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Abstract

Background: The interpretation of results from transcriptome profiling experiments via RNA
sequencing (RNA-seq) can be a complex task, where the essential information is distributed
among different tabular and list formats - normalized expression values, results from differential
expression analysis, and results from functional enrichment analyses. A number of tools and
databases are widely used for the purpose of identification of relevant functional patterns, yet often
their contextualization within the data and results at hand is not straightforward, especially if these
analytic components are not combined together efficiently.

Results: We developed the GeneTonic software package, which serves as a comprehensive
toolkit for streamlining the interpretation of functional enrichment analyses, by fully leveraging the
information of expression values in a differential expression context. GeneTonic is implemented in
R and Shiny, leveraging packages that enable HTML-based interactive visualizations for executing
drilldown tasks seamlessly, viewing the data at a level of increased detail. GeneTonic is integrated
with the core classes of existing Bioconductor workflows, and can accept the output of many
widely used tools for pathway analysis, making this approach applicable to a wide range of use
cases. Users can effectively navigate interlinked components (otherwise available as flat text or
spreadsheet tables), bookmark features of interest during the exploration sessions, and obtain at the
end a tailored HTML report, thus combining the benefits of both interactivity and reproducibility.

Conclusion: GeneTonic is distributed as an R package in the Bioconductor project (https:
//bioconductor.org/packages/GeneTonic/) under the MIT license. Offering both bird’s-eye
views of the components of transcriptome data analysis and the detailed inspection of single
genes, individual signatures, and their relationships, GeneTonic aims at simplifying the process of
interpretation of complex and compelling RNA-seq datasets for many researchers with different
expertise profiles.

Keywords: RNA-Seq; Data interpretation; Functional enrichment analysis; Interactive data analy-
sis; Data visualization; Transcriptomics; R; Bioconductor; Shiny; Reproducible research

Background

In modern life and clinical sciences, RNA-sequencing (RNA-seq) is an essential tool for studying gene
expression and its regulation (Van den Berge et al., 2019). High-throughput sequencing technologies
generate readouts for a large number of molecular entities simultaneously, posing challenges to proper
hypothesis generation and data interpretation (Conesa et al., 2016). Among the typical bioinformatic

1

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.444862doi: bioRxiv preprint 

mailto:marinif@uni-mainz.de
https://bioconductor.org/packages/GeneTonic/
https://bioconductor.org/packages/GeneTonic/
https://doi.org/10.1101/2021.05.19.444862
http://creativecommons.org/licenses/by-nc-nd/4.0/


Marini et al. 2

workflows, differential expression (DE) analysis is often employed to identify the genes showing
evidence for statistically significant changes, thus being candidate effectors for regulation across the
sampled experimental conditions (Love et al., 2015).

Most studies where these techniques are being adopted result in a list containing tens to thousands
of gene candidates, with their associated effect size and significance level - often reported as log2 fold
change (log2FC) and adjusted p-values, respectively. Putting these results into biological context by
leveraging existing knowledge is essential for facilitating the interpretation of data at a systemic level,
and enabling novel discoveries (Chen et al., 2016).

Commonly used knowledge bases for the purpose of functional enrichment analysis include
Gene Ontology (GO) (Ashburner et al., 2000; Carbon et al., 2019), KEGG (Kanehisa et al., 2017, 2019),
REACTOME (Fabregat et al., 2018), and MSigDB (Liberzon et al., 2011, 2015), where the genes are
organized either in simple lists (gene sets, or signatures), or as pathways by accounting for the
interactions occurring among the respective members; throughout this manuscript, we will use these
terms interchangeably. The analysis at the functional level not only aims to reduce the complexity of
high dimensional molecular data (grouping thousands of genes and proteins to just several hundreds
of coherent entities), but also increasing the explanatory power of the underlying observed mechanisms
(Khatri et al., 2012).

A large variety of computational methods and software have been designed for functional enrich-
ment analysis (Xie et al., 2021), and despite their different implementations, they can still be grouped
in three main categories, as identified by Khatri et al. (2012): 1. Over-Representation Analysis (ORA),
contrasting only the set of DE genes against a background of expressed genes; 2. Functional Class
Scoring (FCS), including e.g. Gene Set Enrichment Analysis (GSEA, Subramanian et al. (2005)) and its
different flavors, incorporating a feature-(gene-)level score/statistic, later aggregated at the pathway
level to avoid the choice of a binary threshold; 3. Pathway Topology (PT) based approaches, which
utilize the additional information of graph/network structure describing the interactions (Nguyen
et al., 2018). The most widely adopted methods in this context are ORA and FCS methods, owing to
their ease of applicability, fast runtime, and relevance of resulting gene set rankings, as shown in a
recent benchmarking effort (Geistlinger et al., 2020).

