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 65 

Summary 66 

African populations are the most diverse in the world yet are sorely underrepresented in medical genetics 67 

research. Here, we examine the structure of African populations using genetic and comprehensive 68 

multigenerational ethnolinguistic data from the Neuropsychiatric Genetics of African Populations-Psychosis 69 

study (NeuroGAP-Psychosis) consisting of 900 individuals from Ethiopia, Kenya, South Africa, and Uganda. 70 

We find that self-reported language classifications meaningfully tag underlying genetic variation that would be 71 

missed with consideration of geography alone, highlighting the importance of culture in shaping genetic 72 

diversity. Leveraging our uniquely rich multi-generational ethnolinguistic metadata, we track language 73 

transmission through the pedigree, observing the disappearance of several languages in our cohort as well as 74 

notable shifts in frequency over three generations. We further find significantly higher language transmission 75 

rates for matrilineal groups as compared to patrilineal. We highlight both the diversity of variation within the 76 

African continent, as well as how within-Africa variation can be informative for broader variant interpretation; 77 

many variants appearing rare elsewhere are common in parts of Africa. The work presented here improves the 78 

understanding of the spectrum of genetic variation in African populations and highlights the enormous and 79 

complex genetic and ethnolinguistic diversity within Africa.  80 

 81 
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Introduction 85 

Humans originated in Africa, resulting in more genetic variation on the African continent than anywhere else in 86 

the world; the average African genome has nearly a million more genetic variants than the average non-African 87 

person1. Africa is also immensely culturally and ethno-linguistically diverse; while the rest of the world 88 

averages 3.2 to 4.7 ethnic groups per country, African countries have an average of greater than 8 each and 89 

account in total for 43% of the world’s ethnic groups2. Despite this diversity, African ancestry individuals are 90 

sorely underrepresented in genomic studies, making up only about 2% of GWAS participants3,4. Furthermore, 91 

the vast majority of African ancestry populations currently represented in genetic studies are African Americans 92 

or Afro-Caribbeans (72-93% in the GWAS catalog and ≥ 90% in gnomAD) with primarily West African ancestral 93 

origins5. These resources thus currently leave out the substantial diversity from regions of Africa that are 94 

disproportionately informative for human genetics.  95 

 96 

Populations underrepresented in genetic studies contribute disproportionately to our understanding of 97 

biomedical phenotypes relative to European ancestry populations. Despite their paltry representation in 98 

GWAS, African ancestry populations contribute 7% of genome-wide significant associations5,6. African 99 

population genetic studies are especially informative given their unique evolutionary history, high level of 100 

genetic variation, and rapid linkage disequilibrium decay7. This Eurocentric bias in current genomics studies 101 

and resources also makes African descent individuals less likely to benefit from key genomic findings that do 102 

not translate fully across populations, contributing to health disparities8. In this study, we better characterize 103 

the immense genetic and ethnolinguistic diversity in four countries in eastern and southern Africa, offering 104 

insights into population history and structure in diverse African populations. Data are from 900 genotype 105 

samples that are part of the Neuropsychiatric Genetics of African Populations-Psychosis study (NeuroGAP-106 

Psychosis), a major research and capacity building initiative in Ethiopia, Kenya, South Africa, and Uganda9,10  107 

 108 
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Genetic variation in Africa has been previously described as following not only isolation-by-distance 109 

expectations, but as being influenced by multiple interconnected ecological, historical, environmental, cultural, 110 

and linguistic factors11–16. These factors capture distinct variation from that tagged by genetics and can be 111 

informative for understanding population substructure. Better characterization of the ethnolinguistic 112 

composition of these samples is a key initial step towards running well-calibrated statistical genomics analyses 113 

including association studies. If ethnolinguistic variation tags additional structure than that captured by 114 

geography, explicit incorporation of relevant cultural information into such analyses tests may be the optimal 115 

strategy. In this study, we explore the genetics of Africa and how peoples' cultural affiliations and languages 116 

are related to genetic variation on the continent. We also explore ongoing cultural changes and consider the 117 

impact they will have on the genetics of Africa. 118 

 119 

Results 120 

Genetic Population Structure and Admixture 121 

We compared the ancestral composition of our samples relative to global reference data from the 1000 122 

Genomes Project and the African Genome Variation Project (AGVP) to see the full breadth of genetic diversity. 123 

