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Abstract 30 

The human semantic system stores knowledge acquired through both perception and language. 31 

To study how semantic representations in cortex integrate perceptual and linguistic information, 32 

we created semantic word embedding spaces that combine models of visual and linguistic 33 

processing. We then used these visually-grounded semantic spaces to fit voxelwise encoding 34 

models to fMRI data collected while subjects listened to hours of narrative stories. We found 35 

that cortical regions near the visual system represent concepts by combining visual and 36 

linguistic information, while regions near the language system represent concepts using mostly 37 

linguistic information. Assessing individual representations near visual cortex, we found that 38 

more concrete concepts contain more visual information, while even abstract concepts contain 39 

some amount of visual information from associated concrete concepts. Finally we found that 40 

these visual grounding effects are localized near visual cortex, suggesting that semantic 41 

representations specifically reflect the modality of adjacent perceptual systems. Our results 42 

provide a computational account of how visual and linguistic information are combined to 43 

represent concrete and abstract concepts across cortex. 44 

 45 

Keywords: fMRI, semantic, language, visual, grounding  46 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.19.444701doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444701
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tang et al. Visually grounded models of language processing 

2/34 

Introduction 47 

 48 

Humans learn about the world through both perception and language. The acquired knowledge 49 

is stored in cerebral cortex as semantic concept representations, which support a range of 50 

cognitive processes including language understanding. Many previous fMRI studies have found 51 

that concepts are represented near the perceptual systems through which they are commonly 52 

experienced (Binder and Desai, 2011; Harpaintner et al., 2020; Martin, 2016). These studies 53 

support grounded cognition theories, which hold that a concept’s semantic representation is 54 

formed through generalization or re-enactment of perceptual representations involved in 55 

learning the concept (Barsalou, 2008; Binder and Desai, 2011). Other studies have found that 56 

BOLD responses to words (Mitchell et al., 2008) and narratives (Huth et al., 2016; Wehbe et al., 57 

2014) can be predicted using distributional word embeddings, which capture word co-58 

occurrence statistics in language data. Distributional word embeddings lack explicit connections 59 

to the physical world (Bruni et al., 2014; Harnad, 1990), so their success in modeling brain 60 

responses demonstrates that semantic representations reflect word associations that can be 61 

learned from language alone. Together these findings suggest that semantic representations 62 

contain both perceptual and linguistic information (Andrews et al., 2014). However, little is 63 

known about how these different sources of information are combined to form semantic 64 

representations in each cortical region. 65 

 66 

One open question is whether different cortical regions represent concepts using different 67 

amounts of perceptual and linguistic information. Grounded cognition theories predict that 68 

representations in each semantically selective cortical region reflect how information is 69 

represented in adjacent perceptual systems (Barsalou, 2008; Binder and Desai, 2011). For 70 

instance, these theories predict that cortical regions near the visual system represent concepts 71 

using visual information. We might similarly expect cortical regions near the language system to 72 

represent concepts using information about language usage, such as distributional word co-73 

occurrence. However, there is little work directly assessing these theories by comparing 74 

semantic representations in each cortical region to computational models of perceptual and 75 

linguistic processing (Anderson et al., 2019). A second open question is whether concrete and 76 

abstract concepts are represented using different amounts of perceptual and linguistic 77 

information. Previous studies (Binder et al., 2005; Paivio, 1991) suggest that concrete 78 

concepts—which are directly experienced through perception—contain more perceptual 79 

information, but this relationship has not been directly tested using fMRI. Furthermore, the role 80 

of perceptual information in representing abstract concepts—which are not directly experienced 81 

through perception—is under debate. Traditional views hold that abstract concepts are 82 

represented solely by linguistic information (Dove, 2009; Paivio, 1991), while recent studies 83 

suggest that abstract concepts contain some amount of perceptual information (Harpaintner et 84 

al., 2018). A third open question is how the semantic system represents concepts experienced 85 

through multiple perceptual modalities. Grounded cognition theories predict that concepts are 86 

represented near each perceptual system through which they are experienced, in a format that 87 

specifically reflects that perceptual modality (Barsalou, 2008; Martin, 2016). For instance, visual 88 

features of "hammer" might be represented near visual cortex, while tactile features of 89 

"hammer" might be represented near somatosensory cortex. Alternatively, concepts could be 90 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.19.444701doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444701
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tang et al. Visually grounded models of language processing 

3/34 

represented across cortex in a format that integrates information from multiple different 91 

perceptual modalities. For instance, each cortical region selective for "hammer" might 92 

simultaneously represent its visual, tactile and auditory features. 93 

 94 

Here, we investigated these questions by constructing a computational model of how visual and 95 

linguistic information combine to form semantic representations. We first modeled visual and 96 

linguistic representations as separate word embedding spaces. Embedding spaces represent 97 

each word using a high-dimensional vector, and quantify the similarity between each pair of 98 

words using the dot product between their corresponding vectors. Since our subjects have 99 

learned about concepts through both vision and language, we next modeled each word’s 100 

semantic representation by concatenating its visual and linguistic embeddings, making the 101 

semantic similarity between each pair of words a combination of their visual and linguistic 102 

similarities. Because the relative amount of visual and linguistic information may differ across 103 

brain regions or concepts, we weighted the visual and linguistic embeddings for each word prior 104 

to concatenation. By varying the weights on the visual and linguistic embeddings, we were able 105 

to construct a spectrum of semantic spaces that can capture different possibilities for how each 106 

word’s semantic representation combines its visual and linguistic representations. 107 

 108 

We compared the different semantic embedding spaces to concept representations in each 109 

cortical region using a natural language fMRI experiment. In this experiment, BOLD fMRI 110 

responses were collected from seven human subjects as they listened to over five hours of 111 

narrative stories from The Moth Radio Hour (Figure 1A). These stories activate the semantic 112 

representations of thousands of concepts common in daily life. We then fit voxelwise encoding 113 

models that separately predict the fMRI data in each subject from the stimulus words (Huth et 114 

al., 2016; Jain and Huth, 2018; Wehbe et al., 2014). An encoding model uses regularized linear 115 

regression to estimate a set of weights for each voxel that predict how each word influences 116 

BOLD responses in that voxel. Encoding models were fit using an embedding space prior, 117 

which enforces that similar words in the embedding space should have similar encoding weights 118 

(Nunez-Elizalde et al., 2019). Since successful models of the brain should be able to generalize 119 

to new natural stimuli (Hamilton and Huth, 2018), encoding models were evaluated by predicting 120 

BOLD responses to stories that were not used for model estimation, and then computing the 121 

correlation between predicted and actual responses (Figure 1B). 122 

 123 

To quantify how much visual or linguistic information is represented in each cortical region, we 124 

fit separate voxelwise encoding models using embedding spaces that range from fully linguistic 125 

to fully visual. In voxelwise modelling, the embedding space that best reflects a voxel’s semantic 126 

representations will yield the best generalization performance. We thus operationalized the 127 

representational format of each voxel as the semantic embedding space with the best 128 

generalization performance. 129 
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130 
Figure 1. Natural language fMRI experiment. (A) Seven human subjects listened to over 5 hours of narrative stories while BOLD 131 

responses were measured using fMRI. A stimulus matrix was constructed by identifying the words spoken at each point in time in 132 

the stories. A regularized, linearized finite impulse response regression model was then estimated for each cortical voxel using a 133 

word embedding space prior. The estimated encoding model weights describe how words in the stories influence BOLD signals in 134 

each cortical voxel. The prior enforces that similar words in the embedding space should have similar encoding model weights. (B) 135 

Models were tested on stories that were not included in the model estimation procedure. Generalization performance for a test story 136 

was computed as the linear correlation between the predicted BOLD responses to the test story and the observed BOLD responses.  137 
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Results 138 

 139 

Construction of visual, linguistic, and semantic embedding spaces. 140 

 141 

In order to assess the amount of visual and linguistic information that is incorporated into 142 

semantic representations, we first needed to construct computational models of visual and 143 

linguistic processing. We did that here using separate visual and linguistic word embedding 144 

spaces, which are then combined in different ratios to create semantic embedding spaces. 145 

 146 

We modeled linguistic representations using distributional word embeddings, which assign each 147 

word a vector based on its co-occurrence statistics with a set of target words across a large 148 

corpus. Such embeddings have been shown to capture meaningful linguistic associations 149 

(Deerwester et al., 1990; Lund and Burgess, 1996), and are widely used as computational 150 

models of lexical semantics (Pennington et al., 2014). Here, we used a distributional embedding 151 

space previously shown to model BOLD responses to narrative stories (de Heer et al., 2017; 152 

Deniz et al., 2019; Huth et al., 2016). While co-occurrence statistics may implicitly capture some 153 

degree of perceptual similarity (Riordan and Jones, 2011), they do not incorporate explicit 154 

information about the physical world (Glenberg and Robertson, 2000; Harnad, 1990), making 155 

them an appropriate model of knowledge acquired through language. Words that occur in 156 

similar linguistic contexts will have similar linguistic embeddings, and will thus be considered 157 

linguistically similar. 158 

 159 

We modeled visual representations using image embeddings extracted from convolutional 160 

neural networks (CNNs). We first defined a diverse pool of visual words, which refer to entities 161 

or events that can be experienced through vision (see Methods for details). For each visual 162 

word, we sampled 100 related natural images from ImageNet (Deng et al., 2009). Recent 163 

studies (Cadieu et al., 2014; Eickenberg et al., 2017; Güçlü and van Gerven, 2015; Khaligh-164 

Razavi and Kriegeskorte, 2014; Yamins et al., 2014) have shown that primate visual processing 165 

is well-modeled by CNNs trained to identify objects in images (Chatfield et al., 2014; Krizhevsky 166 

et al., 2012; Sermanet et al., 2013; Zeiler and Fergus, 2014). We used a similar CNN (VGG16; 167 

Simonyan and Zisserman, 2015) to extract embedding vectors for each image. The visual 168 

embedding for each visual word was then obtained by averaging the extracted CNN 169 

embeddings across the 100 sampled images. Words with referents that evoke similar responses 170 

in visual cortex will have similar visual embeddings, and will thus be considered visually similar. 171 

 172 

We next estimated visual embeddings for non-visual words. While non-visual words refer to 173 

concepts that cannot be directly experienced through vision, recent studies suggest that their 174 

representations may nonetheless contain some amount of visual information (Harpaintner et al., 175 

2018). To capture this, we developed a perceptual propagation method that represents non-176 

visual words by combining the visual embeddings of linguistically associated visual words 177 