Visualization techniques are widely used to make sense of enrichment analysis results, where gene
sets might also be highly redundant, thus making the prioritization and interpretation of interesting
candidates more challenging (Villaveces et al., 2015; Supek and Škunca, 2017). Numerous tools and
applications aim to simplify the interpretation step by adopting a diverse range of methods and visual
summaries, and these include BiNGO (Maere et al., 2005), ClueGO (Bindea et al., 2009; Mlecnik et al.,
2018), GOrilla (Eden et al., 2009), REVIGO (Supek et al., 2011), GOplot (Walter et al., 2015), AgriGO
(Tian et al., 2017), NaviGO (Wei et al., 2017), WebGestalt (Liao et al., 2019), CirGO (Kuznetsova et al.,
2019), AEGIS (Zhu et al., 2019), FunSet (Hale et al., 2019), hypeR (Federico and Monti, 2020), KeggExp
(Liu et al., 2019), Metascape (Zhou et al., 2019), pathfindR (Ulgen et al., 2019), ShinyGO (Ge et al., 2020),
ViSEAGO (Brionne et al., 2019), STRING (Szklarczyk et al., 2019), GSOAP (Tokar et al., 2020), GOMCL
(Wang et al., 2020), and netGO (Kim et al., 2020).

Aggregating and summarizing the identified categories is an efficient way to capture and distill
the main underlying biological aspects, exploiting visual methods that can efficiently encode the
essential information of a table. Among the commonly used visualization methods, many apply
different ways of grouping and displaying similar genes or gene sets together, including graph-like
representations, clustered heatmaps (either genes by samples, or genes by genesets), or wordclouds.
Good visualizations enable discovering underlying trends in the data in an unbiased fashion, and are
essential components for the proper communication of results in interdisciplinary projects (Supek and
Škunca, 2017; Calura and Martini, 2021).

Datasets and gene set collections increase constantly in their size and complexity, constituting a
major barrier for the interpretability of transcriptomic data and their enrichment results, to the point
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that a potential bottleneck for omics data is the so-called tertiary analysis, opposed to mapping and
quantification (primary analysis) and statistical testing (secondary analysis) (Akhmedov et al., 2020).
Efficient platforms that enable advanced workflows for a wide range of users can play a big role
in providing the required level of interactivity, while guaranteeing the adherence to gold standard
methods and to best practices for reproducible analyses (Sandve et al., 2013; Marini and Binder, 2016;
Brito et al., 2020).

The different atomic elements for a typical RNA-seq analysis (expression table, results from
differential expression, functional enrichment results) can stem from different pipeline outputs, yet
they need to be combined together, e.g. in a report created following the rules of literate programming
(Knuth, 1984). By providing accessible summaries with proper data visualization and interpretation
methods, in formats that facilitate dynamic shareable outputs, such frameworks can greatly reduce
the time to generate novel hypotheses and insight. Often, this task is not straightforward to carry out,
as different software solutions or environments might be chosen, resulting in different file formats,
thus increasing the difficulty for practitioners to explore all relevant aspects of the data at hand, even
if common sets of gene and pathway identifiers are adopted.

A number of solutions have been developed in diverse languages (mostly R, Python, Java) to
address the challenges listed above, but no software package provides a comprehensive framework
for assisting the proper interpretation of RNA-seq data; interested readers can find a comparative
overview of the features of the above mentioned tools in Suppl. Table S1.

Here we present GeneTonic, an R/Bioconductor package aiming to streamline the identification
of relevant functional patterns, as well as their contextualization in the data and results at hand, by
combining in a seamless way all the pieces of information relevant for a transcriptomic analysis. The
GeneTonic package is composed by a Shiny web application, with a variety of standalone functions to
perform the analysis both interactively as well as in a programmatic way. GeneTonic requires as input
the results generated by each analytic step (quantification, DE testing, functional enrichment), which
are usually shared as separate tables or spreadsheets by bioinformaticians and core facility service
providers, in formats that are suitable to standardization.

