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Key Message: Moisture content during nixtamalization can be accurately predicted from NIR 

spectroscopy when coupled with a support vector machine (SVM) model, is strongly modulated by the 

environment, and has a complex genetic architecture.  
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ABSTRACT 

Lack of high throughput phenotyping systems for determining moisture content during the maize 

nixtamalization cooking process has led to difficulty in breeding for this trait. This study provides a high 

throughput, quantitative measure of kernel moisture content during nixtamalization based on NIR 

scanning of uncooked maize kernels. Machine learning was utilized to develop models based on the 

combination of NIR spectra and moisture content determined from a scaled-down benchtop cook 

method. A linear support vector machine (SVM) model with a Spearman’s rank correlation coefficient of 

0.852 between wet lab and predicted values was developed from 100 diverse temperate genotypes grown 

in replicate across two environments. This model was applied to NIR data from 501 diverse temperate 

genotypes grown in replicate in five environments. Analysis of variance revealed environment explained 

the highest percent of the variation (51.5%), followed by genotype (15.6%) and genotype-by-environment 

interaction (11.2%). A genome-wide association study identified 26 significant loci across five 

environments that explained between 5.04% and 16.01% (average = 10.41%). However, genome-wide 

markers explained 10.54% to 45.99% (average = 31.68%) of the variation, indicating the genetic 

architecture of this trait is likely complex and controlled by many loci of small effect. This study provides 

a high-throughput method to evaluate moisture content during nixtamalization that is feasible at the scale 

of a breeding program and provides important information about the factors contributing to variation of 

this trait for breeders and food companies to make future strategies to improve this important processing 

trait.  

 

  

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.444884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444884
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

3 

INTRODUCTION 

Maize is the largest crop produced in the United States. In 2019, 13.6 billion bushels of maize were 

produced, which was valued at 52.3 billion dollars (United States Department of Agriculture 2019). Most 

of the maize grown in the United States is used for either livestock feed or ethanol production, with very 

little being used for direct human consumption (United States Department of Agriculture 2019). As a result 

of this limited relative acreage, the research and development efforts for food-grade corn varieties has 

also been limited. Typically, food-grade maize hybrids are high quality, high test weight maize (S.O. Serna-

Saldivar et al. 1993) that is selected out of the existing No. 2 yellow dent germplasm (Holmes et al. 2019). 

This narrow selection process makes it difficult to make gains for specific traits of importance to food-

grade maize products, such as moisture content during nixtamalization for masa-based products. 

Nixtamalization is a thermal-alkaline cooking process that humans have been performing for 

centuries. The primary purpose of nixtamalization is to remove the kernel pericarp and soften the grain 

to facilitate grinding (Santiago-Ramos et al. 2018). During nixtamalization, grain are added to an aqueous 

alkaline solution, usually from lime (Ca(OH)2), and heated to a temperature above starch gelatinization, 

but below the boiling point of water. It remains at this temperature for between 5 and 180 minutes, 

depending on the needs of the end product. After cooking, the kernels are steeped in the alkaline solution 

for roughly 16 hours at a temperature below the starch gelatinization temperature. The pericarp is then 

removed either by pressurized water or mechanical forces. The remaining part of the grain, primarily 

endosperm, is ground into a fine flour called masa. Many of the qualities that make the end product 

desirable, or undesirable, are closely related to how much water is taken up by the grain while it cooks 

and steeps (Ramirez-Wong, B. et al. 1994). The moisture content of masa can affect properties such as 

texture and oil content of the end product (Holmes et al. 2019). Compositional attributes of maize vary 

greatly between genotypes (Flint-Garcia et al. 2009; Renk et al. 2021), and could have a profound impact 

on moisture content.  
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Maize kernels are made up of macromolecules that are unevenly distributed throughout the 

kernel and can impact moisture content in various ways (Holmes et al. 2019). The first macromolecules 

that water interacts with during the cooking process are fiber (cellulose and hemicellulose) and protein in 

the pericarp, which are broken down by the alkaline solution. The alkaline solution then passes through 

the aleurone, which is the outermost layer of endosperm cells positioned just beneath the pericarp. The 

aleurone is largely unaffected by the nixtamalization process (Santiago-Ramos et al. 2018), and as such 

should not contribute to moisture content. After passing through the aleurone, the alkaline solution 

proceeds to the internal endosperm, which is primarily made up of starch and protein, but also contains 

fiber, lipids, vitamins, and minerals. In the endosperm, the alkaline solution causes the starch granules to 

begin swelling. This is restricted by the protein matrix that surrounds the starch granules (Santiago-Ramos 

et al. 2018). Thus, when thinking about moisture content properties it is important to consider not only 

the starch content and structure, but also its interaction with protein content. Lipids in the endosperm 

can form complexes with starch molecules as well, affecting how much moisture can be taken up during 

nixtamalization (Santiago-Ramos et al. 2018). Lipids are especially concentrated in the germ (i.e. embryo; 

Weber 1979), and due to the high temperature of cooking, and long steeping time, it is possible that some 

lipids from the germ could diffuse to the starch granules found in the endosperm to form absorption-

restricted complexes. Since the pericarp, germ, and endosperm are the primary locations of interaction 

with the alkaline solution, variation in the macromolecular composition of these tissues is hypothesized 

to be a primary driver of moisture content.  

Breeding for moisture content is difficult as it is a complex trait with a number of different 

compositional traits likely contributing to it. Using wet chemistry to measure all of these different traits is 

a time-consuming process, and a faster evaluation method is preferred. Near-infrared spectroscopy (NIR), 

coupled with machine learning, can greatly improve the efficiency of the evaluation process. NIR is an 

analytical tool that measures wavebands in the near-infrared domain of the electromagnetic spectrum 
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(750nm-2500nm) (Aenugu et al. 2011). NIR is now routinely used to identify compounds based on the 

combinations of specific vibrations given off when atoms bound to hydrogen absorb and subsequently 

release energy in the NIR spectrum. These absorbances can be quantified, and used to develop robust 

equations that use a combination of wet chemistry assays and spectral values to estimate macromolecular 

composition (Aenugu et al. 2011). 

Many statistical approaches have been implemented with NIR prediction equations (Orman and 

Schumann 1991), but as traits become more complex, new approaches are needed. Machine learning is a 

branch of artificial intelligence focused on the creation of algorithms that help computers see patterns in 

data that humans cannot, and is a promising approach for these complex traits (Parmley et al. 2019). 