(similar to Collell et al., 2017). For each non-visual word w, we fit a linear regression θw to 178 

reconstruct its linguistic embedding as a weighted sum of the linguistic embeddings of visual 179 

words. Visual words that are linguistically associated with w will have high weights in θw. We 180 

then predicted a visual embedding for w by applying the same linear weights θw to the visual 181 
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embeddings of the visual words. Non-visual words will thus be considered visually similar if they 182 

are linguistically associated with visually similar words. For instance, the non-visual words 183 

“famous” and “lonely” are dissimilar in the linguistic embedding space but similar in the visual 184 

embedding space, as they are respectively associated with the visually similar words “musician” 185 

and “friend”. Figure 2A summarizes the process of creating visual and linguistic embedding 186 

spaces. 187 

 188 

Before using the visual and linguistic embedding spaces to model semantic representations in 189 

the brain, we first tested whether they capture different notions of similarity. We did this by 190 

defining semantic categories consisting of people, clothing, and place words and then 191 

identifying qualitative differences in how these categories are represented across embedding 192 

spaces (Figure 2B). We visualized each embedding space by using principal components 193 

analysis (PCA) to project the embedding of each visual word onto two dimensions. PCA projects 194 

words with similar embeddings to nearby points in 2D space, and those with very different 195 

embeddings to distant points. First, we found that both embedding spaces contain distinct 196 

people, clothing, and place clusters, reflecting previous findings that visual and linguistic 197 

embedding spaces structure concepts into similar categories (Riordan and Jones, 2011). 198 

However, we found that relationships within each category differed between the visual and 199 

linguistic embedding spaces. For instance, people words (such as “doctor”, “athlete”, and 200 

“friend”) are close together in the visual space, reflecting their shared visual features, and far 201 

apart in the linguistic space, reflecting their diverse linguistic contexts. In contrast, clothing 202 

words (such as “jacket”, “shoe”, and “hat”) are far apart in the visual embedding space, 203 

reflecting their diverse visual features, and close together in the linguistic embedding space, 204 

reflecting their shared linguistic contexts. This qualitative analysis suggests that the visual and 205 

linguistic embedding spaces structure concepts into similar high-level categories, but capture 206 

fine-grained notions of visual and linguistic similarity within each category. 207 

 208 

While the previous analysis shows that visual and linguistic embedding spaces differ within 209 

visual categories like people and clothing, it is unclear whether they also differ for more abstract 210 

words. Our perceptual propagation method predicts that non-visual words (which tend to be 211 

more abstract) acquire visual information through associations with visual words. However, for 212 

highly abstract words that are not strongly associated with any visual words, the estimated 213 

visual embeddings may not contain any meaningful visual information. In that case, we might 214 

expect no difference between the visual and linguistic embedding spaces. To test this 215 

possibility, we quantified the difference between visual and linguistic model representations for 216 

each individual word. We did this by constructing visual and linguistic similarity vectors for each 217 

word that contain its visual and linguistic similarity with every other word. We then computed a 218 

modality alignment score for each word as the linear correlation between its visual and linguistic 219 

similarity vectors. We plotted each word’s modality alignment score against a concreteness 220 

score derived from a separate dataset of behavioral judgments about word concreteness 221 

(Brysbaert et al., 2014; see Methods). We found that modality alignment scores are 222 

anticorrelated with concreteness scores (r = -0.26), suggesting that the visual and linguistic 223 

embedding spaces differ more for concrete words than for abstract words. Nonetheless, we 224 

found that the visual and linguistic embedding spaces differ to some degree even for highly 225 
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abstract words, suggesting that the visual embedding space represents abstract words using 226 

some visual information that is absent from the linguistic embedding space (Figure 2C). 227 

 228 

Finally, we combined the visual and linguistic embedding spaces into semantic embedding 229 

spaces to model how concepts are represented in the brain’s semantic system. Since our 230 

subjects have learned about the world through both vision and language, we expect each 231 

word’s semantic representation to combine the two information sources. Semantic embedding 232 

spaces formalize this hypothesis by representing each word as a concatenation of its visual and 233 

linguistic embeddings. Since different words may contain different amounts of visual and 234 

linguistic information, each word w is assigned a modality weight αw such that its visual 235 

embedding is weighted by αw and its linguistic embedding is weighted by (1 - αw) prior to 236 

concatenation. The semantic similarity between each pair of words is thus modeled as a 237 

combination of their visual and linguistic similarities, weighted by the modality weights of both 238 

words (see Methods). Under this model, each semantic embedding space is generated by a 239 

vector α of modality weights across the words, and captures a different possibility for how visual 240 

and linguistic information are combined to represent each word. For example, setting α = 1 for 241 

all words would capture the hypothesis that all concepts are represented in a visual format, 242 

while setting α = 1 for concrete words and α = 0 for abstract words would capture the hypothesis 243 

that only concrete concepts are represented in a visual format. 244 

 245 

The space of α vectors—and thus the number of possible semantic embedding spaces—is 246 

infinitely large. To constrain this space, we only considered modality weights that are 247 

monotonically increasing functions αconcrete (see Methods) of concreteness score c. This 248 

hypothesis reflects previous findings that more concrete words appear to contain more 249 

perceptual information (Harpaintner et al. 2018, Anderson et al. 2019). The αconcrete model has a 250 

single parameter b that biases the degree to which each word is represented by visual 251 

information (Figure 2D). When b is small, αconcrete(c) approaches 0 for all values of c, causing all 252 

words to be represented solely by their linguistic embeddings. As b increases, more concrete 253 

words are represented by more visual information. When b is large, αconcrete(c) approaches 1 for 254 

all values of c, causing all words to be represented solely by their visual embeddings. We tested 255 

a range of b values (-10, -1, 0, 1, 10) that induce semantic embedding spaces ranging from fully 256 

linguistic (b = -10) to fully visual (b = 10). We considered all embedding spaces containing some 257 

amount of visual information (b = -1, 0, 1, 10) to be visually grounded. This semantic embedding 258 

spectrum captures a diverse set of hypotheses for how visual and linguistic information are 259 

combined in each word’s semantic representation (Figure 2E). 260 
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261 
Figure 2. Construction of visual, linguistic, and semantic embedding spaces. (A) Linguistic embedding vectors were 262 

constructed from distributional co-occurrence statistics in a large external corpus. Visual embedding vectors for visual words were 263 

constructed by sampling 100 images from ImageNet for each word and averaging embeddings extracted from a VGG16 264 

convolutional neural network. Visual embedding vectors for non-visual words were constructed using a perceptual propagation 265 

method θ that represents each non-visual word as a linear combination of the visual embeddings of associated visual words (see 266 

Methods for details). (B) The visual and linguistic embedding spaces were visualized by projecting the embedding of each visual 267 

word onto the first two principal components of the embedding space. The visual and linguistic embedding spaces structure words 268 

into similar high-level people, clothing, and place categories. However, fine-grained similarities within each category differ across 269 

embedding spaces. Words with visually similar referents (e.g. people) are more similar in the visual space, while words that occur in 270 

similar linguistic contexts (e.g. clothes) are more similar in the linguistic space. (C) For each word, a modality alignment score—271 

computed as the linear correlation between its visual similarities and linguistic similarities with other words—was plotted against a 272 

concreteness score derived from behavioral judgments. Visual words were colored red, and non-visual words blue. Modality 273 

alignment scores are weakly anticorrelated with concreteness scores, suggesting that visual and linguistic embedding spaces differ 274 

more for concrete words than for abstract words. Nonetheless, visual and linguistic similarity differ to some degree even for highly 275 

abstract words, demonstrating that the visual embedding space represents abstract words using visual information absent from the 276 

linguistic embedding space. (D) Semantic embedding spaces were constructed by concatenating visual and linguistic embeddings 277 

for each word. Prior to concatenation, the visual and linguistic embeddings were weighted by a function αconcrete of each word’s 278 

concreteness score, and the total amount of visual information for each word was controlled by a parameter b. Varying b creates a 279 

semantic embedding spectrum that interpolates between the linguistic embedding space and the visual embedding space. 280 

Intermediate spaces in the semantic embedding spectrum represent each word as a combination of visual and linguistic information. 281 

 282 

Representational format of cortical regions near visual and language systems. 283 

 284 

We first compared semantic embedding spaces to characterize the representational format of 285 

each semantically selective cortical region. Grounded cognition theories (Barsalou, 2008; Binder 286 

and Desai, 2011) predict that cortical regions near the visual system respond similarly to visually 287 

similar words, and should thus be best modeled by visually grounded embedding spaces. 288 

Conversely, we predict that cortical regions near the language system respond similarly to 289 

linguistically similar words, and should thus be best modeled by the fully linguistic embedding 290 

space. Previous studies have tested whether cortical regions are better modeled by an 291 
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experiential embedding space, a linguistic embedding space, or a multimodal embedding space 292 

that combines the two information sources (Anderson et al., 2019). However, this experiential 293 

embedding space reflects coarse-grained behavioral ratings of whether concepts are 294 

experienced through similar perceptual modalities (such as whether each concept “has a 295 

characteristic or defining color”), rather than fine-grained similarity within a specific perceptual 296 

modality. Furthermore, multimodal embeddings were modeled in (Anderson et al., 2019) as 297 

unweighted concatenations of perceptual and linguistic embeddings, which implicitly assumes 298 

that each concept is represented by the same amount of perceptual and linguistic information. 299 

Our semantic embedding spectrum differs from these previous models in two important ways: 300 

CNN embeddings explicitly reflect fine-grained visual similarity (Eickenberg et al., 2017), and 301 

different semantic embedding spaces model different hypotheses for how each concept’s 302 

semantic representation combines visual and linguistic information. 303 

 304 

For each subject, we fit voxelwise encoding models using each space in the semantic 305 

embedding spectrum, and then tested the generalization performance of each model on held-306 

out data. We identified semantic system voxels that were significantly predicted under any 307 

space in the embedding spectrum (q(FDR) < 0.05, blockwise permutation test; see Methods). 308 

Our encoding models significantly predicted up to 18 percent of cortical voxels in each subject. 309 

These semantic system voxels were located in broad regions of prefrontal cortex, temporal 310 

cortex, and parietal cortex (see Figure S1 for encoding model performance across cortex) that 311 

align with semantically selective regions reported in previous studies (Binder et al., 2009; Huth 312 

et al., 2016). 313 

 314 

To compare the different semantic spaces, we aggregated model performance across semantic 315 

system voxels near known vision and language regions of interest (ROIs), which were identified 316 

in each subject using separate localizer data (see Methods for details). For vision ROIs we 317 

defined the fusiform face area (FFA), parahippocampal place area (PPA), occipital place area 318 

