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Abstract
A key question in SARS-CoV-2 infection is why viral loads and patient outcomes vary
dramatically across individuals. Because spatial-temporal dynamics of viral spread and immune
response are challenging to study in vivo, we developed Spatial Immune Model of Coronavirus
(SIMCoV), a scalable computational model that simulates hundreds of millions of lung cells,
including respiratory epithelial cells and T cells. SIMCoV replicates viral growth dynamics
observed in patients and shows how spatially dispersed infections can lead to increased viral
loads. The model also shows how the timing and strength of the T cell response can affect viral
persistence, oscillations, and control. By incorporating spatial interactions, SIMCoV provides a
parsimonious explanation for the dramatically different viral load trajectories among patients by
varying only the number of initial sites of infection, and the magnitude and timing of the T cell
immune response. When the branching airway structure of the lung is explicitly represented, we
find that virus spreads faster than in a 2D layer of epithelial cells, but much more slowly than in
an undifferentiated 3D grid or in a well-mixed ODE model. These results illustrate how realistic
spatially explicit computational models can improve understanding of within-host dynamics of
SARS-CoV-2 infection.

Summary
A key question in SARS-CoV-2 infection is why viral loads and patient outcomes are so
different across individuals. Because it’s difficult to see how the virus spreads in the lungs of
infected people, we developed Spatial Immune Model of Coronavirus (SIMCoV), a
computational model that simulates hundreds of millions of cells, including lung cells and
immune cells. SIMCoV simulates how virus grows and then declines, and the simulations match
data observed in patients. SIMCoV shows that when there are more initial infection sites, the
virus grows to a higher peak. The model also shows how the timing of the immune response,
particularly the T cell response, can affect how long the virus persists and whether it is
ultimately cleared from the lungs. SIMCoV shows that the different viral loads in different
patients can be explained by how many different places the virus is initially seeded inside their
lungs. We explicitly add the branching airway structure of the lung into the model and show that
virus spreads slightly faster than it would in a two-dimensional layer of lung cells, but much
slower than traditional mathematical models based on differential equations. These results
illustrate how realistic spatial computational models can improve understanding of how
SARS-CoV-2 infection spreads in the lung.
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1 Introduction
Reducing the spread, severity, and mortality caused by severe acute respiratory syndrome
coronavirus 2 (SARS-CoV-2) infection is an urgent global priority. A key question is why viral
loads and patient outcomes vary so dramatically among infected individuals. While severe
COVID-19 disease is correlated with some known risk factors, such as age, co-morbidities, and
some immune response characteristics [1–3], it remains challenging to understand why some
patients develop high viral loads and others do not.

We developed a scalable computational model to study the role of spatial effects in
determining the time course of viral load within patients, which has been shown to affect disease
severity [4] and transmission [5].

Most prior work uses Ordinary Differential Equation (ODE) models to represent within-host
virus dynamics, e.g., [6–12]. Such models are useful for studying the onset and duration of the
infective period [13] and the effect of various therapeutics given at different times [14–16].
However, they have limited ability to fully account for dynamics in large and complex structure
of the lung [12, 17].

The Spatial Immune Model of Coronavirus (SIMCoV) is an agent-based model (ABM) that
simulates infection dynamics and CD8+ T cell responses in the tissue consisting of hundreds of
millions of epithelial cells. We highlight the importance of how virus is dispersed spatially in the
lung and how that affects peak viral load. We focus on CD8+ T cells because they are a key
player in the immune response to SARS-CoV-2 and because spatial dynamics are important for
these cells that move in the lung to kill virally infected cells. Earlier studies report that T cell
levels are correlated with disease severity [18], and there is mounting evidence that T cells are
critical for protection from severe illness and for preventing subsequent infection [19–22]. These
studies collectively suggest that an early and strong T cell response is correlated with less severe
disease, but they do not provide a quantitative understanding of how T cell response impacts
viral dynamics.

SIMCoV and other ABMs are appealing because they can represent and visualize the
complex heterogeneous movements of individual cells and diffusing fields of small particles (i.e.
virions or cytokines) [23]. Our prior work analyzed how key factors such as spread of infection,
signals, and cells affect search efficiency, timing of immune response, and clearance of
infection; this work showed that interactions that depend on movement and physical cell-cell
contact require a spatially-explicit modeling framework [24, 25]. This SIMCoV simulation of
SARS-CoV-2 reinforces the importance of spatial effects as drivers of viral dynamics in the lung.

Our simulations replicate the viral dynamics reported from infected patients and explain
differences among those patients in terms of the initial number of foci of infection (FOI) and the
magnitude and timing of the CD8+ T cell response. SIMCoV demonstrates how the spatial
structure of the lung can affect viral spread in the tissue and contribute to the wide diversity of
outcomes and infection dynamics observed in COVID-19 patients.

Results

SIMCoV Model Overview
We initialize SIMCoV with SARS-CoV-2 virus that can infect lung epithelial cells. Epithelial
cells are modeled as a 2D grid, where each grid point represents a 5 x 5 x 5 µm3 volume. Upon
infection, epithelial cells incubate virus in what is often called an eclipse phase, and then they
express virus until they die. Expressing cells produce both virus and an inflammatory signal,
which is an abstraction of the cytokines that influence T cell extravasation into tissue. The virus
and inflammatory signal both diffuse through tissue. After a delay, we create an abstract pool
representing CD8+ cytotoxic T cells that are activated in lymph nodes and then circulate in the
vasculature. When T cells reach the lung and encounter a concentration of inflammatory signal
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Fig 1. SIMCoV model components and their interactions. Epithelial and T cells are represented
as agents; virions and inflammatory signals are represented as concentrations. Numbered
transitions are described in Materials and Methods (Table 2).

above a threshold, they extravasate and then are explicitly represented as mobile agents in
SIMCoV. We adjust the probability of T cell extravasation according to the fraction of the lung
that is modeled in the simulation. T cells that have extravasated move at random across the 2D
grid until they either die or encounter an epithelial cell incubating or expressing virus, in which
case the T cells cause apoptosis of the infected epithelial cell with some probability. SIMCoV
extends an ABM developed for influenza [25–27] by adding the ability to simulate viral spread
through the 3D branching structure of lung epithelial cells and parameterizing the model for
SARS-CoV-2. Each transition in Fig. 1 is parameterized with estimates or probabilities detailed
in Materials and Methods and in configuration files provided with the SIMCoV code in
https://github.com/AdaptiveComputationLab/simcov.