GeneTonic makes it easy to generate visualizations, starting from bird’s eye perspective summaries
(gene-geneset graphs, enrichment maps, also linked to interactive tables in the web application),
as well as getting in depth dedicated summaries for each geneset of interest. User actions enable
further insight and deliver additional information (e.g. gene info boxes, geneset summaries, and
signature heatmaps), with drilldown tasks activated by simple mouse clicks. While simple operations
within the call to the GeneTonic() main function makes the result set more interpretable, our package
also supports built-in RMarkdown reporting as a foundation for computational reproducibility, to
conclude an interactive exploration session (Marini and Binder, 2019; Marini et al., 2020). We carefully
designed the user interface, enabling the required tasks in a straightforward way, as a result of an
open and continuous dialogue with researchers adopting this tool in its early development. Users
can learn-by-doing the functionality of GeneTonic via guided tours, creating a common ground for
experimentalists and analysts to explore transcriptomic data at the desired depth and efficiently
generate novel insights (Poplawski et al., 2016).

GeneTonic connects together a number of R/Bioconductor packages, implementing the current best
practices in RNA-seq data analysis, and facilitates the communication between experts of different
disciplines. Harmonizing the output of the many analysis steps, possibly performed also with a
variety of tools, GeneTonic is a powerful tool for digesting and enjoying any RNA-seq dataset: the
interactivity is a compelling means to empower end users for the exploration of many features of
interest, and by providing a report with full code snippets, we support analyses that are reproducible
and easily extendable. The GeneTonic package is available at https://bioconductor.org/packages/
GeneTonic/, and a public instance is available for demonstration purposes at http://shiny.imbei.
uni-mainz.de:3838/GeneTonic.
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Implementation

General design of GeneTonic

The GeneTonic package is written in the R programming language, leveraging many existing packages
currently available in the Bioconductor project, which constitute the foundation for a broad spectrum
of analytic workflows in computational biology and bioinformatics (Huber et al., 2015; Amezquita
et al., 2019), and the Shiny framework for interactivity (Chang et al., 2020). The typical use case for
GeneTonic expects researchers to run the web application locally, providing the atomic components of
a typical RNA-seq analysis workflow (Fig. 1, top section).

GeneTonic is designed to be used after the main steps of DE and functional enrichment analyses
have already been completed. While this might seem a limiting factor, we wanted to acknowledge
that a plethora of validated methods for performing functional analyses at the pathway level exist,
and similarly, well established statistical methods for DE are available (Geistlinger et al., 2020; Van
den Berge et al., 2019). Our focus was rather on providing a standardized interface (via so-called
shaker functions) to automatically handle the outputs of the different tools which most users might
be familiar with, so that GeneTonic retains a wide applicability with respect to the upstream analysis
workflows - this is illustrated in the use cases of Suppl. Files 1 and 2.

The required input components are stored as in the DESeq2 workflow (Love et al., 2014), using
classes descending from the versatile SummarizedExperiment container, de facto the adopted standard
for interoperability in the Bioconductor ecosystem (Huber et al., 2015). Tabular information can be
provided as simple data frame objects, either imported from textual output of the different tools,
or converted internally by the shaker functions of GeneTonic. We encourage users to adopt stable
feature identifiers, such as ENSEMBL or Gencode (Yates et al., 2019; Frankish et al., 2019), and enable
the automated conversion to HGNC gene symbols via annotation tables.

Most of the implemented functionality can be accessed by a single call to the main GeneTonic()
function, with the different visualizations and summaries directly available from the dedicated
sections of the web application. These functions are also exported for usage in scripted analyses
such as RMarkdown HTML reports, making it easy to automate tasks while still creating interactive
widgets that can be explored in depth offline (Fig. 1, bottom section).

The user interface (shown in Fig. 2) is structured with the layout provided by the bs4Dash package
(Granjon, 2019), which implements Bootstrap 4 over the infrastructure of shinydashboard (Chang and
Borges Ribeiro, 2018). The main features include a sidebar menu (Fig. 2A) to navigate the different
sections of the app, a header and a collapsible control panel to provide widgets which define the
general behavior of the main panel, displayed in the dashboard body (Fig. 2C).

To instruct users on how to efficiently leverage the exploration components, we enhance the
content provided in the use case vignette with guided tours of the interface (Fig. 2B), implemented via
the rintrojs package (Ganz, 2016). This learning-by-doing paradigm invites the user to perform the
actions that reflect typical usages in each module, and can be seen as a dynamic extension of the static
documentation format.

Collapsible and tab-based elements allowed us to build a rich user interface, yet without adding
too much visual clutter, which would hamper the usability of the analysis sessions - and by that reduce
the ability to extract relevant insight.

