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Abstract 

DNA methylation is a type of epigenetic modification that affects gene expression regulation 

and is associated with several human diseases. Microarray and short read sequencing 

technologies are often used to study 5'-methylcytosine (5'-mC) modification of CpG 

dinucleotides in the human genome. Although both technologies produce trustable results, 

the evaluation of the methylation status of CpG sites suffers from the potential side effects of 

DNA modification by bisulfite and the ambiguity of mapping short reads in repetitive and 

highly homologous genomic regions, respectively. Nanopore sequencing is an attractive 

alternative for the study of 5'-mC since the long reads produced by this technology allow to 

resolve those genomic regions more easily. Moreover, it allows direct sequencing of native 

DNA molecules using a fast library preparation procedure. In this work we show that 10X 

coverage depth  nanopore sequencing, using DNA from a human cell line, produces 5'-mC 

methylation frequencies consistent with those obtained by methylation microarray and digital 

restriction enzyme analysis of methylation. In particular, the correlation of methylation values 

ranged from 0.73 to 0.90 using an average genome sequencing coverage depth <2X or a 

minimum read support of 17X for each CpG site, respectively. We also showed that a minimum 

of 5 reads per CpG yields strong correlations (>0.89) between sequencing runs and an almost 

uniform variation in methylation frequencies of CpGs across the entire value range. 

Furthermore, nanopore sequencing was able to correctly display methylation frequency 

patterns according to genomic annotations, including a majority of unmethylated and 

methylated sites in the CpG islands and inter-CpG island regions, respectively. These results 

demonstrate that low coverage depth nanopore sequencing is a fast, reliable and unbiased 

approach to the study of 5'-mC in the human genome. 
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Introduction 

The transcriptional dynamics of a cell's genome can be influenced by epigenetic mechanisms 

that do not involve modifying the DNA sequence. The set of epigenetic changes in a genome 

produces the epigenome, which differs from individual to individual. The epigenome includes 

different types of chemical modifications of DNA, such as methylation, alterations of histone 

proteins (e.g., methylation, acetilation), the expression of non-coding RNAs and higher-order 

changes in the chromatin structure1. One of the best studied epigenetic mechanisms is DNA 

methylation, a process that occurs post-replication in embryonic, germinal or somatic cells, 

and that spreads through mitosis. In mammals, the methylation pattern is established de novo 

at the beginning of development and in gametogenesis by DNA methyltransferases (DNMTs) 

DNMT3A and DNMT3B2. These enzymes transfer a methyl group from 5-adenyl methionine to 

the fifth carbon atom of the 5'-cytosine residue, forming 5'-methylcytosine (5'-mC). This 

epigenetic modification is highly conserved in eukaryotic organisms3. DNA methylation is a 

cyclic and dynamic enzymatic process that involves methylation of cytosines by DNMTs, 

oxidation of methyl groups by dioxygenase enzymes, and restoration of cytosines in their 

original form by active or passive demethylation mechanisms3. 

DNA methylation frequently affects cytosines located in cytosine-phosphate-guanine (CpG) 

dinucleotides, and are rare in other sequence contexts in mature mammalian cells3. However, 

methylation activity is dependent on the sequence context in which the DNA modification 

occurs. If methylation occurs within the promoter regions of genes, it typically has a repressive 

effect on gene expression, while methylation at the level of gene bodies has a transcriptional 

activation role4. In regulatory regions, DNA methylation can prevent the binding of 

transcription factors, thereby repressing gene expression. Furthermore, methylation of 

cytosine residues can lead to recruitment of methyl-binding proteins, which in turn attract 

members of the chromatin remodeling complex such as histone deacetylases, leading to a 

change in the chromatin conformation at the local level that can have an effect on the 

activation or repression of gene expression depending on the cellular context5. CpG islands are 

often located on the promoters of genes and are characterized by a length of at least 500 bp 

with >55% GC content. CpG shores are genomic regions that extend at a maximum distance of 

2 kilobases (kb) from the CpG islands and are characterized by tissue-specific differential 

methylation patterns. CpG shelves correspond to the genomic regions that are located 

between 2 and 4 kb distant from the CpG islands. The remaining genomic regions constitute 

the open sea regions and represent the vast majority of the human genome sequence. 

The alteration of the DNA methylation pattern is associated with several human diseases. 

Some genetic diseases are related to genomic imprinting, a constitutional epigenetic 

mechanism that involves the methylation of DNA and histones, through which some genes are 

expressed only from the chromosome inherited from the paternal or maternal side6. 

Epigenetic mechanisms are also associated with the development of some common diseases 

such as autoimmune, cardiovascular, metabolic and psychiatric diseases7–10, in which genetic 

variants may not explain the totality of observed phenotypes and in which epigenetic 

therapies (e.g., DNA methylation targeting by CRISPR/Cas9 tools) may be beneficial. In 

myelodysplastic syndromes and acute myeloid leukemia, chemical demethylating agents (e.g., 

5-azacytidine) are used in the treatment of patients, whose function is to suppress epigenetic 

marks and thus reactivate the normal expression of genes silenced during the tumorigenic 

process11. A relationship between environmental exposure (e.g., tobacco smoke) and 

methylation has already been shown for several compounds, leading to a change in the overall 
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methylation profile (e.g., hypomethylation) or in the methylation of specific genes12. These 

data demonstrate the need for further studies on the role of human genome methylation in a 

disease context. 