Fig. 2 shows the results of a run of SIMCoV with the default configuration, representing
infection spreading over a 15 x 15 mm2 layer of lung epithelial tissue (5 µm deep). The top row
(Fig. 2A) shows the state of epithelial cells (left), virion concentration (center), and
inflammatory signal (right) at six days post infection (dpi), and the second row (Fig. 2B) shows
the same including extravasated T cells at eight dpi. The dynamics of the epithelial cells, the
count of virions, and the number of T cells moving through tissue are shown in the bottom row
(Fig. 2C). The number of epithelial cells incubating and expressing virus (Fig. 2C, left) and viral
load (Fig. 2C, right, orange line) all rise quickly after infection and then increase more slowly
until seven dpi. The CD8+ T cell response begins at seven dpi, and when T cells encounter
infected cells, the infected cells become apoptotic. This reduces both the incubating and
expressing epithelial cells and the viral load, and the cumulative number of dead cells levels off.
In this example, at approximately 15 dpi, the T cells induce apoptosis in nearly all expressing
epithelial cells, which leads to a reduction in produced inflammatory signals and consequently
fewer T cells entering the lung. This causes the virus level to begin to rebound. However, once
incubating and newly infected cells express more virus, more T cells enter the tissue, encounter
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Fig 2. Example SIMCoV simulation on a 15 x 15 mm2 layer of epithelial tissue. (A) six days
post infection (dpi); (B) eight dpi. Color indicates epithelial cell state (see legend, left column),
virus concentration (see scale bar, middle column), and presence of inflammatory signal (in
grayscale with darker regions having a stronger signal, right column) and T cells (green); (C)
(left panel) shows the dynamics of epithelial cell state, and (right panel) shows virus and T cell
dynamics. A video demonstration of this simulation can be viewed at
https://www.youtube.com/watch?v=5K4ZSeCn-Ks.

November 2, 2021 4/24

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted November 7, 2021. ; https://doi.org/10.1101/2021.05.19.444569doi: bioRxiv preprint 

https://www.youtube.com/watch?v=5K4ZSeCn-Ks
https://doi.org/10.1101/2021.05.19.444569
http://creativecommons.org/licenses/by-nd/4.0/


these expressing cells, and reinstate control over the infection.

Peak viral load is proportional to the number of initial FOI
We used SIMCoV to test how spatially differentiated locations of initial infection affect viral
dynamics. Images of the lungs of SARS-CoV-2 patients and experimental animal models
suggest that there may be multiple sites of viral infection [28–30]. We tested the effect of
seeding SIMCoV with multiple FOI on viral dynamics. We initialized simulations with one,
four, and 16 spatially dispersed FOI (Fig. 3A). We find that each four-fold increase in the
number of FOI increases both the peak viral load (Fig. 3C) and number of extravasated T cells
(Fig. 3D) by a factor of approximately four (Fig. 3B). This remains true when the absolute
number of initially infected cells is held constant across all experiments, i.e., by creating a single
FOI with a cluster of 16 adjacent infected cells and four FOI with four adjacent infected cells, so
that all three experiments contain 16 initially infected cells but with varying number of FOI
(Fig 3C). The initial number of infected cells only affects the peak viral load if those initial
infections are dispersed across multiple FOI; peak viral load depends on the number of FOI, not
the number of infected cells within each initial FOI. Virus diffuses from each spatially dispersed
FOI independently to the surrounding cells. A larger number of FOI results in a larger number
of infectable cells available for virus to contact and infect. Greater spatial dispersion of infected
cells also results in more inflammatory signal produced at more sites of infection, and T cells
respond by entering the tissue in greater numbers as seen in the correspondence between T cells
and virions in (Fig. 3C and D).

Effect of CD8+ T cell response on viral clearance
CD8+ T cells that kill virally infected cells are another key factor that varies among
patients [19, 22]. The CD8+ T cell response depends on interactions in physical space: CD8+ T
cells are activated in lymph nodes, circulate in the blood and migrate to the lung, where they
extravasate into lung tissue at locations with sufficient inflammatory signal. After extravasation,
they move through infected tissue until they directly interact with infected cells and cause cell
death [31–34]. As mentioned earlier, T cells likely play an important role in controlling
SARS-CoV-2 infection; elderly individuals and patients suffering from severe COVID-19
disease have fewer circulating CD8+ T cells [19, 35]. However, because it is difficult to study T
cell responses in lungs of infected patients, relatively little is known about how the presence of T
cells in infected lung tissue might impact viral dynamics and control.

We used SIMCoV to test how the magnitude of the immune response affects viral control.
We find that varying the number of circulating T cells in the blood dramatically affects viral
control (Fig 4A). Even a two-fold decrease in the production rate of circulating T cells can delay
the timing of viral control by several days (compare 100,000 to 200,000 T cells/minute) or even
change the outcome from viral control to viral persistence (compare 100,000 to 50,000 T
cells/minute).

When CD8+ T cell arrival in infected tissue is delayed, it delays the time it takes to reach
peak viral load and allows a slightly higher peak load (Fig. 4B). Delayed T cell arrival also
increases the time until the infection is controlled, but it does not dramatically change the rate at
which viral load is reduced. Even when T cell arrival is delayed from five to 15 days, viral
control can eventually be achieved, albeit later in the infection. A delay in viral control allows a
longer period of elevated viral load which may increase both the window of transmission and the
extent of tissue damage, possibly leading to more severe disease.