There are multiple forms of machine learning including supervised, unsupervised, reinforcement, and 

active learning. Supervised learning models are given both the predictor and response values for a large 

subset of the data. The computer learns patterns in the training data and is able to make predictions on 

new data (James et al. 2013). Machine learning gets its power from generalization, and care needs to be 

taken to not overfit or underfit a model (Barratt and Sharma 2018). It is vital to train on diverse, well-

collected data that limit the number of confounding factors (Roh et al. 2019). There are also ways to boost 

generalization in machine learning models from a computational perspective, the primary method being 

cross-validation (specifically k-fold and hold-out). If used properly, machine learning can be a powerful 

tool in the realm of data science (Ornella et al. 2012). 

The ability to rapidly predict moisture content during nixtamalization is necessary to make 

significant improvements in food-grade corn germplasm that is sourced for masa-based products. In this 

study, an algorithm was developed to allow accurate, high throughput prediction of moisture content 

during the cooking process. Moisture content values and NIR spectra from 100 genotypes grown in 

replicate across two environments were used to train a machine learning model. The model was then 

used to predict moisture content on 4,650 plots from 501 diverse genotypes grown in replicate in five 
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environments. This information was used to partition the sources of variation and dissect the genetic basis 

of the trait. 

 

MATERIALS AND METHODS 

Plant Material and Spectral Data Collection 

A set of 501 diverse maize inbred lines (Supplemental Table 1) from the Wisconsin Diversity Panel (Hansey 

et al. 2011) were grown in Summer 2014 and Summer 2015 in St. Paul, MN. Plants were grown with 30-

inch row spacing at ~52,000 plants per hectare. All plants were hand pollinated and hand-harvested at 

physiological maturity. A subsample of 120g of grain from each plot was ground using a Perten LM 3610 

Laboratory Mill with a Perten 3170 Mill Feeder. Samples were scanned using a Perten DA 7250 NIR 

analyzer with 141 5nm waveband absorbances from 950nm to 1650nm (Supplemental Table 2) on the 

large cup setting. From this spectral data, a subset of 100 genotypes were identified using k-means 

clustering that maximized spectral variation in the subset of selected lines within the Perten proprietary 

software.  

The same set of 501 diverse maize inbred lines was grown at two locations in 2016 and three 

locations in 2017. Each location contained two replications arranged in a randomized complete block 

design. These inbreds flower over approximately 14 days. Within replicates, plots were blocked into early 

plots (flowering at approximately 71 to 80 days after planting) and late plots (flowering at approximately 

81 to 87 days after planting), and randomized within the block within the replicate. In all locations plants 

were grown at approximately 70,000 plants per hectare with 30-inch row spacing. Experiments were 

grown in St. Paul, MN, and Boone County, IA in 2016 and 2017, and Columbia, MO in 2017. Open-

pollinated ears from five plants per plot were hand-harvested, hand shelled, ground, and scanned using 

the same procedure as described above. For a small number of plots there was insufficient seed, and for 

these plots 80g of grain was ground and the sample was scanned on the small cup setting. For all samples 
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that were scanned, the waveband absorbances were exported (Supplemental Table 3) and estimated trait 

values for macromolecules were generated using existing Perten equations that were calibrated using 

Honig’s Regression for percent fat, percent fiber, percent protein, percent starch, and percent ash 

(Supplemental Table 3). 

 

Laboratory-Scale Cooking Procedure  

A benchtop cook test was used to assess moisture content during the cooking and steeping steps of the 

nixtamalization process. Seed from the 2016 plots grown in St. Paul, MN and Boone County, IA for the 100 

genotypes that were identified to maximize spectral variation were subjected to this bench top cook test. 

Both of the replicates grown in St. Paul, MN, and Boone County, IA in 2016 were cooked in duplicate 

according to the method below, which equates to ~800 total cooks (Supplemental Table 4). The benchtop 

cook test was performed on a 100g sample of grain. Grain was dried in a 27oC oven for 24 hours prior to 

cooking to ensure consistent moisture content. For the cooking, 2.4g of calcium hydroxide was added to 

400ml of deionized water in a 1L beaker. A stir bar was placed in the bottom of the beaker under a cook 

basket. Raw, dried corn kernels were poured into the cooking basket. The beaker was covered with 

aluminum foil and placed on a pre-heated hotplate (60oC) that was then heated to 93.3oC and 

temperature maintained for one minute. The samples were immediately quenched with 200ml of room 

temperature deionized water, the cooking basket was removed from the beaker, and kernels were poured 

back into the beaker of nejayote and placed into a 49oC water bath to be steeped for 16 hours. After 

steeping, samples were removed from the bath and the pH of the solution was determined. The kernels 

were then poured into a large metal bowl with the nejayote. Kernels were picked up and rubbed by hand 

to remove pericarp and debris. After this, the samples were poured through a strainer into a 2L beaker. 

Kernels were then placed back into the bowl with 400ml of deionized water. Kernels were hand rubbed 

to remove pericarp three more times (for a total of four repetitions), each time straining and using fresh 
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deionized water. Washed kernels were put into an aluminum tray which was zeroed on a single decimal 

scale in order to obtain the wet kernel weight. Two subsamples of ~15g of kernels from each cook 

(designated as Y and Z in Supplemental Tables 4 and 5) were measured into their own trays and the mass 

with and without the tray was documented as “Wet Kernel Weight with Tray” and “Wet Kernel Weight,” 

respectively. These subsamples were placed with their trays in a 103oC oven to dry for one week and were 

weighed again to obtain the “Dry Kernel Weight” (Supplemental Figure 1). 

To determine the moisture content, equation 1 was applied for each of the subsamples that were 

dried. The average of the two 15 g-subsamples was taken to determine the moisture content of a sample 

cook, and the average of the two duplicated cooks from a plot was then taken to determine the moisture 

content of a given plot. Plots with too little seed to cook, and plots with missing moisture content values 

for all four subsamples were removed, leaving the dataset with information from 316 of the original 400 

plots (2 locations x 2 replicates x 100 plots) (Supplemental Table 4).  

 

Eq 1. 𝑀𝑜𝑖𝑠𝑡𝑢𝑟𝑒	𝐶𝑜𝑛𝑡𝑒𝑛𝑡	 = 	1	 −	./0	12/324	526789	:698	;/<0	=	(529	12/324	526789	:698	;/<0	=	529	12/324	526789)
529	12/324	526789

 

 

Statistical Methods Applied to Plots of the Spectrally Diverse Genotypes 

Statistical outliers were removed by one of two methods as determined by the data type. Macromolecular 

trait outliers were removed if the value was more than three standard deviations away from the mean of 

a given trait. Spectral outliers were removed based on a Mahalanobis distance (P.C. Mahalanobis 1936) 

of three for every other waveband to limit collinearity issues. After removing samples with missing data, 

only one sample was removed as an outlier. Spectral normalization was then performed by max norm, 

absolute value norm, euclidean norm, and standardization. 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.444884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444884
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

9 

 An analysis of variance (ANOVA) was conducted to dissect sources of phenotypic variation for the 

macromolecular traits and percent moisture content on the 316 plots of spectrally diverse genotypes 

using the lme4 and lmerTest packages in R version 4.0.3 (R Core Team 2020). In this analysis all factors 

were treated as random effects. Equation 2 shows the formula for this model.  