The study of 5'-mC profile was carried out, over many years, through chemical treatment of 

DNA with bisulfite, followed by amplification with strand-specific and bisulfite-specific primers, 

and sequencing by the dideoxynucleotide chain-termination method13. Bisulfite converts each 

unmethylated cytosine to uracil, while 5'-methylcytosine is resistant to conversion. During 

amplification, each uracil residue is amplified as thymine while the 5'-mC residues are 

amplified as cytosines, which allows the distinction of methylated cytosines from the 

unmethylated ones through sequencing of the amplified fragments. Although bisulfite DNA 

modification technique is widely used in different methylation study protocols14, chemical 

modification of DNA has several side effects on sequence structure and integrity that can 

potentially affect the results15–17. Due to the strong development that was witnessed in the 

microarray and next-generation sequencing technologies, and in the bioinformatics methods 

for high-throughput data analysis, the study of chemical changes at the DNA sequence level 

has moved from an approach focused on individual loci to a genome-wide scale in recent 

years18–20. 

More recently, nanopore sequencing technology, which generates very long reads using native 

DNA molecules as input, has emerged as an alternative approach to the study of methylation. 

The electrical signals registered at the nanopore level are also sensitive to the presence of 

modifications in the DNA chain, and can be used to differentiate methylated cytosines from 

unmethylated cytosines using a hidden Markov model21. However, there are still very few 

studies in which nanopore sequencing was used to analyze the 5'-mC profile in the human 

genome21–23. In the present work, we describe the complete genome sequencing of a human 

cell line with nanopore technology, and present a benchmark comparison of 5'-mC 

methylation status compared to other traditional methods, in order to evaluate the 

performance of the technology in the quantification of methylation at CpG sites. This cell line 

had been previously studied for 5'-mC methylation using the Illumina Infinium 

HumanMethylation450 BeadChip microarray assay24, using bisulfite-treated DNA, and Digital 

Restriction Enzyme Analysis of Methylation (DREAM)25, a method based on short read 

sequencing of DNA fragments resulting from sequential digestion with a pair of 

neoschizomeric restriction enzymes that recognize the CCCGGG sequence. The 450k 

microarray allows the analysis of 485 512 CpG sites, which constitute ~1.7% of the existing 

CpGs in the human genomic sequence and that were selected based on the opinion of a panel 

of experts, with the main focus being the CpGs located in genes and in CpG islands26. The 

DREAM method allows to quantify 374 170 CpG sites, corresponding to ~1.3% of the CpGs 

present in the hg18 human genome reference sequence25, of which approximately 10% are 

located in CpG islands. Using low sequencing coverage depth (10X), we showed that the 

methylation frequencies of called CpG sites based on nanopore sequencing are strongly 

correlated with those obtained by microarray and DREAM. We conclude that this approach has 

a high potential for the study of 5'-mC changes in the human genome. 

 

Materials and methods 

Cell line. The human erythroleukemia (HEL) cell line, established from the peripheral blood of a 

patient with erythroleukemia developed after treatment for Hodgkin's disease27, was 
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purchased directly from DSMZ - German Collection of Microorganisms and Cell Cultures GmbH 

(Braunschweig, Germany). The cells were placed and maintained in a T25 standard culture 

flask, according to the supplier's instructions and to standard protocols for culturing cell lines. 

After cell confluence was achieved, approximately one third of the culture was transferred into 

a freezer vial. The culture medium was removed by centrifugation and the cell pellet was 

ressuspended in a mixture of 90% fetal bovine serum and 10% DMSO. The cell suspension was 

primarily frozen at -80°C for 24 hours and then transferred to a liquid nitrogen container, 

where it remained until genomic DNA extraction. 

 

DNA extraction, quantification and quality analysis. The freezing vial was thawed completely in 

the hand and the entire volume of cell suspension (~1 ml) was transferred to a 2 ml-microtube. 

The microtube was centrifuged for 3 minutes at 1000 rpm to deposit the pellet and the 

supernatant was carefully aspirated with a micropipette and discarded. The cells were washed 

using 1 ml of Dulbecco's Phosphate Buffered Saline 1X (Gibco) and centrifugation was 

repeated. The supernatant was discarded and the cell pellet was carefully ressuspended in 700 

µl of sodium chloride-TRIS-EDTA buffer to which 35 µl of 10% sodium dodecyl sulfate (Sigma) 

and 7 µl of proteinase K at 10 mg/µl (AmpliChem) were added. The mixture was incubated at 

55°C for 3 hours, with gently tapping the microtube from time to time. Then, 700 µl of 

aquaphenol water saturated (MP Biomedicals) were added and the mixture was manually 

stirred very slowly by inversion and centrifuged for 5 minutes at 13000 rpm. The aqueous 

phase was aspirated slowly using a micropipette with 200 µl-tip. The recovered volume was 

divided by 2 tubes and the centrifugation was repeated with 700 µl of aquaphenol. The 

aqueous phase recovered from each tube was transferred to a new 2 ml-microtube. After the 

addition of 700 µl of chloroform p.a. (Merck), the microtube was slowly and manually inverted 

to mix. The mixture was then centrifuged 5 minutes at 13000 rpm, after which the aqueous 

phase was removed into a new 2 ml-microtube where 70 µl of 3M sodium acetate and 1.4 ml 

of ice-cold 100% ethanol were added. The mixture was then inverted several times very slowly, 

to avoid shearing, until the strands of genomic DNA were noticeable. After centrifugation at 

4°C for 15 minutes at 13000 rpm, the supernatant was discarded by aspiration and 1 ml of ice-

cold 70% ethanol was added to wash the DNA pellet. The mixture was gently stirred by 

inversion and centrifuged at 4°C for 15 minutes at 13000 rpm. The supernatant was discarded 

by inverting the microtube. The precipitated genomic DNA was dried at room temperature by 

placing the inverted microtube on absorbent paper for 15 minutes. After drying, the DNA was 

ressuspended in 150 µl of low Tris-EDTA buffer and placed in a dry bath at 55°C without 

shaking for 1 hour. Then, the microtube was transferred to 4°C, with stirring by inversion from 

time to time, and kept overnight at this temperature. The volume was then transferred to a 

