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ABSTRACT  53 

Global deployment of vaccines that can provide protection across several age groups is still 54 

urgently needed to end the COVID-19 pandemic especially for low- and middle-income 55 

countries. While vaccines against SARS-CoV-2 based on mRNA and adenoviral-vector 56 

technologies have been rapidly developed, additional practical and scalable SARS-CoV-2 57 

vaccines are needed to meet global demand. In this context, protein subunit vaccines formulated 58 

with appropriate adjuvants represent a promising approach to address this urgent need. Receptor-59 

binding domain (RBD) is a key target of neutralizing antibodies (Abs) but is poorly 60 

immunogenic. We therefore compared pattern recognition receptor (PRR) agonists, including 61 

those activating STING, TLR3, TLR4 and TLR9, alone or formulated with aluminum hydroxide 62 

(AH), and benchmarked them to AS01B and AS03-like emulsion-based adjuvants for their 63 

potential to enhance RBD immunogenicity in young and aged mice. We found that the AH and 64 

CpG adjuvant formulation (AH:CpG) demonstrated the highest enhancement of anti-RBD 65 

neutralizing Ab titers in both age groups (~80-fold over AH), and protected aged mice from the 66 

SARS-CoV-2 challenge. Notably, AH:CpG-adjuvanted RBD vaccine elicited neutralizing Abs 67 

against both wild-type SARS-CoV-2 and B.1.351 variant at serum concentrations comparable to 68 

those induced by the authorized mRNA BNT162b2 vaccine. AH:CpG induced similar cytokine 69 

and chemokine gene enrichment patterns in the draining lymph nodes of both young adult and 70 

aged mice and synergistically enhanced cytokine and chemokine production in human young 71 

adult and elderly mononuclear cells. These data support further development of AH:CpG-72 

adjuvanted RBD as an affordable vaccine that may be effective across multiple age groups.  73 

  74 
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INTRODUCTION 75 

The coronavirus disease 2019 (COVID-19) pandemic caused by severe acute respiratory 76 

syndrome coronavirus 2 (SARS-CoV-2) resulted in a serious threat to humanity. Rapid 77 

deployment of safe and effective vaccines is proving key to reducing morbidity and mortality of 78 

COVID-19, especially in high-risk populations such as the older adults (1). Novel vaccine 79 

technologies including mRNA and adenoviral vector vaccines have dramatically accelerated the 80 

process of vaccine development, shown high efficacy in preclinical and clinical studies, and 81 

therefore been granted Emergency Use Authorization by the Food and Drug Administration (2-9). 82 

Unfortunately, worldwide access to these vaccines may be limited by the need for ultra-cold 83 

storage (mRNA vaccines), cost, and concerns regarding global scalability especially in the third 84 

world (1). This situation not only represents a major ethical problem but may also promote the 85 

emergence of vaccine-resistant SARS-CoV-2 strains due to high infection rates in unvaccinated 86 

regions (10). Thus, ongoing efforts are needed to investigate additional affordable, easily 87 

scalable, and effective vaccine approaches against SARS-CoV-2 to improve global access. To 88 

this end, alternative platforms such as inactivated and protein subunit SARS-CoV-2 vaccines 89 

have entered different stages of clinical development and in some cases have already been 90 

deployed at the population level (11-17). These approaches may play an essential role in the 91 

global fight against COVID-19 since they utilize well-established technologies, do not require 92 

low temperature storage, and have proven safety and effectiveness in various age groups 93 

including young children and the elderly. 94 

 95 

With the exception of inactivated viruses, most SARS-CoV-2 vaccine candidates aim to target 96 

the SARS-CoV-2 Spike glycoprotein, as it is required for binding to the human receptor 97 
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angiotensin-converting enzyme 2 (ACE2) and subsequent cell fusion. In particular, the receptor-98 

binding domain (RBD) of the Spike protein plays a key role in ACE2 binding and is targeted by 99 

many neutralizing antibodies (Abs) that exert a protective role against SARS-CoV-2 infection 100 

