NTD and the CA-CTD of an adjacent CA
277	monomer. PF74 is known to inhibit both the early and late stages of the HIV-1 life cycle (15), whereas
278	ACAi-028 only inhibited the early stage (Fig. 2 and 3). As shown in the CA multimerization and DSF
279	assay (Fig. 5), ACAi-028 has a significant effect on the CA multimerization and thermal stability,
280	which are completely opposite to PF74, suggesting that ACAi-028 and PF74 represent different classes
281	of CA inhibitors (Fig. 9 and Table 4). I-XW-053 (19) (group C) binds to, and disrupts CA NTD-NTD

282	interactions in CA hexamers during the early stages of HIV-1 infection. By SPR analysis of I-XW-053
283	binding with CA mutants, the proposed binding sites of I-XW-053 were found to involve I37 and R173,
284	which the amino acids identified within the target binding region of ACAi-028. Group C includes C1
285	(20), a late-stage assembly inhibitor that interacts with the CA-NTD residues at E98, H120, and I124
286	residues. Ebselen (group D) is a covalent inhibitor of HIV-1 CA by forming a selenosulphide bond
287	with C198 and C218 residues in the CA-CTD. ACAi-028 possesses distinct properties, in comparison
288	to the inhibitors of groups C and D, suggesting that ACAi-028 targeting the hydrophobic pocket is
289	likely to be different from any previously discovered CA inhibitors.
290	Amino acid substitutions that alter CA multimerization have been previously reported (38).
291	Substitution of amino acid residues at S16 and T19 altered the CA multimerization; S16E mutants
292	decreased the CA multimerization, whereas T19A mutants increased the CA multimerization.
293	Additionally, E45A substitution, E45 residue is a residue predicted to be located in theACAi-028-
294	binding pocket, is known to increase the CA multimerization (45). These amino acids might constitute
295	an important site for CA dimerization in the formation of CA hexamers (Fig. 8). The binding of ACAi-
296	028 to the pocket could potentially interfere with CA dimerization, because this pocket is located
297	within an inward facing portion of the CA hexamer (Fig. 8A), which is supported by the reduction of
298	CA multimerization in the presence of ACAi-028 (Fig. 5A). To investigate the binding profile of
299	ACAi-028 to CA-NTD, we produced crystals of CA-NTD _{1-146/Δ87-99G} proteins, according to a previous
300	report (15), and utilized this structure for the preparation of a docking model for ACAi-028 binding to

301	CA. Unfortunately, when crystals of CA-NTD _{1-146/Δ87-99G} were produced in the presence of ACAi-028,
302	significant precipitations occurred without the emergency of a crystal in the droplet, suggesting that
303	ACAi-028 may cause CA proteins instability or destabilization of the CA protein. Thus, we were
304	unable to acquire actual binding profiles of ACAi-028 to CA. Moreover, when we have selected HIV-
305	1 variants resistant to ACAi-028, with increasing concentrations of up to 20 μ M, we did not detect
306	ACAi-028-related strong resistant mutations in the CA (Gag) regions, suggesting that ACAi-028 might
307	still possess an unknown mechanism for HIV-1 inhibition. This represents a limitation of the present
308	study, and requires further investigation.
309	Recently, lenacapavir was reported to be a powerful anti-HIV compound, with broad-spectrum
310	inhibition, even against multidrug-resistant HIV-1, HIV-2, and SIV (21), for long-acting HIV-1
311	treatment (21, 22) (Phase 2/3 CAPELLA trial). Furthermore, lenacapavir has also been predicted to be
312	effective in HIV prevention as HIV pre-exposure prophylaxis (PrEP). These findings strongly suggest
313	that CA is an attractive therapeutic target for the development of novel antivirals.
314	In conclusion, we have identified ACAi-028 as a small molecular anti-HIV-1 CA inhibitor that
315	targets a novel hydrophobic CA-NTD pocket, exerting the early-stage inhibition of the HIV-1 life
316	cycle with EC_{50} of 0.55 μ M. Further research is underway to understand the role of this region in HIV-
317	1 replication. The novel hydrophobic pocket identified here, should be a viable target for the
318	development of new synthetic CA inhibitors. Furthermore, ACAi-028, a potent CA inhibitor targeting
319	this novel pocket, could have valuable therapeutic and research applications.

320 Materials and Methods

321 Cells and Viruses

322MT-2 and MT-4 cells (Japanese Collection of Research Bioresources Cell Bank; JCRB Cell Bank, Japan) were cultured in RPMI1640 medium (Gibco, Thermo Fisher Scientific, USA) with Fetal Bovine 323Serum (FBS, Gibco, Thermo Fisher Scientific, USA), Penicillin (P), and Kanamycin (K). 293T, Li 7, 324325HLE, and COS7 cells obtained from JCRB Cell bank and TZM-bl cells obtained from the NIH AIDS Research and Reference Reagent Program were cultured in low glucose DMEM with L-Glutamine and 326 Phenol Red (Fujifilm Wako Pure Chemical Corporation, Japan), as well as FBS, P, and K. PHA-327 328 PBMCs were derived from a single donor in each independent experiment. The research protocols 329described in the present study were carried out in accordance with relevant guidelines and regulations, 330 and were approved in Ethics Committee for Epidemiological and General Research at the Faculty of 331Life Sciences, Kumamoto University. The HIV-1 strains used in our experiments have already been 332established previously, including HIV-1_{NL4-3}, HIV-1_{LAI}, HIV-1_{Ba-L}, HIV-1_{JR-FL}, HIV-1_{ERS104pre} which 333 was isolated from clinical HIV-1 strains of drug-naive patients with AIDS (46), and HIV-1_{MDR/B} which was originally isolated from AIDS patient who had received 9 anti-HIV-1 drugs over the 34 months 334 335 and was genotypically and phenotypically characterized as multi-drug-resistant HIV-1 variant (47, 48). HIV-1_{VSV-G dENV} was produced by co-transfection of pCMV-VSV-G vector (addgene) and pNL_{4-3 dENV} 336 with deleted Kpn1-Nhe1 site in the Env region into 293T cells. 337

338

339 Plasmid constructs

340	Full-length CA sequences derived from pNL ₄₋₃ was introduced to pET30a vectors (Novagen-Merck
341	KGaA, Germany), producing a pET30a CA vector. The site-directed mutagenesis was performed using
342	PrimeSTAR® Max (Takara Bio Inc. Japan) to introduce S16E, T19A, E45A, and M185A into the
343	pET30a CA, producing pET30a CA _{S16E} , CA _{T19A} , and CA _{M185A} vectors, respectively. CA-NTD ₁₄₆
344	deletion sequence carrying a single glycine residue instead of CypA-BL (residues 87-99) (the amino
345	acids sequence is based on (15)) was introduced to pET30a vectors 6xHis at N-terminus, producing a
346	pET30a His-CA 1-146/Δ87-99G vector

347

348 **Protein expression and purification**

CA proteins were produced from the pET30aCA in E. coli RosettaTM (DE3) pLysS Competent Cells 349 350(Novagen) grown in LB medium supplemented with Kanamycin and chloramphenicol at 37°C, and 351induced with 1.0 mM Isopropyl β-D-1-thiogalactopyranoside (IPTG) for 3-5 hr at 37°C. The bacterial cells were harvested and stored at -80°C. The pellets of CA were resuspended and sonicated in CA 352353buffer (50 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM 2-mercaptoethanol (BME)) supplemented with 3540.5 mM phenylmethylsulfonylfluoride. The lysates were cleared by centrifugation for 15 min at 3,500 rpm at 4°C. After 5M NaCl was added to the supernatants, the samples were cleared by centrifugation 355356 for 15 min at 3,500 rpm again. The precipitate was resuspended in the CA buffer. The sample was precleared for 15 min at 15,000 rpm at 4°C, and the supernatants were filtered through a 0.45 µm filter. 357

358	The CA proteins were loaded onto a HiLoad 16/60 Superdex 200 column (GE Healthcare, USA), and
359	were eluted with CA loading buffer (20 mM Tris-HCl pH 7.5, 150 mM NaCl, 5 mM BME) using
360	AKTAprime plus (GE Healthcare). CA monomer fractions were concentrated using Amicon Ultra-
361	10K device (Merck Millipore) in the CA buffer. The proteins concentration was determined using a
362	BCA Protein Assay Reagent Kit (Thermo Fisher Scientific) and stored at -80°C.