(OPA), retrosplenial cortex (RSC), and extrastriate body area (EBA). For language ROIs we 319 

defined the auditory cortex (AC), Broca’s area, and superior premotor ventral speech area 320 

(sPMv). The performance of each embedding space around each ROI was first summarized by 321 

averaging encoding model generalization performance across all semantic system voxels within 322 

15mm of the ROI along the cortical surface. We then defined the visual grounding score for 323 

each visually grounded space around an ROI as the difference between its encoding 324 

performance and that of the fully linguistic space (Figure 3). If any visually grounded spaces 325 

have a positive visual grounding score around an ROI, it would suggest that semantically 326 

selective cortical regions near the ROI tend to represent concepts using some amount of visual 327 

information. If all visually grounded spaces have a negative visual grounding score, it would 328 

suggest that semantically selective cortical regions near the ROI tend to represent concepts 329 

using mostly linguistic information. 330 

 331 

We used a linear mixed-effects model to compare visual grounding score for each visually 332 

grounded space (4 levels) across ROI type (2 levels: vision, language) with ROI identity as a 333 

random effect nested in subject identity. This test showed that visual grounding score varies 334 

significantly across embedding spaces (Wald χ2 test, p < 10-4) and ROI type (p < 10-4). There 335 
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was also a significant interaction between embedding space and ROI type (p = 0.012), 336 

demonstrating that semantic embedding spaces have different patterns of generalization 337 

performance across vision and language ROIs. A post hoc test comparing the visual grounding 338 

score of each visually grounded space against the null hypothesis of zero found that multiple 339 

visually grounded spaces (b = -1, 0) significantly outperformed the fully linguistic space around 340 

vision ROIs (q(FDR) < 0.05), while no visually grounded spaces significantly outperformed the 341 

fully linguistic space around language ROIs. A post hoc test comparing visual grounding score 342 

around vision and language ROIs found that every visually grounded space had a significantly 343 

higher visual grounding score around vision ROIs than around language ROIs (q(FDR) < 0.05). 344 

 345 

Figure 3 shows these differences between the semantic embedding spaces around visual and 346 

language ROIs. The small size of these effects is likely a consequence of our encoding 347 

framework and the large amount of fMRI data (5 hours per participant) that was used. In a 348 

regularized encoding model, different embedding spaces impose different priors on the model 349 

weights (Nunez-Elizalde et al., 2019), but as the amount of training data increases, the model 350 

can learn accurate weights from the data alone. Comparing embedding spaces by fitting 351 

encoding models on large fMRI datasets thus reveals small but significant differences in 352 

performance. 353 

 354 

Our results provide fMRI evidence that cortical regions near the visual system represent 355 

concepts using both visual and linguistic information, while cortical regions near the language 356 

system represent concepts using mostly linguistic information (Barsalou, 2008; Binder and 357 

Desai, 2011). These results are markedly different from previous fMRI studies, which found that 358 

multimodal embedding spaces outperform linguistic embedding spaces in superior temporal and 359 

inferior frontal regions, but not in cortical regions near the visual system (Anderson et al., 2019). 360 

The success of our visually grounded embedding spaces in these latter regions suggests that 361 

semantic representations near the visual system specifically reflect fine-grained visual 362 

information, which is captured in our CNN embeddings but not in previous experiential 363 

embeddings. 364 

365 
Figure 3. Representational format of cortical regions near visual and language systems. Encoding models were fit using each 366 
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space in a semantic embedding spectrum ranging from fully linguistic to fully visual. Vision- and language-related functional regions 367 

of interest (ROIs) were identified for each subject using separate localizer data. Embedding space performance around an ROI was 368 

quantified by averaging encoding model generalization performance (linear correlation r) across all significantly-predicted voxels 369 

within 15 mm of the ROI along the cortical surface. For each visually grounded embedding space, visual grounding score—defined 370 

as the performance improvement over the fully linguistic embedding space—was averaged across subjects and plotted for each ROI 371 

and ROI type (vision and language). Ticks denote visual grounding scores for individual subjects. Error bars indicate the standard 372 

error of the mean across subjects (n = 7). We used a linear mixed-effects model to compare visual grounding score around vision 373 

and language ROIs for each visually grounded embedding space. Significance was tested for each ROI type (vision, language); red 374 

asterisks indicate that a visually grounded space performs significantly better than the fully linguistic space, and blue asterisks 375 

indicate that a visually grounded space performs significantly worse (*, q(FDR) < 0.05; **, q(FDR) < 10−2; ***, q(FDR) < 10−3, ****, 376 

q(FDR) < 10-4). Brackets signify that the visual grounding score of each visually grounded space is significantly higher around vision 377 

ROIs than around language ROIs (q(FDR) < 0.05). These results show that visually grounded embedding spaces significantly 378 

outperform the fully linguistic embedding space near vision ROIs, but not language ROIs.  379 

 380 

Visual grounding of concrete and abstract concepts near visual cortex. 381 

 382 

The previous analyses show that concept representations in regions near visual cortex are 383 

better modeled by visually grounded embedding spaces that combine visual and linguistic 384 

information (b = -1, 0, 1) than by embedding spaces that solely reflect linguistic (b = -10) or 385 

visual (b = 10) information. In these intermediate visually grounded embedding spaces, the 386 

relative weighting of each word’s visual and linguistic embeddings was selected to be a function 387 

αconcrete of the word’s concreteness score. The αconcrete model captures two major hypotheses for 388 

how semantic representations combine visual and linguistic information. First, αconcrete is a 389 

monotonically increasing function of concreteness. This models the hypothesis that more 390 

concrete concepts are represented by more visual information while more abstract concepts are 391 

represented by more linguistic information (Paivio, 1991). Second, the visually grounded 392 

parameterizations of αconcrete (b = -1, 0, 1, 10) assign a positive weight to every word, meaning 393 

that even abstract words are represented to some extent by their estimated visual embeddings. 394 

This models the hypothesis that abstract concepts are represented using some amount of 395 

perceptual information from linguistically associated concrete concepts. In the following 396 

analyses we focused on semantically selective regions near visual cortex, and directly tested 397 

these two hypotheses by comparing the αconcrete model against alternative modality weight 398 

models. 399 

 400 

To quantify how well a modality weight model explains semantic representations near visual 401 

cortex, we fit an encoding model using the semantic embedding space that it generates. We 402 

then averaged encoding model performance (linear correlation r) across semantic system 403 

voxels within 15mm of vision ROIs. Before comparing against alternative modality weight 404 

models, we selected the best visually grounded αconcrete model across the tested voxels (b = -1) 405 

using separate validation data (see Methods). 406 

 407 

Previous theories have proposed that concrete concept representations contain more 408 

perceptual information, while abstract concept representations contain more linguistic 409 

information (Paivio, 1991). However, this hypothesis has not been directly tested at the level of 410 

individual words using fMRI. Here, we conducted a permutation test to quantify whether the 411 

concreteness of each concept explains the amount of visual and linguistic information in that 412 

concept’s representation. We conducted 1,000 trials in which we permuted concreteness scores 413 

across words before computing modality weights under the αconcrete model. Each trial t produced 414 
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a vector of modality weights αt corresponding to a different permutation of the concreteness-415 

derived modality weights αconcrete (Figure 4A). We then evaluated encoding model performance 416 

under the semantic embedding space generated by αt. If the amount of visual and linguistic 417 

information in each concept representation does not reflect concreteness, then model 418 

performance using the true concreteness scores should not be substantially different from 419 

performance using randomly permuted concreteness scores. However, if the amount of visual 420 

and linguistic information in each concept representation can be explained by concreteness, 421 

then model performance using the true concreteness scores should be much higher than 422 

performance using randomly permuted concreteness scores. 423 

 424 

We found that the encoding performance of the αconcrete model was significantly higher than the 425 

permutation distribution of encoding performance when combined across subjects (q(FDR) < 10-
426 

4), and individually for 5 of 7 subjects (q(FDR) < 10-2) (Figure 4B). These results suggest that 427 

the amount of visual and linguistic information in each concept representation is significantly 428 

related to concreteness; more concrete concepts contain more visual information, while more 429 

abstract concepts contain more linguistic information. 430 

 431 

We next addressed the question of whether abstract concept representations contain any 432 

perceptual information. Traditional views propose a binary in which concrete concepts are 433 

represented by perceptual and linguistic information, while abstract concepts are represented 434 

solely by linguistic information (Dove, 2009; Paivio, 1991). Conversely, recent behavioral 435 

studies suggest that many abstract concepts contain some amount of perceptual information 436 

(Borghi et al., 2017; Harpaintner et al., 2020, 2018). Extending these recent findings, our 437 

perceptual propagation method estimates visual embeddings of non-visual words by combining 438 

the visual embeddings of linguistically associated visual words. The visually grounded αconcrete 439 

models (b = -1, 0, 1, 10) then assign each abstract word a positive weight on its estimated 440 

visual embedding, modeling the hypothesis that abstract concept representations contain visual 441 

information from linguistically associated visual concepts. Here, we directly tested if abstract 442 

concepts are better modeled by including some amount of this associated visual information, or 443 

solely by linguistic information. 444 

 445 

We operationalized the traditional binary view of abstractness by defining abstractness cutoffs 446 

on concreteness scores. For each abstractness cutoff, words with concreteness scores below 447 

the cutoff value were represented solely by their linguistic embeddings, while words with 448 

concreteness scores above the cutoff were represented by a weighted concatenation of visual 449 

and linguistic embeddings. Formally, this binary view of abstractness is captured by a modality 450 

weight model αbinary with an abstractness cutoff parameter a (Figure 4C). αbinary maps 451 

concreteness scores c below the cutoff to 0 and maps concreteness scores above the cutoff to 452 

αconcrete(c) (see Methods). If setting an abstractness cutoff increases performance relative to 453 

αconcrete, it would suggest that words with concreteness scores below the cutoff tend to be 454 

represented solely by linguistic information. However, if setting an abstractness cutoff 455 

decreases performance relative to αconcrete, it would suggest that words with concreteness scores 456 

below the cutoff tend to be represented by a combination of visual and linguistic information. 457 