1.5-ml MAXYMum recovery microtube (Axygen). DNA was quantified by spectrophotometry 

and fluorimetry using NanoDrop One and Qubit 3.0 (ThermoFisher Scientific), respectively. The 

DNA sample was diluted to a final concentration of 70 ng/µl. A total of 140 ng of genomic DNA 

was electrophoresed on a 0.8% agarose gel stained with ethidium bromide, and compared 

with the lambda molecular weight marker DNA/Hind III (Invitrogen). Genomic DNA was placed 

at -20°C in 40 µl aliquots for long-term storage. 

 

DNA dialysis. An aliquot (40 µl) of genomic DNA was subjected to purification by dialysis, using 

a method previously described28 with minor adaptations, to try to increase the purity of the 

sample prior to sequencing. After thawing at room temperature, the aliquot was placed in a 
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dry bath for 15 minutes at 55°C, with slight stirring every 5 minutes, to homogenize the 

solution. Dialysis was performed using a 25 mm sterile acrodisc® syringe filters with supor® 

membrane with 0.2 µm of pore size (PALL). The filter was suspended in 4 ml of sterile 

bidistilled water within the plastic wrapper, immersed up to the membrane level, with the part 

that serves as the fitting for the syringe oriented to the outside. After 5 minutes of moistening 

the membrane, the entire volume of the aliquot was pipetted into the syringe fitting part and 

the inlet of the filter was subsequently covered to prevent evaporation. After 1 hour of 

dialysis, and with the filter in place, 35 µl of dialyzed DNA solution (87.5% recovery) was 

aspirated into a microtube.  

 

Library preparation and sequencing. Before preparing the libraries, genomic DNA was placed 

for 15 minutes at 55°C in the dry bath without shaking. Four genomic libraries were prepared 

using the Rapid Sequencing Kit SQK-RAD004 (Oxford Nanopore Technologies, ONT). Two 

libraries were prepared with an initial DNA input of 400 ng, as indicated by the manufacturer, 

whereas the other two were prepared with an input of 280 ng and 1500 ng (7.5 µl of solution 

after vacuum drying). Sequencing was performed on the MinION device (ONT) using FLO-

MIN106D flow cells. Data was transferred via USB connection to a portable computer with an 

Intel i7 processor and 16 GB of RAM. The MinKNOW software (MinION Release 19.06.8, ONT) 

was used to program and configure run parameters, and to acquire the data (FAST5 files) 

during sequencing. 

 

Sequencing data processing and analysis. The FAST5 files were transferred to a Linux server 

with 48 CPUs and 384 GB of RAM. The raw data was analyzed with NanoPlot (v1.30.1)29 to 

obtain various run statistics. Methylation analysis was performed using the Nanopype pipeline 

(v1.0.0)30. Briefly, basecalling was carried out with Guppy (ONT)31, read alignment was 

performed using ngmlr32 and minimap233 against the hg38 reference human genome sequence 

(Genome Reference Consortium Human Build 38 patch 12 - GRCh38.p12, Ensembl Release 96) 

and the calling of 5'-mC was performed with nanopolish21. The Nanopype pipeline was applied 

to each run independently (using minimap2-base mappings only) and to the combined data of 

the 4 runs (using ngmlr and minimap2 mappings). A total of 6 'frequencies.tsv' files containing 

methylation frequencies (corresponding to the ratio between the number of methylated sites 

and the number of called sites) for each mapped CpG dinucleotide were obtained. Coverage 

statistics were obtained with the bamqc tool of Qualimap234 software (v2.2.1), after merging, 

sorting and indexing the BAM files with samtools35 (v1.9). 

 

Comparative analysis of methylation frequencies. The methylation frequencies obtained using 

nanopore sequencing were compared with previously available data of methylation 

microarray24 and DREAM25 for the HEL cell line. The microarray and DREAM data are available 

in the Gene Expression Omnibus series records GSE68379 and GSE39787 for the HEL cell line 

(samples GSM1669874 and GSM979022, respectively). The LiftOver tool36 was used to convert 

the genomic coordinates of the DREAM data from hg18 to hg19, and from hg19 to hg38, and 

from the microarray data from hg19 to hg38 genome builds. The genomic positions of CpGs in 

the microarray and DREAM data were corrected to n-1 and n-2, respectively, for matching with 

the positions obtained in the methylation frequency files generated by nanopolish, and then 

randomly confirmed between all files using the flanking sequences of the CpG sites. The 
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methylation frequency in the DREAM dataset was calculated by dividing the number of 

methylated reads by the total number of reads for each CpG site. The BEDTools37 (v2.27.1) 

intersect function was used to intersect the coordinates of the CpG sites between the various 

data files. The resulting intersection files were analyzed with several R packages (V4.0.2). The 

‘corrr’ (v0.4.3)38  and ‘corrgram’ (v1.13)39 packages were used to calculate the product-

moment Pearson correlation between the methylation values obtained in nanopore 

sequencing, DREAM, and microarray. The data files obtained by nanopore sequencing were 

also filtered according to a minimum read support per CpG site, using the sed and awk 

commands in the Linux shell, and the resulting files were then intersected with the 

methylation microarray data file to assess the correlation of methylation values for common 

CpG sites. The genomic annotations of CpG sites (CpG islands, shores, shelves and open sea 

regions) were obtained for chromosome 1 using the ‘annotatr’40(version 1.14.0) R package. 