364 In silico simulation and docking model

365 The crystal structures of CA-NTD_{1-146/Δ87-99G} produced by our method and various full-length CA 366 proteins ([PDB] accession number 4XFX, 3H4E, and 5MCX) from the RCSB Protein Data Bank 367 (http://www.rcsb.org) are utilized for the docking simulation. Hydrogens were added to 2D structure 368 of ACAi-028, and the structures were energy-minimized with the MMFF94x force field as 369 implemented in MOE (Chemical Computing Group, Quebec, Canada). All docking simulations were 370 performed with SeeSAR and FlexX version 10 (BioSolveIT GmbH, Sankt Augustin, Germany). 371Molecular graphics and analysis were performed with UCSF Chimera 372(https://www.rbvi.ucsf.edu/chimera).

373

374 **Fusion assay**

Fusion assay was performed previously (31). In brief, 293T cells were transfected with pHIV- 1_{NL4-3} 376 Tat with or without pHIV- 1_{NL4-3} Env while COS-7 cells were transfected with CD4, CXCR4, and LTR-

377	Luciferase. After 24 hr of incubation at 37°C and 5% CO ₂ , the transfected 293T cells were mixed with
378	the transfected COS-7 cells in the presence or absence of tested compounds for 6 hr. The luciferase of
379	the samples was detected using Firefly Luciferase Reporter Assay Kit I (PromoCell GmbH, Germany)
380	and the luciferase intensity was normalized to the negative control. Ratios of luciferase intensity of the
381	samples were compared.

383 **Time-of-addition assay**

384	Time-of addition assay is previously reported (32). Briefly, TZM-bl cells (5×10^4 /mL) were subjected
385	to HIV- 1_{LAI} (50 ng/mL of p24) in 96-well white plates. Drugs at the indicated concentrations were also
386	added to the set of wells demarcated for 0 hr. After 2 hr of incubation at 37°C and 5% CO ₂ , The
387	supernatant was removed and the cells were washed once to remove all traces of the virus. Drugs at
388	the respective concentration were added back to the cells marked for 0 hr as well as the ones marked
389	for 2 hr. Subsequently, every 2 hr after, drugs at the correct concentration was added to the next each
390	well until 10 h after incubation. The cells were incubated at 37° C and 5% CO ₂ until 48 hr. Luciferase
391	intensity was measured using FluoSTAR Omega (BMG labtech GmbH, Germany).

392

393 TZM-bl assay

TZM-bl cells were obtained from the NIH AIDS Research and Reference Reagent Program. TZM-bl
 assay was performed in 96-well white plate using the Firefly Luciferase Reporter Assay Kit I. Briefly,

396	the supernatant medium was removed and lysis buffer added to the samples. After the samples were
397	shaken for 25 minutes, D-luciferin was added to each well. After shaking, the luciferase intensity was
398	measured using FluoSTAR Omega.
399	

400	Virus	quantificatio	n
-----	-------	---------------	---

401 Virus samples were measured by an HIV-1 p24 enzyme-linked immunosorbent assay (ELISA) using
402 Lumipulse G1200 (Fujirebio Inc, Japan), and normalized to determine the viral concentration.

403

404 **Reverse Transcriptase Assay**

Colorimetric reverse transcriptase assay was performed (Reverse Transcriptase Assay colorimetric, Roche, Switzerland). Briefly, recombinant HIV-1 reverse transcriptase was added to tested compounds dissolved in the lysis buffer and subsequently incubated at 37°C and 5% CO₂ for 3-4 hr. After washing, peroxidase-conjugated anti-digoxigenin antibody solution were added to the samples and incubated for 1 hr at 37°C and 5% CO₂. After washing, peroxidase substrate ABTS solution with enhancer was added to the samples. The optical density was measured at 405 nm using a Versamax microplate reader (Molecular Devices, USA).

412

413 Western blotting

414 Western blotting was described previously (40). Briefly 293T cells were plated and incubated for 24

415	hr at 37°C in 5% CO ₂ . Cells were transfected with pNL ₄₋₃ vectors using Attractene Transfection
416	Reagent (QIAGEN, Germany). After 8 hr, the medium was changed and the tested compounds were
417	added, and then incubated for 48 hr. Subsequently, the viruses were filtered, purified by
418	ultracentrifugation in 15% sucrose-phosphate-buffered saline (PBS), normalized by the p24 levels,
419	and stored in PBS at -80°C. The cells were lysed in M-per buffer (Thermo Fisher Scientific)
420	supplemented with Halt Protease Inhibitor Cocktail (Thermo Fisher Scientific). The samples were
421	titrated using BCA Protein Assay Kit and stored at -80°C. The samples were prepared and separated
422	with SDS-PAGE (5-20% Extra PAGE One Precast Gel; nacalai tesque) and transferred onto a
423	nitrocellulose membrane. The samples were detected with anti-HIV-1 Gag ($p55 + p24 + p17$) antibody
424	(catalog number ab63917; Abcam), anti-HIV-1 IN antibody (catalog number ab66645; Abcam),
425	second mouse or rabbit antibody (MBL co., LTD.), and anti-beta actin antibody (HRP conjugated)
426	(Abcam), and then visualized using SuperSignal WestPico Chemiluminescent Substrates (Thermo
427	Fisher Scientific).

429 **CA multimerization assay**

CA multimerisation assays were performed as previously reported (38). Compound was added to 30
µM of CA protein in 50 mM phosphate buffer at pH 8.0 supplemented with 50mM NaCl. Capsid
assembly was initiated by addition of 50 mM sodium phosphate at pH 8.0 supplemented with 5M
NaCl. Optical density at 350 nm was measured using FLUOstar Omega (BMG labtech) for 1 hr.

435 **DSF**

436	DSF method was previously described (39, 40). In brief, recombinant CA proteins (25 μ M) were
437	prepared in PBS. After CA treatment with tested compounds for 5-8 hr on RT, SYPRO Orange (Life
438	Technologies) was added to the samples (final concentration of SYPRO orange: 5×). The samples
439	were successively heated from 25 to 95°C, and the increasing fluorescence intensities were measured
440	by the real-time PCR system 7500 Fast (Applied Biosystems, Thermo Fisher Scientific). Data
441	indicated is as a relative ratio between minimum and maximum intensity of SYPRO orange from 25
442	to 95°C detected for each sample.

443

444 **ESI-MS**

ESI-MS protocol was previously described (37). In brief, MS spectra of CA in the presence of ACAi-445446 028 were obtained using an electrospray ionization (ESI) quadrupole time-of-flight (QTOF) mass 447spectrometer (impact II, Bruker Daltonics). Each sample solution in native condition was introduced to the ESI-QTOF mass spectrometer through an infusion pump at a flow rate of 3.3 µL/min. To detect 448 the denatured samples, analysis was done using the QTOF mass spectrometer equipped with a Captive 449 450Spray electrospray ionization platform with liquid chromatography (Ultimate 3000 HPLC, Thermo 451Fisher scientific). The following ion source parameters have been applied: dry Heater: 150°C, dry Gas: 8.0 L/min, capillary voltage: 1000 V, End plate offset: -500 V. MS scans have been acquired at a 452

453	spectra rate of 1 Hz at a mass range from 100 to 3000 m/z. Molecular weights by protein deconvolution
454	were determined using Data Analysis 4.4 (Bruker Daltonics). M.W. of CA proteins was calculated
455	using Peptide Mass Calculator v3.2 (http://rna.rega.kuleuven.be/masspec/pepcalc.htm)

457 Crystallization and X-ray data collection

The crystallization procedure was performed according to methods in a previous report (15) ([PDB] 4584592XDE). Briefly, crystallization was performed by the hanging-drop vapor diffusion method using 460 EasyXtal 15-well tools (QIAGEN). CA-NTD 1-146/287-99G proteins were expressed and purified as described above. The protein concentration was adjusted to 2 mg/ml. The reservoir solution consists 461of 100 mM phosphate-citrate pH 4.2, 200 mM NaCl, and 20% PEG 8000. The crystals reached 0.2 to 462463 0.4 mm within 1 week at 10°C. The crystals were transferred to a reservoir solution supplemented with 464 25% glycerol and flash-frozen at 100 K. Then, X-ray diffraction experiments were carried out. Data collection and refinement statistics were subsequently examined. 465