 

Eq 2. 𝑦	 = 	𝜇	 + 	𝑔	 + 	𝑒	 + 	𝑔𝑥𝑒	 + 	𝑏/𝑟/𝑒	 + 	𝜀	 

 

For moisture content, a second ANOVA was performed with these same 316 plots using a type II 

sum of squares approach with the cars package in R version 4.0.3 (R Core Team 2020) that included the 

macromolecular traits, spectral waveband absorbances, and cooking parameters collected during the 

cooking process (i.e. cook time, steep time, and pH). In this model, macromolecular traits, spectral 

absorbances, and cooking parameters were treated as fixed effects.  

Pearson correlation coefficients between moisture content and each of the variables (NIR 

estimated macromolecular traits, spectral wavebands, and cooking related traits) collected on the 316 

plots of spectrally diverse genotypes were determined using the cor function in R version 4.0.3.  

 

Machine Learning Model  

Machine learning models for predicting moisture content were first generated using the NIR-

estimated macromolecular traits as features, and subsequently using spectral data as features. For this 

analysis, the caret (Kuhn 2008) package version 6.0-86 was used in R version 4.0.3 (R Core Team 2020). 

The models trained on composition trait features included rpart, knn, lm, rf, svmLinear, svmPoly, and 

svmRadial, while models trained on spectral absorbances include pls and pcr in place of rpart and knn. For 

both compositional traits and spectra, the data were split into training and validation sets using two 

different partitioning methods, random partitioning and partitioning based on genotype, both using an 
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80/20 split. Ten-fold cross validation by random fold assignment was performed for models using 

randomly partitioned data and genotype-group assignment for models using by-genotype partitioned 

data. In genotype-based cross-validation, all samples of a given genotype were within either the training 

or testing fold for any given cross validation. This increases the generalizability of the model as it does not 

allow information from training on a genotype to inform the predictions on the same genotype. 

Models were given a list of hyperparameter values through the training argument tuneGrid. 

Macromolecular-trait-based models were given a total of 5 hyperparameter values, whereas spectra 

based models were given a total of 141 (one for each feature). For models such as rf, pls, and pcr, where 

the number of hyperparameters cannot exceed the number of features, the hyperparameter value was 

equal to the iteration value. For models that had the ability to have near infinite hyperparameter values 

(such as SVM’s), the primary hyperparameter value (C in the case of SVM’s) was set based on a 

mathematical formula depending on the model. The linear regression model’s intercept was equal to the 

iteration value (i) divided by the maximum iteration value (n=141), and the support vector machine’s cost 

value was equal to i2 x 0.007. This allowed hyperparameters to be set below 1 as well as near the maximum 

iteration value for models such as support vector machines. Secondary hyperparameter values (only 

necessary for SVM’s) were not controlled, and instead given a short list of values to evaluate that included 

1/2/3 and 0.001/0.01/0.1 for svmPoly’s degree and scale hyperparameters respectively, and 

0.001/0.01/0.1 for svmRadial’s sigma hyperparameter. 

To determine the best combination of hyperparameters, spectral normalization, cross validation 

methods, and partitioning variables, models were bootstrapped 100 times through all combinations of 

variables. Models trained on compositional traits varied by model (n=7), partitioning and cross validation 

method (n=2), and hyperparameter values (n=5), for a total of 70 combinations that were each 

bootstrapped 100 times. Spectra-based models were the same with the exception of an increased number 

of hyperparameters (n=141) and an addition of spectral normalization method (n=5; 4 normalizations plus 
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the base spectra) for a total of 9,870 combinations that were each bootstrapped 100 times. Within each 

iteration, the seed value was set to the bootstrap iteration value (1:100), to ensure all random events 

occurred the same across all combinations within an iteration, but differently across iterations.  

 Machine learning models were evaluated on two metrics: root mean squared error (RMSE) and 

Spearman’s rank correlation coefficient (rs), with priority given to rs. Learning curves of the top model for 

both macromolecular and spectra-based predictions were created using the learning_curve_dat function 

in the caret R package (Max Kuhn 2020). This function was bootstrapped 100 times to reduce the effect 

of random sampling on the final result. The arguments test_prop and proportion were set to 0.1 and 

5:20/20, respectively. All other arguments were pulled directly from the train function of the respective 

model. Resampling data were discarded, and an average training and testing performance was calculated 

by grouping the data by both training size and data type (training/testing). 

 

Model Validation 

The best model and hyperparameter combination (linear SVM kernel, C = 71.407, trained on absolute 

value normalized spectra, cross validated by genotype) was then retrained using the full set of 316 plots. 

This retrained model was used to predict moisture content for the full set of plots grown in the 2016 and 

2017 trials described above that had sufficient grain for NIR spectroscopy (n=4,650 plots; Supplemental 

Table 3). From these predictions, 47 plots were selected that span the range of predicted moisture content 

values, including nine plots that fell outside the training bounds. These plots did not include any of the 

spectrally diverse genotypes used to train the model. Grain from the 47 selected plots were cooked in 

replicate according to the methods described above (Supplemental Table 5). Moisture content of these 

validation samples were calculated (equation 1) and compared to the predicted value from the retrained 

model. Rs and RMSE values were calculated to summarise the model validation. For downstream analysis, 
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any plots from the n=4,650 predicted plots that had values outside of the boundaries (n=663) of the 

training set (37.1-53%) were removed due to low extrapolation power of the model.  

 

Calculation of Feature Importance 

 Feature importance testing was performed following the previously proposed model reliance 

method (Fisher et al. 2019). For this analysis, a model was first generated from the 316 cooked plots. The 

model was then used to predict the 38 of 47 validation plots that fell within the training bounds (closed 

circles in Figure 3B) and a Pearson correlation coefficient was calculated between the predicted values 

and the wet chemistry values for these plots. The model was then used to predict moisture content on 

the 38 validation plots that were within the training bounds with a single waveband permuted at a time. 

Each waveband was permuted 100 times. Pearson correlation coefficients for these predictions were 

compared to the baseline correlation to determine the reliance of the model on each waveband.  

   

Statistical Analysis for Predicted Moisture Content in the Trial Plots 

To determine the sources of variation in moisture content predictions, an ANOVA was run on the 

predictions of the full set of plots grown in 2016 and 2017. In this analysis, moisture content prediction 

was the dependent variable, and genotype, environment, genotype-by-environment interaction, and 

block nested within replication nested within environment, were the independent variables and were 

treated as random effects (equation 2). This was computed using the lme4 and lmerTest packages in R 

version 4.0.3 (R Core Team 2020). The dataset was then partitioned to only contain plots that correspond 

to dent genotypes defined as stiff_stalk, non_stiff_stalk, and iodent in Supplemental Table 1 (n=3,155). 