The viral clearance rate is a parameter that captures the strength of the innate immune
response, and, as can be seen in Fig. 4, changes in the viral clearance rate have a small effect on
peak viral load, and a much larger effect on viral dynamics in the later days of the infection. The
magnitude of the innate immune response can make the difference between rapid viral control
and an infection that drags on indefinitely.
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Fig 3. Effect of the number of FOI on virus and T cell dynamics. (A) Initial spatial distribution
in SIMCoV for one FOI (left), four FOI (center), and 16 FOI (right). (B) Viral load over time
given different FOI. The light orange line labelled FOI 1 1 represents one FOI initialized with a
single infected cell, and the dark orange line labelled FOI 1 16 represents one FOI initialized
with a cluster of 16 infected cells. Similarly the purple lines represent four FOI, each initialized
with one or four infected cells; the black line represents 16 FOI, each with one infected cell; 30
replicates with shading showing 95% CI (which is only visible at low numbers of virions). (C)
Peak number of virions for different FOI with error bars showing the standard deviation for 30
replicates. There is a 3.90-fold increase from the one FOI configuration to the four FOI
configuration and a further 3.99-fold increase in the 16 FOI configuration. The peak virions
given FOI 1 1 and FOI 1 16 are indistinguishable (p = 0.68), as are the FOI 4 1 and FOI 4 4
cases (p = 0.51); however the single FOI, 4 FOI and 16 FOI cases are distinguishable from each
other (p < 0.01). (D) Peak number of T cells that extravasate into lung tissue for the different
FOI. Similar to panel (C), the increase is 3.95-fold for each 4-fold increase in FOI.

We performed a more complete analysis of how peak viral load and the percentage of
infected cells vary given variations in individual parameters. We find that increasing viral
production, viral diffusion, and the delay in T cell arrival into the lung each cause an
approximately linear increase in viral load and percent of infected cells (Fig 8). The number of
FOI has a particularly strong linear correlation with viral load and percent of infected cells. Our
sensitivity analysis also confirms our findings in Fig. 3 showing no effect of the number of
virions within a single FOI. Similar to results in Fig 4, we find that varying parameters that
affect the number of T cells in infected tissue, including T cell production, T cell dwell time in
tissues, and the inflammatory signal responsible for recruiting T cells into lung tissue show a
threshold effect. That is, beyond a threshold, the viral load and percentage of infected cells are
not sensitive to changes in these parameters. For complete details see Fig 8 and Materials and
Methods. Our results suggest that below a certain number of CD8+ T cells, infection control is
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Fig 4. Effect of varying key immune response simulation parameters. Each subplot varies one
parameter while holding others at the default values (Table 2), and shows the results of 10
random runs. (A) Varying T cell generation rate from 50,000 to 200,000 T cells produced per
minute; (B) varying T cell delay; (C) varying viral clearance rate.

not achieved.

SIMCoV viral loads compared to patient data
Having shown how the number of initial FOI and the timing and number of responding CD8+ T
cells affect viral dynamics, we next consider how these factors affect SIMCoV fits to time
courses of viral load in COVID-19 patients. Following previous ODE models, e.g. [7, 8, 12, 14],
we use data from sputum samples reported in Wolfel et. al. [36]. This study collected sputum
from the lower respiratory tract, in contrast to most viral swabs which are collected from the
nasal cavity. The lung contains vastly more tissue than the nasal cavity; the epithelial lining of
the branching airways and alveoli forms a large and complex surface area of up to 80 m2 [37].
Most earlier models of the Wolfel et al. patient data used a target cell limited (TCL) framework,
in which viral load peaks when the virus infects all infectable “target” epithelial cells and runs
out of targets. These models typically predict viral peaks within the first four or five dpi.
However, SARS-CoV-2 peak viral load occurs later in the lung than in the upper respiratory tract
(URT) [38], and the patient data have complex dynamics that last 15 to 30 dpi (Fig. 5). Although
the viral peak may be reached earlier in the URT, in the lung, it may not be achieved before the
adaptive immune response begins [17]. Thus, TCL models may not be the most suitable
approach for capturing infection dynamics in the lung, which is larger and has more complex
organization.

We tested whether SIMCoV can explain the substantial variation in patient viral load data by
varying only the initial FOI, timing and strength of T cell response, and viral clearance rates
which include other immune activity. We began with default model parameters (Materials and
Methods - Table 2 and Fig. 2) and varied the number of FOI from one to 220 sites. We also
varied the timing of first T cell arrival (from five to 10 days), T cell generation rate (from 90,000
to 200,000 cells per minute), and the viral clearance term (from 0.003 to 0.005) to account for
variations in other components of the immune response.

We find that SIMCoV simulates the dynamics of patient viral load over the full 25-30 day
time courses with fits that are quantitatively similar to those of the extended ODE described in
Ke et al. [12] (Fig. 5). Table 1 shows that the goodness-of-fit is similar between SIMCoV and
the ODE as measured by the Root Mean Log Squared Error (RMLSE). SIMCoV fits were
derived manually, as described in the subsection “Fitting Patient Data” of the Methods section.
When we varied the initial FOI, SIMCoV replicated the several order-of-magnitude differences
in viral load observed across the eight patients. Compared to the ODE model, SIMCoV
produced a less pronounced peak with higher viral loads early in infection which persists for
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Fig 5. Viral load predictions from SIMCoV simulations (orange) compared to the extended
ODE in [12] (gray), and patient data from [36] (red points). For each simulation, 10 random runs
are shown.

Patient T Cell Generation Rate T Cell Onset Initial Sites Viral SIMCoV ODE
(1000 T cells/min) (days) of Infection Clearance RMSLE RMLSE

A 200 8 220 0.003 1.98 1.79
B 160 7 150 0.003 2.58 2.55
C 90 5 1 0.003 2.31 2.05
D 120 6 40 0.005 2.65 1.62
E 120 10 10 0.003 3.75 3.40
F 150 9 80 0.003 2.30 1.92
G 90 6.5 50 0.004 3.54 2.88
H 160 6 3 0.004 2.30 1.82

Table 1. SIMCoV parameter settings used for each patient and RMSLE for the simulations
averaged over 10 runs, and for the ODE.

several days. The SIMCoV curves are consistent with the observation that individuals infected
with SARS-CoV-2 are most infectious early in infection before symptom onset [39, 40]. The
SIMCoV runs also predict that elevated viral titers persist for more days, which agrees with
patient viral load data.