466

467 Drug Susceptibility Assay

The susceptibility of HIV-1_{LAI} and HIV-2_{ROD} to ACAi-028 and control drugs/compounds were determined as previously described (49). Briefly, MT-2 cells (10^4 /ml) were exposed to 100×50 % tissue culture infectious dose (TCID₅₀) of HIV-1_{LAI} or HIV-2_{ROD} in the presence or absence of various

concentrations of compounds in 96-well plates and were incubated at 37°C for 7 days. After incubation, 471472100 µl of the medium was removed from each well, 3-(4,5-dimetylthiazol-2-yl)-2,5-473diphenyltetrazolium bromide (MTT) solution was added to each well in the plate, followed by incubation at 37°C for 1.5-4 hr. After incubation to dissolve the formazan crystals, acidified 474isopropanol containing 4% (v/v) Triton X-100 was added to each well and the optical density measured 475476in a kinetic microplate reader (Vmax; Molecular Devices, Sunnyvale, CA). All assays were performed in duplicate. 50% cytotoxic concentration (CC₅₀) of compounds/drugs for each cell line was also 477478evaluated by MTT assay. To determine the sensitivity of primary HIV-1 isolates to compounds, PHA-479 PBMC (10^{6} /ml) were exposed to 50 TCID₅₀ of each primary HIV-1 isolate and cultured in the presence or absence of various concentrations of drugs in 10-fold serial dilutions in 96-well plates. In 480 481 determining the drug susceptibility of certain laboratory HIV-1 strains, MT-4 cells were employed as 482target cells as previously described (50, 51) with minor modifications. In brief, MT-4 cells $(10^{5}/\text{ml})$ were exposed to 100 TCID₅₀ of drug-resistant HIV-1 strains in the presence or absence of various 483484 concentrations of compounds and were incubated at 37°C. On day 7 of culture, the supernatants were harvested and the amounts of p24 (CA) protein were determined by using Lumipulse G1200. Drug 485486 concentrations that suppressed the production of p24 Gag protein by 50% (EC₅₀; 50% effective concentration) were determined by comparison with the p24 production level in drug-free control cell 487 culture. PHA-PBMCs were derived from a single donor in each independent experiment. 488

489

490 Compounds

491	ACAi-028 was purchased from ChemBridge (San Diego, CA, USA). AZT, PF74, and EFV were
492	purchased from Sigma-Aldrich, Ebselen from AdipoGen Life Sciences, and AMD3100 from Selleck
493	Chemicals. Atazanavir (ATV) was kindly provided by Bristol Myers Squibb (New York, NY).
494	
495	Acknowledgements
496	We thank Teruya Nakamura for crystal determination and Sachiko Otsu for technical assistance of
497	the experiments. We also thank the beamline staff at Photon Factory and SPring-8 for their help in the
498	data collection.
499	This work was supported by Japan Society for the Promotion of Science KAKENHI Grant Numbers
500	JP18K08436 (HN) and JP15K09574 (MA). Development of Novel Drugs for Treating HIV-1 Infection
501	and AIDS, and the grants from the Sumitomo Electric Group CSR Foundation (MA).
502	TN and MA designed and TC, TN, NT, and MA performed all the experiments. NT and MM discussed
503	the data and supported preparation of the MS. MA and HN supervised, managed the project, and
504	acquired the necessary funding. TC, TN, and MA wrote and MM and HN edited the MS. All authors
505	read, commented on, and approved the final manuscript.
506	We declare that we have no conflicts of interest.
507	

508 **Reference**

509	1.	May MT, Gompels M, Delpech V, Porter K, Orkin C, Kegg S, Hay P, Johnson M, Palfreeman
510		A, Gilson R, Chadwick D, Martin F, Hill T, Walsh J, Post F, Fisher M, Ainsworth J, Jose S,
511		Leen C, Nelson M, Anderson J, Sabin C, Babiker A, Dunn D, Gazzard B, Phillips A, Pillay D,
512		Sachikonye M, Schwenk A, Winston A, Mackie N, Huntington S, Thornton A, Glabay A.
513		2014. Impact on life expectancy of HIV-1 positive individuals of CD4R cell count and viral
514		load response to antiretroviral therapy. Aids 28:1193-1202.
515	2.	Trickey A, May MT, Vehreschild JJ, Obel N, Gill MJ, Crane HM, Boesecke C, Patterson S,
516		Grabar S, Cazanave C, Cavassini M, Shepherd L, Monforte A d. A, van Sighem A, Saag M,
517		Lampe F, Hernando V, Montero M, Zangerle R, Justice AC, Sterling T, Ingle SM, Sterne
518		JAC. 2017. Survival of HIV-positive patients starting antiretroviral therapy between 1996 and
519		2013: a collaborative analysis of cohort studies. Lancet HIV 4:e349-e356.
520	3.	Günthard HF, Calvez V, Paredes R, Pillay D, Shafer RW, Wensing AM, Jacobsen DM,
521		Richman DD. 2019. Human Immunodeficiency Virus Drug Resistance: 2018
522		Recommendations of the International Antiviral Society-USA Panel. Clin Infect Dis 68:177-
523		187.
524	4.	Kanters S, Park JJH, Chan K, Socias ME, Ford N, Forrest JI, Thorlund K, Nachega JB, Mills
525		EJ. 2017. Interventions to improve adherence to antiretroviral therapy: a systematic review
526		and network meta-analysis. Lancet HIV 4:e31-e40.

527	5.	Rawle DJ, Harrich D. 2018. Toward the "unravelling" of HIV : Host cell factors involved in
528		HIV-1 core uncoating Introduction to HIV-1 uncoating : Down the rabbit hole. PLoS Pathog
529		14:e1007270.
530	6.	Arhel N. 2010. Revisiting HIV-1 uncoating 25–28.
531	7.	Campbell EM, Hope TJ. 2015. HIV-1 capsid: The multifaceted key player in HIV-1 infection.
532		Nat Rev Microbiol 13:471–483.
533	8.	Mamede JI, Cianci GC, Anderson MR, Hope TJ. 2017. Early cytoplasmic uncoating is
534		associated with infectivity of HIV-1. Proc Natl Acad Sci U S A 114:E7169–E7178.
535	9.	Arhel NJ, Souquere-Besse S, Munier S, Souque P, Guadagnini S, Rutherford S, Prévost MC,
536		Allen TD, Charneau P. 2007. HIV-1 DNA Flap formation promotes uncoating of the pre-
537		integration complex at the nuclear pore. EMBO J 26:3025–3037.
538	10.	Dharan A, Bachmann N, Talley S, Zwikelmaier V, Campbell EM. 2020. Nuclear pore
539		blockade reveals that HIV-1 completes reverse transcription and uncoating in the nucleus. Nat
540		Microbiol 5:1088–1095.
541	11.	Burdick RC, Li C, Munshi MH, Rawson JMO, Nagashima K, Hu WS, Pathak VK. 2020.
542		HIV-1 uncoats in the nucleus near sites of integration. Proc Natl Acad Sci U S A 117:5486-
543		5493.

544	12.	Selyutina A, Persaud M, Lee K, KewalRamani V, Diaz-Griffero F. 2020. Nuclear Import of
545		the HIV-1 Core Precedes Reverse Transcription and Uncoating. Cell Rep 32:108201.
546	13.	Tang C, Loeliger E, Kinde I, Kyere S, Mayo K, Barklis E, Sun Y, Huang M, Summers MF.
547		2003. Antiviral Inhibition of the HIV-1 capsid protein. J Mol Biol 327:1013–1020.
548	14.	Kelly BN, Kyere S, Kinde I, Tang C, Howard BR, Robinson H, Sundquist WI, Summers MF,
549		Hill CP. 2007. Structure of the Antiviral Assembly Inhibitor CAP-1 Complex with the HIV-1
550		CA Protein. J Mol Biol 373:355–366.
551	15.	Blair WS, Pickford C, Irving SL, Brown DG, Anderson M, Bazin R, Cao J, Ciaramella G,
552		Isaacson J, Jackson L, Hunt R, Kjerrstrom A, Nieman JA, Patick AK, Perros M, Scott AD,
553		Whitby K, Wu H, Butler SL. 2010. HIV Capsid is a Tractable Target for Small Molecule
554		Therapeutic Intervention. PLoS Pathog 6:e1001220.
555	16.	Price AJ, Jacques DA, McEwan WA, Fletcher AJ, Essig S, Chin JW, Halambage UD, Aiken
556		C, James LC. 2014. Host Cofactors and Pharmacologic Ligands Share an Essential Interface
557		in HIV-1 Capsid That Is Lost upon Disassembly. PLoS Pathog 10:e1004459.
558	17.	Thenin-Houssier S, De Vera IMS, Pedro-Rosa L, Brady A, Richard A, Konnick B, Opp S,
559		Buffone C, Fuhrmann J, Kota S, Billack B, Pietka-Ottlik M, Tellinghuisen T, Choe H, Spicer
560		T, Scampavia L, Diaz-Griffero F, Kojetin DJ, Valentea ST. 2016. Ebselen, a small-molecule
561		capsid inhibitor of HIV-1 replication. Antimicrob Agents Chemother 60:2195–2208.