All the required elements for running GeneTonic are provided at the beginning of the execution,
meaning that the navigation throughout the different modules can take place with the usual iteration
cycles that build up a full in-depth exploration. As this process can become time-consuming, we
implemented a dedicated bookmarking system to temporarily store the genes and gene sets of interest,
either by clicking on the dedicated button or with a keystroke (defaulting to the left control key). A
summary for these selected features is automatically rendered in the Bookmarks section, where the user
can generate a full report on the provided input parameters, focusing on the aspects picked up during
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Figure 1: Overview of the GeneTonic workflow. Four elements are required to optimally use the
functionality of GeneTonic (top section): dds, a DESeqDataSet, with the information related to the
expression values; res_de, a DESeqResults object, storing the results of the differential expression
analysis; res_enrich, a data frame with the result from the enrichment analysis; annotation_obj, a
data frame containing different sets of matched identifiers for the features of interest. These can be
combined into a GeneTonicList object (middle section), which can be directly fed to GeneTonic and
its functions, enabling (bottom section) interactive exploration and a variety of visualizations on the
geneset enrichment results, both exploited to generate an integrated HTML report of the provided
data.
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the live session (Fig. 1, bottom). It is then easy to reconstruct and reproduce the analytic rationale, and
share the rendered outputs with cooperation partners, or simply store them for the purpose of careful
documentation.

Typical usage workflow

The typical session with GeneTonic can start once the required inputs are provided to the main
function (as illustrated in Fig. 1).

In order to use GeneTonic, the following inputs are required: 1. dds, a DESeqDataSet, the main
component in the DESeq2 framework, storing the information related to the expression matrix; 2.
res_de, encoded as DESeqResults for containing the results of the differential expression analysis;
3. res_enrich, i.e. the result from the enrichment analysis, likely converted through one of the
shaker functions for preprocessing (or manually, if feeding this from a tool currently not supported),
structured as a data frame with a minimal set of required variables (pathway identifier, description,
significance level, and affected genes); 4. annotation_obj, the gene annotation data frame, i.e. a table
with at least two columns, gene_id for a set of unambiguous identifiers (e.g. ENSEMBL ids), and
gene_name, containing a human-readable set of names, e.g. HGNC-based gene symbols.

Conveniently, a single named list containing these inputs (Fig. 1, middle section) can be provided
as an alternative format, with many functions of GeneTonic accepting a gtl parameter (standing for
"GeneTonicList"). This simplifies the creation of context-dependent serialized objects that can be
easily shared by data analysts to experimental collaborators.

In its current version, GeneTonic can directly handle the output of different tools, selected for
being among the most commonly used in pathway analysis, including topGO (Alexa et al., 2006),
clusterProfiler (Yu et al., 2012), DAVID (Huang et al., 2009), Enrichr (Kuleshov et al., 2016), g:Profiler
(Reimand et al., 2019; Raudvere et al., 2019), and fgsea (Korotkevich et al., 2021) - these are showcased
in the code included in Suppl. Files 1 and 2. We plan to extend the compatibility of GeneTonic with
the output of newly developed tools, or alternatively welcome contributions on the project homepage
on GitHub (https://github.com/federicomarini/GeneTonic).

All the components of the GeneTonic() application can be seamlessly used by leveraging sets of
shared gene identifiers across the different input objects. This makes it possible to compute aggregate
scores for each gene set, e.g. averaging the log2 fold change of all the affected members of the gene set,
or computing a Z-score based on the standardized sum of the number of genes regulated in either
direction. As gene sets cannot take into account the topological information of a pathway, this is a
valid surrogate means to summarize the effect between conditions at the functional level, and can be
visually encoded in the outputs of the GeneTonic dedicated routines.

The process of data exploration and interpretation is iterative by its own nature. GeneTonic
supports this by employing a variety of visual summaries (gene-geneset bipartite graphs, enrichment
maps, geneset volcano plots, and more in the dedicated app sections - Fig. 2 and Suppl. Fig. 1). We also
offer methods to efficiently extract the most meaningful affected biological themes, e.g. by grouping
similar categories and selecting a representative pathway for each subset, in order to simplify the
redundancy often found in functional enrichment results. Whenever possible, we provide additional
information boxes for genes and genesets (Fig. 2D and E) to facilitate drilldown tasks and better
understand the whole data components of the project. A number of automatically generated action
buttons link directly to external databases, such as AmiGO (Carbon et al., 2019), NCBI (Agarwala et al.,
2017), GeneCards (Stelzer et al., 2016), GTEx (Gamazon et al., 2018), enabling more in-depth analysis of
particular genesets or genes, without the need to type all the entries of interest.