Most NeuroGAP-Psychosis samples appear genetically similar to their geographically closest reference 124 

samples when compared to global datasets (Figure 1). However, large amounts of admixture is visible for 125 

some individuals, particularly among South African individuals (Supplemental Information). In South Africa, 126 

some individuals cluster wholly within the European reference cluster; this is expected based on the 127 

demographic composition of Cape Town, where these samples were collected, which is home to a substantial 128 

fraction of people of Dutch ancestry (Afrikaners) and individuals of mixed ancestry12,15,17–19.  129 

 130 

We additionally investigated the degree of admixture within samples and how genetic groups cluster in the 131 

data. We ran ADMIXTURE analyses, which partition genetic variation into a given number of distinct genetic 132 

clusters. This helps to visualize the groups that are most genetically distinct from one another, as each 133 

additional component can be thought of as representing the next most differentiated ancestry component in the 134 
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data, akin to principal components analysis (PCA). We identified the best fit k value, using five-fold cross 135 

validation, to be 9 using a tailored global reference.  136 

 137 

Examining the ancestry composition at the best fit k, we identify several ancestry components unique to areas 138 

within continental Africa (Figure 1C). Notably, several such components, including those unique to Ethiopia 139 

(purple), West Africa (orange), and South Africa (yellow) appear at earlier values of k than that separating 140 

South Asians from East Asians and Europeans (brown). While sample sizes affect the ordering of components 141 

identified in ADMIXTURE analyses, this suggests a high level of genetic differentiation between areas of the 142 

African continent rivaling that between those out-of-Africa continental ancestries, as has been previously 143 

demonstrated. We also note that Ethiopian participants have evidence of Eurasian admixture, possibly related 144 

to back-migration into the African continent17,20–22.  145 

 146 

Figure 1. Genetic and admixture composition of the NeuroGAP-Psychosis samples against a global reference. 147 

A) Map showing the geographic location of African populations included, color coded by the ancestry 148 

components found to be unique to that region. B) First 2 principal components showing NeuroGAP-Psychosis 149 

samples as projected onto global variation of the full 1000 Genomes and AGVP. While most samples fall on a 150 

cline, some South African samples exhibit high amounts of admixture and European genetic ancestry. C) 151 

ADMIXTURE analysis for k=2 through 9 of all African reference and cohort samples as well as three 152 

representative non-African populations from the 1000 Genomes Project. GIH are the Gujarati Indian from 153 

Houston, Texas, CHB are the Han Chinese in Beijing, China, and the GBR are British in England and 154 

Scotland, which were included to capture South Asian, East Asian, and European admixture, respectively. 155 

Individuals are represented as bar charts sorted by population, and ancestry components for each person are 156 

visualized with different colors. The best supported k value with cross-validation was k=9.  157 
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Projecting our samples onto PC space generated from only African reference samples, the top two principal 160 

components (PCs) separate geography, and more specifically East-West and North-South patterns of variation 161 

within Africa (Figure 2), mirroring our expectation of isolation by geographic distance in human genetic data. At 162 

higher PCs, however, there is fine-scale structure in the data separating different geographically proximal 163 

groups within the East African individuals, shown in red. We thus focus our deeper examinations into the East 164 

African samples to assess potential drivers of this differentiation (Supplementary Figure 1). For a detailed 165 

discussion of genetic variation within each country see the Supplementary Information. 166 

 167 

Figure 2. Genetic composition of subcontinental African structure in the NeuroGAP-Psychosis samples. A-D: 168 

PCA biplots for PCs 1-8 with an African reference panel of 1000 Genomes Project AFR populations and the 169 

AGVP dataset. A map of collection locations is shown to the left of PCA plots.  170 

 171 

 172 

 173 
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Self-reported Population Composition 175 

Across samples with self-reported ethnolinguistic information, we observe 62 primary ethnicities and 107 176 

primary languages in the 960 NeuroGAP-Psychosis samples, including missing data (Figure 3). We also find 177 

that languages have shifted in frequency over time, with English increasing in reporting frequency in the 178 

current generation, and several grandparental languages disappearing in our dataset (Figure 3; 179 