562	18.	Lemke CT, Titolo S, Goudreau N, Faucher AM, Mason SW, Bonneau P. 2013. A novel
563		inhibitor-binding site on the HIV-1 capsid N-terminal domain leads to improved
564		crystallization via compound-mediated dimerization. Acta Crystallogr Sect D Biol Crystallogr
565		69:1115–1123.
566	19.	Kortagere S, Madani N, Mankowski MK, Schön A, Zentner I, Swaminathan G, Princiotto A,
567		Anthony K, Oza A, Sierra L-J, Passic SR, Wang X, Jones DM, Stavale E, Krebs FC, Martín-
568		García J, Freire E, Ptak RG, Sodroski J, Cocklin S, Smith AB. 2012. Inhibiting Early-Stage
569		Events in HIV-1 Replication by Small-Molecule Targeting of the HIV-1 Capsid. J Virol
570		86:8472–8481.
571	20.	Goudreau N, Lemke CT, Faucher AM, Grand-Maiître C, Goulet S, Lacoste JE, Rancourt J,
572		Malenfant E, Mercier JF, Titolo S, Mason SW. 2013. Novel inhibitor binding site discovery
573		on HIV-1 capsid N-terminal domain by NMR and X-ray crystallography. ACS Chem Biol
574		8:1074–1082.
575	21.	Yant SR, Mulato A, Hansen D, Tse WC, Niedziela-Majka A, Zhang JR, Stepan GJ, Jin D,
576		Wong MH, Perreira JM, Singer E, Papalia GA, Hu EY, Zheng J, Lu B, Schroeder SD, Chou
577		K, Ahmadyar S, Liclican A, Yu H, Novikov N, Paoli E, Gonik D, Ram RR, Hung M,
578		McDougall WM, Brass AL, Sundquist WI, Cihlar T, Link JO. 2019. A highly potent long-
579		acting small-molecule HIV-1 capsid inhibitor with efficacy in a humanized mouse model. Nat
580		Med 25:1377–1384.

bioRxiv preprint doi: https://doi.org/10.1101/2021.05.18.444758; this version posted May 19, 2021. The copyright holder for this preprint (which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission.

581	22.	Link JO, Rhee MS, Tse WC, Zheng J, Somoza JR, Rowe W, Begley R, Chiu A, Mulato A,
582		Hansen D, Singer E, Tsai LK, Bam RA, Chou CH, Canales E, Brizgys G, Zhang JR, Li J,
583		Graupe M, Morganelli P, Liu Q, Wu Q, Halcomb RL, Saito RD, Schroeder SD, Lazerwith SE,
584		Bondy S, Jin D, Hung M, Novikov N, Liu X, Villaseñor AG, Cannizzaro CE, Hu EY,
585		Anderson RL, Appleby TC, Lu B, Mwangi J, Liclican A, Niedziela-Majka A, Papalia GA,
586		Wong MH, Leavitt SA, Xu Y, Koditek D, Stepan GJ, Yu H, Pagratis N, Clancy S, Ahmadyar
587		S, Cai TZ, Sellers S, Wolckenhauer SA, Ling J, Callebaut C, Margot N, Ram RR, Liu YP,
588		Hyland R, Sinclair GI, Ruane PJ, Crofoot GE, McDonald CK, Brainard DM, Lad L,
589		Swaminathan S, Sundquist WI, Sakowicz R, Chester AE, Lee WE, Daar ES, Yant SR, Cihlar
590		T. 2020. Clinical targeting of HIV capsid protein with a long-acting small molecule. Nature
591		584:614–618.
592	23.	Bester SM, Wei G, Zhao H, Adu-Ampratwum D, Iqbal N, Courouble V V., Francis AC,
593		Annamalai AS, Singh PK, Shkriabai N, van Blerkom P, Morrison J, Poeschla EM, Engelman
594		AN, Melikyan GB, Griffin PR, Fuchs JR, Asturias FJ, Kvaratskhelia M. 2020. Structural and
595		mechanistic bases for a potent HIV-1 capsid inhibitor. Science (80-) 370:360–364.
596	24.	Amano M, Bulut H, Tamiya S, Nakamura T, Koh Y, Mitsuya H. 2019. Amino-acid inserts of
597		HIV-1 capsid (CA) induce CA degradation and abrogate viral infectivity: Insights for the
598		dynamics and mechanisms of HIV-1 CA decomposition. Sci Rep 9:1–17.

599	25.	Gitti RK, Lee BM, Walker J, Summers MF, Yoo S, Sundquist WI. 1996. Structure of the
600		amino-terminal core domain of the HIV-1 capsid protein. Science (80-) 273:231-235.
601	26.	Gamble TR, Yoo S, Vajdos FF, Von Schwedler UK, Worthylake DK, Wang H, McCutcheon
602		JP, Sundquist WI, Hill CP. 1997. Structure of the carboxyl-terminal dimerization domain of
603		the HIV-1 capsid protein. Science (80-) 278:849-853.
604	27.	Berthet-Colominas C, Monaco S, Novelli A, Sibaï G, Mallet F, Cusack S. 1999. Head-to-tail
605		dimers and interdomain flexibility revealed by the crystal structure of HIV-1 capsid protein
606		(p24) complexed with a monoclonal antibody Fab. EMBO J 18:1124–1136.
607	28.	Gres AT, Kirby KA, KewalRamani VN, Tanner JJ, Pornillos O, Sarafianos SG. 2015. X-ray
608		crystal structures of native HIV-1 capsid protein reveal conformational variability. Science
609		(80-) 349:99–103.
610	29.	Mitsuya H, Weinhold KJ, Furman PA, St Clair MH, Lehrman SN, Gallo RC, Bolognesi D,
611		Barry DW, Broder S. 1985. 3'-Azido-3'-deoxythymidine (BW A509U): An antiviral agent
612		that inhibits the infectivity and cytopathic effect of human T-lymphotropic virus type
613		III/lymphadenopathy-associated virus in vitro. Proc Natl Acad Sci U S A 82:7096–7100.
614	30.	Amano M, Miguel Salcedo-Gómez P, Yedidi RS, Delino NS, Nakata H, Venkateswara Rao K,
615		Ghosh AK, Mitsuya H. 2017. GRL-09510, a Unique P2-Crown-Tetrahydrofuranylurethane -

616		Containing HIV-1 Protease Inhibitor, Maintains Its Favorable Antiviral Activity against
617		Highly-Drug-Resistant HIV-1 Variants in vitro. Sci Rep 7(1):12235.
618	31.	Maeda K, Das D, Yin PD, Tsuchiya K, Ogata-Aoki H, Nakata H, Norman RB, Hackney LA,
619		Takaoka Y, Mitsuya H. 2008. Involvement of the Second Extracellular Loop and
620		Transmembrane Residues of CCR5 in Inhibitor Binding and HIV-1 Fusion: Insights into the
621		Mechanism of Allosteric Inhibition. J Mol Biol 381:956–974.
622	32.	Mattei S, Glass B, Hagen WJH, Kräusslich HG, Briggs JAG. 2016. The structure and
623		flexibility of conical HIV-1 capsids determined within intact virions. Science (80-) 354:1434-
624		1437.
625	33.	Donzella GA, Schols D, Lin SW, Esté JA, Nagashima KA, Maddon PJ, Allaway GP, Sakmar
626		TP, Henson G, De Clercq E, Moore JP. 1998. AMD3100, a small molecule inhibitor of HIV-1
627		entry via the CXCR4 co- receptor. Nat Med 4:72–77.
628	34.	Young SD, Britcher SF, Tran LO, Payne LS, Lumma WC, Lyle TA, Huff JR, Anderson PS,
629		Olsen DB, Carroll SS, Pettibone DJ, O'brien JA, Ball RG, Balani SK, Lin JH, Chen I-W,
630		Schleif WA, Sardana V V, Long WJ, Byrnes VW, Emini EA. 1995. L-743,726 (DMP-266): a
631		Novel, Highly Potent Nonnucleoside Inhibitor of the Human Immunodeficiency Virus Type 1
632		Reverse Transcriptase. Antimicrob Agents Chemother 39:2602-2605.