While the main way of using the functionality of GeneTonic is probably via its web application, we
designed all the underlying functions to be able to handle standard objects and classes adopted by the
current Bioconductor workflows, and therefore their output can be also incorporated in information-
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Figure 2: Screenshot of the Gene-Geneset panel in the GeneTonic application. The main navigation
of the app is performed via the sidebar menu (A), while the options common to the different panels
are available in the control bar (toggled with the cogs icon, close to the B circle). The main area
of the Gene-Geneset panel (C) contains an interactive bipartite graph connecting genesets to their
respective components, color coded according to the type and the expression changes. Upon clicking
on any node, a Geneset Box (D) or a Gene Box (E) can be automatically generated for facilitating
further exploration. The backbone of the graph above (F) represents a compact summary of the
bipartite projections, and a table displays the most highly connected nodes (G), as potential hubs with
regulatory roles in multiple genesets.
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rich HTML reports and existing scripted analyses without additional effort. Indeed, the report itself
created via the happy_hour() function is an exemplary RMarkdown document, which users can edit
and extend as they see fit. Literate programming approaches were initially conceived by the seminal
work of Knuth (Knuth, 1984) and have been currently refined in the knitr framework (Xie, 2013) and
in the Jupyter notebook system (Rule et al., 2019). These techniques constitute a powerful toolkit to
ensure the reproducibility of computational analyses (Sandve et al., 2013; Stodden and Miguez, 2014;
Brito et al., 2020). The creation of such an HTML document is also intended as the recommended
concluding step of a typical usage session for GeneTonic.

In case additional or bespoke visual representations of the input objects (e.g. MA plot for the DE
results, customized heatmaps, ...) should be created, the iSEE Bioconductor package (Rue-Albrecht
et al., 2018) can be used for this purpose. We provide a specific export function, combining the provided
inputs into a SummarizedExperiment object that can be readily further explored in an instance of iSEE,
by properly accessing the assays, colData, and rowData slots.

Results

In this section, we will illustrate the functionality of GeneTonic, showcasing the results for the analysis
of a human RNA-seq dataset of macrophage immune stimulation, published in Alasoo et al. (2018).
The data is made available via the macrophage Bioconductor package, which contains the files output
from the Salmon quantification (version 0.12.0 - Patro et al. (2017)), against the Gencode v29 human
reference. Expression values, summarized at the gene level, are available from 6 individual donors, in
4 different conditions. We will focus on the comparison between Interferon gamma treated samples vs
naive samples.

A comprehensive report on the processing for this dataset and its usage with GeneTonic is included
in Suppl. File 1. Suppl. File 2 showcases the usage of GeneTonic on the findings of the work of
Mohebiany et al. (2020) (A20-deficiency in mouse microglia cells), describing also an alternate entry
point for running GeneTonic with objects from the edgeR workflow for differential expression (Lun
et al., 2016).

Augmenting functional enrichment results with expression data

The majority of functions in GeneTonic requires only a minimal set of information on the pathways
enrichment results, i.e. a gene set identifier, its description, and a measure of significance for the
enrichment, often specified as a p-value. Nevertheless, it is often beneficial to combine additional
knowledge, if provided by the method used to perform the enrichment test; this might include the
number of genes annotated to each pathway and the related subset detected as differentially expressed,
but more importantly it can incorporate the full set of expression values in the original dataset.

One way to do so is via the get_aggrscores() function, which computes the overall pathway Z-
score and an aggregated score (such as the mean or the median), which summarize at the gene set level
the effect (log2FC) of the differentially expressed genes annotated as its members. In detail, the gene
set Z-score attempts to determine the “direction” of change, and is computed as zgs =

(DEup−DEdown)√
(DEup+DEdown)

,

where DEup and DEdown are the number of up-regulated and down-regulated DE genes annotated to
the geneset gs, respectively (Fig. 3A and B).

Alternatively, a sample-level gene set score can be computed, in an approach similar to the
implementation of GSVA (Hänzelmann et al., 2013). First, a variance stabilizing transformation is
applied to the expression matrix, returning values that show a higher degree of homoscedasticity,
thus more amenable to downstream processing and visualization. For each gene, the values are
Z-standardized by subtracting the row-wise mean and dividing by the row-wise standard deviation.
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Figure 3: Graphical summaries of enrichment results. A A geneset volcano plot (gs_volcano()),
with the -log10p-value depicted against the geneset Z-score, with a subset of representative affected
functions, generated from the output of the gs_fuzzyclustering() function. The size of the points
maps the information of the geneset size. B An enhanced visual summary for the enrichment results,
displaying the contributions of the single genes to each gene set (with the directionality as log2FC),
created with enhance_table(). C A heatmap for the matrix of sample-wise geneset Z-scores for
the same subset used in the other subpanels, generated with gs_scoresheat() on the output of
gs_scores(). D A multidimensional scaling plot for genesets, colored by their Z-score, representing
the set similarity. This can be generated with the gs_mds() function.
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Finally, for each pathway, we take the subset of the Z values corresponding to its members, and its
average is computed and returned as pathway score. We define Zij as the Z-score for gene i in sample

j as Zij =
Tij−T̄i

sdi
, whereas Tij is the correspondent entry in the transformed expression values matrix, T̄i

and sdi are the mean and standard deviation for the gene i, respectively. The entry GSkj for pathway
k in sample j is thus defined as GSkj =