Varying the T cell generation rate and first day of arrival captures the unique shapes of viral
load trajectories after seven dpi. SIMCoV exhibits both oscillations in viral load and second
peaks that are seen in some patients [36]. These results support the hypothesis that decreased T
cell numbers can account for viral persistence and inability to control viral load in some
individuals [19, 20]. The fit to Patient A also shows that a high initial and peak viral load, which
we fit by setting the number of FOI to 220, is not quickly controlled by a even a high T cell
response (in this case, a T cell production rate of 200,000 T cells/min beginning on 8 dpi.) This
suggests that initial infection in a large number of FOI could overwhelm even a high T cell
response.

Previous TCL models have replicated the data in Wolfel et al. [36] by expanding the
availability of target cells later in infection and varying many parameters in each patient [7, 12].
For example, the extended ODE model in [12] achieves good fits by varying infectivity, infected
cell death rate, virion production rate, number and timing of new target cells introduced to
represent newly seeded infections, and the exponential increase of the infected cell death rate to
account for the adaptive immune response. By incorporating spatial interactions, SIMCoV
provides a more parsimonious explanation for the dramatically different viral load trajectories
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among SARS-CoV-2 positive individuals by varying only the number of FOI in the initial
infection and the magnitude and timing of the immune response, particularly the CD8+ T cell
response. These factors are consistent with hypothesized explanations for highly variable patient
outcomes. Elderly individuals have lower T cell numbers, and our model suggests that fewer T
cells along with slower T cell response could help explain why elderly individuals have
increased disease severity [19, 22]. More speculatively, the number of FOI might be larger if a
larger amount of virus is inhaled, and a larger initial viral dose has been shown to increase
disease severity in macaques [41], and has been suggested in humans [42, 43]. Variation in FOI
and T cell response may also account for the long infectious period in some patients [4–6].

Fig 6. Simulated 3D branching airway with a single FOI. (A) shows the full lung model; (B) -
(F) show T cells (green), virions (red) and a small region of epithelial cells (gray) at (B) 0 dpi,
(C) 4.2 dpi, (D) 6.3 dpi, (E) 6.9 dpi, and (F) 8.3 dpi. Dead epithelial cells are indicated in black.
A video corresponding to these images is available at
https://youtu.be/WbiLH9NRfbA.

Modeling viral spread over branching airways
The SIMCoV experiments described above simulate a single layer of epithelial cells (Figs. 2, 3,
4, 5). However, the lung is a highly complex structure of branching airways descending from
large bronchioles down to alveoli lined by epithelial cells, with much of the volume consumed
by alveolar space for gas exchange [37]. To investigate whether the lung airway structure
impacts viral spread and T cell control, we developed a bifurcating fractal branching algorithm
and integrated it into SIMCoVsimulations to form the surface of the epithelial layer. Following
Yeh et. al [44], we model 26 branching generations (from the trachea to alveolar sacs) in all five
lobes of the lung. The 3D branching model incorporates trachea, bronchi, bronchioles, and ducts,
represented as cylinders of epithelial cells with length, diameter, branching angle, and gravity
angle calculated at each level of the branching hierarchy, and each terminal alveolar sac is
represented as a hollow 200 x 200 x 200 µm3 cube of epithelial cells. Fig. 6A shows the full
model of the branching structure, and Figs. 6B-F show how virus spreads over a small region of
bronchioles and alveoli in a 1500 x 1500 x 1500 µm3 volume.
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Fig 7. Viral spread given different model topologies. Virion count is plotted vs. time for four
different SIMCoV configurations: 2D grid (yellow); 3D grid (red); 3D branching model (blue);
ODE model (green). The right panel is zoomed in on the y-axis (showing up to 107 virions) to
show the dotted region of the left panel (which shows up to 108 virions).

Fig. 7 shows how different topologies of epithelial cells modeled in SIMCoV affect the
predicted rate of viral spread in the first seven dpi and before the T cell response. The default
model parameters are used for all topologies, and each simulation was run with sufficient
numbers of epithelial cells to avoid reaching target cell limitation. The branching network model
(Fig. 6) best captures the spatial arrangement of epithelial cells. However, viral spread over the
branching network (blue line in Fig. 7) shows only four times greater growth than the simple 2D
layer (yellow line) used in our earlier simulations. In contrast, an undifferentiated 3D grid of
cells (red line) generates 66 times more infected cells than the branching model at the end of the
first week of infection, and the TCL ODE from [12] (green line) generates thousands of times
more infected cells before reaching target cell limitation within the first week.

We hypothesize that the 2D model slightly underestimates viral growth because it is
constrained by the circumference of the circle of infection which grows linearly with the total
number of cells in the FOI (Fig. 2). In (non-branching) 3D grid simulations, infection spreads
from the faster growing sphere of infected cells. ODE models assume all infected cells can
infect all other infectable cells, and without spatial constraints, the virus spreads even faster. At
least at the scale of the hundreds of millions of cells modeled here, the simple 2D model is
computationally efficient and captures the dynamics of the branching model well (although
small differences are visible in the right panel of Fig. 7). Future work can incorporate more
detailed movement of virus and immune cells through the epithelium and branching airways as
well as the percent and locations of infectable cells in simulations at the full scale of the human
lung.

Discussion

Summary
SIMCoV models the spread of SARS-CoV-2 through the lung and subsequent immune control
by CD8+ T cells. There are three main findings from our simulations. First, variation in the
initial number of sites of infection (or FOI) can dramatically change the peak viral load. Second,
variation in the magnitude and timing of the CD8+ T cell response can explain why some
patients clear infections quickly while viral load oscillates and lingers in others. Third, modeling
the spatial spread in a 2D layer of tissue, or more realistically in a fractal branching model of
airway epithelial tissue, results in much slower viral spread than in mathematical models that do
not consider spatial constraints.
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Fig. 3 shows that the number of initial FOI determines peak viral load, but the the actual
number of virions causing initial infection does not independently affect the viral peak.
However, in real infections, the likelihood of virus taking hold in more FOI is likely to increase
if more virus is inhaled. The number of inhaled virions and their spatial dispersion may be a key
explanation for why viral load and disease outcome can be so different in demographically
similar patients. An important insight from SIMCoV is that spatial dispersion of virus may be
particularly important for SARS-CoV-2 and other lung infections because the epithelial surface
area of the lung is so large; this contrasts with the smaller surface areas of the nasopharynx,
where TCL can be reached quickly even with a small initial infection [17].