Supplementary Figures 2-5). 180 

Figure 3. Primary self-reported language shifts over three generations. A) Individual languages were re-181 

classified into broader language families for comparable granularity. B) All languages reported with at least 3% 182 

frequency in any generation are shown across the generations. Note the increase in endorsement of English 183 

and drop in Oromiffa/Oromigna in the present generation.  184 

 185 

 186 

Genetic Variation Partitions with Language 187 

To assess the correlation between the language that an individual reports to be their primary and the genetic 188 

partitioning that we observed, we conducted Procrustes analyses to measure the correlation between genetic, 189 

linguistic, and geographic variation. Procrustes analysis minimizes the distance between two sets of 190 

coordinates, so we can compare genetic variation reduced to two PCs to the location of each population. Using 191 
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the phonemes (units of sound) found in the self-reported languages of individuals and their families, along with 192 

the first two PCs of autosomal and X chromosome variation, we found consistent correlations between genetic, 193 

linguistic, and geographic variation throughout Africa (Table 1). Because the autosomes and X chromosomes 194 

have considerably different numbers of single nucleotide polymorphisms (SNPs), we additionally compared X 195 

chromosome variation to that from chromosome 22, which is most similar in SNP count to X (variant counts 196 

without/with reference panel: X = 603/1348, chr22 = 705/1455; Supplementary Figure 6). To measure 197 

linguistic variation, we queried the PHOIBLE 2.0 phonemic database23, which contains phoneme inventories 198 

and phoneme qualities for many languages around the world. The resulting matrices of mean phoneme 199 

presences were used in a PCA to create three sets of linguistic PCs: from personally spoken languages of the 200 

participant, a combined score from those spoken by matrilineal relatives (mother and maternal grandmother), 201 

and a combined score from those of patrilineal relatives (father and paternal grandfather). 202 

 203 

The first two PCs of both autosomal and X chromosome variation correlate more closely to geography 204 

(ρ=0.643 and 0.625 respectively; p<5E-5) than the first two PCs of linguistic variation (ρ=0.481; p<5E-5). 205 

Genetics are also correlated to linguistic variation to a lesser extent, and autosomal variation is consistently 206 

more strongly correlated to this linguistic variation than is X chromosome variation. When considering 207 

individuals from the entire dataset—Eastern and South Africa—patrilineal languages are more closely 208 

correlated to genetics than are matrilineal languages (by ~15%).  209 

 210 

Figure 4. Procrustes analyses indicate that autosomal genetic diversity is better correlated with geography 211 

than is X chromosome diversity. Plots represent the first two genetic PCs after a procrustes-transformation. 212 

The upper panels use PCs generated using autosomal variation, and the lower panels use X chromosome 213 

variation. The left column uses the locations of the study site at which each individual was sampled; the right 214 

column uses each individual's self-reported languages and the centroids of these languages to identify a 215 

geographic midpoint of that individual's languages. Individuals are colored by primary field site. For each 216 

primary field site, the midpoint of individuals' locations (by study site or languages spoken) is represented by a 217 

large point. 218 
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 219 

 220 

 221 

Language Transmission Through Families 222 

As we have detailed multi-generational ethnolinguistic information (see STAR Methods “Ethnolinguistic 223 

Phenotypes”), we computed overall transmission rates of language families over three generations. We initially 224 

examined the raw self-reported information of the participant with respect to the primary, second and third 225 

language spoken. We assessed the frequency with which the primary language reported by the participant 226 

matched each of their older relatives’ (i.e. maternal and paternal grandparents, mother and father) as well as 227 

the frequency with which the participants’ primary reported language matched that of the languages reported 228 

for their relative (Table 2). We find that transmission rates are similar between family members of the same 229 

generation when looking at primary language matching any language whether including or excluding English. 230 
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Partitioning East African individuals by the presence of matri- vs patri-lineneal transmission in their traditional 231 

societies (from Murdock's Ethnographic Atlas, code EA07624,25), we see a significantly higher transmission rate 232 

from individuals assigned to a matrilineal classification (p=0.028).  233 

 234 

Testing for Evidence of Sex-biased Demography 235 

To examine if there was evidence for sex-biased gene flow in our samples, we ran more Procrustes analyses 236 

comparing genetic and linguistic variation on the X chromosome as compared to the autosomes. We also 237 

assessed the similarity of ancestry proportions on the X chromosome versus autosomes. Ancestry fractions 238 

were highly correlated across these genomic regions, indicating no evidence for sex-biased demography at 239 

this scale (Supplementary Figure 7). Similarly, the Procrustes tests showed significant correlation between 240 