633	35.	Koh Y, Nakata H, Maeda K, Ogata H, Bilcer G, Devasamudram T, Kincaid JF, Boross P,
634		Wang Y-F, Tie Y, Volarath P, Gaddis L, Harrison RW, Weber IT, Ghosh AK, Mitsuya H.
635		2003. Novel bis-Tetrahydrofuranylurethane-Containing Nonpeptidic Protease Inhibitor (PI)
636		UIC-94017 (TMC114) with Potent Activity against Multi-PI-Resistant Human
637		Immunodeficiency Virus In Vitro. Antimicrob Agents Chemother 47:3123–3129.
638	36.	Price AJ, Marzetta F, Lammers M, Ylinen LMJ, Schaller T, Wilson SJ, Towers GJ, James LC.
639		2009. Active site remodeling switches HIV specificity of antiretroviral TRIMCyp. Nat Struct
640		Mol Biol 16:1036–1042.
641	37.	Hayashi H, Takamune N, Nirasawa T, Aoki M, Morishita Y, Das D, Koh Y, Ghosh AK,
642		Misumi S, Mitsuya H. 2014. Dimerization of HIV-1 protease occurs through two steps
643		relating to the mechanism of protease dimerization inhibition by darunavir. Proc Natl Acad
644		Sci U S A 111:12234–12239.
645	38.	Lanman J, Sexton J, Sakalian M, Prevelige, PE. 2002. Kinetic Analysis of the Role of
646		Intersubunit Interactions in Human Immunodeficiency Virus Type 1 Capsid Protein Assembly
647		In Vitro. J Virol 76:6900–6908.
648	39.	Niesen FH, Berglund H, Vedadi M. 2007. The use of differential scanning fluorimetry to
649		detect ligand interactions that promote protein stability. Nat Protoc 2:2212-2221.

650	40.	Nakamura T, Nakamura T, Amano M, Miyakawa T, Yamagata Y, Matsuoka M, Nakata H.
651		2020. A Conformational Escape Reaction of HIV-1 against an Allosteric Integrase Inhibitor. J
652		Virol 94:e00486-20.
653	41.	Pornillos O, Ganser-Pornillos BK, Kelly BN, Hua Y, Whitby FG, Stout CD, Sundquist WI,
654		Hill CP, Yeager M. 2009. X-Ray Structures of the Hexameric Building Block of the HIV
655		Capsid. Cell 137:1282–1292.
656	42.	Chaillon A, Gianella S, Dellicour S, Rawlings SA, Schlub TE, de Oliveira MF, Ignacio C,
657		Porrachia M, Vrancken B, Smith DM. 2020. HIV persists throughout deep tissues with
658		repopulation from multiple anatomical sources. J Clin Invest 130:1699–1712.
659	43.	Thenin-Houssier S, T. Valente S. 2016. HIV-1 Capsid Inhibitors as Antiretroviral Agents.
660		Curr HIV Res 14:270–282.
661	44.	Forshey BM, von Schwedler U, Sundquist WI, Aiken C. 2002. Formation of a Human
662		Immunodeficiency Virus Type 1 Core of Optimal Stability Is Crucial for Viral Replication. J
663		Virol 76:5667–5677.
664	45.	Douglas CC, Thomas D, Lanman J, Prevelige PE. 2004. Investigation of N-terminal domain
665		charged residues on the assembly and stability of HIV-1 CA. Biochemistry 43:10435–10441.
666	46.	Shirasaka T, Kavlick MF, Ueno T, Gao WY, Kojima E, Alcaide ML, Chokekijchai S, Roy
667		BM, Arnold E, Yarchoan R, Mitsuya H. 1995. Emergence of human immunodeficiency virus

668	type 1 variants with resistance	e to multiple dideoxynucleosides	s in patients receiving therapy
000	type i variante with resistance	to maniple and oxyndereoside.	s in patients receiving therapy

- 669 with dideoxynucleosides. Proc Natl Acad Sci U S A 92:2398–2402.
- 47. Yoshimura K, Kato R, Kavlick MF, Nguyen A, Maroun V, Maeda K, Hussain KA, Ghosh
- 671 AK, Gulnik S V., Erickson JW, Mitsuya H. 2002. A Potent Human Immunodeficiency Virus
- Type 1 Protease Inhibitor, UIC-94003 (TMC-126), and Selection of a Novel (A28S) Mutation
- in the Protease Active Site. J Virol 76:1349–1358.
- 48. Yoshimura K, Kato R, Yusa K, Kavlick MF, Maroun V, Nguyen A, Mimoto T, Ueno T,
- 675 Shintani M, Falloon J, Masur H, Hayashi H, Erickson J, Mitsuya H. 1999. JE-2147: A
- dipeptide protease inhibitor (PI) that potently inhibits multi-PI-resistant HIV-1. Proc Natl
- 677 Acad Sci U S A 96:8675–8680.
- 49. Amano M, Salcedo-Gómez PM, Yedidi RS, Zhao R, Hayashi H, Hasegawa K, Nakamura T,
- 679 Martyr CD, Ghosh AK, Mitsuya H. 2019. Novel central nervous system (CNS)-targeting
- 680 protease inhibitors for drug-resistant HIV infection and HIV-associated CNS complications.
- 681 Antimicrob Agents Chemother 63:466–485.
- 682 50. Amano M, Salcedo-Gómez PM, Zhao R, Yedidi RS, Das D, Bulut H, Delino NS, Sheri VR,
- 683 Ghosh AK, Mitsuya H. 2016. A modified P1 moiety enhances in vitro antiviral activity
- against various multidrug-resistant HIV-1 variants and in vitro central nervous system
- 685 penetration properties of a novel nonpeptidic protease inhibitor, GRL-10413. Antimicrob
- 686 Agents Chemother 60:7046–7059.

687	51.	Amano M, Koh Y, Das D, Li J, Leschenko S, Wang YF, Boross PI, Weber IT, Ghosh AK,
688		Mitsuya H. 2007. A novel bis-tetrahydrofuranylurethane-containing nonpeptidic protease
689		inhibitor (PI), GRL-98065, is potent against multiple-PI-resistant human immunodeficiency
690		virus in vitro. Antimicrob Agents Chemother 51:2143–2155.
691	52.	Waterhouse AM, Procter JB, Martin DMA, Clamp M, Barton GJ. 2009. Sequence analysis
692		Jalview Version 2-a multiple sequence alignment editor and analysis workbench. Bioinforma
693		Appl NOTE 25:1189–1191.
694		

Table 695

696 Table 1: Comparison of anti-HIV-1 activity of ACAi-028 against other inhibitors.

		EC ₅₀ (µ1	M)	
Drugs	Single round inhibition ^a	Mu	Iltiple round inhibiti	on ^b
Drugs	TZM-bl	MT-4	M	Г-2
	HIV-1 _{VSVG-NL4-3}	HIV-1 _{NL4-3}	$HIV-1_{LAI}$	HIV-2 _{ROD}
ACAi-028	0.48 ± 0.21	0.12 ± 0.04	0.55 ± 0.04	>10
PF74	0.76 ± 0.55	0.33 ± 0.08	0.37 ± 0.50	>10
Ebselen	1.68 ± 1.45	1.83 ± 0.10	1.73 ± 0.04	n.d.
AZT	0.14 ± 0.13	0.26 ± 0.02	0.23 ± 0.05	n.d.

697 ^a TZM-bl cells (5×10⁴/mL) were subjected to HIV-1_{VSVG-NL4-3} (50 ng/mL of p24) in 96-well plates for 48 h in the 698 presence of the tested compounds. The supernatant was removed and lysis buffer added to the samples. After the 699 samples were shaken for 25 minutes, D-luciferin was added to each well. The luciferase intensity was measured using 700FluoSTAR Omega.ssay at 48 h. ^b MT-2 cells (10⁴/ml) were exposed to 100 TCID₅₀ of HIV-1_{LAI} or HIV-2_{ROD} and 701 cultured in the presence of various concentrations of each compound, and the EC_{50} (50% effective concentration) 702 values were determined by the MTT assay. For HIV-1_{NL4-3}, the EC₅₀ values were determined by using MT-4 cells as 703 target cells. MT-4 cells (10⁵/ml) were exposed to 100 TCID₅₀s of HIV-1_{NL4-3}, and the inhibition of p24 Gag protein 704production by each drug was used as an endpoint. All assays were conducted in duplicate, and the data shown 705 represent mean values (± 1 S.D.) derived from the results of two or three independent experiments.