An ANOVA was run on this subset of plots using the same model applied to the full data set.  
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Heritability for predicted moisture content was determined on an entry-mean basis. Calculations 

of heritability were performed using the output of the mixed linear model described above for all 

germplasm types (n=3,987), using equation 3. 

Eq. 3 ℎ 2 	=
I 𝑔

2

𝜎 𝑔
2+𝜎 𝑔𝑥𝑒

2

𝑒 +𝜎 𝜀
2

𝑟𝑒

	 

Correlations between macromolecular traits and moisture content were determined using the 

cor.test function in base R version 4.0.3. This was calculated for both the training (actual moisture content 

from the benchtop cooking protocol; n=316) and prediction (predicted moisture content; n=3,987) sets. 

 

Genetic Dissection of Predicted Moisture Content 

Genome wide association studies (GWAS) were performed as previously described (Renk et al. 2021). 

Briefly, GAPIT version 3 (Lipka et al. 2012) was used to transform genomic data into numeric format, 

generate a genotypic map dataset, and a PCA covariates dataset (n=5). SNP data were obtained from a 

previous study (Qiu et al. 2021), and filtered as previously described (Renk et al. 2021). Because 

environment was a large source of variation based on the ANOVA described above, GWAS was performed 

separately for each of the five environments. The trait data were split by environment, from which BLUPs 

were extracted with the random effects model described in equation 4, where y = predicted moisture 

content. To extract the BLUPs from this model, the function ranef from the lme4 package (Bates et al. 

2015) in R 4.0.0 was used. Genotypes in the BLUP dataset for each environment were filtered to only 

include those present in the SNP dataset.  

Eq. 4 𝑦	 = 	𝑔	 + 	𝑏/𝑟	 + 	𝜀 

 After the BLUP datasets had been created for each environment (nMN2016=426, nIA2016=442, 

nMN2017=281, nIA2017=409, nMO2017=412), the numeric genomic dataset was filtered to only include rows 

where the genotype was present in the BLUP dataset. The genomic map, filtered numeric genomic, and 
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filtered BLUP datasets were used in conjunction to permute 30 p-values using the function 

FarmCPU.P.Threshold in FarmCPU version 1.02 (Liu et al. 2016) in R version 4.0.0. To run FarmCPU, the 

filtered BLUP, filtered numeric genomic, genomic map, covariates, and permuted p-value datasets were 

utilized. A reliable p-value for the FarmCPU function was determined by using the 0.05 quantile of p-values 

from the permuted dataset. The threshold.output was set to 1, MAF.calculate to true, method.bin to 

“optimum”, maf.threshold to 0.05, and maxLoop to 50. 

 After significant SNPs were determined in each environment, MaizeGDB (Maize B73 RefGen_v4) 

(Monaco et al. 2013), NCBI BLAST (Altschul et al. 1990) and Pfam (Mistry et al. 2021) were used to 

determine which genes the SNPs were located in or near and a putative function for each gene. MaizeGDB 

was used to locate and identify genes near the SNP with the Zm-B73-REFERENCE-GRAMENE-4.0 

Zm00001d Gene Set and NCBI B73_v4 annotation release 102 tracks enabled. SNP distance was calculated 

in kilobases away from the beginning (positive numbers) or end (negative numbers) of a gene, or as zero 

if present within a gene. The sequence of the closest gene was obtained from MaizeGDB and inserted into 

NCBI BLAST (blastn=genomic sequence, blastx=cDNA sequence) and Pfam (cDNA sequence) search fields 

to identify putative functional annotations.  

 Percent variance explained by the significant SNPs as well the entire SNP set was determined 

through GCTA (v1.93.2 beta; Yang et al. 2011), as previously described (Renk et al. 2021). Briefly, the 

original SNP data (Qiu et al. 2021) was filtered for genotypes present in a given environment and 

formatted into a binary hapmap format using TASSEL 5 (Bradbury et al. 2007), and then saved as .ped and 

.map files within TASSEL 5. PLINK (v1.07; Purcell et al. 2007; Shaun Purcell) was used to create a .bed file 

of the binary dataset, which was then used in GCTA (v1.93.2 beta; Yang et al. 2011) to create a genetic 

relatedness matrix which was used in GCTA along with the moisture content predictions used in the GWAS 

to determine the percent variance explained by the significant SNPs and the entire SNP set in each 

environment. 
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Code Availability  

All code is publicly available on GitHub at https://github.com/HirschLabUMN/ML_Moisture_Prediction. 

 

RESULTS 

Variation in the Training Data 

The genotypes for the training dataset were selected from a panel of 501 diverse inbred lines that 

encompass variation that exists in northern maize temperate germplasm (Hansey et al. 2011). This panel 

was grown in two locations (St. Paul, MN and Ames, IA) over two years, and grain samples were evaluated 

with NIR spectroscopy. In total, 100 genotypes were selected that provided maximum spectral variation 

across 141 wavebands (Figure 1A). This set of 100 genotypes included 67 dent genotypes, 2 

popcorn/sweetcorn/flint genotypes, and 31 other genotypes. Spectral reflectance/absorbance is a 

product of the compositional attributes of a sample, specifically it is measuring overtone and combination 

bands of vibrations from hydrogen bearing groups. Thus, in selecting spectrally diverse genotypes, the 

genotypes should also be compositionally diverse. Indeed, the 100 spectrally diverse lines varied in 

macromolecular compositional traits predicted from NIR spectroscopy including percent protein, percent 

starch, percent fiber, percent fat, and percent ash (Figure 1B). The ranges for each trait in the training set 

were 5.75% to 17.14% for protein, 66.93% to 74.15% for starch, 1.18% to 2.53% for fiber, 2.85% to 6.19% 

for fat, 1.11% to 1.81% for ash, and 37.1% to 53.0% for moisture content. An analysis of variance (ANOVA) 

was performed on each of the macromolecular traits for these 100 lines grown in four environments 

(location-by-year combinations) (Figure 1C). Variation due to genotype, environment, and genotype-by-

environment interaction vary by trait, though in all traits except starch, genotype explains the largest 

portion of variation.  
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Moisture content during nixtamalization for the plots of spectrally diverse genotypes in the multi-

environment trial was measured using a benchtop cooking protocol (Supplemental Figure 1). A wide range 

in variation was observed for moisture content, with a minimum of 37.1% and a maximum of 53.0% 

(Figure 1B). Analysis of variance revealed a significant portion of the variation was explained by genotype 

(46%), environment (24%), and genotype-by-environment interaction (15%) (Figure 1C). Pearson 

correlation coefficients between moisture content and cooking parameters (cooking time, steeping time, 

pH), macromolecular traits (percent protein, percent starch, percent fiber, percent fat, and percent ash), 

and spectral bands (n=141) revealed significant correlations with fat, starch, and all 141 wavebands 

(Figure 1D; p-value < 0.05), though the correlations with the wavebands were substantially stronger than 

for the cooking parameters and macromolecular traits.  