Fig. 5 shows that varying T cell arrival time by only a few days (from five to 10 dpi,
consistent with [45]) and the magnitude of the T cell and other immune responses by two-fold,
accounts for the variability and oscillations in viral clearance of the patients from [36]. This is
consistent with studies that show CD8+ T cells in particular are critical for clearance and control
of SARS-CoV-2 infection [18, 19, 22, 46, 47].

Fig. 7 shows how the branching topology of the lung (shown in Fig. 6) impacts viral spread
compared to a simple 2D or 3D grid and a non-spatial ODE model. The 2D model (which we
used to simulate viral dynamics in Figs. 2-5) produce fits most similar to the more realistic
branching airway model. In contrast, the 3D and ODE models both predict much faster viral
growth than the branching model. ODE models assume well-mixed (also called “mass action”)
interactions in which any infected cell can infect any other infectable cell regardless of the
physical distance between them. ODE models with TCL require extremely fast viral replication
(e.g., R0 ≈ 27 in [12]) to reach TCL and fit the timing of the viral peak.

The relatively slow viral spread over surfaces (either the branching airway surface or the
simpler 2D layer of cells) means that it is unlikely that target cell limitation can explain the peak
in viral load. Our hypothesis that not all lung cells are infected is consistent with observed mild
illness in many patients, including those in [36]. It is also consistent with CT scans showing
damage in only a small percentage of tissue in most patients [28,48]. Because SIMCoV includes
spatial constraints on viral spread, it suggests that immune response, particularly CD8+ T cell
response, determines the timing of the peak viral load, rather than the time at which virus infects
all infectable cells.

Relationship to other models
Several earlier SARS-CoV-2 ODE models were tuned to fit the same lung viral load data
from [36] that we fit here. Some included an implicit immune response incorporated in the cell
clearance term and an explicit adaptive immune response, e.g. [8, 14–16, 49], similar to the
approach we took with SIMCoV. SIMCoV complements these earlier ODE models but makes
different predictions. For example, earlier models predict a sharp early peak in viral load in the
first few days of infection, while SIMCoV predicts a broader peak which rises rapidly for the
first few days post-infection and then continues to increase slowly until the T cell response
begins between day seven and 10 [45]. Viral levels then decline gradually but continue to
oscillate as infected cells continue to produce virus and as T cells discover pockets of hidden
infection. The viral dynamics predicted by SIMCoV are consistent with observations that the
viral load in the lung peaks later than in the upper respiratory tract and can persist for much
longer [16, 17, 50]. In contrast to ODE models, SIMCoV suggests a parsimonious, mechanistic
explanation that peak viral load in the lung is determined by the number of FOI and the
magnitude and timing of the CD8+ T cell response.

Other spatially explicitly models of viral spread through the lung have been developed.
SIMCoV replicates many of the features of the CyCells ABM that modelled spatial spread of
tuberculosis ( [26]) and influenza ( [25]) over a 2D grid. Sego et. al. [51] built a multi-scale
model of SARS-CoV-2 that connects a 2D spatial grid which, like SIMCoV and CyCells,
represents epithelial cells as a static 2D layer with virus and signals diffuse as fields over that
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grid. Quirouette et. al. [52] used partial differential equations to model diffusion and advection
of influenza along the single dimension from the lower to upper regions of the lung. Each of
these attempts to model spatial dynamics has strengths and limitations.

SIMCoV is unique in its ability to explicitly model the spread of virus from multiple FOI as
well as the recruitment of T cells to those locations. To do this, SIMCoV uses a highly scalable
architecture in order to represent hundreds of millions of cells that can contain multiple growing
FOI. T cell killing of infected cells requires direct cell to cell contact [31, 33, 53]. Because
SIMCoV represents spatial positioning and T cell movement explicitly, their physical
co-location with infected cells arises naturally in the model. This modeling strategy provides a
mechanistic explanation, which shows how even a small decrease in the number of responding T
cells changes viral dynamics from a smooth decline to an oscillating decline to uncontrolled
viral persistence. Interestingly, later arrival of T cells into the infected lung delays viral control
but otherwise has little affect on viral dynamics or clearance.

Caveats, limitations and future work
SIMCoV, like any model, focuses on only a subset of possible factors. In this paper, we focused
on the CD8+ T cell response and not innate, antibody, B cell or CD4+ T cell immunity, and we
focused on spread through the lung and not the nasal cavity. Some parameters in the model are
not well characterized in the biological literature, for example rates of production, diffusion and
decay of inflammatory signals. Fig. 8 shows that peak viral load and the extent of infection are
largely insensitive to these parameters.

When fitting the model to patient viral loads, we kept parameters related to virus
characteristics (i.e. viral infectivity and production rates) constant because we do not expect
viral characteristics to vary across patients. However, these parameters might vary significantly
in different SARS-CoV-2 variants. A logical avenue for future work is to better understand the
dynamics of different SARS-CoV2 variants, particularly Delta, by modeling its properties, such
as increased viral production and increased infectivity. Future studies could also explicitly
represent antibody responses, CD4+ T cell responses either as time varying components of the
clearance term, or by explicitly representing their ability to neutralize virus or reduce viral
replication or entry into cells. This would enable comparisons of naive patients with vaccinated
and previously infected patients. SIMCoV can also be used to study other respiratory diseases,
such as influenza, or even be extended to model infection in other organs. The SIMCoV
platform could be used to simulate other spatial interactions such as predator prey dynamics
between immune and infected cells or collective action dynamics [11], such as the collective
search strategies of T cells [54] or the movement patterns of T cells within the lung [32, 34].

Previous spatial models were limited both by data on infection dynamics and the
computational power required to explicitly represent spatial interactions among large numbers of
of cells [23]. SIMCoV overcomes these limitations by leveraging data shared in response to the
COVID-19 pandemic and a model design and implementation that takes advantage of HPC
capabilities.