 

Results 

 

Sample and sequencing quality analysis 

The genomic DNA of the HEL cell line showed a single band with a minimum molecular size of 

23 kb and no evidence of smear. The 260nm/280nm ultra-violet absorption ratio was identical 

(1.95) in the sample without dialysis and in the dialyzed sample, while the 260nm/230nm 

ratios were, respectively, 2.06 and 2.14, indicating a potential benefit of dialysis to remove 

traces of phenol. Three nanopore sequencing runs were performed with DNA without dialysis 

(runs 1 to 3) and one with dialyzed DNA (run 4). The 4 runs had a total yield of 33.31 Gb 

(ranging between 5.66 and 12.59 Gb per run), encompassing a total of 4 249 514 reads. The 

longest read had a length of 292471 base pairs (bp). The read length N50 was 14.94 kb and the 

mean and median of the length of the reads were 7841 bp and 4366 bp, respectively (Table I). 

The mean read quality value (QV) was of 10.1 and the majority of the reads (67.4%) had a very 

high quality (QV>10) (Figure 1). The overall quality decreased slightly during the run, but most 

of the bases sequenced at the end of the runs still showed a high quality. The mean read 

quality was higher in run 4 (10.3) compared to any of the other runs (10), which may be 

attributed to the dialysis procedure. These results demonstrate that the quality of the DNA 

prepared by the phenol-chloroform method associated with the rapid method of library 

preparation, allows the generation of a large amount of high quality sequencing data. 

 

Genomic coverage and annotation of CpG sites 

The reads of the HEL cell line mapped in the hg38 reference sequence of the human genome, 

using minimap2 and ngmlr, constituted 93.6% and 88.6% of the total reads, which resulted in 

an average coverage depth of 10.6X (standard deviation: 28.6X) and 10.0X (standard deviation: 

20.9X), respectively. Methylation frequencies were obtained for a total of 29.093.016 and 

28.114.726 CpG dinucleotides respectively, despite the reduced depth of coverage. These 

results indicate that it was possible to obtain information on the status of 5'-mC in practically 

all CpGs (~28M) present in the hg19 human genome reference sequence41. The genomic 

annotation of the CpG dinucleotides located in the chromosome 1 sequence, revealed the 

expected pattern according to the predicted length of the annotated regions, and 
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characterized by a similar proportion of CpG dinucleotides located in the CpG islands, CpG 

shores and CpG shelves, and a vast majority of CpG dinucleotides situated in the inter-CG 

island (inter-CGI) regions, also known as open sea (Figure 2). The mapping of long reads carried 

out with minimap2 or ngmlr did not affect the distribution of CpG sites according to the 

respective genomic annotations. Contrary to the results produced by nanopore sequencing, 

the 450K microarray and DREAM methodologies showed a tendency for CpG annotations in 

CpG islands, shores and shelves. This is due to the fact that, in the former, the CpG sites were 

chosen manually when the array probes were designed and, in the latter, there is a bias 

towards used enzyme restriction sites in those regions. 

 

Correlation analysis of the methylation status of CpG sites between nanopore sequencing, 

450k microarray and DREAM 

We performed a correlation analysis between the methylation frequencies obtained in this 

study with the corresponding values obtained in the 450k microarray and DREAM studies for 

the HEL cell line. The workflow that was used to compare the various data sets is represented 

as a diagram in Figure 3. The methylation status of each CpG site is calculated for each method 

using different calculation formulas and can vary between 0 (each copy of the CpG site is 

unmethylated) and 1 (each copy of the CpG site is methylated). In nanopolish, the frequency of 

methylation is calculated for each CpG site as "called_sites methylated"/"total called sites". In 

the case of DREAM, we used an equivalent approach, that is, we calculated the frequency of 

methylation as the "number of methylated reads"/"number of total reads" that cover each 

CpG site. In the case of 450k microarray, the beta-value was used to quantitatively describe 

the methylation status of each CpG site, using the following formula: Beta-value = 

"methylated_signal intensity" / ("methylated_signal_intensity" + 

"unmethylated_signal_intensity" + ), where  (which has a fixed value of 100) is used when 

the intensities of the methylation and non-methylation signals are low26. Although the beta-

value does not constitute a methylation frequency, as well as the M-value which is also used 

for calculating the methylation of CpG sites in arrays42, it can be interpreted as the proportion 

of methylated fragments in a given CpG site and, in this way, be legitimately compared with 

the methylation frequencies calculated based on the sequencing data. 

Initially, the methylation frequencies produced based on the mapping of nanopore reads, 

using minimap2 or ngmlr, and the methylation values obtained by the 450k microarray or 

DREAM, were correlated with each other at the level of whole genome. For a total of 

28,098,525 common CpG dinucleotides mapped by minimap2 and ngmlr (which include 99.9% 

of CpGs mapped by ngmlr and 96.6% of CpGs mapped by minimap2), the Pearson correlation 

was 0.98 (Table II), showing that the two mappings do not globally impact the results of 

methylation-calling carried out by nanopolish. The intersection of the methylation frequency 

files obtained based on ngmlr and minimap2, with the 450k microarray data file, produced a 

total of 478,633 and 480,281 common CpGs, corresponding to 99.2% and 99.6% of the CpGs 

contained in the methylation array, respectively. In the case of DREAM, after filtering the sites 

that did not have methylation values, and converting the genomic coordinates from hg18 to 

hg19, and then from hg19 to hg38, the intersection with the data obtained by nanopore 

sequencing, based on ngmlr and minimap2, resulted in a total of 148,346 and 152,686 

common CpGs, corresponding to 94.8% and 97.6% of the CpGs contained in DREAM, 

respectively. The lower percentage of overlap in the coordinates of DREAM in relation to those 

of the methylation array, may be due to the fact that those correspond to a very old version of 
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the human genome reference sequence (hg18). This implied that two rounds of conversion 

between genome coordinates have been performed in DREAM instead of 1 in the case of 

methylation array, which potentially led to a lower number of correctly converted CpG sites in 

the former. In both cases, very high correlations were observed between the methylation 

values of nanopore sequencing and 450k microarray (0.85), and between the methylation 

values of nanopore sequencing and DREAM (0.80). 