 

Prediction Models Trained on Macromolecular Features 

Compositional traits have more direct biological significance than spectral data and, for this reason, were 

first used to train prediction models for moisture content during nixtamalization. A total of 70 

combinations of models (n=7), partitioning and cross validation (n=2), and hyperparameters (n=5), each 

with 100 iterations (total n=7,000 iterations) were trained to determine the optimal combination to 

predict moisture content during nixtamalization from macromolecular composition of raw kernels. 

Spearman’s rank correlation coefficient (rs) between predicted and observed values were used to assess 

which combination consistently generated the best model across iterations (Supplemental Table 6). 

Random partitioning and cross validation outperformed by-genotype partitioning and cross validation in 

training (Supplemental Table 6), but cross validating by-genotype performed better in testing. As such, 

focus was placed on models trained on by-genotype partitioning and cross-validation. The top performing 

combination of each model is shown in Table 1. The linear regression model (lm) with an intercept of 0.2 

performed the best with an average rs value of 0.487, followed by the linear SVM kernel (svmLinear; 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.19.444884doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.19.444884
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

17 

0.486), the radial SVM kernel (svmRadial; 0.478), the polynomial SVM kernel (svmPoly; 0.474), the random 

forest model (rf; 0.399), the decision tree model (rpart; 0.306), and the k-nearest neighbor model (knn; 

0.286). The range in performance for by-genotype models was as high as 0.066 to 0.738 for svmRadial, 

and on average there was a range of 0.520 (Figure 2A). Similar ranges in values across the 100 iterations 

were also seen for the by-random models (Supplemental Figure 2). These performances, while better than 

guesses, were relatively low even for the best model trained from the macromolecular trait data. A 

learning curve for the best model (lm) demonstrated a good overall fit based on the relative proximity of 

the lines near x=250 (Figure 2B), indicating the addition of more samples would not lead to major 

performance improvements. 

 

Prediction Models Trained on Near-Infrared Spectroscopy Spectral Features 

The macromolecular traits used to train the models described above were predicted from NIR 

spectroscopy. While these macromolecular traits hold more biological meaning than the 141 wavebands 

from which they were generated, it is possible that there is information contained within the spectral data 

that is not represented within these derived compositional traits. The spectral data were more highly 

correlated with moisture content during nixtamalization (Figure 1D), supporting this hypothesis. 

Furthermore, a type II sum of squares ANOVA on moisture content as a function of cooking parameters 

(cook time, steep time, pH), composition (protein, starch, fat, fiber, ash), and spectral absorbances 

(950nm-1650nm) showed that spectra explained 62% of the variation in moisture content, whereas 

macromolecular composition and cooking parameters explained 3.7% and 0.18%, respectively. As such, 

models were developed using the spectral data directly as features to try to improve the prediction 

accuracy. 

As with the macromolecular traits, combinations of models (n=7), partitioning and cross validation 

(n=2), hyperparameters (n=141), and spectral normalizations (n=5), each with 100 iterations (total 
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n=987,000 iterations) were trained to determine the optimal combination to predict moisture content 

during nixtamalization from raw kernel spectral profiles (Table 1; Supplemental Table 7). Similar to the 

macromolecular combinations, it was found that the best training model was dependent on the choice of 

partitioning and cross validation. The best model during random partitioning and cross validation was the 

partial least squares model (pls), while the linear SVM kernel performed the best when partitioned and 

cross validated by genotype. The linear SVM kernel trained on by genotype partitioning and cross 

validation outperformed the pls model trained on random partitioning and cross validation in testing, 

which again suggested increased generalization from a decrease in information leakage (Figure 2C, 

Supplemental Figure 2). Due to this increase in generalization, we focused on models trained from by-

genotype partitioning and cross validation. The top model combinations had very similar distributions of 

bootstrapped performances, with the top models having nearly identical average performances (Figure 

2C). In general, the linear SVM kernel showed a strong predictive ability for the absolute value normalized 

spectral dataset as hyperparameter variations of this combination occurred 58 times in the top 60 by-

genotype models (Supplemental Table 7).  Ultimately, the linear SVM kernel with by-genotype partitioning 

and cross validation, absolute value normalization, and a hyperparameter of C = 71.407 was chosen as the 

final combination for subsequent predictions as it had the highest performance (average rs=0.726). The 

learning curve for this model was created in the same manner as the macromolecular model based 

learning curve. As with the top macromolecular model learning curve, the spectra-trained model learning 

curve shows little room for improvement when more samples are cooked (Figure 2D). In contrast to the 

macromolecular model learning curve, however, the spectra model learning curve had a ~40% decrease 

in root mean squared error, meaning the predictions were closer to the actual values obtained during 

cooking. 

 

Near-Infrared Spectroscopy Trained Model Validates Across the Training Bounds 
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The linear SVM kernel trained on the full data set (n=316) was used to predict moisture content for 4,650 

plots that were grown across two years and three locations (5 total environments) (Supplemental Table 

3). Moisture content prediction was normally distributed with a mean of 41% and a range of 27.3% to 

57.3% (Figure 3A). The training bounds for the model were from 37.1% to 53.0% (filled bars in Figure 3A), 

and 14.3% of predictions were outside of these bounds (empty bars in Figure 3B). From this distribution, 

47 plots were selected that spanned the range of predicted moisture content across the plots (tick marks 

under the graph in Figure 3A). These plots include 38 samples that were within the boundaries of the 

training data and 9 plots that were outside of these boundaries. These 47 samples were cooked using the 

benchtop cooking test (Supplemental Figure 1) to obtain moisture content during nixtamalization 

(Supplemental Table 5). Plots inside of the training set bounds were used to validate the model on an 

independent set of plots not used in the training set. Plots outside of the training set bounds were used 

to determine the model's ability to extrapolate beyond the training set bounds. For the 38 plots that were 

within the training boundaries (closed circles in Figure 3B), a very high significant correlation was observed 

(rs=0.852; p-value <0.05). In contrast, the nine plots that had predictions outside of the original training 

bounds (open circles in Figure 3B) showed poor validation accuracy. However, the training set used in this 

study included samples well outside what would traditionally be accepted for moisture content in the 

industry (46-51% depending on the product), and the plots with extrapolated values would not be 

considered for advancement. 