1
|Pk | ∑i∈Pk

Zij, where Pk is the set of DE genes for pathway k
(Fig. 3C).

This extra information about the status of activation/repression for each pathway can be efficiently
encoded as aesthetic elements in plots (e.g. the color of a node in a graph, with the geneset Z-score),
or directly displayed as a heatmap of the pathway score matrix to compare the activity among the
samples.

Exploring the interplay of pathways and genes, interactively

The relationships among pathways and their member genes, or just between different pathways, can
quickly become hard to manage when using simple textual or tabular formats. This can be due to the
growing size of existing annotations, whereas the increase in detail can also lead to an increase in
redundancy, thus making the task of extracting the key biological messages harder.

A number of visualization techniques have been adopted in the last years to simplify this basic
yet essential operation (Supek and Škunca, 2017; Calura and Martini, 2021), and a common way to
represent this complex interplay is by using graphs. Unipartite graphs are an efficient way to depict
the degree of similarity among genesets, where genesets themselves are the nodes, and edges encode
for information such as the degree of similarity/overlap between the two nodes (Merico et al., 2010)
- see Suppl. Fig. 1. Bipartite graphs (as in Fig. 2) can be naturally adopted to include both genes
and genesets as the main node types, with unweighted edges representing in this case the binary
membership status for one gene with respect to one geneset (Pomaznoy et al., 2018).

GeneTonic builds upon these foundations and implements the possibility to interact with the nodes
upon hovering with the mouse (or clicking on them). The graph objects are generated dynamically,
including the desired number of genesets; by default, the top most significant hits in the enrichment
results are selected. Interactivity is provided by the visNetwork package (Almende B.V. et al., 2019),
that wraps the vis.js library bindings, building on the htmlwidgets framework. Depending on the
type of node selected in the main user interface, an information box is populated (Fig. 2D and E).

If selecting a pathway (displayed as a yellow box), the info box will contain details on the geneset (if
detected as a Gene Ontology term), and a signature heatmap is displayed, with the variance stabilizing
transformed expression data encoded as color to give a fine-grained view of the behavior for all its
set members; this is particularly useful to connect the existing biological background with lists of
features where no information on the topology is provided, enabling to detect subgroups of correlated
expression patterns. Another useful representation can be obtained by coupling a volcano plot (for
representing differential expression) with the annotated labels of the members of a geneset; this is
implemented in the signature_volcano() function, and displayed in the same info box (Suppl. Fig. 1).

Genes are displayed in the graph as ellipses, colored using a divergent palette to encode for the
effect size as log2 fold change; when a gene is selected, a plot for the corresponding expression values
is shown, split by experimental variables, and the DE results for the selected gene, together with
automatically generated links to external databases opening up in new tabs, to simplify the subsequent
exploration steps.

The content available in the Gene-Geneset tab is an excellent starting point to get an overview on the
provided data. While navigating the interactive graph, it might occur that the user encounters genes
or genesets of particular interest; by simply clicking on the Bookmark button in the header section
(or alternatively, pressing the left control key) while the node is selected, these elements are stored
throughout the session and collected in the Bookmarks panel, where one can generate a dedicated
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report on these entities.
GeneTonic enables the extraction of a graph backbone, wrapping the efficient implementation of

the backbone package (Domagalski et al., 2021) to highlight the salient edges of the bipartite projections
for each type of features included, as a way to summarize information contained in large networks
(Fig. 2F and G).

Additional insight can be extracted by drilling down the interactive Enrichment Map (Merico et al.,
2010; Yu et al., 2012), either by focusing on the selected nodes (checking out signature heatmaps
or bookmarking the genesets for inserting them into the report), or also by running a variety of
community detection algorithms on the graph object returned by the enrichment_map() function
(Suppl. Fig. 1C). Together with the community membership information, it is then possible to obtain a
more compact summary for the functional enrichment results, where the most representative genesets
for each subpartition of the graph are selected and returned in tabular format. This network-based
approach can be exploited to detect the handful of overarching themes, which might give a more
immediate snapshot than the many, often redundant, categories, commonly returned by pathway
enrichment algorithms (Suppl. Fig. 1E-F-G).