These correlations could suggest that these were the result of comparing, on one hand, a 

different number of CpGs in each case and, on the other hand, a significant proportion of 

different CpG sites, as a consequence of the intersection between the different datasets. To 

test this possibility, the coordinates of the CpG sites of the various datasets were serially 

intersected until a set of 5416 common CpG sites was obtained. The resulting correlations 

calculated for each paired datasets revealed that most values were similar to those obtained 

previously, indicating that the methylation values are well correlated even when comparing 

only ~0.02% of the total CpGs in the human genome (Figure 4). Likewise, the nanopore data 

obtained with the minimap2-mapped reads showed correlation values slightly higher than 

those obtained with ngmlr. In contrast, DREAM produced slightly stronger correlation values 

than the 450k microarray when compared to nanopore data. One possible explanation for this 

finding is a sample effect size, since the 5416 CpGs represent 3,5% of CpGs present in the 

DREAM data in contrast to only 1,1% of those present in the microarray. Taken together, these 

data indicate that methylation-calling based on low coverage nanopore sequencing produces 

results comparable to those obtained with other methodologies. 

 

Correlation of methylation values as a function of read support and depth 

Then, we asked if the correlation of methylation values between nanopore sequencing and the 

other methods could be stronger as a result of an increase in minimum coverage depth. To 

simulate this effect, we filtered the positions of CpG sites in the methylation frequency files 

according to a read support between 2X and 20X, at 1X unit intervals. Pearson correlation was 

calculated for each minimum coverage level and plotted as a function of read support (Figure 

5). This analysis showed that the correlation between nanopore and 450k microarray data 

increased up to 0.89 and 0.90 at 17X read support, using minimap2- and ngmlr-based 

methylation frequencies, respectively. From this point on, the corresponding correlation 

values began to decrease until the maximum read support of 20X. This likely results from the 

fact that the number of available CpGs approaches zero when the read support is highest and 

that the corresponding methylation frequencies are calculated on likely incorrectly mapped 

reads or secondary read alignments.  

Conversely, we also sought to see the impact of a diminished average depth of coverage on 

the correlation values. For this purpose, we analyzed separately the data obtained in each of 

the 4 sequencing runs, which produced an average coverage depth of 1.8X/1.7X, 2.3X/2.2X, 

2.5X/2.4X and 4.0X/3.8X, using minimap2/ngmlr, respectively. The total number of CpGs 

mapped is directly proportional to the average depth of coverage and the size of the 

intersection CpG sets is also proportional to the correlation values between each pair of runs. 

(Table III). When the number of CpGs was lowest, the correlation between nanopore data 

(based on minimap2-mapping) and DREAM or 450k microarray was of 0.73 or 0.76, 

respectively (Table IV). The correlation increased as a function of the number of available 

CpGs, reaching the maximum values of 0.76 and 0.79, respectively. These results indicate that 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444035doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444035
http://creativecommons.org/licenses/by-nc-nd/4.0/


9 
 

an average coverage depth of 1-2X in nanopore sequencing can provide reliable information 

on the methylation status of a majority of CpG dinucleotides. 

 

Reproducibility and linearity of methylation frequency data 

When implementing nanopore sequencing technology to study 5'-mC, it is important to 

evaluate the reproducibility of the data. For this purpose, we consecutively intersected the 

coordinates of the CpG sites aligned with minimap2 in the 4 sequencing runs, and correlated 

the corresponding methylation frequencies between each pair of runs, so that the various 

correlations were directly comparable. Moreover, in order to avoid comparing CpG sites with a 

very different number of mapped reads, due to the different average coverage depth obtained 

in each run, we used only the methylation frequencies of the sites that were supported by a 

minimum of 5 reads, resulting in a total of 255 176 CpG sites. Although the average coverage 

depth in the 4 runs was very low (1.8-4.0X), strong correlation values were still obtained 

between different sequencing runs (Figure 6).  

The existence of technical replicates of the sequencing runs also allowed us to analyze the 

linearity of the methylation frequency data between 0 and 1. The purpose of this analysis was 

to determine if the low depth of coverage introduced a bias in the methylation frequencies in 

the ends of the scale. For this aim, we used the sets of 255 176, 81 287 and 53 083 CpG sites 

common to all runs and that were supported by at least 5, 10 or 15 reads, respectively. For 

each of these sites, we calculated the mean and standard deviation of the methylation 

frequencies. Then, we calculated the median of the standard deviations for each of 10 bins 

between the values of 0 and 1 and plotted these values against the scatter plot of mean versus 

standard deviation of the methylation frequencies. The results showed that there is an almost 

linearity of the data between 0 and 1 with only a slight compression at the ends. The 

difference between the maximum and minimum median values at 15X was half than that at 5X 

read support (0,03 versus 0,06 respectively), indicating that complete linearity may be reached 

at high depths of coverage. 