 

Understanding Factors Contributing to Features of the Final Prediction Model 

To determine which wavebands have the largest influence on moisture content prediction, a permutation 

importance (Fisher et al. 2019) test was run on the linear SVM kernel. This was performed by collecting a 

baseline r2 value of the model trained on the full dataset predicting on the 38 validation samples within 

the training bounds, and comparing this to the r2 value calculated on the same samples after permuting 
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each waveband in the validation samples. A larger difference between the baseline and permuted 

performance is indicative of a larger importance to the model. It was found that many of the spectra are 

roughly equally important in the prediction of moisture content (Figure 4A).  

A linear mixed model was used to analyze sources of variation in the spectral data across the full 

set of 3,987 trial plots grown in five environments that were predicted within the boundaries of the 

training data. Percent variance explained by different factors in the model varied greatly across the 

spectral wavebands (FIgure 4B). For example, genotype explained 20.3% to 33.5% (average 27.5%) of the 

variation across the wavebands, and environment explained 19.1% to 55.0% (average 37.7%) of the 

variation. Variance explained by genotype was relatively constant across the wavebands, whereas the 

environment had an increasing percent variance explained as wavebands increased.  

 

Understanding Factors Affecting Moisture Content Predictions 

To assess which sources of variation have the greatest impact on moisture content predictions from the 

linear SVM kernel, a random effects model (Bates et al. 2015) was created for moisture content prediction 

as a function of genotype, environment, genotype-by-environment interaction, and block nested within 

replication nested within environment, on the full set of 3,987 trial plots that were predicted within the 

boundaries of the training data (Figure 5A). Environment played the largest role in the prediction of 

moisture content, explaining 49.9% of the variation, whereas genotype and genotype-by-environment 

interaction only explained 16.6% and 11.8%, respectively. The three locations these trials were grown (St. 

Paul, MN, Boone County, IA, and Columbia, MO) are geographically diverse, and climatic conditions, 

especially with regards to precipitation, were very different between 2016 and 2017 for the MN, IA, and 

MO locations (Supplemental Figure 4; Supplemental Table 8), contributing to the large effect of 

environment in this experiment.  
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The majority of food grade corn grown in the United States is dent corn. As such, the same random 

effects model was applied to just the dent corn lines to determine if percent variance explained by the 

sources of variation in this subset of lines differed from the larger population of genotypes. In the subset 

of dent plots, variance explained by environment increased slightly to 51.5%, and variance explained by 

both genotype and genotype-by-environment interaction decreased to 15.6% and 11.2%, respectively 

(Figure 5B). Analysis of variance both in the full dataset as well as in this subset of lines support that 

growing environments will play a large role in the predictions of moisture content, and that environment 

will need to be considered when breeders test and recommend lines for improved moisture content. 

 The relationship between moisture content prediction and kernel macromolecular traits was 

tested next. Most compositional traits were significantly correlated with moisture content prediction 

(Supplemental Figure 5). Protein, starch, fat, and fiber were all significantly correlated (p<0.05) with 

predicted moisture content on the full dataset (n=3,987 plots). Protein and fat showed weak correlations 

of -0.099 and 0.097, respectively, while starch and fiber showed stronger correlations of -0.475 and -

0.408, respectively. The exact mechanistic role of each of these compositional attributes and interactions 

between them to determine moisture content is still unknown, however, these data support a role for a 

number of compositional traits in contributing to this complex trait.  

Heritability of moisture content prediction was also determined. Moisture content prediction had 

an entry-mean heritability of 0.80. This moderate heritability suggests that gains from selection can be 

made for this trait. While the heritability is moderately high, it is important to remember that the 

environment plays a large role in moisture content prediction, and will need to be accounted for 

throughout the breeding process. 

 

Genetic Dissection of Predicted Moisture Content 
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A genome wide association study (GWAS) was performed using GAPIT (Lipka et al. 2012) and FarmCPU 

(Liu et al. 2016) to dissect the genetic architecture controlling moisture content. Because environment 

explained a substantial portion of variation in this experiment, BLUPs were extracted for each 

environment (Supplemental Table 1). The BLUPs were normally distributed in each environment (not 

shown) with an average range of predicted moisture content BLUPs of 6.95 across the environments. 

Environments 1, 2, 4, and 5 all had ranges in variation greater than 7, while environment 3 had a very low 

range in variation of 1.14. The GWAS identified 26 significant SNPs across the five environments 

(Supplemental Table 9) at the significance threshold determined for each environment (pMN2016=1.04x10-

7, pIA2016=6.17x10-8, pMN2017=2.23x10-9, pIA2017=2.13x10-8, pMO2017=1.41x10-7). Eight SNPs were found to be 

significantly associated with moisture content prediction in both MN 2016 and IA 2016, and five SNPs 

were found in both IA 2017 and MO 2017 (Figure 6), none of which were shared across the environments. 

The effects each SNP had on moisture content ranged from -0.71 to 0.73 (average=-0.01). While none of 

the significant SNPs were shared across environments, common annotations and functions across 

environments were observed (Supplemental Table 9). Development and stress response genes were 

found in each environment, though from different genes in each environment. Also noteworthy was the 

identification of significant SNPs within genes that encode auxin response proteins and energy 

metabolism proteins, each found in three of the four significant environments.  

 To further understand the complexity of the genetic architecture controlling moisture content, 

we estimated the percent variance explained by both the significant SNPs in each environment and the 

entire SNP dataset. Significant SNPs explained between 5.04% and 16.01% (average=10.41%) of the 

variation in moisture content prediction, whereas the entire SNP set explained 10.54% to 45.99% 

(average=31.68%) of the variation (Supplemental Table 10). This suggests that a significant amount of the 

genetic variation of moisture content prediction is controlled by many small effect loci.  
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DISCUSSION 

Current testing for kernel moisture content is done either through proxy tests (such as kernel 

hardness), or through pilot plant cooking trials (Holmes et al. 2019). The proxy tests are fast, but not very 

quantitative or precise. The pilot plant trials require a large quantity of a grain sample (500-1000 lbs) for 

large scale cooking, and are thus slow and low throughput, which is not amenable to the large-scale 

numbers and small-scale sample amounts that are common in plant breeding. The methods developed in 

this study are high throughput, quantitative, and optimal for early stages in the breeding process when 

there are many samples to test for moisture content.  