PCs 1 and 2 of X and autosomal variation (ρ = 0.880 for all of Africa and ρ = 0.884 for East Africa alone). 241 

Compared to chr22 instead, results were similar (ρ = 0.836 for all Africa and ρ = 0.841 for East Africa). 242 

Wilcoxon signed rank tests comparing the fractions of ancestry on X versus autosomes from ADMIXTURE at 243 

k=4 did not find a significant difference in the means, nor for PC1 vs PC2 (p = 0.3754). 244 

 245 

Reference Panels Miss Meaningful Allele Frequency Resolution within Africa 246 

We visualized allele frequencies for functionally important variants across our 5 collection sites as compared to 247 

reference data from the 1000 Genomes Project. One example variant, key in beta-thalassemia, dramatically 248 

varies in frequency depending on the precise location in Africa (Supplementary Figure 8). As this variant has 249 

direct consequences on human health, consideration of the difference in frequency across the continent is 250 

useful. For another example, rs72629486, a missense coding single nucleotide variant in the gene ACTRT2, 251 

ranges in minor allele frequency (MAF) in NeuroGAP-Psychosis from 5% in Ethiopia down to 1.3% in Uganda. 252 

This is nearly the full range of the frequency distribution for all global populations in the gnomAD database26, 253 

which lists the variant in the AFR as 5.5%, missing finer resolution. rs72629486 is predicted to be deleterious 254 

and probably damaging by SIFT and PolyPhen, respectively, and has a combined annotation dependent 255 

depletion score of 22.9, highlighting that this variant is likely to be highly functionally important27–29.  256 

.CC-BY-NC-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 21, 2021. ; https://doi.org/10.1101/2021.05.19.444732doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444732
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

13 

 257 

Discussion 258 

Africa is a highly diverse continent, home to immense genetic, linguistic, and cultural diversity. This 259 

ethnolinguistic variation is extremely complex and is meaningful to disentangle prior to statistical genetics 260 

analyses. Here, we measured the correlation between genetic, linguistic, and geographic variation, finding that 261 

genetic and linguistic variation are closely correlated to each other as well as to geography across the African 262 

continent. This is consistent with previous work examining global patterns of diversity as well as the ‘Bantu 263 

expansion’, one of the largest demographic events in African history11,12,16,30–32. However, we find that in East 264 

Africa, language better separates genetic structure in our dataset than does geography (Figure 1, 265 

Supplementary Figure 1), a phenomenon that has been noted in Europe and Ethiopia previously20,22,33,34. This 266 

is notable, as most studies currently operate under the expectation of perfect isolation by distance. We find 267 

here that individuals collected from the same geographic location show significant genetic differentiation by 268 

language family, particularly in East Africa where there is immense linguistic diversity. This finding should 269 

influence how population substructure is controlled for in genetic tests, suggesting that a more nuanced 270 

treatment of genetic clusters with incorporation of ethnolinguistic classifications may sometimes be the most 271 

suitable approach. For example, future work exploring the direct incorporation of ethnolinguistic affiliations into 272 

linear mixed models would be useful, e.g. in the context of a kinship matrix equivalent35. 273 

  274 

As there is such immense genetic variation across the African continent19,36–39, we highlight cases where such 275 

variability may be particularly informative. Africa is not simply one monolithic location, as it is sometimes 276 

treated in major genomics resources such as gnomAD allele frequency reports and the TOPMed dataset (data 277 

that include primarily or exclusively African Americans)26,40. Rather, there is an inordinate amount of genetic 278 

variability within it. These examples highlight both the diversity of variation within the African continent, as well 279 

as the fact that within-Africa variation can be informative for broader variant interpretation; many variants 280 

appearing rare elsewhere are common in parts of Africa.  281 

 282 
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As part of the NeuroGAP-Psychosis study’s recruitment process, multi-generational self-reported 283 

ethnolinguistic data was collected from participants, including individual ethnicity and at least primary, second 284 

and third language from participants for themselves, as well as for each of their parents and grandparents. This 285 

provides us with an unusually rich depth of multigenerational demographic information from participants, a 286 