707 Table 2: Anti-HIV-1 activity of ACAi-028 against clinically isolated multi-drug-resistant HIV-1

708	in PBMC and protease-inhibitor-resistant laboratory strain in MT-4 cells.

		EC50 (µM)	
Drugs	PBM	1C	MT-4
	HIV-1 _{ERS104pre}	HIV-1 _{MDR/B}	$HIV-1_{ATV}{}^{R}{}_{5\mu M}$
ACAi-028	0.32 ± 0.07	0.36 ± 0.05	0.64 ± 0.09
PF74	0.29 ± 0.03	0.33 ± 0.02	0.63 ± 0.07
ATV	0.0026 ± 0.0002	0.45 ± 0.01	>1

709 PHA-PBMC (10⁶/ml) or MT-4 cells (10⁵/ml) were exposed to 100 TCID₅₀ of each virus, and the inhibition of p24 710Gag protein production by each compound was used as an endpoint. All assays were conducted in duplicate, and the 711 data shown represent mean values (±1 S.D.) derived from the results of two independent experiments. PHA-PBMCs 712were derived from a single donor in each independent experiment. HIV-1_{ERS104pre} was isolated from treatment-naïve 713 patient and served as wild-type HIV-1. HIV-1_{MDR/B} was originally isolated from AIDS patient who had received 9 714 anti-HIV-1 drugs over the 34 months, and contains following amino acid substitution in the protease-encoding region 715compared to the consensus type B sequence cited from the Los Alamos database; L10I, K14R, L33I, M36I, M46I, F53I, K55R, I62V, L63P, A71V, G73S, V82A, L90M, and I93L. HIV-1_{ATV^R5uM} was generated previously by long-716 717 term selection experiment using HIV- 1_{NL4-3} with increasing concentration of ATV (51), and contains following 10 718amino acid substitution in the protease-encoding region compared to the wild-type HIV-1_{NL4-3}; L23I, E34Q, K43I, 719 M46I, I50L, G51A, L63P, A71V, V82A, and T91A.

720

721 Table 3: Comparison of ACAi-028 cytotoxicity against other inhibitors in various cell lines.

Cells —		CC ₅₀ (µM)	
Cells —	ACAi-028	PF74	Ebselen
Li-7 (hepatocyte)	>100	>100	>20
HLE (hepatocyte)	72.3	>100	>20
HEK293 (kidney)	62.6	>100	>20
MT-4 (lymphocyte)	>100	>100	>20
MT-2 (lymphocyte)	86.6	>100	>20
РВМС	>100	n.d.	n.d.

722 Cells were incubated with the respective compounds for one week before cytotoxicity was quantified using MTT723 assay.

724

725 Table 4: Comparison of ACAi-028 binding position and mechanism with other CA inhibitors.

726

CA	Group	Name	Binding region	C.M.	Stage of inhibition	Ref.
	New	ACAi-028	Q13, S16, T19	\downarrow	Early	
	А	CAP-1	E28, E29, F32, V59, H62	↓	Late	13, 14
		BD-1, BM-1	F32, H62	↓	Late	20
NTD	В	PF74	Q67, K70, T107	↑	Early/Late	15
NID		(GS-CA1) Lenacapavir	Q67, K70, T107	ſ	Early/Late	17, 18
	С	I-XW-053	137	↓	Early	21
		C1	E98, H120, I124	↓	Late	22, 44
	D	Ebselen	C198, C218	↑	Early/Late	16
CTD	В	PF74	Y169, L172, R173,Q179	↑	Early/Late	15
		(GS-CA1) Lenacapavir	Y169, L172, R173,Q179	î	Early/Late	17, 18
	С	I-XW-053	R173	\downarrow	Early	21

727

728 **C.M.**, CA Multimerization ↑ Increase, ↓ Decrease

729 **Ref.**, Reference.

Binding region of ACAi-028 determined using virtual docking simulation (Fig. 1). ACAi-028 is an early stage
inhibitor (Fig. 2) that induces reduction of capsid multimerization (Fig. 7). Please refer to the references listed for
details of the mechanisms of the other CA inhibitors.

733

734 Figure legends

735 Figure 1. Profile of CA, target cavity, and *in silico* docking simulations of ACAi-

736 **028**

```
(A) 3D structures of full-length CA (PDB accession number 4XFX) shown in tan, and closed-up of
```

- ACAi-028-targeted cavity in the CA-NTD shown in light blue are on the left side. The CA comprises
- a β -hairpin in green, CypA-BL in purple, eleven α -helices: H1-11 in pink, and a 3_{10} -helix in yellow on
- the right side. (**B**) The procedure of *in silico* screening to identify as candidate anti-CA inhibitors. (**C**)

741	The chemical structure of ACAi-028. (D) The docking simulation result of ACAi-028 with the target
742	cavity is shown. Hydrogen bond interactions between molecular surface of CA CA-NTD $_{1-146/\Delta 87-99G}$
743	crystal and ACAi-028 are indicated in dotted lines. The carbons of CA and ACAi-028 are shown in
744	tan and white colors, respectively. Nitrogen atoms, oxygen atoms, hydrogen atoms, and bromine atoms
745	are shown in blue, red, white, and brown, respectively. ACAi-028 forms two H-bonds interaction with
746	the side-chains of Gln13 and Thr19 (inter-atomic distances of 1.87 Å and 1.89 Å, respectively) and H-
747	bond interaction with the main-chain of Ser16 (inter-atomic distance of 2.06 Å). Molecular graphics
748	was performed with UCSF Chimera (https://www.rbvi.ucsf.edu/chimera). All docking simulations
749	were performed with SeeSAR and FlexX version 10 (BioSolveIT GmbH, Sankt Augustin, Germany).

750

751 Figure 2. The early-stage inhibition of ACAi-028 in the HIV-1 life cycle

752(A) Fusion assay was conducted between 293T and COS-7 cells in the presence of ACAi-028 or AMD3100. Results of the luciferase intensity are shown as percentage compared to Dimethyl sulfoxide 753754(DMSO) controls. AMD3100 is a fusion inhibitor against CXCR4 co-receptors of X4-tropic HIV-1 (B) The early-stage inhibition of ACAi-028 against X4-tropic (HIV-1_{LAI} and HIV-1_{NL4-3}), R5-tropic 755(HIV-1_{Ba-L} and HIV-1_{JR-FL}), VSV-G HIV-1_{NL4-3}, and HIV-2_{ROD} strains were measured using TZM-bl 756757cells. Luciferase activity was measured at 48 h post-infection and is shown as a percentage normalized 758to DMSO controls. (C) Time-of-addition assay was conducted by the addition of ACAi-028 and 759various early-stage inhibitors such as AMD3100, AZT, EFV, PF74, and RAL to TZM-bl cells in 2 h

760	intervals up to 10 h. Data was shown as percentage every 2 h and normalized to DMSO controls (D)
761	Effects of ACAi-028, PF-74, and EFV on RT activity were measured by colorimetric reverse
762	transcriptase assay. OD_{405} values were measured and shown as percentages. All assays were performed
763	in duplicate, and error bars indicate ±SD from at least two independent experiments. Statistical
764	significance was examined using Student's t-test; *, $P < 0.05$, **, $P < 0.005$.

765

766 Figure 3. Effect of ACAi-028 on the latestage of the HIV-1 life cycle

(A) Gag-pol proteolytic processing and virus production were examined by the western blotting with 767 768 anti-Gag antibody in the cell lysate and (**B**) measuring the p24 levels in the supernatant of 293T cells 769 which were transfected with pNL₄₋₃ in the presence of ACAi-028 (10 µM), PF74 (10 µM), Ebselen (10 µM), or DRV (2 µM). After the virions in the supernatants were purified, Gag-pol proteolytic 770 processing and HIV-1 maturation of the virions were examined by (C) the western blotting with anti-771772Gag on the left side and anti-IN antibody on the right side, and by (**D**) TZM-bl assay at the bottom. All 773 assays were performed in duplicate, and error bars indicate \pm SD from three independent experiments. 774Statistical significance was examined using Student's t-test; *, P < 0.05, **, P < 0.005.