In this study seven different models (lm, pls, pcr, rf, svmLinear, svmPoly, and svmRadial) were 

tested to see which could best predict moisture content during nixtamalization from raw kernel NIR 

absorbances. These models were chosen for a number of reasons. The linear model (lm) was chosen as a 

baseline model that all other models should outperform, the partial least squares (pls) and principal 

component regression (pcr) models were chosen for their dimensionality reduction capabilities (Mevik 

and Wehrens 2007), and the random forest (rf) and support vector machines were chosen for their general 

model robustness and applicability (Breiman 2001; Karatzoglou et al. 2004). The model that performed 

best was the linear SVM kernel. This model seems to fit the absolute value dataset very well given its high 

predictive capabilities with a range of hyperparameter values (Supplemental Table 7). This model 

performs comparably to previous work using PLS models to predict maize kernel composition that 

observed an average r2 value of 0.654 and 0.815 (Orman and Schumann 1991; Spielbauer et al. 2009). The 

relative performance of the linear SVM kernel over the pls model is also consistent with previous work 

which indicates that regression SVM kernels can outperform both PLS and artificial neural networks in 

complex, high-dimensional datasets such as predicting composition from NIR waveband absorbances 

(Balabin and Lomakina 2011). 
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Application of this model to a diverse set of germplasm grown in replicate in five environments 

revealed a significant effect of environment on observed phenotypic variation. End of season growing 

conditions varied substantially for the five environments used in this study (Supplemental Table 8; 

Supplemental Figure 4), which could impact grain filling, composition, and other grain quality factors such 

as kernel cracking. MO 2017 was the driest environment while also accruing the most growing degree 

days. Conversely, MN 2016 and IA 2016 had average rainfall events, but saw a plateau in cumulative 

growing degree days at the end of the season. These results highlight the importance of not only genetics, 

but also agronomics and growth conditions that are important in obtaining grain that meets industry 

standards for food grade applications. 

A genome-wide association study (GWAS) was performed to determine SNPs that were 

significantly correlated with moisture content prediction. Twenty-six significant SNPs were found across 

four of the five environments used in this study. Genes related to development and stress response were 

found in each environment, through different genes in each environment. It makes sense that the 

multitude of stresses presented by each environment would differentially affect the development of the 

plants, changing the kernel composition (Mayer et al. 2016; Sehgal et al. 2018), and with it the NIR spectral 

profile of the grain samples (Spielbauer et al. 2009). The number of stress response and development 

genes that were significant in the GWAS, coupled with the large percent of moisture content prediction 

variance explained by environment, indicates that breeders should consider the stress response of a 

genotype when breeding for moisture content after nixtamalization. It also suggests that lines exhibiting 

more robust environmental stress tolerance could maintain a more consistent moisture content 

prediction across environments, though more testing would be needed to confirm this.  

 In conclusion, our linear SVM kernel trained on absolute value normalized spectra is a high 

throughput, quantitative and robust system for predicting moisture content in maize without cooking a 

single kernel. This method will assist breeders by allowing them to screen a large pool of germplasm to 
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quickly obtain quantitative trait values for selection. Breeders can utilize this system during the early 

stages of breeding while the number of samples is high, and transition to pilot plant studies during later 

stages as sample numbers decrease. Manufacturers of masa-based products may also be interested in 

incorporating this system into their pipelines to predictively alter cooking conditions. Rather than 

sampling kernels for moisture content after nixtamalization and adjusting pH, cooking time, or steeping 

time post hoc, they could instead scan samples with an NIR before cooking to predict the moisture content 

of the kernels, and adjust the cooking conditions accordingly. 
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All raw data is included in the supplemental tables.  
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FIGURE CAPTIONS 

Figure 1. Variation observed in the training set used to develop the moisture content prediction model. 

A) Principal Component Analysis (PCA) plot with the full set of genotypes (gray) and the 100 selected for 

spectral variation (black). B) Distributions of the macromolecular traits obtained from NIR spectroscopy 

and moisture content from the benchtop cooking protocol for samples in the training set. C) Partitioning 

of variation sources among the macromolecular traits and moisture content in the training set. D) 

Correlation within the training set of moisture content with each of the cooking parameters, NIR-

estimated macromolecular traits, and spectral wavebands. G, genotype; E, environment; GxE, genotype-

by-environment interaction; R/E, replicate nested within environment; B/R/E, block nested within 

replicate nesting within environment; e, error. 

 

Figure 2. Performances of the top macromolecular and spectra-trained models. A) Bootstrapped 

performance of genotype-partitioned and cross-validated models trained on macromolecular traits to 

predict moisture content. Each data point for A and C are a single iteration of the bootstrapped model in 

which a variation of each model was trained on 80% of the dataset, and tested on the remaining 20%. 

Supplemental Figure 3 demonstrates what each point represents. B) Learning curve of the 

macromolecular-based linear regression model, which shows very minimal improvement from added 

training samples above n=150. C) Bootstrapped performances of genotype-partitioned and cross-

validated model trained on spectra to predict moisture content. The dark gray distribution is the model 

that performed the best and was used for downstream analyses. D) Learning curve of the spectra-based 

svmLinear model, which shows limited improvement with training sizes greater than n=200. 

 

Figure 3. Predictions and performance of the svmLinear model. A) Distribution of predictions in the full 

set of 4,650 trial plots. Filled bars are within the training bounds and empty bars are extrapolated. The 
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tick marks in the rug plot below the distribution show the 47 samples chosen for validation. B) Correlation 

between predicted and actual moisture content of the 47 samples chosen to validate the model. Filled 

circles are samples chosen within the training bounds (n=38), and empty circles were beyond the training 

bounds (n=9). Rs shown is the Spearman’s rank correlation coefficient of the filled circles. The dotted line 

represents a correlation of 1.0, whereas the black line shows the correlation of the filled circles. 

 

Figure 4. Importance of waveband for moisture content prediction and variance partitioning for 

wavebands. A) Importance of each waveband to the linear SVM model with height and hue equal to the 

loss of information when each waveband is permuted in the validation set. Values represent the average 

of 100 permutations for each waveband. B) Variance partitions for each waveband with height equal to 

variance explained, and hue equal to importance found in A. G, genotype; E, environment; GxE, genotype-

by-environment interaction; R/E, replicate nested within environment; B/R/E, block nested within 

replicate nested within environment; e, error. 

 

Figure 5. Partitioning of moisture content prediction variance. A) Variance partitioning for all inbreds in 

the full set of 3,987 trial plots. B) Variance partitioning for only dent types of maize (n=2,813). G, genotype; 

E, environment; GxE, genotype-by-environment interaction; R/E, replicate nested within environment; 

B/R/E, block nested within replicate nested within environment; e, error. 

 

Figure 6. Genome-wide association study (GWAS) for moisture content prediction across environments. 

GWAS was performed using 2,412,791 genome-wide SNP markers on BLUPs from 281-442 genotypes in 

each of five environments that had sufficient yield for NIR scanning and available marker data. Dashed 

line shows the permuted significance threshold. 
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TABLES 

Table 1. Performance of top model combinations. 