  

Distribution of methylation frequencies in distinct genomic contexts 

We then carried out a finer analysis of the methylation values according to the genomic 

context of the CpG sites. This analysis allows a biological insight into the data produced by the 

different methodologies and could help to identify specific differences in the methylation 

profiles between the various datasets. For this end, we compared the distribution of 

methylation values in each methodology using 21 bins between 0 and 1. We chose to use only 

the CpGs on chromosome 1 as representative of the distribution of methylation values at the 

genome level, in order to reduce the computational effort associated with analysis of the 

complete datasets. Comparative analysis of the methylation frequency profiles obtained with 

minimap2- and ngmlr-based nanopore sequencing data showed an almost complete overlap, 

reflecting the very strong correlation of methylation frequencies (Figure 7). The DREAM 

profile, which is also based on sequencing data, revealed a similar global profile to nanopore 

data. In contrast, the 450k microarray profile showed a more balanced distribution of 

methylation values between 0 and 1, with a decrease in both extreme bins compared to the 

profiles obtained with both sequencing approaches.  
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We subsequently broke down the methylation values according to the genomic context in 

order to detail the differences observed in the global genomic profiles. We observed in the 

various methodologies a continuum in the variation of the distribution of methylation values 

from CpG islands to inter CGI regions. In CpG islands, the vast majority of CpGs are in an 

unmethylated state whereas in the CpG shelves and inter CGI regions there is a predominance 

of methylated CpGs (Figure 8). In contrast, there is a more balanced distribution between 

complete unmethylated and complete methylated sites in CpG shores among all 

methodologies. In particular, nanopore sequencing showed a tendency towards a 

predominance of methylated CpGs whereas DREAM revealed the opposite scenario. This 

profile analysis also emphasized some details about the calculation of methylation in the 

various methodologies. In the case of DREAM, almost 43% of all mapped CpG sites have 5 or 

less support reads (data not shown), indicating that for many CpGs there was not enough 

vertical coverage to sufficiently sample each site. The consequence of this is that there may be 

an excess of completely methylated and unmethylated sites, relative to sites where there is co-

existence of methylated and unmethylated CpGs. In the 450k microarray, the number of CpG 

sites in the extreme bins is much lower than the corresponding bins in the other 

methodologies. This difference is due to the fact that the Infinium II HumanMethylation450 

methylation array assays demonstrate a right shift for fully unmethylated CpGs and a left shift 

for fully methylated CpGs, that is, a compression of beta-values towards the center of the 

scale26. Taken together, low coverage depth nanopore sequencing provides a reliable global  

methylation profile of the human genome. 

 

Discussion 

Nanopore sequencing is a technology that emerged after the widespread use of microarray 

and short-read sequencing technologies in the scientific community. For this reason, several 

sequencing applications, including the study of 5'-mC, were already well established when it 

was shown, for the first time, that nanopore sequencing was able to detect 5'-mC in the 

human genome using the MinION device. Despite the fact that this device is not yet prepared 

to generate a large amount of sequencing data, it is nonetheless worthwhile exploring the 

capabilities of MinION to generate whole genome 5'-mC data from sequencing at low coverage 

depth. In this context, we proposed to carry out a benchmark study to compare the 

performance of nanopore sequencing with methylation microarray and DREAM in the study of 

methylation in the human cell line HEL. To do this, we performed whole genome sequencing in 

the MinION, mapped the reads in the human reference sequence using 2 different mapping 

tools, performed 5'-mC methylation-calling using nanopolish, and compared the methylation 

values between the different methodologies using various statistical tools. The sequencing 

data produced by MinION showed a significant proportion of long high quality reads, which 

allowed us to assess the methylation level of almost all CpG sites existing in the human 

genome sequence. 

At a depth of coverage of approximately 10X, the correlation between the methylation 

frequencies obtained by nanopore sequencing and the methylation values obtained by DREAM 

or the 450k microarray, was approximately 0.80 and 0.85, respectively, regardless of the tool 

used in the mapping of long reads. The simulation of higher coverage depths, based solely on 

CpG sites with a minimum number of support reads, confirmed the progressive and linear 

increase of correlation up to 0.90, demonstrating that methylation-calling based on low 

coverage depth nanopore sequencing provides reliable methylation frequency data. 
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Conversely, we showed that even at a coverage level <2X, the lowest correlation obtained was 

0.73 between nanopore sequencing and DREAM. Although strong correlations have been 

obtained between the various methylation data sets in all cases, it is important to emphasize 

that exposure to different cell culture conditions, as well as the use of different methods for 

the extraction and preparation of genomic DNA, carried out in distinct laboratories at different 

times, may have contributed to small changes in the methylation pattern of the HEL cells. 

Using 4 different library preparations and nanopore sequencing runs, we observed a very 

strong correlation between methylation frequencies of the HEL cell line obtained in any of 2 

assays. In addition, we observed an almost linearity of the methylation frequencies between 

the minimum (fully unmethylated CpGs) and maximum (fully methylated CpGs) values at low 

levels of read 0-0.2 support. These results contrast with the intrinsic lack of homoscedasticity 

reported to occur in the and 0.8-1.0 intervals of beta-values in methylation arrays42. 

The methodologies for studying 5'-mC in the human genome have different advantages and 

disadvantages. In the case of 450k microarray, genomic DNA is initially treated with bisulfite, 

which converts unmethylated cytosines to uracils. This converting action may not be 

completely efficient, leaving some unconverted cytosines in an unmethylated state which are 

later interpreted as being methylated. This phenomenon is particularly relevant when the 

genomic DNA is not fully denatured before bisulfite treatment, because only the cytosines that 

are found in single-stranded DNA are susceptible to conversion15. In addition, the high 

temperature (99°C) used in some bisulfite treatment protocols can lead to the degradation of 

genomic DNA, which is manifested by random breaks in the sequence as a result of 

depurinations16. These breaks can give rise to low molecular size fragments, which can be lost 

in the next steps of the procedure, reducing the sequence representativeness of the original 

sample. Before hybridization on the chip, additional steps of sample manipulation can also 

cause a representation bias through the phenomena of preferential sequence selection during 

PCR, loss of amplified fragments during purification and incomplete denaturation of the DNA. 