To enable open and reproducible science, SIMCoV is freely available under an open-source
license, and it was designed to be easily extensible. Future extensions of the model could scale
up to a full lung, investigate the effects of mucus and the complex dynamics of airflow in the
respiratory tract [55], and incorporate more detailed topological models of the airways and
alveoli, including the fraction and distribution of epithelial cells with receptors sufficient for
infection. By predicting the time course of viral loads within individuals, SIMCoV can help to
identify factors that determine windows of transmission between individuals and thereby
improve understanding of epidemic spread.
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Materials and Methods

Model Description
SIMCoV1 is an Agent Based Model (ABM) where space is represented by a discrete Cartesian
grid, which can be either two or three-dimensional. For clarity, we describe the model with
reference to a 2D layer of epithelial cells, although the mechanisms apply to other topologies, in
particular, a 3D grid and a 3D branching structure of lung airways.

Grid points are spaced five microns apart (roughly the diameter of a T cell), and components
of the model only exist at these discrete locations. The model is run as a discrete-time
simulation, where each time step represents one minute, approximately the time it takes for a T
cell to move five microns (one grid point) [34, 56]. At each time step, the model components are
updated according to their states and interactions.

There are four main components of SIMCoV: epithelial cells, CD8+ T cells, virions, and
inflammatory signals, representing the subset of cytokines that cause T cell extravasation into
the lung tissue. The interactions between these components are shown in Fig. 1. Each epithelial
cell has a fixed grid location with no more than one cell per location. However, some locations
can be empty, representing airways (as can be seen in Fig. 6). In addition, a single T cell may
also occupy a grid point, and every grid point has a concentration of virions and inflammatory
signals. The number of virions per grid point is represented explicitly but capped at 125,000
virions, which is the maximum number estimated to fit within five µm3. The concentration of
inflammatory signal is represented as a floating point number between 1× 10−6 and one.

Each simulation run begins with a number of sites of infection (parameter b in Table 2),
which are grid points with an initial number of virions (parameter c). At each time step, the
virions diffuse uniformly at a given rate (parameter j) to neighboring grid points, both those with
and without epithelial cells, and some fraction (parameter i) of the virions are cleared, reducing
the concentration.

Initially, all epithelial cells are healthy (uninfected) and susceptible to infection. At the end
of each time step, if there are virions in the same location as a healthy epithelial cell, that cell
becomes infected (transition 1 in Fig. 1) with probability proportional to the virion concentration
multiplied by infectivity (parameter g). An infected epithelial cell is initially incubating, and
remains in this state for a number of time steps, which is sampled from a Poisson distribution
(parameter d). An expressing epithelial cell produces virions at a constant rate per time step
(parameter h, transition 3a), which are added to the local concentration and diffuse (transition
4a) until they are cleared (transition 4b). Expressing cells that avoid contact with a T cell,
eventually die (parameter e) (transition 3c).

When epithelial cells are expressing (and apoptotic, described below), they produce
inflammatory signal at a constant rate (parameter k) per time step (transition 3b). Those signals
diffuse to neighboring grid points and decay at a constant rate (parameters m and l, respectively).
Inflammatory signal is represented as a floating point number (concentration) with a minimum
value (1× 10−6), below which it is considered eliminated. In the current implementation,
inflammatory signals only affect T cell extravasation, although future extensions could
incorporate other chemokines and cytokines.

After some delay (parameter o), activated antigen-specific CD8+ T cells enter the blood
from (unmodeled) lymph nodes (transition 7) at a constant rate (parameter n). T cells in the
vasculature extravasate when they detect inflammatory signal (transition 9b). T cell movement
through the vasculature is not explicitly modeled; instead, a random location is chosen for each
T cell at every time step, and if that location contains inflammatory signal, then the T cell
extravasates. The random location is chosen from among all of the possible locations for a
complete lung, but when only a fraction of the lung is being modeled, the probability of
extravasation is reduced accordingly. Since only one T cell can occupy any single location in

1The source code for SIMCoV is publicly available at https://github.com/AdaptiveComputationLab/
simcov.
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Parameter Description Default Reference
(a) Dimensions Simulation size in x,y, and z dimensions 15000x15000x1 *
(b) Initial Infections Number of grid points with initial infections 1 *
(c) Initial Virions Number of virions at initial infection locations 1000 *
(d) Incubation Period Average minutes until an infected cell starts expressing

virions
480 [57]

(e) Expressing Period Average minutes after expressing starts until cell death 900 [10]
(f) Apoptosis Period Average minutes after apoptosis is induced until cell

death
180 [58]

(g) Infectivity Probability of one virion infecting one cell per minute 0.001 [25]
(h) Virion Production Number of virions produced by expressing cell per

minute
1.1 [59]

(i) Virion Clearance Fraction by which virion count drops per minute 0.004 [25]
(j) Virion Diffusion Fraction of virions that diffuse into all neighboring grid

points per minute
0.15 [25]

(k) Inflammatory Signal
Production

Concentration of inflammatory signal produced by ex-
pressing cells per minute

1 *

(l) Inflammatory Signal De-
cay

Fraction by which inflammatory signal concentration
drops per minute

0.01 *

(m) Inflammatory Signal
Diffusion

Fraction of inflammatory signal that diffuses into all
neighboring grid points per minute

1 [25]

(n) T Cell Production Number of T cells generated per minute into circulation 105000 [25, 60]
(o) T Cell Initial Delay Average minutes before T cells start to be produced 10080 [45, 61, 62]
(p) T Cell Vascular Period Average minutes before death for a T cell in the vascu-

lature
5760 [25]

(q) T Cell Tissue Period Average minutes before death for a T cell after it ex-
travasates

1440 [63]

(r) T Cell Binding Period Average minutes T cell is bound to an epithelial cell 10 [33]

Table 2. Table of SIMCoV parameters. Default values are COVID-19 parameters assembled
from a variety of sources. Time periods are Poisson distributions, defined by the average, λ.
Each time step is one minute, and grid points are five microns apart. Unless stated otherwise, the
default parameters were used for all experiments. Parameters marked with (*) were not taken
from the literature—see Parameter Derivation.
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tissue at a time, T cells are blocked from extravasating if the location already contains a T cell. T
cells that do not extravasate continue to circulate (transition 9a); those that fail to extravasate
before the vascular T cell lifespan (parameter p) die and are removed from the simulation
(transition 9c).