 458 
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We tested the αbinary model for a range of abstractness cutoffs (Figure 4D). We used a linear 459 

mixed-effects model to compare the performance difference between each αbinary model (11 460 

levels) and the αconcrete model with subject identity as a random effect. This test showed that 461 

performance difference varies significantly across αbinary models (Wald χ2 test, p < 10-4). A post 462 

hoc test comparing the performance between each αbinary model and the αconcrete model found 463 

that αbinary models with abstractness cutoffs of 0.6, 0.8, 0.9, and 1.0 performed significantly 464 

worse than the αconcrete model (q(FDR) < 0.05). These results suggest that many abstract 465 

concepts (c < 0.6) are represented in a format that includes perceptual information from 466 

linguistically associated concrete concepts. 467 

468 
Figure 4. Visual grounding of concrete and abstract concepts near visual cortex. Encoding models fit under a visually 469 

grounded αconcrete modality weight model were compared to encoding models fit under alternative modality weight models. 470 

Performance for each encoding model was quantified by averaging generalization performance (linear correlation r) across all 471 

significantly-predicted voxels within 15 mm of vision ROIs along the cortical surface. (A) A permutation test was performed to 472 

quantify whether concreteness explains the amount of visual and linguistic information in each concept representation. In each trial, 473 

concreteness scores were permuted across words before modality weights were computed under the αconcrete model. (B) The 474 

difference between the permutation distribution of encoding performance and the observed encoding performance of the αconcrete 475 

model was first plotted for each subject, and then aggregated across the seven subjects. Boxes indicate the interquartile range of 476 

the differences; whiskers indicate the 2.5th and 97.5th percentiles. If the true amount of visual information in each concept 477 

representation increases with concreteness, the permutation distribution should be lower than the observed test statistic. If the true 478 

amount of visual information in each concept representation is not related to concreteness, the permutation distribution should not, 479 

on average, differ from the observed test statistic. Red asterisks signify that the permutation distribution is significantly lower than 480 

the αconcrete model performance for five of seven individual subjects, and combined across subjects. (*, q(FDR) < 0.05; **, q(FDR) < 481 

10−2; ***, q(FDR) < 10−3, ****, q(FDR) < 10-4). (C) The αbinary model modifies the αconcrete model to assign a modality weight of 0 to all 482 

words with concreteness scores below an abstractness cutoff. Abstractness cutoffs operationalize the hypothesis that certain 483 

abstract concepts are represented solely by linguistic information. (D) Model performance under the αbinary model for different 484 

abstractness cutoffs was compared to model performance under the αconcrete model. Error bars indicate the standard error of the 485 

mean across (n = 7) subjects. Red asterisks signify that an αbinary model performed significantly worse than the αconcrete model (*, 486 
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q(FDR) < 0.05; **, q(FDR) < 10−2; ***, q(FDR) < 10−3, ****, q(FDR) < 10-4). These results suggest that many abstract concept 487 

representations (c < 0.6) near visual cortex contain some amount of visual information. 488 

 489 

Representational format of concrete concepts across cortex. 490 

 491 

Our results suggest that cortical regions near the visual system represent concepts in a format 492 

that explicitly reflects visual information (Figure 4), supporting theories that the semantic 493 

representations of concrete concepts are formed through reuse of representations in adjacent 494 

perceptual systems (Barsalou, 2008; Binder and Desai, 2011). However, concrete concepts 495 

tend to be experienced through multiple perceptual modalities, and not solely vision (Lynott et 496 

al., 2020). Thus it remains unclear how their semantic representations might combine 497 

information from different perceptual systems. Grounded cognition theories predict that concrete 498 

concepts are represented near each perceptual system through which they are experienced 499 

using information from that particular perceptual modality (Barsalou, 2008; Martin, 2016). 500 

Alternatively, concrete concepts could be represented across cortex in a common multimodal 501 

format that combines representations from multiple perceptual modalities. For instance, (Amedi 502 

et al., 2001) found that certain regions in lateral occipital cortex are activated when subjects 503 

either view or hold an object, suggesting that these regions contain multimodal representations 504 

of object shape.  505 

 506 

Our results thus far are consistent with both possibilities. Voxels near visual cortex may be best 507 

modeled by visually grounded embedding spaces because their representations specifically 508 

reflect visual information. However, it may also be possible that all concrete concepts are 509 

represented in a multimodal format that includes some visual information as well as information 510 

from other perceptual systems. In this case, voxels near visual cortex may be best modeled by 511 

visually grounded embedding spaces simply because they represent concrete concepts. To 512 

differentiate these possibilities, we quantified the concrete selectivity and visual grounding of 513 

each voxel in the semantic system. If concrete concepts are represented near each perceptual 514 

system in a format that specifically reflects the corresponding modality, we would expect visually 515 

grounded embedding spaces to only perform well near visual cortex. However, if concrete 516 

concepts are represented in a common multimodal format across cortex, we would expect 517 

visually grounded embedding spaces to perform well in all cortical regions that represent 518 

concrete concepts. 519 

 520 

We defined a concrete selectivity score for each voxel by projecting its encoding model weights 521 

onto the vector of concreteness scores for each word. Voxels which tend to respond more to 522 

concrete words than abstract words will have positive concrete selectivity scores, while voxels 523 

which tend to respond more to abstract words than concrete words will have negative concrete 524 

selectivity scores. We defined a visual grounding score for each voxel as the difference in 525 

encoding model performance between the best performing visually grounded embedding space 526 

across cortex (b = -1; see Methods) and the fully linguistic embedding space. Voxels that 527 

represent concepts using some amount of visual information will have positive visual grounding 528 

scores, while voxels which represent concepts using mostly linguistic information will have 529 

negative visual grounding scores. 530 

 531 
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We projected the concrete selectivity and visual grounding scores for each semantic system 532 

voxel onto a cortical flatmap. Each voxel was assigned a brightness based on its concrete 533 

selectivity score and a color based on its visual grounding score. In this visualization, concrete 534 

selective voxels appear red if they are best modeled by the visually grounded space, and blue if 535 

they are best modeled by the linguistic space. Abstract selective voxels appear black. The 536 

resulting map (Figure 5A; see Figure S1 for other subjects) shows that voxels near perceptual 537 

systems (specifically visual cortex, somatosensory cortex, and auditory cortex) tend to be 538 

concrete selective, while voxels farther away in regions like temporoparietal junction (TPJ) tend 539 

to be abstract selective. These results replicate previous fMRI studies (Martin, 2016; Saxe and 540 

Kanwisher, 2003) mapping concrete and abstract concept representations across cortex. 541 

 542 

Consistent with our previous results, we found that concrete selective voxels near visual cortex 543 

tend to be best modeled by the visually grounded space. Conversely, we found that concrete 544 

selective voxels in inferior parietal cortex and intraparietal sulcus (IPS) tend to be better 545 

modeled by the linguistic space than the visually grounded space. Based on their proximity to 546 

functional regions involved in somatosensory and motor processing, we predict that these 547 

parietal voxels represent concrete concepts using tactile features such as affordances 548 

(Barsalou, 2008; Binder and Desai, 2011), which may happen to be more aligned with the 549 

linguistic embedding space than the visual embedding space. The linguistic space also 550 

outperformed the visually grounded space in many inferior temporal voxels. While these regions 551 

are located near visual cortex, previous studies have suggested that they contain multimodal 552 

representations of object shape that combine visual and tactile information (Amedi et al., 2001). 553 

Notably, this visualization shows that concrete concepts are not invariably represented across 554 

cortex in a format that reflects visual information. 555 

 556 

To quantify these results, we partitioned the set of semantic voxels with positive concrete 557 

selectivity scores into those located within 15mm of vision ROIs, and those located in other 558 

cortical regions. For each subset of concrete selective voxels, we computed the fraction with a 559 

positive visual grounding score (Figure 5B). Across subjects, 68 percent of concrete selective 560 

voxels near visual cortex were visually grounded, while only 49 percent of concrete selective 561 

voxels in other cortical regions were visually grounded. The fraction of concrete selective voxels 562 

that are visually grounded was significantly higher near visual cortex than in other cortical 563 

regions (p < 10-3, paired t-test; see Methods). 564 

 565 

Together these results are consistent with the prediction that concrete concepts are represented 566 

near each perceptual system in a format that specifically reflects the corresponding modality. In 567 

particular, voxels near somatosensory and motor systems represent concrete concepts in a 568 

format that is not aligned with visual similarity, showing that concrete concepts are not invariably 569 

represented by visual information across cortex. However, because we do not explicitly model 570 

representations from non-visual perceptual systems, our results neither support nor challenge 571 

the existence of multimodal representations. While we have shown that certain concrete 572 

concept representations do not reflect visual information, it is possible that many voxels 573 

considered visually grounded in this study—particularly those farther from visual cortex (Binder 574 

and Desai, 2011)—may also reflect representations from other perceptual systems.  575 
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576 
Figure 5. Representational format of concrete concepts across cortex. A concrete selectivity score was computed for each 577 

voxel as the projection of its encoding weights onto the vector of concreteness scores for each word. A visual grounding score was 578 

computed for each voxel as the difference in model performance between a visually grounded encoding model (b = -1) and a fully 579 

linguistic encoding model. (A) A cortical flatmap showing the concrete selectivity score and visual grounding score for each voxel in 580 

subject UT-S-02. Each semantic system voxel was assigned a brightness based on its concrete selectivity score and a color based 581 

on its visual grounding score. Concrete selective voxels were colored red if they are better modeled by the visually grounded space 582 

and blue if they are better modeled by the linguistic space. Abstract selective voxels were colored black. See Figure S2 for similar 583 

maps for other subjects and visually grounded embedding spaces. Concrete selective voxels near the visual system are better 584 

modeled by the visually grounded space, while concrete selective voxels near somatosensory and motor systems are better 585 

modeled by the linguistic space. (B) The fraction of concrete selective voxels that are visually grounded was plotted near visual 586 

cortex, and in other cortical regions. For each subject, the fraction of concrete selective voxels that are visually grounded is higher 587 

near visual cortex than in other cortical regions.   588 

 589 

Discussion 590 

 591 

Most people learn about the world through both vision and language. This study characterized 592 

how these two sources of information are combined in the semantic system by modeling cortical 593 

concept representations evoked by narrative stories. We first operationalized visual and 594 

linguistic information as different embedding spaces, and then created a spectrum of semantic 595 

embedding spaces to model different possibilities for how visual and linguistic information are 596 

combined. Comparing encoding model performance between different semantic embedding 597 

spaces, we found that cortical regions near the visual system represent concepts using some 598 

amount of visual information, while cortical regions near the language system represent 599 

concepts using mostly linguistic information. Focusing on regions near visual cortex, we next 600 

demonstrated that most concepts are best modeled by a combination of visual and linguistic 601 

information, with more concrete concepts containing more visual information. Notably, however, 602 

we found that even many abstract concepts contain some amount of visual information from 603 

linguistically associated concrete concepts. Finally, we found that the visual grounding of 604 

concrete concepts—which tend to be experienced through multiple perceptual modalities—is 605 

localized near visual cortex, suggesting that semantic representations near each perceptual 606 

system specifically reflect how information is represented in the corresponding modality. 607 