Moreover, bisulfite treatment cannot distinguish between 5'-mC and 5'-

hydroxylmethylcytosine epigenetic modifications. Bisulfite transforms 5'-

hydroxylmethylcytosine into cytosine-5-methylsulfonate, which is read as a C during 

sequencing, making the presence of cytosines indistinguishable with either form of 

modification17. 

Bisulfite treatment is also used in short-read whole-genome bisulfite sequencing (WGBS)43, 

which can be affected by a similar set of conditions as the methylation array. Moreover, in 

short read sequencing technologies such as Illumina, sequence diversity is one of the critical 

aspects that allows high quality sequences to be obtained. In WGBS, unmethylated cytosines 

are converted into uracils, thus artificially reducing sample diversity and impacting overall 

sequence quality. Short reads, such as those used in the DREAM method, are also less adapted 

than long reads to map repetitive and highly homologous regions that exist in the human 

genome. Compared to the methylation array and DREAM, which only query a small fraction of 

CpG sites distributed essentially by gene regions and CpG islands, nanopore sequencing and 

WGBS offer a global view of the methylation profile of the human genome. The analysis of 

CpGs at a global level translates into an important advantage in terms of knowledge of 

epigenetic mechanisms, as it may allow the detection of CpG sites with novel functional 

relevance. In addition to the long read capabilities of nanopore sequencing, genomic DNA can 

be sequenced in its native form without any type of in vitro modification that can alter its 

integrity, sequence and representativeness, thus maintaining the original epigenetic landscape 
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of the sample. However, to achieve the desired sequencing coverage that we obtained in this 

study, there may be necessary a few rounds of sequencing, thus impacting on the overall cost 

of nanopore sequencing compared to the other traditional methodologies. However, the 

higher cost may be partially overcome with future improvements on sample quality, library 

preparation and/or sequencing chemistry, thereby being able to generate a larger amount of 

sequence data with less sequencing runs. 

Another important advantage of nanopore sequencing is the fact that it has the possibility of 

following novel scientific developments in the field of epigenomics, without necessarily 

implying upgrades in the technological platform or changes in the sequencing methods. This 

reflects the fact that the different types of epigenetic modification of DNA or RNA, including 

the various forms of methylation, can in theory be detected using the same primary data, 

without the need to repeat the sequencing of the samples. To achieve this, several 

computational methods have been developed capable of identifying different types of 

epigenetic modifications44. These can generally be divided into 2 main types, which include 

methods based on statistics and methods based on models. The former do not require the 

existence of a training model for DNA or RNA modifications, but they require the sequencing 

of a matched control sample to detect the various types of methylation45,46. Non-statistical 

methods can further be divided into mapping-dependent methods21,47–49 and basecalling-only 

methods such as Guppy31 or Flappie50 (https://github.com/nanoporetech/flappie). Model-

based methods may be more advantageous as they reduce the extra costs of sequencing a 

control sample, but they need to train a model based on the species genome, type of 

epigenetic modification and flow cell version. In this work, nanopolish has shown a good 

performance in calling 5'-mC in the human genome using R9.4 MinION flow cells. It is 

nonetheless desirable to carry out benchmarking studies using other methylation callers, in 

order to identify the best tool for determining 5'-mC in human genome samples. These tools 

should also be tested in the context of a comparative analysis between samples not exposed 

and exposed to an environmental agent, in order to assess the differences in the global 

methylation pattern. In summary, we showed in this study that methylation calling, based on 

nanopore sequencing, is a fast, robust and sensitive approach for determining the status of 5'-

mC in the human genome. 

 

Data availability 

The datasets presented in this study are available in the European Nucleotide Archive (ENA) at 

EMBL-EBI under the accession number PRJEB45078 

(https://www.ebi.ac.uk/ena/browser/view/ PRJEB45078). 
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Figures 

 

 

 

Figure 1. Quality analysis of nanopore sequencing reads generated using genomic DNA from 

the HEL cell line. The plots represent various quality metrics for the combined set of reads 

produced in 4 sequencing runs: A, number of reads over run time; B, cumulative yield (in 

gigabases) over run time; C, read length versus average read quality; D, basecall quality over 

run time. The majority of reads had an average read quality between 10 and 14. After 48 hours 

of sequencing run, there were still new reads being produced, the majority of these having a 

basecall quality over 10. Plots were generated using Nanoplot (v1.30.1). 
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Figure 2. Number of chromosome 1 CpG sites interrogated in the different methodologies 

according to their genomic annotation (CpG islands, shores and shelves, and open sea regions) 

in the hg38 human genome reference sequence. A, nanopore_ngmlr; B, nanopore_minimap2; 

C, 450k microarray; D, DREAM. Whole genome nanopore sequencing produced a more 

consistent distribution of CpG sites in accordance with the expected sizes of the annotated 

regions, whereas 450k microarray and DREAM showed a more biased distribution of CpGs 

towards CpG islands, shores and shelves. 
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Figure 3. Diagrammatic representation of the general workflow used for benchmarking 5'-mC 

methylation values obtained by nanopore sequencing versus 450k microarray and DREAM. The 

numbers indicate the total number of CpG sites available at each step within the workflow. 