Summarizing the enrichment results

GeneTonic provides numerous ways to summarize the enrichment results, often leveraging the
effectiveness of visual representations to extract insights. The Overview and GSViz panels serve this
purpose, showcasing different views on the dataset at hand, with the main controls provided in the
right sidebar.

The geneset volcano plot (Fig. 3A) displays all genesets from the res_enrich object and labels the
most relevant (or any subset of interest). We use one of the aggregated scores (geneset Z-score, or
average log2 fold change) to determine the horizontal position in the plot. To avoid clutter, it is also
possible to reduce the terms based on an overlap threshold, retaining only the most representative
ones, and provide this more compact summary to the following visualization routines.

The enhanced table (Fig. 3B) summarizes the top genesets by displaying the log2FC of each set’s
components along a line (one for each set). On top of the static version, this is provided also as an
interactive widget, where tooltips activated with the mouse deliver extra information on each dot,
representing a single gene.

The complex relationships among genesets and their behavior across samples are just two as-
pects one can inspect in depth with the implemented methods. Among these, users can generate a
genesets-by-sample heatmap, showing the standardized expression values of the members (via the
gs_scoresheat() function, Fig. 3C), or alternatively a summary heatmap (with gs_summary_heat(),
Suppl. File 2), which aims to display the redundancy between different sets, while encoding the
values of the expression changes. A multi-dimensional scaling (MDS) plot (Fig. 3D) delivers a 2d
visualization of the distance among genesets, based on a similarity measure, e.g. their overlap or other
criteria, such as their semantic similarity. In a similar fashion, a dendrogram for genesets enables
the possibility to use node color, node size, and branch color to encode relevant features, with the
tree structure mirroring the distance matrix based on a similarity measure. GeneTonic simplifies
the creation of simple summaries for the enrichment, where the essential columns are encoded as
graphical parameters of the points, extendable to the case of comparing the same genesets in more
than one scenario (e.g. if it is possible to extract more than one contrast from the expression matrix).
Switching to polar coordinates, this can be captured in spider plots for one or more res_enrich objects
(see Suppl. File 2 for more examples of usage).

These visual summaries constitute appealing alternatives to the commonly reported tabular
formats, which often fail to provide an overall view for the affected functional landscape.
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Wrapping up the session

The Bookmarks panel offers the possibility to review and inspect the shortlisted features of interest,
where both genes (on the left side of the interface) and genesets (right side) can be exported to text
files.

A more comprehensive report, with dynamically generated content based on the user selections, is
compiled when starting the happy_hour() function. This is made possible by a template RMarkdown
document, included in the GeneTonic package, which accesses the input elements and the reactive
values for the Shiny components. Notably, this functionality can also be used outside an interactive
usage session, specifying as parameters the values for the genes and genesets to focus on. In either
case, a full HTML document is rendered, whose content mirrors the structure of the info boxes, and
can be later shared or stored as a reproducible artifact for the performed analyses.

Another action button creates the serialized version of a SummarizedExperiment object, ready to
be provided as the main input to iSEE (Rue-Albrecht et al., 2018), for further tailored visualizations,
either with standard or custom panels of the web application.

Discussion

Interpreting the results of transcriptomic studies can be a complex task, where differential expression
analysis is combined with a higher-level pathway enrichment analysis, in order to robustly define
the molecular actors that display expression changes, and also to identify the underlying functional
patterns. Geneset functional enrichment has been successfully applied to thousands of works, and for
this step many methods and approaches have been developed. These tasks are also often shared with
alternative workflows other than DE analysis, whereas the aim is to extract meaningful information
from large lists of genes, yet it is still a prohibitive task to combine in a straightforward way all the
single results from each step. This can be for example due to disjoint sets of identifiers, different
output and file formats, and to the difficulties in extracting knowledge while handling large numbers
of redundant genesets. Providing concise and biologically meaningful views of the underlying cellular
processes, defined via differential expression, is essential in many applications, and a proper visualiza-
tion framework plays a fundamental role in transforming the otherwise tedious and error/bias-prone
task of navigating large textual tables into a more compelling activity (Merico et al., 2010; Supek and
Škunca, 2017).