unique strength of our dataset that affords us the opportunity to investigate language transmission through the 287 

pedigree and shifts in language frequencies over time. First, we examined the overall change in self-reported 288 

language frequencies over three generations. Perhaps most striking is the increase in the reporting frequency 289 

of English by participants as their primary language as compared to their reports for older generations of their 290 

family. We also find that twelve languages reported for earlier generations were not spoken by the participants, 291 

indicating that they have disappeared from our dataset. Khoekhoe, Somali, and Urdu disappeared in the 292 

parental generation, and Amba, Afar, Argobba, Gumuz, Harar, Hindi, Soddo, Soo, and Tamil were no longer 293 

reported languages in the participants’ generation. Interestingly, these languages represent a mix of both 294 

historically spoken and imported languages for the countries that enrolled participants in the NeuroGAP-295 

Psychosis study. While these results are intriguing, we wish to stress that our participants are not necessarily 296 

representative of the local populations from which they come. A further consideration is a potential upwards 297 

bias towards reporting of English and Amharic as a primary language due to a preference towards reporting 298 

the language of consent as primary (consent form languages options increased over time; for example, in 299 

Ethiopia, initially only English and Amharic were offered), as well as towards languages taught in local 300 

educational systems. This additionally highlights the importance of careful consideration of items on self-report 301 

forms to ensure accurate and representative phenotype collection. 302 

 303 

To take a closer look at language transmission across the pedigree, we calculated frequencies of transmission 304 

between various relatives in our family tree. In these calculations, we ran tests both including as well as 305 

excluding English in the event of such a potential upwards bias, and to get a better sense of transmission of 306 

languages that have been present in the continent for a longer period of time than recently imported 307 

languages. We additionally reclassified groups as being matrilineal or patrilineal using the database 308 

Ethnographic Atlas (EA)24 and recalculated the transmission rates within those two classifications. 309 
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Matri/patrilineal implies the pattern of inheritance or the tracing of kinship and whether a child generally 310 

identifies more with the social system of the mother’s or father’s line. Interestingly, though our sample size for 311 

matrilineal groups is quite small (N=105 and 674 for matrilineal and patrilineal respectively), we find that there 312 

is a significantly higher language transmission rate for individuals assigned to matrilineal groups. 313 

  314 

In summary, better understanding the composition of samples is a key first step to calibrating subsequent 315 

statistical genetics analyses. Cultural factors such as language can dramatically impact the structure of cohort 316 

data; we find that self-reported language classifications meaningfully tag underlying genetic variation that 317 

would be missed with consideration of geography alone. The work presented here improves the understanding 318 

of the immense spectrum of genetic and ethnolinguistic variation found across multiple African populations and 319 

sheds light on the shifts in language endorsement over the past three generations in five collection sites. 320 

 321 

Tables 322 

Table 1. Procrustes correlations between genetics, geography, and language. All p < 5E-5. The first two PCs 323 

of autosomal and X chromosome variation were used for comparisons. Linguistic variation was calculated as a 324 

function of mean phoneme presence across all languages reported by the individual across their pedigree. 325 

 326 
   Languages spoken by 

Subset of 

individuals 

PCs 1 & 2: 

Genetic Geography Self 

Mother & 

Maternal 

Grandmother 

Father & 

Paternal 

Grandfather 

All individuals 
Autosomal 0.6327 0.450 0.3167 0.3764 

X chr. 0.6248 0.423 0.3046 0.3713 

East Africa 
Autosome 0.7734 0.627 0.5616 0.5648 

X chr. 0.6810 0.585 0.5423 0.5304 

 327 
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Table 2. Language transmission rates from relatives. 328 

Frequency of a participants’ reported primary language matching one of the top three reported languages 329 

spoken by relatives. Rates were calculated both with and without excluding English. In East Africa, individuals 330 

were additionally partitioned by their affiliation with either a matrilineal vs patrilineal ethnolinguistic group. 331 

 332 

 Transmission Rate 

Family Member All Excl. English 

Patrilineal  
(E. Africa) 

Matrilineal  
(E. Africa) 