 608 

To facilitate future work in this area, we are sharing the semantic embedding spectrum and 609 

code used to generate it (https://github.com/jerryptang/grounded-embedding-spaces). Further, 610 
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we plan to shortly release the entire fMRI dataset that was used in this study, which we hope 611 

will enable many future experiments since responses to natural language stimuli are highly 612 

reusable for asking many different scientific questions. 613 

 614 

While we found consistent and statistically significant differences between semantic encoding 615 

models, these differences are numerically small. This is likely a consequence of the regression 616 

approach used to estimate the encoding models. In a regularized, ridge regression-based 617 

encoding model, weights are estimated to maximize the likelihood of the brain responses given 618 

the stimulus, under a prior that similar words in the embedding space should have similar 619 

weights (Nunez-Elizalde et al., 2019). However, as the amount of training data increases, the 620 

model can learn accurate weights from the data alone, decreasing the relative impact of the 621 

embedding space prior. Consequently, while our large fMRI dataset increases our confidence in 622 

the differences between embedding spaces, it also leads these differences to be numerically 623 

small. 624 

 625 

Another potential issue is that the observed effects may not generalize beyond the narrative 626 

stories used to train and evaluate our encoding models. This issue of generalizability affects all 627 

fMRI experiments (Westfall et al., 2016). However, our study mitigates this issue to a large 628 

degree by using a very large set of natural language stimuli (5.37 hours or 55,144 total words) 629 

that span a broad space of semantic concepts, and an encoding framework in which we 630 

explicitly evaluate generalization performance of our models on multiple test stories. While 631 

issues of generalization can never be completely eliminated, our approach reduces this problem 632 

greatly compared to standard approaches in the field. 633 

 634 

Our analyses are also bounded by our computational models of visual and linguistic 635 

representations. While our exploratory analyses (Figure 2) show that the visual and linguistic 636 

embedding spaces capture different notions of similarity, the embedding spaces are inherently 637 

imperfect models of visual and linguistic processing. Consequently, our results may be 638 

confounded by biases in the embedding spaces. For instance, we identified many voxels that 639 

are best modeled by semantic embedding spaces that solely contain linguistic information and 640 

concluded that these voxels represent concepts in a format that reflects linguistic 641 

representations (Figure 3) or representations from non-visual perceptual systems (Figure 5). 642 

However, we may also observe these results if the voxels contain visually grounded 643 

representations of concepts that are poorly modeled by the visual embedding space. This issue 644 

affects all model comparison experiments (Anderson et al., 2019). Our study attempts to 645 

mitigate this issue by using state-of-the-art computational models of visual and linguistic 646 

information. The analyses introduced in this study are applicable to all models that can be 647 

expressed as word embedding spaces, and can thus be used to test future models of visual and 648 

linguistic processing. 649 

 650 

Finally, this study modeled semantic representations as combinations of visual and linguistic 651 

representations. However, there are many other sources through which humans acquire 652 

conceptual knowledge, such as somatosensation and emotion. We expect that some cortical 653 

regions that appear to reflect visual or linguistic representations may actually be best aligned 654 
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with concept representations in these other modalities (Figure 5). Furthermore, other cortical 655 

regions may contain multimodal representations that combine information from multiple 656 

perceptual modalities (Binder and Desai, 2011). An important direction for future work is 657 

developing computational models for these other sources of information and using them to 658 

create increasingly detailed models of the semantic system.  659 

 660 

Methods 661 

 662 

MRI Data Collection 663 

  664 

MRI data were collected on a 3T Siemens Skyra scanner at the UT Austin Biomedical Imaging 665 

Center using a 64-channel Siemens volume coil. Functional scans were collected using a 666 

gradient echo EPI sequence with repetition time (TR) = 2.00 s, echo time (TE) = 30.8 ms, flip 667 

angle = 71°, multi-band factor (simultaneous multi-slice) = 2, voxel size = 2.6mm x 2.6mm x 668 

2.6mm (slice thickness = 2.6mm), matrix size = (84, 84), and field of view = 220 mm. 669 

  670 

Anatomical data for all subjects except UT-S-02 were collected using a T1-weighted multi-echo 671 

MP-RAGE sequence on the same 3T scanner with voxel size = 1mm x 1mm x 1mm following 672 

the Freesurfer morphometry protocol. Anatomical data for subject UT-S-02 were collected on a 673 

3T Siemens TIM Trio scanner at the UC Berkeley Brain Imaging Center using a 32-channel 674 

Siemens volume coil using the same sequence. 675 

  676 

Subjects 677 

  678 

Data were collected from three female and four male human subjects: UT-S-01 (female, age 679 

24), UT-S-02 (author A.G.H., male, age 34), UT-S-03 (male, age 22), UT-S-05 (female, age 23), 680 

UT-S-06 (author A.L., female, age 23), UT-S-07 (male, age 25), and UT-S-08 (male, age 24). All 681 

subjects were healthy and had normal hearing, and normal or corrected-to-normal vision. The 682 

experimental protocol was approved by the Institutional Review Board at the University of Texas 683 

at Austin. Written informed consent was obtained from all subjects. To stabilize head motion 684 

during scanning sessions participants wore a personalized head case that precisely fit the 685 

shape of each participant's head (https://caseforge.co/). 686 

  687 

Natural Language Stimuli 688 

  689 

The model estimation and evaluation data set consisted of 25 10-15 min stories taken from The 690 

Moth Radio Hour. In each story, a single speaker tells an autobiographical story without reading 691 

from a prepared speech. Each story was played during one scan with a buffer of 10 seconds of 692 

silence before and after the story. Data collection was broken up into 6 different scanning 693 

sessions, with the first session consisting of the anatomical scan and localizers, and each 694 

subsequent session consisting of 5 or 6 stories. A separate repeated test data set consisted of 695 

one 10 min story, also taken from The Moth Radio Hour. This story was played five times for 696 

each subject (once during each story scanning session), and the five sets of responses were 697 

averaged. 698 
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  699 

Stories were played over Sensimetrics S14 in-ear piezoelectric headphones. The audio for each 700 

story was filtered to correct for frequency response and phase errors induced by the 701 

headphones using calibration data provided by Sensimetrics and custom python code 702 

(https://github.com/alexhuth/sensimetrics_filter). All stimuli were played at 44.1 kHz using the 703 

pygame library in Python. 704 

  705 

fMRI Data Preprocessing 706 

  707 

All functional data were motion corrected using the FMRIB Linear Image Registration Tool 708 

(FLIRT) from FSL 5.0. FLIRT was used to align all data to a template that was made from the 709 

average of all functional runs in the first story session for each subject. These automatic 710 

alignments were manually checked for accuracy. Low frequency voxel response drift was 711 

identified using a 2nd order Savitzky-Golay filter with a 120 second window and then subtracted 712 

from the signal. To avoid onset artifacts and poor detrending performance near each end of the 713 

scan, responses were trimmed by removing 20 seconds (10 volumes) at the beginning and end 714 

of each scan, which removed the 10-second silent period and the first and last 10 seconds of 715 

each story. The mean response for each voxel was subtracted and the remaining response was 716 

scaled to have unit variance. 717 

  718 

Flatmap Construction 719 

  720 

Cortical surface meshes were generated from the T1-weighted anatomical scans using 721 

FreeSurfer software (Dale et al., 1999). Before surface reconstruction, anatomical surface 722 

segmentations were hand-checked and corrected. Blender was used to remove the corpus 723 

callosum and make relaxation cuts for flattening. Functional images were aligned to the cortical 724 

surface using boundary based registration (BBR) implemented in FSL. These alignments were 725 

manually checked for accuracy and adjustments were made as necessary. 726 

  727 

Flat maps were created by projecting the values for each voxel onto the cortical surface using 728 

the “nearest” scheme in pycortex software (Gao et al., 2015). This projection finds the location 729 

of each pixel in the flat map in 3D space and assigns that pixel the associated value.  730 

  731 

Stimulus Preprocessing 732 

  733 

Each story was manually transcribed by one listener. Certain sounds (for example, laughter and 734 

breathing) were also marked to improve the accuracy of the automated alignment. The audio of 735 

each story was then downsampled to 11kHz and the Penn Phonetics Lab Forced Aligner 736 

(P2FA) (Yuan and Liberman, 2008) was used to automatically align the audio to the transcript. 737 

Praat (Boersma and Weenink, 2014) was then used to check and correct each aligned 738 

transcript manually. 739 

  740 

Localizers 741 
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Known regions of interest (ROIs) were localized separately in each subject. Three different 742 

tasks were used to define ROIs; a visual category localizer, an auditory cortex localizer, and a 743 

motor localizer. 744 

  745 

Visual category localizer data were collected in six 4.5 minute scans consisting of 16 blocks of 746 

16 seconds each. During each block 20 images of either places, faces, bodies, household 747 

objects, or spatially scrambled objects were displayed. Subjects were asked to pay attention to 748 

the same image being presented twice in a row. The cortical ROIs defined with this localizer 749 

were the fusiform face area (FFA), parahippocampal place area (PPA), occipital place area 750 

(OPA), retrosplenial cortex (RSC), and extrastriate body area (EBA). 751 

  752 

Motor localizer data were collected in two identical 10 minute scans. The subject was cued to 753 

perform six different tasks in a random order in 20 second blocks. The cues were ‘hand’, ‘foot’, 754 

‘mouth’, ‘speak’, saccade, and ‘rest’ presented as a word at the center of the screen, except for 755 

the saccade cue which was presented as an array of dots. For the ‘hand’ cue, subjects were 756 

instructed to make small finger-drumming movements for the entirety of the cue display. For the 757 

‘foot’ cue, subjects were instructed to make small foot and toe movements. For the ‘mouth’ cue, 758 

subjects were instructed to make small vocalizations that were nonsense syllables such as 759 

balabalabala. For the ‘speak’ cue, subjects were instructed to self-generate a narrative without 760 

vocalization. For the saccade cue, subjects were instructed to make frequent saccades across 761 

the display screen for the duration of the task. 762 

  763 

Weight maps for the motor areas were used to define primary motor and somatosensory areas 764 

for the hands, feet, and mouth; supplemental motor areas for the hands and feet, secondary 765 

somatosensory areas for the hands, feet, and mouth, and the ventral premotor hand area. The 766 

weight map for the saccade responses was used to define the frontal eye fields and intraparietal 767 

sulcus visual areas. The weight map for speech was used to define Broca’s area and the 768 

superior ventral premotor (sPMv) speech area (Chang et al., 2011). 769 

  770 

Auditory cortex localizer data were collected in one 10 minute scan. The subject listened to 10 771 

repeats of a 1-minute auditory stimulus containing 20 seconds of music (Arcade Fire), speech 772 