775

Figure 4. Amino acid residues and structures of CA-NTD among HIV and SIV

777	(A) Alignment of CA-NTD (residues from 1 to 45) among laboratory HIV-1 strains, SIV _{CPZ} , HIV-2
778	strains, and SIV _{smn} . (B) Representation of frequencies of CA-NTD (residues from 1 to 50) from 6144
779	sequences of all HIV-1 subtypes (Los Alamos HIV sequence database filtered web alignment) using
780	the WebLogo 3.7.4 application (http://weblogo.threeplusone.com/create.cgi). Highlighted in red are
781	the five residues of (Pro1, Gin13, Ser16, Thr19, and Glu45) that constitute the ACAi-028 binding
782	cavity. Above each of these residues is the percentage consensus as determined by Jalview 2.11.1.4
783	program (<u>http://www.jalview.org</u>) (52). (C) The target cavity on the surface of CA-NTD _{1-146/Δ87-99G}
784	monomer used in the flexible docking simulation is shown in tan in the left panel. CA-NTD _{HIV-2} (CA-
785	NTD _{ROD}) monomer ([PDB] accession number 2WLV) and corresponding target cavity is shown in
786	cyan in the right panel. The bottom panel shows merged image of the CA-NTD of both strains. (\mathbf{D})
787	The docking simulation result of ACAi-028 with the target cavity in CA-NTD _{ROD} is shown. Hydrogen
788	bond interactions between molecular surface of CA-NTD _{ROD} and ACAi-028 were not observed unlike
789	the docking result between CA-NTD _{HIV-1} and ACAi-028. The carbons of CA and ACAi-028 are shown
790	in cyan and white colors, respectively. Nitrogen atoms, oxygen atoms, hydrogen atoms, and bromine
791	atoms are shown in blue, red, white, and brown, respectively. Docking simulations were performed
792	with SeeSAR and FlexX version 10. Molecular graphics was performed with UCSF Chimera.
793	

794 Figure 5. ACAi-028 interacts directly and non-covalently with CA monomer

795	ESI-MS spectra of ACAi-028 (50 μ M) and Ebselen (50 μ M) binding to CA. (A) Black arrows
796	represent CA monomer peaks of the charged ions. Deconvoluted ESI-MS spectrum of CA monomer
797	is shown on the right side. (B) ESI-MS spectra of CA binding to ACAi-028 are shown in red arrows.
798	Deconvoluted ESI-MS spectra of CA monomer or CA monomer binding to ACAi-028 are shown on
799	right side. (C) Under denaturing condition, acetonitrile and trifluoroacetic acid are added to a mixture
800	CA of ACAi-028. Black arrows indicate CA monomers failed to interact with ACAi-028.
801	Deconvoluted ESI-MS spectra is shown on the right side. (D) Under the same condition as (C), black
802	arrows indicate CA monomers and red arrows represent CA monomer binding covalently to one (left)
803	or two (right) ebselen, respectively. Each deconvoluted ESI-MS spectrum is shown on the right side.
804	

Figure 6. Effect of ACAi-028 on CA thermal stability.

(A) DSF was performed using SYBR-Orange dye in the presence of methanol shown in black circle, a different concentration (1, 10, and 50 μ M) of ACAi-028 shown in grey squares, and PF74 (10 μ M) shown in black triangle to examine CA stability. (B) Graphical representation of Tm changes (Δ Tm 50) from (A) are shown for ACAi-028 and PF74. (C) DSF of CA_{S16E} and CA_{T19A} were tested in high concentration of ACAi-028 (10 μ M and 50 μ M shown in light and dark grey squares, respectively). Black circle indicates in methanol as a control. (D) Graphical representation of Δ Tm 50 from (C) are shown for (10 and 50 μ M) ACAi-028. All assays were performed in triplicate, and error bars indicate *SD from three independent experiments. Statistical significance was examined using Student's t-test 814 (*, P < 0.05, **, P < 0.005).

815

816 Figure 7. Effect of ACAi-028 on CA multimerization.

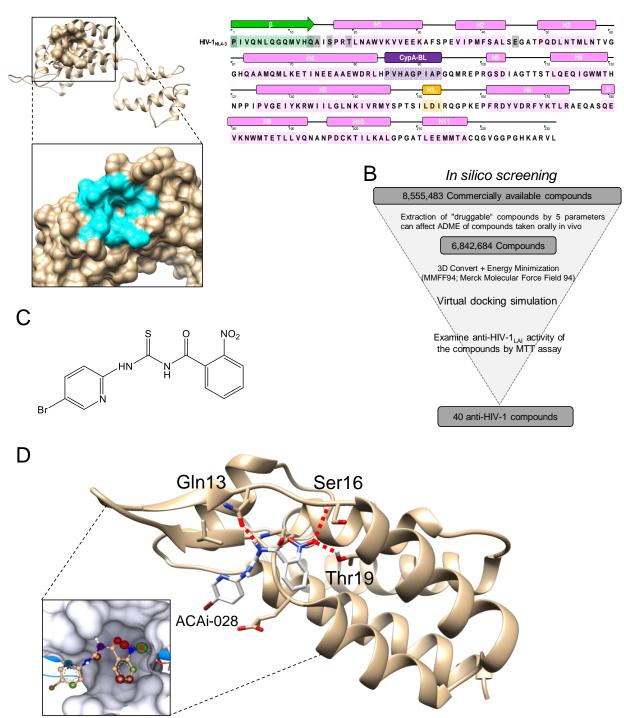
817 (A) CA multimerization assay was performed by the addition of a high sodium buffer (the ratio of 150 818 mM sodium phosphate to 5M sodium phosphate buffer is five to five) in the presence of ACAi-028 (4 819 and 40 μ M), PF74 (4 μ M), and RAL (40 μ M). Turbidity of the mixtures was measured at OD₃₅₀ over a period of 60 minutes. PF74 and RAL are used as positive or negative controls, respectively. 820 Representative data is shown from three independent experiments. (B) CA wr multimerization was 821 compared to CA_{T19A}, CA_{S16E}, and CA_{M185A} multimerization (The ratio of 150 mM to 5M sodium is 822823 five to five). Effects of ACAi-028 (4 and 40 µM) on (C) CA_{S16E} multimerization in higher sodium 824 concentration (the ratio of 150 mM to 5M sodium is four to six), and (**D**) CA_{T19A} multimerization (the 825 ratio of 150 mM to 5M sodium is five to five) are shown. Representative data is shown from three 826 independent experiments.

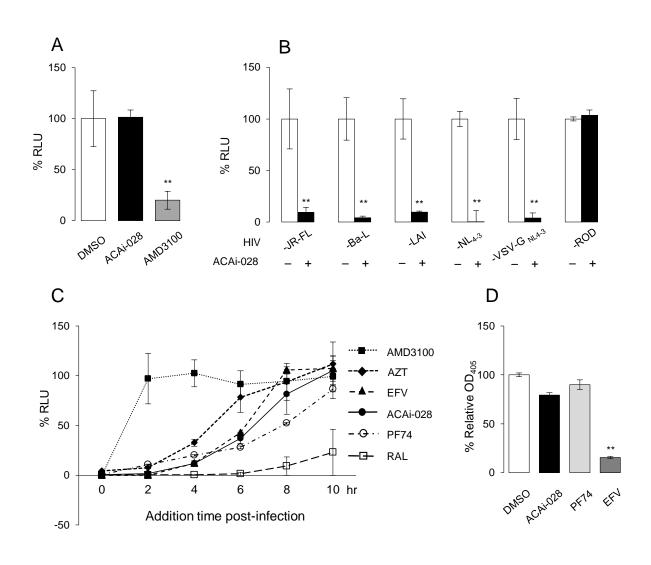
827

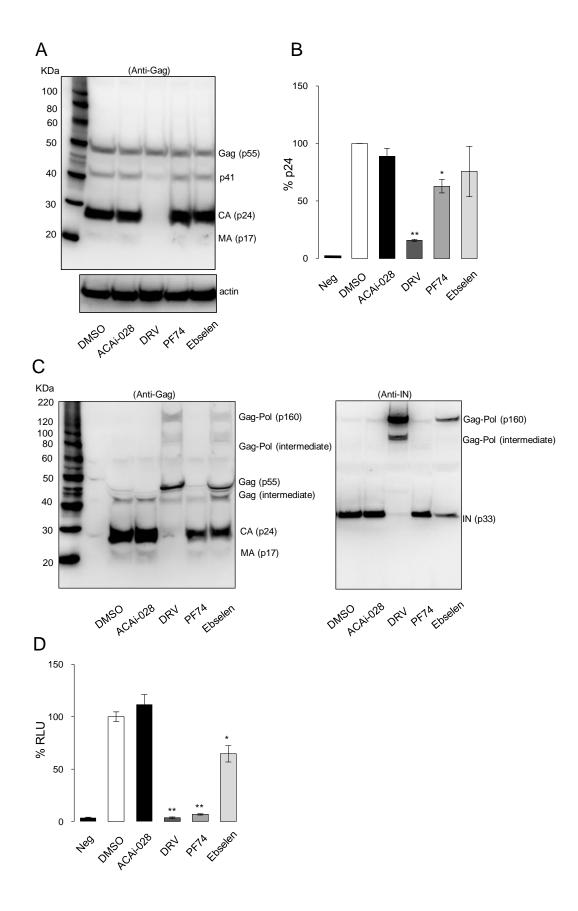
828 Figure 8. Interaction of ACAi-028 with the binding pockets of CA in the

829 hexameric state.