Father 0.810 0.818 0.837 0.871 

Mother 0.802 0.809 0.811 0.800 

Paternal grandfathers 0.778 0.775 0.726 0.926 

Paternal grandmothers 0.773 0.767 0.738 0.939 

Maternal grandfathers 0.762 0.758 0.708 0.903 

Maternal grandmothers 0.758 0.753 0.726 0.812 

 333 

 334 

STAR Methods 335 

Collection Strategy 336 

As described in more detail in the published protocol9, NeuroGAP-Psychosis is a case-control study recruiting 337 

participants from more than two dozen hospitals and medical clinics in Ethiopia, Kenya, South Africa, and 338 

Uganda. Participants are recruited in languages in which they are fluent, including Acholi, Afrikaans, Amharic, 339 

English, Kiswahili, Luganda, Lugbara, Oromiffa/Oromigna, Runyankole, and isiXhosa. After consenting to be in 340 

the study, participants give a saliva sample using an Oragene kit (OG-500.005) for DNA extraction. Study staff 341 

then ask a range of questions on demographics, mental health, and physical health and take the participants’ 342 

blood pressure, heart rate, height, and weight. The whole study visit lasts approximately 60-90 minutes.  343 
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 344 

Ethnolinguistic Phenotypes 345 

Multiple phenotypes related to self-reported ethnolinguistic categorizations have been collected as part of the 346 

recruitment process. This includes multi-generational data including each participants’ primary, secondary and 347 

tertiary language and ethnicity, and birth country. All linguistic data were collected from participants both for 348 

themselves as well as for each of their parents and grandparents, giving an unusually rich depth of information. 349 

The specific phrasing of questions collected are as follows:  350 

Primary language: “What primary language do you speak?” 351 

2nd language: “What 2nd language do you speak?” 352 

3rd language: “What 3rd language do you speak?” 353 

Primary ethnicity: “What is your ethnicity or tribe?” 354 

2nd ethnicity: “What is your ethnicity or tribe?” 355 

3rd ethnicity: “What is your ethnicity or tribe?” 356 

 357 

Reports for other relatives followed similar phrasing. The primary language question for each is listed, with 358 

primary swapped for ‘2nd’ or ‘3rd’ for the second and third reported languages for that family member. 359 

Mother: “What was the primary language that your biological mother spoke?” 360 

Father: “What was the primary language that your biological father spoke?” 361 

Maternal grandmother: “What primary language did your biological mother’s mother speak?” 362 

Maternal grandfather: “What primary language did your biological mother’s father speak?” 363 

Paternal grandmother: “What primary language did your biological father’s mother speak? 364 

Paternal grandfather: “What primary language did your biological father’s father speak? 365 

 366 

Genetic Data Quality Control 367 

Quality control (QC) procedures for NeuroGAP-Psychosis data were done using the Hail python library 368 

(www.Hail.is). All of the data was stored on Google Cloud. The QC steps and filters used were adapted from 369 
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Ricopili41 and Anderson et al. 201142. The data was genotyped using the Illumina Global Screening Array. For 370 

each of the five NeuroGAP-Psychosis sites, a vcf with genotyping data was stored on Google Cloud. Before 371 

QC, each data vcf contained 192 samples and 687537 variants. When looking at the data pre-QC we 372 

discovered elevated deviations in Hardy Weinberg Equilibrium. We found that the metric which outlined the 373 

individuals causing these deviations was called autocall call rate, Illumina’s custom genotype calling algorithm 374 

(See Supplementary Information). The QC filtering steps took place after removing individuals with an autocall 375 

call rate less than .95. 937 of the original 960 individuals remained. These 960 individuals were used for the 376 

linguistic transmission analyses presented here, while for genetic analyses further QC on variants was 377 

conducted.  378 

 379 

The site vcfs were imported as Hail matrix tables and annotated with appropriated data from the metadata file 380 

before being merged. The resulting matrix table had 937 samples and 687537 variants. Prior to QC, the joint 381 

dataset was split into autosomes, PAR, and nonPAR regions of the X chromosome. QC filtering was 382 

conducted separately for the autosome and X chromosome regions. Pre-QC, the autosomal dataset had 937 383 

samples and 669346 variants. The following is a list of the QC steps and parameters used for autosomal QC. 384 