Tissue-resident T cells can bind to epithelial cells in the same location or in an immediate
neighboring location (transition 10a). Binding probability is proportional to how long the cell
has been incubating, with a maximum of one if the cell is expressing. Multiple T cells can bind
to a single infected cell (respecting the occupancy rules outlined earlier). When binding occurs,
the T cell transitions to apoptotic (transition 3d) and after some time (parameter f), it dies
(transition 6b). Apoptotic epithelial cells produce virions (transition 6a) and inflammatory
signals at the same rates as expressing cells. T cells remain bound for a fixed time (parameter r),
after which they continue moving in the tissue. During each time step the T cell moves one step
to a randomly selected adjacent location that is not occupied by another T cell. Hence, T cells
move at maximum rate of five microns per minute [34]. After moving, if a T cell finds adjacent
to or or colocated with an infected cell, it can bind again. This process of random movement and
possible binding continues until the T cell dies (transition 10b, parameter q). Tissue-resident T
cells never return to the vasculature.

Parameter Derivation
Where possible, parameter settings were derived from published data, as described below:

a. Dimensions: In general, each dimension is set large enough to avoid target cell limitation
during the first week post-infection; for the default 2D simulation, the z-dimension is one.

b. Initial Infections: Set to one to represent the minimum number of infections in the LRT.

c. Initial Virions: Set according to infectivity (g) so as to ensure a successful initial infection of
at least one cell.

d. Incubation Period: Roughly, the eclipse period; estimated to be 7-8 hours or 480 time steps
in [57].

e. Expressing Period: Estimated to be about 15 hours or 900 minutes in [10], which is similar to
the expressing period of the influenza virus (about 1000 minutes [25]).

f. Apoptosis Period: Estimated to range between 48 minutes and 168 minutes in mice [58]; we
estimate a slightly longer period, 180 minutes, for humans.

g. Infectivity: Set to 0.001, which is the probability of infection per cell per minute, i.e. it will
take on average 1,000 minutes for a virion to infect a single cell. This is within the range of
12 to 1,200 minutes estimated for influenza [25], although this value is largely unknown and
almost certainly varies between diseases and viral variants.

h. Virion Production: Calculated by dividing the burst size by the expressing period (e); the
burst size is the total number of virions produced by an infected cell, which was found to be
1,000 virions [59].

i. Virion Clearance: Set to 0.004 virions per minute, which is within prior calculations of the
virion decay rate of the influenza virus, ranging from 7e-7 to 0.07 virions per minute [25].
We vary this parameter from 0.003 to 0.005 to fit patient data.

j. Virion Diffusion: Calculated from the Einstein-Smoluchowski equation for particle
movement, D ≈ α.x2/(2t), where x is the mean distance diffused in one direction along one
axis in time t, and α is the SIMCoV parameter. Hence, for a mean distance of five microns
(one grid point), a time of one minute (one simulation time step), and a virion diffusion
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parameter of 0.15, the diffusion coefficient is 0.0312µm2/s. This diffusion coefficient is
similar to the diffusion coefficient calculated for influenza [25], which is 0.0318µm2/s.

k. Inflammatory Signal Production: The concentration of inflammatory signal produced per
minute is not a value explicitly available from the literature because it is an abstraction of the
production rate of multiple signalling molecules each of which varies for different pathogens.
For example in [25, 27] production of IP-10 and RANTES vary by several orders of
magnitude for different strains of influenza. Therefore, we model inflammatory signals as an
abstract quantity with a production rate of 1 unit per time step. The effect of this parameter
on T cell extravasation then depends on inflammatory signal decay and diffusion parameters.
The inflammatory production, decay, and diffusion parameters result in an area or volume
containing inflammatory signals that is two to three times that of infected cells in simulations
with default parameters.

l. Inflammatory Signal Decay: We estimate a half life of 70 minutes, which is similar to the
half life of 30 minutes estimated in earlier work for influenza [25].

m. Inflammatory Signal Diffusion: Calculated from the Einstein-Smoluchowski equation for
particle movement, D ≈ α.x2/(2t), where x is the mean distance diffused in one direction
along one axis in time t, and α is the SIMCoV parameter. Hence, for a mean distance of five
microns (one grid point), a time of one minute, and a inflammatory signal diffusion
parameter of 1, the diffusion coefficient is 0.210µm2/s, which is within the range of the
chemokine diffusion coefficient calculated in [25] (from 0.00318µm2/s to 318µm2/s).

n. T Cell Production: The number of T cells produced by replication in the mediastinal lymph
nodes of the lung is calculated by scaling up the T cell production rate in Levin et al. [25],
which was estimated from mouse models [60]. That previous calculation assumed that a
single virus-specific T cell encounters an antigen presenting cell and begins to replicate on
day 0 post infection, doubling every eight hours. After five days, those activated CD8+ T
cells could generate approximately 30,000 new T cells per day (or 21 per minute) into
circulation. For SIMCoV, we assume a linear 5,000-fold increase from mouse to human,
which reflects the approximate increase in lung and blood volume and gives a rate of 105,000
T cells per minute entering circulation.

o. T Cell Initial Delay: Estimated from [45] for SARS-CoV-2. The SIMCoV default is seven
dpi, which we vary from five to ten dpi to fit patient data. We note that T cell delay is related
to the T cell production rate. If T cells double every eight hours and replication in humans
lasts 2.3 days longer than in mice (seven versus five dpi), this would cause a 128-fold
increase in T cell production. With 40 times greater SARS-CoV-2 specific T cell precursors,
this would generate 5,000 times greater T cell production in humans. Alternatively,
exponential replication of a single T cell precursor for nine days would generate 5,000 times
greater production in humans compared to mice.

p. T Cell Vascular Period: Equivalent to the T cell age in the blood used in a model of T cell
responses to influenza [25].

q. T Cell Tissue Period: Largely unknown, but estimates were provided in Keating et al. [63].

r. T Cell Binding: taken from Halle et al. [33].