(Ira Glass, This American Life), and natural sound (a babbling brook). To determine whether a 773 

voxel was responsive to auditory stimulus, the repeatability of the voxel response across the 10 774 

repeats was calculated using an F-statistic. This map was used to define the auditory cortex 775 

(AC). 776 

  777 

Visual and Linguistic Embedding Spaces 778 

  779 

We constructed a linguistic embedding space based on word co-occurrence statistics in a large 780 

corpus of text (same as de Heer et al., 2017; Deniz et al., 2019; Huth et al., 2016). First, we 781 

constructed a 10,470-word lexicon from the union of the set of all words appearing in the first 2 782 

story sessions and the 10,000 most common words in the large text corpus. We then selected 783 

985 basis words from Wikipedia’s List of 1000 Basic Words (contrary to the title, this list 784 

contained only 985 unique words at the time it was accessed). This basis set was selected 785 
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because it consists of common words that span a very broad range of topics. The text corpus 786 

used to construct this feature space includes the transcripts of 13 Moth stories (including 10 787 

used as stimuli in this experiment), 604 popular books, 2,405,569 Wikipedia pages, and 788 

36,333,459 user comments scraped from reddit.com. In total, the 10,470 words in our lexicon 789 

appeared 1,548,774,960 times in this corpus. Next, we constructed a word co-occurrence 790 

matrix, L, with 985 rows and 10,470 columns. Iterating through the text corpus, we added 1 to 791 

Li,j each time word j appeared within 15 words of basis word i. A window size of 15 was selected 792 

to be large enough to suppress syntactic effects (that is, word order) but no larger. Once the 793 

word co-occurrence matrix was complete, we log-transformed the counts, replacing Li,j with 794 

log(1 + Li,j). Next, each row of L was z-scored to correct for differences in basis word frequency, 795 

and then each column of L was z-scored to correct for word frequency. Each column of L is now 796 

a 985-dimensional vector representing one word in the lexicon. We then filtered the columns of 797 

L for the 3,933 unique words that occur in the stimulus stories. The linguistic embedding space 798 

is summarized by the covariance matrix ΣL = LTL, where (ΣL)i,j captures the degree of linguistic 799 

similarity between words i and j. 800 

  801 

We constructed a visual embedding space based on embeddings extracted using a 802 

convolutional neural network (CNN). First, we defined a set of potential visual words from the 803 

union of words appearing in the first 2 story sessions and words with a concreteness rating ċ 804 

greater than or equal to 4.6 out of 5 in the Brysbaert Concreteness Ratings dataset (Brysbaert 805 

et al., 2014). We manually assigned each potential visual word the WordNet (Miller, 1995) 806 

synset that best corresponds to its linguistic meaning, which was inferred from the word’s 10 807 

nearest neighbors in the linguistic embedding space ΣL. We then identified 720 visual words 808 

with ImageNet (Deng et al., 2009) entries corresponding to their assigned WordNet synsets. Of 809 

the 720 visual words, 394 were contained in the stimulus vocabulary. The 3,539 words in our 810 

stimulus vocabulary without corresponding ImageNet entries were considered non-visual. For 811 

each visual word, 100 images were randomly sampled from its ImageNet entry. 4,096-812 

dimensional CNN embeddings were extracted for each image using the fc1 layer of a pretrained 813 

VGG16 (Simonyan and Zisserman, 2015) CNN implemented in Keras (Chollet and Others, 814 

2015). We chose the feature extraction layer by fitting language encoding models (described 815 

below) induced by each layer of VGG16 on a single test subject (UT-S-02); fc1 attained the 816 

highest prediction performance across cortex. We obtained a CNN embedding for each visual 817 

word by averaging the extracted features across the 100 sampled images. The CNN 818 

embeddings were stored as columns in a matrix C with 4,096 rows and 720 columns. 819 

  820 

We developed a perceptual propagation method to construct a matrix V of visual embeddings 821 

for both visual and non-visual words. We defined the linguistic submatrix Lv with 985 rows and 822 

720 columns as the linguistic embeddings of the visual words. We then fit a linear model θ as LT 823 

= θLv
T to reconstruct each word’s linguistic embedding as a linear combination of the linguistic 824 

embeddings of visual words. For each word w, row θw contains 720 weights, which capture the 825 

degree to which each visual word contributes to the linguistic meaning of w. The matrix V of 826 

visual embeddings was then estimated by VT = θCT. V represents non-visual words as linear 827 

combinations of the CNN embeddings of associated visual words. V additionally combines each 828 

visual word’s CNN embedding with CNN embeddings of associated visual words, which 829 
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smooths the visual embedding space (Collell et al., 2017). Finally, each column of V, which 830 

corresponds to the visual embedding of a word, was z-scored. The visual embedding space is 831 

summarized by the covariance matrix ΣV = VTV, where (ΣV)i,j captures the degree of visual 832 

similarity between words i and j. 833 

  834 

We fit the perceptual propagation model θ using Tikhonov regression with prior covariance 835 

matrix Ω and regularization constant λ. We chose λ as the smallest value for which the first 836 

eigenvalue of the visual embedding space ΣV was approximately equal to that of the linguistic 837 

space ΣL, in an effort to keep the smoothness of the visual embedding space as similar as 838 

possible to the linguistic embedding space. We tested two different prior covariance matrices; a 839 

spherical prior ΩI that corresponds to ridge regression, and a CNN prior ΩC = CTC which 840 

enforces that visual words with similar CNN embeddings have similar weights in θ. We found 841 

that for non-visual words, the associated visual words obtained under the spherical prior were 842 

more semantically diverse, while the associated visual words obtained under the CNN prior 843 

were more visually coherent. For example, the top associated words for “education” under the 844 

spherical prior were “school”, “college”, “university”, “student”, and “conservative”, while the top 845 

associated words under the CNN prior were “instructor”, “teacher”, “grade”, “student”, and 846 

“classroom” (which all depict a classroom setting). As the two priors capture different types of 847 

information, our perceptual propagation model θ was obtained by averaging the models θI and 848 

θC. 849 

   850 

Concreteness Scores 851 

 852 

We quantified the concreteness of each stimulus word using scores derived from the separate 853 

Brysbaert Concreteness Ratings dataset. The Brysbaert dataset contains human ratings ċ of the 854 

extent to which each word can be experienced through sensation. The concreteness ratings 855 

range from 1 (very abstract) to 5 (very concrete). We scaled the ratings between 0 (very 856 

abstract) and 1 (very concrete) by subtracting 1 and dividing by the range 4, and then squared 857 

the resulting values to obtain concreteness scores c. To interpolate concreteness scores for 858 

stimulus words that were not included in the Brysbaert dataset, each word w was assigned the 859 

max of its own concreteness score cw (where cw = 0 if w is not contained in the Brysbaert 860 

dataset) and the mean concreteness score of its 15 closest linguistic neighbors. Each word’s 861 

concreteness score cw was thus given as 𝑚𝑎𝑥(𝑐&,
(
()
𝛴+∈++(&)𝑐+), where the nearest neighbors 862 

function nn(w) gives the 15 closest words (where similarity is defined under ΣL) to w in the 863 

Brysbaert dataset. 864 

 865 

Visualizing Embedding Space Structure 866 

  867 

We used PCA to visualize the structure of the visual and linguistic embedding spaces. For each 868 

space, we applied PCA to the embeddings of the 394 visual words that occur in the stimulus 869 

stories, and projected each word’s embedding onto the first two PCs. The first two PCs of the 870 

visual space account for 24.5% of the variance, and the first two PCs of the linguistic space 871 

account for 22.9% of the variance. For each embedding space, we plotted the two-dimensional 872 

projection of each visual word. 873 
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 874 

To highlight how notions of similarity differ between the visual and linguistic spaces, we 875 

identified 3 broad semantic categories; people, clothes, and places. For each category, we 876 

hand-selected 10 representative words prior to visualization, and colored the convex hull of the 877 

representative words in the two-dimensional visualization of each embedding space.  878 

 879 

Quantifying Word-level Differences in Embedding Spaces 880 

 881 

For each word w, we defined a visual similarity vector (ΣV)w containing its visual similarities with 882 

every other word, and a linguistic similarity vector (ΣL)w containing its linguistic similarities with 883 

every other word. We computed a modality alignment score for each word as the linear 884 

correlation between its visual and linguistic similarity vectors. Words with high modality 885 

alignment scores are represented similarly in the visual and linguistic embedding spaces, while 886 

words with low modality alignment scores are represented differently in the visual and linguistic 887 

embedding spaces.  888 

 889 

Across stimulus words, modality alignment scores m were anticorrelated with concreteness 890 

scores c (linear correlation r = -0.26). The linear least squares regression line between 891 

concreteness scores and modality alignment scores is m = -0.13c + 0.76. 892 

 893 

Semantic Embedding Spectrum 894 

  895 

We created semantic embeddings Sw for each word w by concatenating its visual embedding Vw 896 

and its linguistic embedding Lw. Each word was assigned a modality weight αw between 0 and 1 897 

to model the relative contributions of its visual and linguistic representations to its semantic 898 

representation. Prior to concatenation Vw was scaled to unit norm and then multiplied by αw
1/2 899 

while Lw was scaled to unit norm and then multiplied by (1 - αw)1/2. When αw is 1 the semantic 900 

embedding Sw will fully reflect the visual embedding, and when αw is 0 the semantic embedding 901 

Sw will fully reflect the linguistic embedding. Semantic embedding spaces are summarized by 902 

the covariance matrices ΣS = STS. The semantic similarity (ΣS)i,j between words i and j is an 903 

average of their visual similarity ΣV weighted by αi
1/2αj

1/2 and their linguistic similarity ΣL weighted 904 

by (1 - αi)1/2(1 - αj)1/2.  905 

 906 

Each semantic embedding space is parameterized by a vector α containing the modality weight 907 

αw for each word w. To constrain the infinitely large space of α vectors we modeled each word’s 908 

modality weight αw as a monotonically increasing function αconcrete(c ; b) = σ(σ-1(c) + b) of its 909 

concreteness score cw, where σ is the sigmoid function σ(x) = ex/(ex + 1). The αconcrete model has 910 

a single bias parameter b that controls the total amount of visual information in each word’s 911 

semantic embedding. As b approaches negative infinity, α(cw) approaches 0 for all cw, causing 912 