(1) Removing variants with a call rate less than 95%. After filtering, 638235 variants remained. (2) Removing 385 

individuals with a call rate less than 98%. After filtering, 930 individuals remained. (3) Removing individuals 386 

whose reported sex did not match their genotypic sex. After filtering, 923 individuals remained. (4) Removing 387 

variants with a minor allele frequency less than 0.5%. After filtering, 360,321 variants remained. (5) Removing 388 

variants with a Hardy Weinberg Equilibrium p-value less than 1 × 10-3. After filtering, 331667 variants 389 

remained. (6) Using PC-Relate with 10 PCs, removing individuals with a kinship coefficient greater than .125. 390 

After filtering, 900 individuals remained. After autosomal QC, 900 individuals and 331667 variants remained.  391 

 392 

The PAR and nonPAR regions of the X chromosome were subset to the 900 samples which passed autosomal 393 

QC before going through variant QC. The same variant thresholds used for autosomal QC were used to 394 

conduct QC on the PAR region. Pre-QC the PAR region dataset had 900 samples and 518 variants. (1) After 395 

SNP call rate filtering, 515 variants remained. (2) After MAF filtering, 411 variants remained. (3) After HWE 396 
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filtering, 402 variants remain. Post-QC, the PAR region had 900 samples and 402 variants. For the nonPAR 397 

region, the dataset was split by sex. The female nonPAR dataset had 441 samples and 17673 variants. Variant 398 

QC was carried out on the females using the following metrics. (1) Removing variants with a call rate less than 399 

98%. After filtering, 16261 variants remained. (2) Removing variants with a minor allele frequency less than 400 

1%. After filtering, 11113 variants remained. (3) Removing variants with a Hardy Weinberg Equilibrium p-value 401 

less than 1 × 10-6. After filtering, 11104 variants remained. After nonPAR QC on the females, the male nonPAR 402 

dataset was merged with the female QC’d nonPAR dataset. The final nonPAR dataset had 900 samples and 403 

11104 variants. After filtering, the three datasets were merged into one matrix table. The final merged, post-QC 404 

dataset contained 900 samples and 343173 variants and was written out to vcf and plink format for further 405 

analyses. The counts of variants/individuals per site after autosomal and X QC can be found in 406 

Supplementary Tables 1-2.  407 

 408 

After QC, the dataset was merged with two different reference panel datasets, the 1000 Genomes Project 409 

(TGP)43 and the AGVP38. Before merging the datasets, AGVP had 1297 samples and 1778578 variants while 410 

TGP had 2504 samples and 17892192 variants. Before these two datasets were merged the variants in the 411 

AGVP dataset were flipped using the plink command --flip. In addition, indels were removed from the TGP 412 

dataset, and variants with more than 3 alleles were removed from the AGVP dataset. After removing triallelic 413 

sites from the AGVP dataset, there were 1297 samples and 1771279 variants. After removing indels from the 414 

TGP dataset, there were 16101868 variants and 2504 samples. After merging the two reference panels, there 415 

were 3801 samples and 16194904 variants. After the two reference datasets were merged, --geno filter from 416 

plink was run with .05 threshold to remove variants which had missing genotype call rates greater than 95%. 417 

After this filter, 1677440 variants and 3801 samples remained. Lastly, related individuals were removed from 418 

the merged AGVP and 1000 Genome dataset. The final dataset had 3784 samples and 1677440 variants.  419 

 420 

The reference dataset was then merged with the postQC NeuroGAP-Psychosis dataset containing both 421 

autosomal and X chromosome data. Before merging with the reference panel the NeuroGAP-Psychosis 422 

dataset had 900 samples and 343173 variants. Variants with more than 3 alleles were removed from the 423 
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NeuroGAP-Psychosis dataset. After this the dataset had 343166 variants. After merging the NeuroGAP-424 

Psychosis dataset with the AGVP+TGP reference panel the dataset contained 4684 samples and 1814839 425 

variants. A --geno filter with .05 was run on the merged dataset. After the filter, 4684 samples and 205767 426 

variants remained. Our processing pipeline is freely available at: 427 

https://github.com/atgu/NeuroGAP/tree/master/PilotDataQC. 428 

 429 

Population Structure and Admixture Analyses 430 

Cohort data from the five NeuroGAP-Psychosis plates were merged with African reference populations from 431 

the 1000 Genomes Project43 and the African Genome Variation Project38. These populations provide 432 

reasonably comprehensive geographic coverage across the African continent from currently available 433 

reference panels and contain populations which are co-located in the same countries as all NeuroGAP-434 