Fig 8 explores the impact of varying model parameters. We used a one-at-a-time (OAT)
approach for sensitivity analysis, similar to the method reported in Hoertel et al. [64]. OAT is
useful when it is computationally expensive to run many simulations and when some parameters
are predetermined or have a small acceptable range [65]. Thus, our analysis varyied one
parameter at a time while holding the others at their default values. We report the size of the
peak viral load during the run and the percentage of infected cells at the end of the run
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(including dead cells). Several of the parameters have only a small impact on disease
progression: initial virions (b), T cell tissue period (q), and inflammatory signal production and
decay (k, l). Other parameters have clear and expected effects, for example, there is a linear
relation between peak viral load and virion production (h).

Fig 8. The effect of varying model parameters, one at a time. Each line is the average of five
runs. Dashed lines indicate SIMCoV default values.

Fitting Patient Data
We developed the fits to patient data manually, using an approach based in plausible biological
mechanisms related to the immune response. We hypothesized that the differences among
individual patients arose as a consequence of different immune responses and initial viral
exposure, rather than from changes in the nature of the virus from one patient to the next. We
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also focused on adjusting the subset of model parameters that are expected to vary from patient
to patient, depending on age, health, etc, and initial viral exposure. First, there are the
parameters that control the extent of the immune response, including T cell production and onset
delay, and viral clearance rate. Second are the parameters that capture the size of the initial
exposure: the number of FOI and initial virions parameters (the latter has no impact, as seen in
Figure 8, so we ignored it in the fitting process). All other parameters were kept constant at the
default values because we do not expect them to vary between patients. For example, several
parameters define disease characteristics, such as virion production and diffusion, and infectivity.
In the future, these could be varied to explore the impact of different variants or different
pathogens, we hypothesized that those factors are unlikely to vary substantially across patients
in the Wolfel dataset.

In all cases, the four selected parameters were adjusted to obtain the fit as follows. We set
the T cell initial delay according to the timing of peak viral load, using a value one day (1440
minutes) before the empirical peak. Second, we set the initial infections (the number of FOI) to
obtain a matching peak viral load. Because the model produces a count of virions deep within
the lungs, and for the patients we only have sputum samples with counts of RNA copies, we do
not expect a one-to-one mapping between empirical viral load and the model virion counts. To
address this, we used a scaling factor of 0.1, chosen to minimize the number of FOI required for
matching (and hence the computational cost). This scaling factor is the same for all patients; we
match the peak scaled values by adjusting the number of FOI. As can be seen in Figure 8, there
is a linear relationship between the number of FOI and the peak size, so it is a simple matter to
adjust the FOI to match the observed peak. As can be seen in Figure 4(a), the T cell generation
rate affects the shape of the curve after the T cell response begins. Hence, we adjusted this value
to match the post-peak curve observed in the patient data. If the viral load continues to oscillate
for some period after the initial drop (patients A, B, C, E, F), then we reduce the clearance rate
from the default of 0.004 down to 0.003. This results in more “hidden” pockets of incubating
virus that evade detection and cause repeated surges in the later stages of disease progression.
Finally, there is one case (patient D), where the infection is cleared very rapidly, and in this case
we increased the clearance rate to 0.005.

Model Implementation
The SIMCoV model is implemented in UPC++ [66], which is a high performance C++ library
for parallel computation that runs on a variety of platforms, including distributed memory
supercomputers and networked clusters. Consequently, the SIMCoV application can run on
systems from laptops up to high performance supercomputers without requiring any code
changes. Because the computational cost of the simulation is substantial, only small areas can be
simulated on smaller systems with one or a few compute nodes. Simulations of significant
fractions of the human lung requires hundreds or thousands of compute nodes.

Massively Parallel Simulation

SIMCoV was designed by composing parallelizable functions to create a highly scalable
simulation framework. Running immense agent-based simulations of this type would not be
computationally feasible without the application of high-performance computing techniques
(HPC). For SIMCoV, we relied on the HPC primitives and multi-process communication
techniques provided by UPC++, a library extension to the C++ programming language with
state-of-the-art HPC capabilities. We reduced the communication and computational work load
of running large SIMCoV simulations using different approaches. To mitigate expensive
cross-process calculation, we maintain two- or three-dimensional blocks of closely spaced grid
points in contiguous single process memory. This lowers the chance that for any given update of
agents in the simulation that two processes have to share memory. To prevent unnecessary
computation costs, we maintain an active list of agents and grid points that are updated at each
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iteration of the simulation. Some grid points can be predicted to remain constant from one
iteration to the next, so there is no need to update their behavior for that step.

SIMCoV can be used to run large simulations in minutes on suitable supercomputers. For
example, we simulated an infection seeded with multiple initial FOI in 285000 x 285000 x 5
µm3 tissue, comprising over three billion epithelial cells, which is equivalent to a single slice of
tissue through the full human lung. On the NERSC Cori supercomputer, it took 15 minutes to
complete a two-week simulation on 32 nodes.

ODE Model Implementation
Our ODE implementation replicates the model in [12], which was fit to the published sputum
swab viral load data of the patients in [36]. Most parameters are similar to our SIMCoV
parameters, such as the virion clearance rate and virion production rate. The ODE parameters
were fit to the population of patients using non-linear mixed effects modeling in [12]. To
account for the variation in patients, they fit each individual patient varying cell death rate,
infectivity, and virion production rate. The model relies on target-cell limitation to fit the viral
peak for each patient, and fits were assessed using AIC. The ODE fits in Fig. 5 use the
parameters selected as best fits for each individual patient. We implemented this ODE model
using the scipy odeint Python package, the model description in [12], and the fit model
parameters for patient A in [12].
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6. Néant N, Lingas G, Le Hingrat Q, Ghosn J, Engelmann I, Lepiller Q, et al. Modeling
SARS-CoV-2 viral kinetics and association with mortality in hospitalized patients from
the French COVID cohort. Proceedings of the National Academy of Sciences.
2021;118(8).

7. Wang S, Pan Y, Wang Q, Miao H, Brown AN, Rong L. Modeling the viral dynamics of
SARS-CoV-2 infection. Mathematical biosciences. 2020;328:108438.

8. Hernandez-Vargas EA, Velasco-Hernandez JX. In-host mathematical modelling of
covid-19 in humans. Annual reviews in control. 2020;.
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