In this work, we introduced GeneTonic as a solution to explore all the components of a transcrip-
tome dataset in a more integrative way, instead of having to process them as separated outputs.
GeneTonic is focused on the analytic step devoted to the interpretation of data, rather than on the
implementation of additional methods for detection of functionally enriched biological processes or
pathways. Consequently, GeneTonic implements a variety of summary and visual representations,
while accommodating the output of many commonly adopted enrichment tools, making efficient
use of the Shiny framework to deliver interactivity and enable drilldown operations. These would
otherwise need to be laboriously addressed in multiple iterations of scripted analyses, either done by
the user itself or in collaboration with an external unit, such as a bioinformatics core facility.

Several software packages and web-based portals exist for providing similar functionality, and
a comprehensive overview of their salient features is presented in Suppl. Table S1. Naturally,
these tools differ in terms of implementation, range of applicability, ease of use, with many pro-
posals offering embedded versions of enrichment tests. Since we developed GeneTonic in the R
programming language, where many such testing procedures are natively available, we instead
focused on the support and integration of their output formats into a common workflow. This
can be easily combined with existing analysis pipelines, making our tool well suit for potential
wide adoption. The comparison with other tools is also available online (https://federicomarini.
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github.io/GeneTonic_supplement), linked to a Google Sheet where the individual characteristics
of each tool can be updated, in order to provide guidance for users who might be seeking advice
on which solution best fits their needs (accessible at https://docs.google.com/spreadsheets/d/
167XV0w18P0FSld1dt6owN4C2Esxl5FU2QTo4D-wclz0/edit?usp=sharing).

While currently focused on the output of single ORA and FCS enrichment methods, future
developments of GeneTonic will implement functionality for combined and ensemble approaches,
such as EnrichmentBrowser (Geistlinger et al., 2016) or EGSEA (Alhamdoosh et al., 2016). Moreover,
extending such visualizations and interactive summaries to scenarios where multiple omics layers
are collected will be a promising avenue for GeneTonic, given the growing number of such datasets
becoming available. Finally, we intend to address more refined similarity measurements among
genesets, e.g. accounting for information contained in protein-protein interaction networks databases
(Yoon et al., 2019), in order to better capture the functional relatedness of the affected pathways.

As bioinformatics evolves constantly into a highly interdisciplinary field, it will become increas-
ingly important to develop common platforms usable by many profiles with substantial differences in
their level of programming skills, and GeneTonic’s design guidelines adhere to this principle. As a
complement to this didactic effect by making the analyses even more open, transparent, and easy to
share, GeneTonic could make it easier for bioinformatics skilled users to better understand the systems
under investigation, prompting e.g. the development of further tailored methods, which could be a
key in obtaining a deeper knowledge of the experimental scenarios.

Conclusion

The identification of relevant functional patterns for the features identified in the differential expression
analysis, accounting for the available expression data, remains one of the common bottlenecks
for transcriptome-based workflows. GeneTonic provides a web application and many underlying
functions to assemble the pieces together, supporting the exploration both interactively as well as in
a programmatic way. Combining together the results for quantification, DE testing, and functional
enrichment (either generated autonomously, or obtained from collaborators), GeneTonic assists in the
unmet yet increasing need of extracting novel knowledge and insights, which can become daunting
especially on larger datasets.

GeneTonic has the potential to become an ideal interface between experimental and computational
scientists, with the HTML report built via RMarkdown as a milestone for reproducibility, upon
conclusion of an interactive session. GeneTonic can be integrated in a wide spectrum of existing
bioinformatic pipelines, as it provides functions to convert and input the results of many pathway
enrichment tools. This aligns with the principle of interoperability at the heart of the Bioconductor
project, which enables a large number of such workflows.

The experience of enjoying transcriptomic data analysis and exploration can be easily shared with
reduced communication burden, with both experimental and computational sides empowered in
the tasks of realizing complex summaries and visualizations. This will significantly facilitate and
democratize the discovery process, bridging the gaps existing between technical and domain expertise.
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Supplemental Figure 1: Screenshot of the Enrichment Map panel in the GeneTonic application. The
sidebar menu (A) controls the main navigation in the app, and a common set of options is toggled
with the cogs icon (B). The main area of the Enrichment Map panel (C) contains an interactive graph for
the enrichment map of the genesets, connected according to their similarity, and color coded according
to the specified geneset property (here, the Z-score). Upon clicking on any geneset, a Geneset Box (D)
is displayed for further exploration (e.g. to show a volcano plot with the geneset members labelled).
The geneset distillery (E) enables the exploration of meta-genesets, derived by computing clusters on
the graph object underlying the enrichment map. From the tabular representation, it is possible to
visualize meta-genesets as heatmaps (F), or display a modal popup containing the enrichment map
where the cluster assignments of the genesets are shown (G).
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