The analysis tools (liftOver, Bedtools and R) used in the workflow are represented by purple 

boxes.  
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Figure 4. Correlation analysis of methylation values between each pair of methodologies. The 

CpG sites interrogated by nanopore_ngmlr, nanopore_minimap2, 450k microarray and 

DREAM, were intersected in a serial manner to generate a set of 5416 CpG sites common to all 

datasets. A, Correlation diagram indicating the Pearson correlation values and the 

corresponding plots for each pair of methodologies. B, Venn diagram showing the number of 

CpG sites resulting from the intersection of the various datasets. The plots were generated 

using packages corrgram (v1.13) and VennDiagram51 (v1.6.20) in R. 
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Figure 5. Evolution of Pearson correlation values as a function of minimum read support. The 

CpG sites mapped with minimap2 and ngmlr were filtered from the methylation frequencies 

file according to a minimum read support between 1X and 20X at a 1X intervals. A, Pearson 

correlation values as a function of read support. B, Number of CpG sites as a function of read 

support. The Pearson correlation values was based on the intersection of genome-wide CpG 

sites between each of the nanopore datasets and the 450k microarray dataset. The correlation 

increased up to 17X read support. From 18X to 20X the correlation values showed a slight 

decrease likely as a consequence of a very small number of interrogated CpG sites. 
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Figure 6. Representation of the correlation values and distribution of methylation frequency 

variation obtained in technical replicates, as a function of minimum read support. A, 5X read 

support; B, 10X read support; C, 15X read support. The median of the standard deviations was 

calculated for each of 10 bins between 0 and 1, and is represented by small red triangles 

connected by red lines in each of the plots on the right side of the figure. The linearity of the 

variation in methylation frequencies as well as the correlation values increase as a function of 

read support. 
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Figure 7. Distribution of methylation values for chromosome 1 CpGs obtained in nanopore 

sequencing, 450k microarray and DREAM. Plots were generated using ggplot252 (v3.3.2) R 

package. Both sequencing approaches show a predominance of fully unmethylated and full 

methylated CpG sites compared to the 450k microarray where the distribution of methylation 

frequencies is more balanced along the scale. 
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Figure 8. Distribution of methylation values obtained in nanopore sequencing, 450k microarray 

and DREAM, according to the CpG genomic annotations. A, nanopore_ngmlr; B, 

nanopore_minimap2; C, 450k microarray; D, DREAM. In CpG islands the majority of 

interrogated CpGs are unmethylated. In CpG shores, there is a balanced distribution between 

unmethylated and methylated CpG sites, whereas in CpG shelves and inter-CGI regions there is 

a predominance of methylated CpG sites.   
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Table I. Sequencing run statistics. 

Run number 1 2 3 4 Combined 

DNA input (ng) 280 400 1500 400 

  

Starting pores available for sequencing 1701 1462 1478 1692 

Run time (H) 45 48 48 48 

Before base calling 

Number of Reads (K) 465 730 1440 1620 

Output (Gb) 5.91 7.46 7.83 12.78 

N50 (Kb) 23.67 21.33 10.02 13.73 

Longest Read (Kb) 257 305 196 NA 

After base calling 

Number of Reads 465 108 729 775 1 435 541 1 619 090 4 249 514 

Output (Gb) 5.66 7.24 7.82 12.59 33.31 

N50 (Kb) 23.15 18.58 10.22 13.71 14.94 

Longest Read (pb) 240905 292471 185813 186627 292471 

Mean read length (pb) 12167 9928 5452 7778 7841 

Median read length (pb) 6998 5639 3015 4836 4366 

Mean read quality 10 10 10 10.3 10.1 

Median read quality 10.8 10.7 10.7 10.9 10.8 

% QV>7 87.6 89 89.2 90.5 89.5 

% QV>10 66.7 65.9 64.8 70.5 67.4 

NA, not available 
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Table II. Pearson correlations between nanopore sequencing, 450k microarray and DREAM 

(grey cells) and corresponding number of interrogated CpG sites (white cells). The p-value 

obtained in each correlation was < 2.2e-16.  

 
nanopore_ngmlr  nanopore_minimap 2  

 450k 
microarray 

DREAM 

nanopore_ngmlr  28 114 726 0.98  0.84 0.79 

nanopore_minimap 2  28 098 525 29 093 016 0.85 0.80 

450k microarray 478 633 480 281 482 338 0.81 

DREAM 148 356 152 686 5 714 156 513 

 

 

Table III. Pearson correlations between each 2 runs of nanopore sequencing (grey cells) and 

corresponding number of interrogated CpG sites (white cells). The CpGs were called based on 

minimap2 mapping results. The p-value obtained in each correlation was < 2.2e-16. 

 
Run 1 Run 2 Run 3 Run 4 

Run 1 20 517 732 0.69 0.70 0.72 

Run 2 16 430 158 22 667 288 0.71 0.73 

Run 3 17 166 563 18 887 356 23 751 970 0.74 

Run 4 19 126 896 21 077 222 22 071 529 26 794 587 

 

 

Table IV. Pearson correlations between each run of nanopore sequencing and 450k microarray 

or DREAM, and corresponding number of interrogated CpG sites. The CpGs called in nanopore 

sequencingnwere based on minimap2 mapping data. The p-value obtained in each correlation 

was < 2.2e-16. 

 
450k microarray DREAM 

  CpGs Pearson correlation CpGs Pearson correlation 

Run 1 346 550 0.76  93 294 0.73 

Run 2 382 218 0.76  104 657 0.74 

Run 3 408 422 0.78 115 047 0.74 

Run 4 447 650 0.79 130 951 0.76 
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