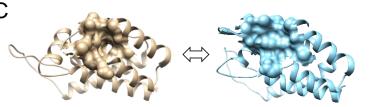
(A) Left panel shows the structure of a CA hexamer ([PDB] accession number 3H4E). CA dimer
extracted from the CA hexamer was used in the flexible docking simulation. Right panel shows the

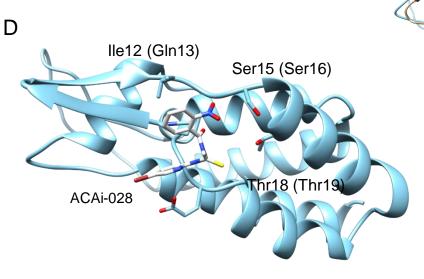

832	CA hexamer with docking poses of ACAi-028. (B) The structure of a CA dimer extracted from a CA
833	hexamer ([PDB] accession number 5MCX) and the docking result of ACAi-028 to the CA dimer is
834	shown. ACAi-028 formed two H-bond interactions with the main-chains of Leu43 and Glu45 residues
835	which are located at the monomer-monomer interface of one CA monomer in the CA dimer extracted
836	from the CA hexamer. Docking simulations were performed with SeeSAR and FlexX version 10.
837	Molecular graphics was performed with UCSF Chimera.
838	

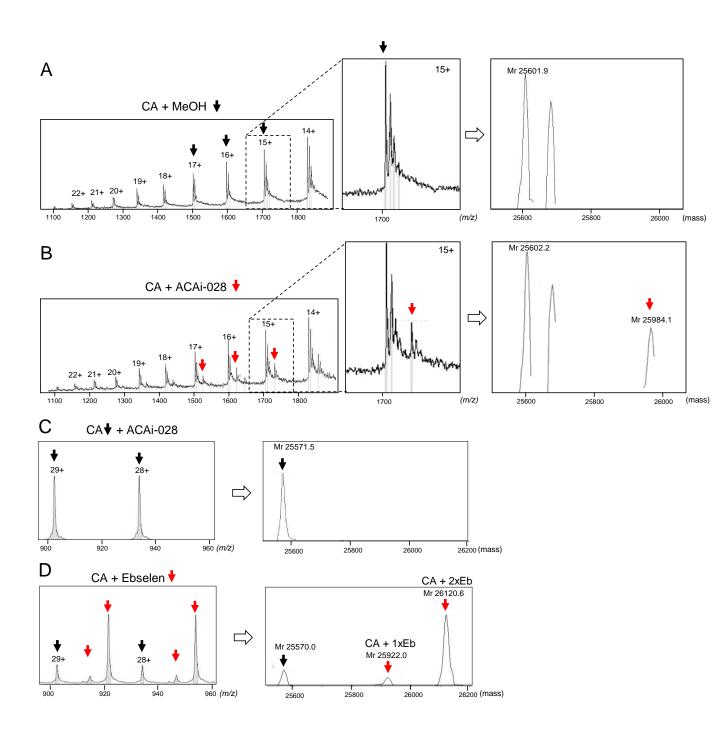

Figure 9. Profiles of ACAi-028 and CA inhibitors.

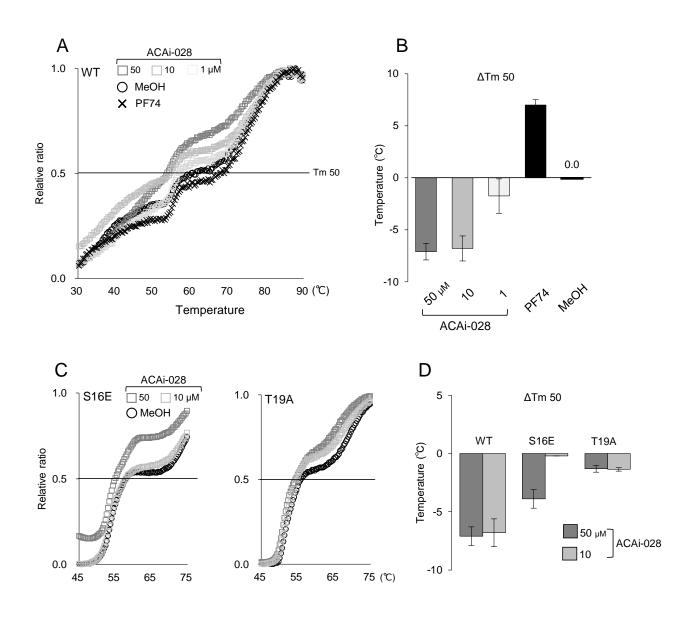

ACAi-028 and representative CA inhibitors previously reported are categorized into groups new, A, B,

- 841 C, and D. Names, chemical structures, effects of CA multimerization, inhibition stages of the HIV-1
- 842 life cycle, putative and representative binding regions of the CA inhibitors are shown.








А	β									_															_	H2									_											
	1					10										:	20					30						1									40									
HIV-1 _{NL4-3}	ΡI	٧	Q	N	L	Q	G	C	2	М	۷	H	С	A	. 1	5	5 F	P	R	Т	L	Ν	Α	W	V	κ	V	V	Е	Ε	κ	А	F	s	Ρ	Е	v	I	Ρ	М	F	s	А	L	s	E
HIV-1 _{HXB}	ΡI	۷	QI	Ν	I	Q	G	C	2	M	۷	Н	C	A	, I	S	S F	۶ I	R	Т	L	Ν	А	W	٧	κ	V	V	Е	Ε	κ	А	F	S	Ρ	Е	V	I	Ρ	М	F	s	А	L	s	E
HIV-1 _{Ba-L}	ΡI	V	QI	Ν	l	Q	G	C	2	М	۷	Н	C	A	1	S	S F	>	R	Т	L	Ν	А	W	V	κ	V	۷	Е	Е	κ	А	F	S	Ρ	Е	V	I	Ρ	Μ	F	s	А	L	s	E
HIV-1 _{JR-FL}	ΡI	V	QI	Ν	Μ	Q	G	C	2	M	۷	Н	C	A	1	S	S F	>	R	Т	L	Ν	А	W	V	κ	V	۷	Е	Ε	κ	А	F	S	Ρ	Е	V	I	Ρ	Μ	F	s	А	L	s	E
SIV _{cpz}	ΡV	۷	QI	Ν	A	Q	G	C	2	L	۷	Н	C	P	N	1 5	5 F	>	R	Т	L	Ν	А	W	V	κ	V	I	Е	Е	κ	Ν	F	Ν	Ρ	Е	V	I	Ρ	Μ	F	Μ	А	L	s	E
HIV-2 _{ROD}	Ρ-	۷	QI	Н	۷	G	G	ľ	1	Y	Т	Н		P	Ľ	. 5	S F	>	R	Т	L	Ν	А	W	۷	Κ	L	۷	Е	Ε	κ	Κ	F	G	A	Е	۷	۷	Ρ	G	F	Q	A	L	S	E
HIV-2 _{EHO}	Ρ-	V	Q	Q	I	A	G	ľ	١	Y	S	Н	L	P	Ľ	. 5	5 F	>	R	Т	L	Ν	А	W	۷	κ	L	۷	Е	Ε	κ	κ	F	G	А	Е	۷	V	Ρ	G	F	Q	А	L	s	E
SIV _{smn}	Ρ-	V	Q	Q	V	G	Ν	N	١	Y	V	Н	Т	Р	L	. 5	S F	>	R	т	L	Ν	А	W	٧	κ	L	٧	Е	Ε	κ	κ	F	G	А	Е	٧	V	Ρ	G	F	Q	А	L	s	E