ΣS to approach ΣL. As b approaches infinity, α(cw) approaches 1 for all cw, causing ΣS to 913 

approach ΣV.  914 

 915 

For our analyses, we chose 5 values of b (-10, -1, 0, 1, 10), which induce semantic embedding 916 

spaces that smoothly interpolate between the linguistic space ΣL and the visual space ΣV. This 917 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.19.444701doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444701
http://creativecommons.org/licenses/by-nc-nd/4.0/


Tang et al. Visually grounded models of language processing 

24/34 

semantic embedding spectrum contains a fully linguistic embedding space (b = -10) and a range 918 

of visually grounded embedding spaces (b = -1, 0, 1, 10) 919 

 920 

Voxelwise Encoding Models 921 

  922 

fMRI encoding models are estimated on a set of training stories Strain and evaluated on a set of 923 

test stories Stest. In model estimation, a response matrix Ytrain is constructed by concatenating 924 

the fMRI responses to stories in Strain. To construct the stimulus matrix Xtrain, each word in Strain is 925 

first represented by a one-hot indicator vector corresponding to its identity in the 3,933-word 926 

stimulus vocabulary. The resulting binary matrix is then downsampled to the MR acquisition 927 

times using a 3-lobe Lanczos filter, yielding a t-by-3,933 dimensional word matrix Wtrain, where t 928 

is the number of fMRI images in Ytrain. The word matrix Wtrain is then projected onto a feature 929 

matrix P which contains a p-dimensional embedding for each word, yielding the t-by-p 930 

dimensional stimulus matrix Xtrain. Each feature channel of Xtrain is z-scored to match the 931 

features to the fMRI responses, which are z-scored within each story. 932 

  933 

A linearized finite impulse response (FIR) model is fit to every cortical voxel in each subject’s 934 

brain. A separate linear temporal filter with four delays (1, 2, 3, and 4 time points) is fit for each 935 

of the p stimulus features, yielding a total of 4p features. This is accomplished by concatenating 936 

feature vectors that have been delayed by 1, 2, 3, and 4 time points (2, 4, 6, and 8 s). Taking 937 

the dot product of this concatenated feature space with a set of linear weights is functionally 938 

equivalent to convolving the original stimulus vectors with linear temporal kernels that have non-939 

zero entries for 1-, 2-, 3-, and 4-time-point delays. 940 

  941 

The 4p weights for each voxel are estimated from Xtrain and Ytrain using L2-regularized linear 942 

regression (also known as ridge regression). The regression procedure has a single free 943 

parameter which controls the degree of regularization. This regularization coefficient is found for 944 

each voxel by repeating a regression and cross-validation procedure 50 times. In each iteration, 945 

approximately a fifth of the time points (t / 200 blocks of 40 consecutive time points each) are 946 

removed from the training data set and reserved for validation. Then the model weights are 947 

estimated on the remaining time points for each of 15 possible regularization coefficients (log 948 

spaced between 10 and 10,000). These weights are used to predict responses for the reserved 949 

time points, and prediction performance is computed between the predicted and actual 950 

responses. For each voxel, the regularization coefficient is chosen as the value that led to the 951 

best performance, averaged across bootstraps, on the reserved time points. For models where 952 

the sizes of the responses should be preserved (word-rate encoding models; described below), 953 

the regularization coefficient was optimized using R2 as the performance metric. For models 954 

where the sizes of the predicted responses do not matter (semantic encoding models; described 955 

below), the regularization coefficient was optimized using linear correlation as the performance 956 

metric. 957 

  958 

The regression procedure produces a set of estimated feature weights βP, with columns 959 

corresponding to the 4p weights for each voxel. To evaluate a voxel-wise model, βP is used to 960 

predict brain responses to stories in a test dataset Stest that were not used for model estimation. 961 
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For each story s in Stest, a stimulus matrix Xs and a response matrix Ys are constructed using the 962 

procedure described above for constructing Xtrain and Ytrain. Each feature channel of Xs is 963 

normalized using the mean and standard deviation of the corresponding channel in Xtrain. For 964 

each voxel, prediction performance on each test story is estimated as the linear correlation 965 

between predicted and actual responses over the time points in the story. Overall prediction 966 

performance on Stest is obtained by averaging the voxel’s prediction performance across the 967 

stories in Stest. 968 

  969 

Encoding Model Estimation 970 

  971 

Before fitting semantic encoding models, we first fit a word-rate encoding model for each subject 972 

to remove variance in the response data that could be explained by low-level auditory features. 973 

The word-rate model represents stimulus words with a 3,933-by-1 dimensional matrix of ones 974 

PWR. We estimated word-rate weights βWR using all 5 story sessions as the training set Strain. L2 975 

regularization coefficients were chosen by maximizing R2 in the cross-validation procedure. For 976 

each of the 25 stimulus stories and the repeated test story, we predicted brain responses YWR = 977 

XβWR using the word rate model. The word-rate predictions YWR were subtracted from the actual 978 

brain responses Y, which were then z-scored to produce word-rate corrected brain responses. 979 

Semantic encoding models were then fit to the word-rate corrected brain responses. 980 

  981 

To fit a semantic encoding model with embedding space prior Σ, stimulus words were 982 

represented by embedding features P = Σ1/2. Previous work shows that performing ridge 983 

regression on the stimulus matrix X = WΣ1/2 is equivalent to performing Tikhonov regression on 984 

the word matrix W using Σ as the prior covariance (Nunez-Elizalde et al., 2019). L2 985 

regularization coefficients were chosen by maximizing linear correlation in the cross-validation 986 

procedure. This procedure for solving Tikhonov regression yields a set of weights βP on 987 

embedding features P. To represent the encoding model as weights on individual words, rather 988 

than weights on embedding features, we left-multiplied the feature space weights βP by the 989 

delayed embedding features to obtain word-space weights βW =  (I4 ⊗ Σ1/2)βP. Each column of 990 

the weight matrix βW contains a set of 15,732 estimated weights for a corresponding voxel. 991 

These weights predict how each of the 3,933 words in the stimulus vocabulary influences the 992 

BOLD responses in that voxel at each of the four temporal delays. When estimating the 993 

selectivity of each voxel for each word (Figure 5), we removed temporal information by 994 

averaging across the four delays for each word. Each voxel is then represented by a set of 995 

3,933 averaged weights which predict how each word in the stimulus vocabulary influences the 996 

BOLD responses in that voxel. 997 

  998 

To compare model performance under different embedding space priors (Figure 3), we 999 

estimated and evaluated encoding models using a bootstrap procedure across story sessions. 1000 

For each of the 5 story sessions, we held out the chosen session as Stest and estimated 1001 

encoding models using the remaining 4 story sessions as Strain. We then computed prediction 1002 

performance of the estimated models on each story in Stest. Repeating this process for each 1003 

story session yielded prediction performance on all 25 stimulus stories. Aggregate performance 1004 

was obtained by averaging performance across the 25 stories. As the stimulus stories vary in 1005 
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semantic content and imageability, maximizing the number of evaluation stories was desirable 1006 

for identifying the embedding space that best models each voxel. Because this session 1007 

bootstrap procedure evaluated encoding models on single repetitions of many stories rather 1008 

than many repetitions of a single story (de Heer et al., 2017; Huth et al., 2016; Jain and Huth, 1009 

2018), our reported prediction performance values were lower than previously reported results 1010 

due to the lower signal-to-noise ratio of single repetition response data. 1011 

 1012 

A downside to the story session bootstrap procedure is that the 5 story sessions produce 5 1013 

separate encoding models. As the encoding models were not estimated using independent 1014 

data, their weights cannot be meaningfully combined. Furthermore, the story session bootstrap 1015 

procedure is computationally intensive. For analyses estimating voxel selectivity from encoding 1016 

model weights (Figure 5) and analyses that compare a large number of encoding models 1017 

(Figure 4), we instead split the story sessions into explicit train and test sessions. This 1018 

procedure produces a single set of encoding model weights. The number of training and test 1019 

sessions used depends on the nature of each analysis, as described below. 1020 

 1021 

All model fitting and analysis was performed using custom software written in Python, making 1022 

heavy use of NumPy (Oliphant, 2006), SciPy (Jones et al., 2001), and pycortex (Gao et al., 1023 

2015). 1024 

      1025 

Semantic System Voxels 1026 

   1027 

Semantic system voxels were defined as voxels that were significantly predicted by any space 1028 

in the semantic embedding spectrum. We tested for significance using a permutation test on the 1029 

repeated test story Sreptest. The embedding spectrum performance for each voxel was defined as 1030 

the maximum linear correlation r between the true response time course and the predicted 1031 

response time course under each semantic embedding space. We then constructed a null 1032 

distribution on embedding spectrum performance for each voxel by permuting the voxel’s true 1033 

response time course. In each trial, we randomly resampled (with replacement) 10-TR blocks 1034 

from the voxel’s true response time course. Resampling contiguous blocks preserves the auto-1035 

correlation structure of the voxel’s responses. We then computed null embedding spectrum 1036 

performance as the maximum linear correlation r between the permuted response time course 1037 

and the predicted response time course under each semantic embedding space. Repeating this 1038 

process for 10,000 trials provided a null distribution of embedding spectrum performance for 1039 

each voxel. Semantic system voxels were identified as voxels with an observed embedding 1040 

spectrum performance that is significantly higher than its null distribution (q(FDR) < 0.05), 1041 

correcting for multiple comparisons using the false discovery rate (Benjamini and Hochberg, 1042 

1995).  1043 

 1044 

For encoding models estimated using the session bootstrap procedure (Figures 3, 5) we 1045 

averaged across the 5 sets of encoding weights (corresponding to each bootstrap session) to 1046 

predict responses to the repeated test story. This yielded 8,578 semantic system voxels in 1047 

subject UT-S-01, 13,502 semantic system voxels in UT-S-02, 17,135 semantic system voxels in 1048 
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UT-S-03, 3,835 semantic system voxels in UT-S-05, 5,504 semantic system voxels in UT-S-06, 1049 

3,065 semantic system voxels in UT-S-07, and 1,321 semantic system voxels in UT-S-08. 1050 

 1051 

For encoding models estimated using an explicit train-test split (Figure 4) we predicted 1052 

responses to the repeated test story using the single set of encoding weights. This yielded 1053 

7,047 semantic system voxels in subject UT-S-01, 11,933 semantic system voxels in UT-S-02, 1054 