Psychosis samples. PCA was run using flashPCA44. Detailed examination of admixture was conducted using 435 

the program ADMIXTURE45 with five-fold cross validation error to inform the correct number of clusters. Plots 436 

from ADMIXTURE output were generated with pong46. ADMIXTURE was run using a tailored representation of 437 

global genetic data consisting of all continental African populations, the CHB population from China to capture 438 

East Asian admixture, the GBR from Britain to capture European admixture, and the GIH from India to capture 439 

South Asian ancestry. Fst estimates across populations were generated using smartPCA47. Fst heatmaps were 440 

generated in R using the package corrplot. The relationship between ancestry composition on the autosomes 441 

vs X chromosome was examined using Pearson correlation and mantel tests in R with the package ade4. 442 

Frequency plots of variants across the globe were created with the GGV browser48. 443 

 444 

Relationship between Genetics and Language 445 

To measure linguistic variation, we made use of the PHOIBLE 2.0 phonemic database23, which contains 446 

phoneme inventories and phoneme qualities for languages around the world. For every individual, we identified 447 

all languages spoken—excluding English—which were present in the PHOIBLE database (84.5% of languages 448 

spoken by the individuals themselves, and 81.1% of languages spoken by their relatives). Using the phoneme 449 
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inventories (including both primary phonemes and their allophones) from PHOIBLE, we found the mean 450 

phoneme presence for each individual's or each relative's spoken languages. The resulting matrices (of 451 

individuals or their relatives, and mean phoneme presences) were used for PCAconducted in R to create three 452 

sets of principal components (PCs): from personally spoken languages, from those spoken by matrilineal 453 

relatives (mother and maternal grandmother), and from those of patrilineal relatives (father and patrilineal 454 

grandfather). 455 

 456 

First, all languages were assigned the highest-level classifications available in Glottolog 4.2.149. These 457 

classifications were modified to minimize the number of high-level classifications while maintaining an element 458 

of geographic origin. Several classifications were consolidated into Nilo-Saharan (made up of Nilotic, Central 459 

Sudanic, Kuliak and Gamuz classifications) and Khoisan (Khoe-Kwadi, Kxa, and Tuu), and Afro-Asiatic was 460 

expanded (with Ta-Ne-Omotic and Dizoid). Indo-European was split to account for the recent history of its 461 

speakers: Afrikaans and Oorlams were placed into a unique category, the languages of Europe into another, 462 

and those of the Indian subcontinent (Hindi and Urdu) into a third. We excluded languages that were 463 

unclassified or identified as speech registers. 464 

 465 

Every individual was associated with a survey location, meaning the geographic coordinates where the sample 466 

was collected, and we used the spoken languages to assign a different, linguistic location. To do this, using all 467 

languages an individual spoke, and these languages' locations from Glottolog, we calculated the mean location 468 

of each individual's languages. 469 

 470 

To compare linguistic, genetic, and geographic variation, we used a set of Procrustes analyses implemented in 471 

R50. For linguistic and genetic variation, the first two PCs of variation were used. Since Procrustes minimizes 472 

the sum of squared euclidean distances, the geographic coordinates of each individual were converted to 473 

points on a sphere. To measure the correlation between geographic variation and linguistic or genetic 474 

variation, the latter were transformed (via rotation and scaling) to minimize the sum of squared distance 475 
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between individuals' locations and the transformed genetic or linguistic PCs. The first two PCs of procrustes-476 

transformed linguistic and genetic variation—representing their similarity to geographic variation—were then 477 

plotted onto a map. 478 

 479 

Anthropological variables 480 

To identify relevant anthropological data, we accessed data from the Ethnographic Atlas (EA)24 using D-481 

Place25. We associated each ethnicity reported in the NeuroGAP-Psychosis survey data to a society in the EA 482 

(if possible), and used two available variables (EA012: Marital residence with kin, and EA076: Inheritance rule 483 

for movable property). For ethnicities with data, individuals whose ethnicities were associated with consistent 484 

inheritance rules or marital residence patterns were assigned that rule or pattern. Of the 907 NeuroGAP-485 

Psychosis individuals, 751 were assigned a marital residence pattern (patrilocal, neolocal, or virilocal-like) and 486 

779 were assigned an inheritance rule (matrilineal or patrilineal). 487 

 488 

  489 
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