Modelᵃ Normalization Data Hyperparameter Hyperparameter Value Performanceᵇ 

lm NA Macro intercept 0.2 0.4870 

svmLinear NA Macro C 5 0.4866 

svmRadial NA Macro C; sigma 5; 0.001 0.4786 

svmPoly NA Macro C; degree; scale 5; 2; 0.01 0.4740 

rf NA Macro mtry 5 0.3990 

rpart NA Macro cp 0.02 0.3062 

knn NA Macro k 5 0.2860 

svmLinear Absolute Value Spectra C 71.407 0.7266 

pls Base Spectra Spectra ncomp 16 0.7264 

pcr Absolute Value Spectra ncomp 28 0.7229 

svmPoly Absolute Value Spectra C; degree; scale 139.167; 1; 0.1 0.7120 

svmRadial Sum of Squares Spectra C; sigma 10.647; 0.01 0.6038 

rf Base Spectra Spectra mtry 129 0.5830 

lm Absolute Value Spectra intercept 0.29078014 0.5566 

ᵃModels were partitioned and cross validated by-genotype 
ᵇSpearman’s rank correlation between predicted values and values obtained from the benchtop cook test 
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Figure 1. Variation observed in the training set used to develop the moisture
content prediction model. A) Principal Component Analysis (PCA) plot with the full
set of genotypes (gray) and the 100 selected for spectral variation (black). B)
Distributions of the macromolecular traits obtained from NIR spectroscopy and
moisture content from the benchtop cooking protocol for samples in the training set.
C) Partitioning of variation sources among the macromolecular traits and moisture
content in the training set. D) Correlation within the training set of moisture content
with each of the cooking parameters, NIR-estimated macromolecular traits, and
spectral wavebands. G, genotype; E, environment; GxE, genotype-by-environment
interaction; R/E, replicate nested within environment; B/R/E, block nested within
replicate nesting within environment; e, error.
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Figure 2. Performances of the top macromolecular and spectra-trained models.
A) Bootstrapped performance of genotype-partitioned and cross-validated models
trained on macromolecular traits to predict moisture content. Each data point for A
and C are a single iteration of the bootstrapped model in which a variation of each
model was trained on 80% of the dataset, and tested on the remaining 20%.
Supplemental Figure 3 demonstrates what each point represents. B) Learning curve
of the macromolecular-based linear regression model, which shows very minimal
improvement from added training samples above n=150. C) Bootstrapped
performances of genotype-partitioned and cross-validated model trained on spectra
to predict moisture content. The dark gray distribution is the model that performed
the best and was used for downstream analyses. D) Learning curve of the spectra-
based svmLinear model, which shows limited improvement with training sizes
greater than n=200.
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Figure 3. Predictions and performance of the svmLinear model. A) Distribution
of predictions in the full set of 4,650 trial plots. Filled bars are within the training
bounds and empty bars are extrapolated. The tick marks in the rug plot below the
distribution show the 47 samples chosen for validation. B) Correlation between
predicted and actual moisture content of the 47 samples chosen to validate the
model. Filled circles are samples chosen within the training bounds (n=38), and
empty circles were beyond the training bounds (n=9). Rs shown is the Spearman’s
rank correlation coefficient of the filled circles. The dotted line represents a
correlation of 1.0, whereas the black line shows the correlation of the filled circles.
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Figure 4. Importance of waveband for
moisture content prediction and
variance partitioning for wavebands.
A) Importance of each waveband to the
linear SVM model with height and hue
equal to the loss of information when
each waveband is permuted in the
validation set. Values represent the
average of 100 permutations for each
waveband. B) Variance partitions for
each waveband with height equal to
variance explained, and hue equal to
importance found in A. G, genotype; E,
environment; GxE, genotype-by-
environment interaction; R/E, replicate
nested within environment; B/R/E, block
nested within replicate nested within
environment; e, error.
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Figure 5. Partitioning of moisture
content prediction variance. A)

Variance partitioning for all inbreds in the

full set of 3,987 trial plots. B) Variance

partitioning for only dent types of maize

(n=2,813). G, genotype; E, environment;
GxE, genotype-by-environment

interaction; R/E, replicate nested within

environment; B/R/E, block nested within

replicate nested within environment; e,

error.
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Figure 6. Genome-wide association study
(GWAS) for moisture content prediction
across environments. GWAS was performed

using 2,412,791 genome-wide SNP markers on

BLUPs from 281-442 genotypes in each of five

environments that had sufficient yield for NIR

scanning and available marker data. Dashed line

shows the permuted significance threshold.

MN2016 (N=426)

IA2016 (N=442)

MN2017 (N=281)

IA2017 (N=409)

MO2017 (N=412)
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Supplemental Figure 1.  Steps  in the scaled-down benchtop cook test. A) Supplies needed to 
cook one sample (stir bar not pictured): from left to right, 100 g dry sample, 2.4g of calcium 
hydroxide and 400ml of deionized water, and cooking basket. B) Tinfoil wrapped beaker ready to 
be placed on the hotplate. C) Two samples being cooked on the hotplate, upper right position 4 
monitors the temperature. D) Sample in a 49ºC water bath. E) Sample after steeping; leached 
solids are suspended in nejayote. F) Kernels during pericarp removal by hand. G) Kernels that 
were dried in a 103ºC oven to determine final dry kernel weight.
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Supplemental Figure 2. Bootstrapped performance of top macromolecular and 
spectra models partitioned and cross validated randomly. A) Bootstrapped 
performance of the top macromolecular models. B) Bootstrapped performance of the 
top spectra models. 
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Supplemental Figure 3. Example of a bootstrapped performance. This plot 
shows the performance of a macromolecular KNN model with a k value of 5, 
partitioned and cross validated by genotype.  The data points shown are a 20% 
subset (n=63) of the full 316 samples, which were partitioned out to determine 
performance of the model.  This was done 100 times for each model, 
hyperparameter, partitioning and cross validation type, and normalization (in the 
case of spectra models) combination to reduce the effect of randomness (Figure 2 
and Supplemental Figure 2). The dotted line in this image shows a 1:1 ratio, and the 
black line shows the correlation of the model’s predictions.
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Supplemental Figure 4. Cumulative Growing Degree Days and Precipitation 
Across Environments. This plot shows the environmental differences in cumulative 
growing degree days (GDD) and cumulative precipitation. All plantings occurred 
between May 8 and May 17, and all harvest occurred between September 27 and 
October 24. 
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Supplemental Figure 5. Correlation between compositional traits and moisture
content. Data are for predictions from 3,987 plots grown over five environments.
Macromolecular trait correlated to moisture content prediction is shown beneath
each plot. R value shown is the pearson correlation coefficient. All correlations were
significant at p<0.05 except ash content.

r = -0.41 r = -0.48 r = 0.10

r = -0.10 r = -0.02
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