12,807 semantic system voxels in UT-S-03, 3,338 semantic system voxels in UT-S-05, 2,539 1055 

semantic system voxels in UT-S-06, 2,230 semantic system voxels in UT-S-07, and 807 1056 

semantic system voxels in UT-S-08. 1057 

  1058 

Linear Mixed-effects Modeling 1059 

 1060 

A linear mixed-effects model (lme) was used to compare the performance of different spaces in 1061 

the semantic embedding spectrum around vision and language ROIs. We identified vision (FFA, 1062 

PPA, OPA, RSC, EBA) and language (AC, Broca, sPMv) ROIs in each subject using separate 1063 

localizer data (described above). We used pycortex software (Gao et al., 2015) to identify 1064 

semantic system voxels within 15mm of each ROI along the cortical surface. For each ROI, we 1065 

first identified all vertices on the fiducial surface that fall within the ROI definition. We then 1066 

computed the geodesic distance from each surface vertex to the closest vertex in the ROI. We 1067 

defined ROI-adjacent vertices as vertices within 15mm of the ROI vertices. We finally used the 1068 

“cortical” scheme in pycortex to select all voxels with centers within the cortical ribbon where the 1069 

closest vertex is ROI-adjacent. 1070 

 1071 

For each subject, the performance of each embedding space around an ROI was computed by 1072 

averaging the prediction performance of the corresponding encoding model (estimated under 1073 

the story session bootstrap encoding procedure) across semantic system voxels within 15mm of 1074 

the ROI. We then computed a visual grounding score for each visually grounded embedding 1075 

space as its performance improvement over the fully linguistic embedding space. Our linear 1076 

mixed-effects model compared visual grounding score for each visually grounded embedding 1077 

space (4 levels: b = -1, 0, 1, 10) and ROI type (2 levels: vision, language). The ROI ID nested 1078 

within subject ID was the random effect. The lme test was run in R using the lme4 library (Bates 1079 

et al., 2015). For post hoc tests, p-values were corrected for multiple comparisons using the 1080 

false discovery rate. 1081 

  1082 

For each ROI, we plotted the visual grounding score for each visually grounded embedding 1083 

space. We then plotted mean visual grounding score across vision and language ROIs for each 1084 

visually grounded embedding space. All values were averaged across 7 subjects. Error bars 1085 

indicate standard error of the mean across 7 subjects. 1086 

 1087 

Modality Weight Permutation Test 1088 

 1089 

We conducted a two-tailed permutation test to determine whether the amount of visual 1090 

information in each word’s semantic representation around visual cortex is related to 1091 

concreteness. We first identified the best αconcrete model around visual cortex (b = -1) by 1092 
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comparing encoding model performance on the repeated test set Sreptest. We then fit semantic 1093 

encoding models using the first 3 story sessions as Strain and the remaining 2 story sessions as 1094 

Stest. L2 regularization coefficients were chosen by maximizing linear correlation in the cross-1095 

validation procedure. Encoding model performance (linear correlation r) was averaged across 1096 

semantic system voxels within 15mm of vision ROIs (FFA, PPA, OPA, RSC, EBA) along the 1097 

cortical surface.  1098 

 1099 

We next conducted 1,000 trials in which we permuted concreteness scores across words before 1100 

computing modality weights under the αconcrete model (b = -1). In trial t of the permutation test, 1101 

the modality weights across stimulus words were given by a vector αt corresponding to a 1102 

random permutation of the concreteness-derived modality weights αconcrete. We then fit an 1103 

encoding model under the semantic embedding space induced by αt and averaged encoding 1104 

model performance across the tested voxels. For each voxel, we reused the L2 regularization 1105 

coefficient previously optimized for the αconcrete encoding model.  1106 

 1107 

The 1,000 trials provide a permutation distribution of the encoding model performance. The 1108 

permutation distribution was significantly lower than the observed performance of the αconcrete 1109 

model when combined across subjects (q(FDR) < 10-4), and individually for five of seven 1110 

subjects (q(FDR) < 10-2).  1111 

 1112 

Binary Modality Weight Model 1113 

  1114 

The visually grounded parameterizations (b = -1, 0, 1, 10) of the αconcrete modality weight model 1115 

predict that all abstract words contain some amount of visual information. To capture the 1116 

alternative hypothesis that abstract words solely contain linguistic information, we defined an 1117 

αbinary modality weight model parameterized by an abstractness cutoff a. Words with 1118 

concreteness scores below the cutoff were considered purely abstract and represented solely 1119 

by their linguistic embeddings, while words with concreteness scores above than the cutoff were 1120 

represented by a combination of their visual and linguistic embeddings specified in the αconcrete 1121 

model. Formally, αbinary(c; a, b) is a piecewise function that outputs 0 if c is less than a, and 1122 

αconcrete(c; b) otherwise. To directly compare αconcrete and αbinary, both models were parameterized 1123 

by the best bias parameter for αconcrete around visual cortex (b = -1), which was determined by 1124 

comparing encoding model performance on the repeated test set Sreptest.  1125 

 1126 

We compared the αconcrete model against the αbinary model for a range of abstractness cutoffs (a = 1127 

0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1.0). For each modality weight model, we fit a semantic 1128 

encoding model under the induced embedding space using the first 3 story sessions as Strain 1129 

and the remaining 2 story sessions as Stest. For both the αconcrete and αbinary encoding models, L2 1130 

regularization coefficients were chosen by maximizing linear correlation in the cross-validation 1131 

procedure. Encoding model performance (linear correlation r) was averaged across semantic 1132 

system voxels within 15mm of vision ROIs (FFA, PPA, OPA, RSC, EBA) along the cortical 1133 

surface. 1134 

 1135 
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A linear mixed-effects model (lme) was used to compare the performance difference between 1136 

each αbinary model and the αconcrete model (11 levels: a = 0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 1137 

1.0). The subject ID was the random effect. The lme test was run in R using the lme4 library 1138 

(Bates et al., 2015). For post hoc tests, p-values were corrected for multiple comparisons using 1139 

the false discovery rate. αbinary models with concrete cutoffs of 0.6, 0.8, 0.9, and 1.0 performed 1140 

significantly worse than the αconcrete model (q(FDR) < 0.05). 1141 

 1142 

Visual Grounding of Concrete Selective Voxels 1143 

 1144 

We defined a concrete selectivity score for each voxel to quantify the degree to which it 1145 

responds to concrete words. We fit encoding models under the fully linguistic embedding space 1146 

using all 5 story sessions as Strain. The estimated encoding weights (averaged across delays) 1147 

predict the degree to which each word influences BOLD responses in each voxel. We then 1148 

projected a vector of concreteness scores for each word onto the encoding weights for each 1149 

voxel. We divided each voxel’s score by the sum of its absolute weights on each word. Concrete 1150 

selectivity scores range from -1 to 1; voxels that respond more to concrete words than abstract 1151 

words will have positive concrete selectivity scores, while voxels that respond more to abstract 1152 

words than concrete words will have negative concrete selectivity scores. 1153 

 1154 

We defined a visual grounding score for each voxel to quantify the degree to which it represents 1155 

concepts in a visually grounded format. We determined the best visually grounded 1156 

parameterization of αconcrete across visual cortex (b = -1) by comparing encoding model 1157 

performance on the repeated test set Sreptest. The visual grounding score of each voxel was then 1158 

defined as the difference in encoding model performance (estimated under the story session 1159 

bootstrap procedure) between the visually grounded embedding space (b = -1) and the fully 1160 

linguistic embedding space (b = -10). Visual grounding scores range from -1 to 1; voxels that 1161 

represent concepts in a visually grounded format will have positive visual grounding scores, 1162 

while voxels that represent concepts in a linguistic format will have negative visual grounding 1163 

scores. 1164 

 1165 

We defined concrete selective voxels as semantic system voxels with a positive concrete 1166 

selectivity score. We tested whether concrete selective voxels are more visually grounded near 1167 

visual cortex than in other cortical regions. We partitioned concrete selective voxels into those 1168 

near visual cortex (within 15mm of visual ROIs) and those in other cortical regions. For each 1169 

subset of concrete selective voxels, we computed the fraction that are visually grounded (visual 1170 

grounding score > 0). Combined across subjects, 68 percent of concrete selective voxels near 1171 

visual cortex were visually grounded, while 49 percent of concrete selective voxels in other 1172 

cortical regions were visually grounded. We conducted a two-tailed paired t-test across subjects 1173 

comparing the fraction of concrete selective voxels near visual cortex that are visually grounded 1174 

to the fraction of concrete selective voxels in other cortical regions that are visually grounded. 1175 

We found that concrete selective voxels were significantly more likely to be visually grounded 1176 

near visual cortex than in other cortical regions (p < 0.01).   1177 
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Supplemental Figures 1297 

 1298 

1299 
Figure S1 (related to Figure 3). Encoding model performance across semantic embedding spaces. Encoding models were fit 1300 

using each space in a semantic embedding spectrum ranging from fully linguistic to fully visual. Prediction performance for each 1301 

voxel is measured by mean linear correlation r across 25 evaluation stories. (A) Cortical flatmaps show the prediction performance 1302 

of the fully linguistic embedding space (b = -10) for each voxel in each subject. Well-predicted voxels appear yellow or white, and 1303 

poorly predicted voxels appear black. (B) Cortical flatmaps show the difference in prediction performance between each visually 1304 

grounded embedding space and the fully linguistic embedding space. Voxels that are better predicted by each visually grounded 1305 

space are colored red, and voxels that are better predicted by the fully linguistic space are colored blue. The brightness of each 1306 

voxel is given by the performance of the fully linguistic space.   1307 
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1308 
Figure S2 (related to Figure 5). Representational format of concrete concepts across cortex. Similar to Figure 5 in the main 1309 

text, a concrete selectivity score was computed for each voxel as the projection of its encoding weights onto the vector of 1310 

concreteness scores for each word, and a visual grounding score was computed for each voxel as the difference in model 1311 

performance between a visually grounded encoding model (b = -1) and a fully linguistic encoding model. Cortical flatmaps show the 1312 

concrete selectivity score and visual grounding score for each voxel in subjects UT-S-01, UT-S-03, UT-S-05, UT-S-06, UT-S-07, 1313 

and UT-S-08. These maps show that across subjects, concrete selective voxels near the visual system are better modeled by the 1314 

visually grounded space, while concrete selective voxels near somatosensory and motor systems are better modeled by the 1315 

linguistic space. 1316 

UT-S-01 UT-S-03

UT-S-05 UT-S-06

UT-S-07 UT-S-08

0.01

-0.01
-0.1 0.1

Concrete Selectivity

Visual 
Grounding

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 19, 2021. ; https://doi.org/10.1101/2021.05.19.444701doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444701
http://creativecommons.org/licenses/by-nc-nd/4.0/