(18-20). RBD is an attractive candidate for a SARS-CoV-2 subunit vaccine and is relatively easy 101 

to produce at scale (21, 22); however, it is poorly immunogenic on its own. Structural biology-102 

based vaccine design has been employed to overcome this limitation and has generated 103 

encouraging results in preclinical and clinical studies (22-29). A complementary approach to 104 

increase the immunogenicity of vaccine antigens consists of using adjuvants, which can enhance 105 

antigen immunogenicity by activating receptors of the innate immune system called pattern-106 

recognition receptors (PRRs) and/or modulating antigen pharmacokinetics (30, 31). Adjuvant 107 

formulations of aluminum salts and PRR agonists enhance vaccine immune responses compared 108 

to aluminum salts or PRR agonists alone (32). AS04 was the first adjuvant system composed of 109 

aluminum salts and a PRR agonist, specifically the TLR4 agonist monophosphoryl lipid A 110 

(MPLA), to be included in a licensed human papillomavirus and hepatitis B vaccines (32). Thus, 111 

combinations of aluminum salts and PRR agonists represent a promising adjuvant platform to 112 

enhance RBD immunogenicity. 113 

 114 

Here, we evaluated several combinations of PRR agonists and aluminum hydroxide (AH) and 115 

found that the TLR9 agonists CpG oligodeoxynucleotides formulated with AH and RBD 116 

dramatically enhanced immune response towards RBD in young mice using a prime-boost 117 

immunization schedule. The AH:CpG-adjuvanted RBD vaccine also elicited a robust anti-RBD 118 

immune response in aged mice, with the administration of an additional boost dose generating an 119 

anti-RBD Ab response comparable to young adult mice and providing complete protection from 120 
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live SARS-CoV-2 challenge. Overall, our comprehensive, head-to-head adjuvant comparison 121 

study demonstrates that AH:CpG co-adjuvantation can overcome both the poor immunogenicity 122 

of RBD and immunosenescence, supporting this approach for development of a scalable, 123 

affordable, and safe global SARS-CoV-2 vaccine tailored for older adults.  124 
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RESULTS 125 

Evaluation of multiple AH:PRR agonist formulations in young adult mice 126 

We first evaluated whether distinct AH:PRR agonist formulations can overcome the low 127 

immunogenicity of monomeric RBD proteins. To this end, we performed a comprehensive 128 

comparison of PRR agonists, including 2'3'-cGAMP (stimulator of IFN genes (STING) ligand), 129 

Poly (I:C) (TLR3 ligand), PHAD (synthetic MPLA, TLR4 ligand), and CpG-ODN 2395 (TLR9 130 

ligand). Each PRR agonist was formulated with and without AH. We also included AS01B (a 131 

liposome-based adjuvant containing MPLA and the saponin QS-21) as a clinical-grade 132 

benchmark adjuvant with potent immunostimulatory activity. The immunogenicity of vaccine 133 

formulations was first evaluated in 3-month-old young adult mice. Mice were immunized 134 

intramuscularly twice with 10 µg of monomeric RBD protein formulated with or without 135 

adjuvant, in a two-dose prime-boost regimen (Days 0 and 14). Two weeks after the boost 136 

immunization, humoral immune responses were evaluated. AH:PRR agonist formulations 137 

enhanced both anti-RBD Ab titers and inhibition of RBD binding to human ACE2 (hACE2) as 138 

compared to their respective non-AH adjuvanted formulations (Fig 1A-C). The Ab response 139 

elicited by AH alone was highly skewed to IgG1, with minimal inhibition of hACE2/RBD 140 

binding (Fig 1D, E). Among various AH:PRR agonist formulations, AH:CpG demonstrated the 141 

highest induction of total IgG, IgG1, and IgG2a along with a balanced IgG2a/IgG1 ratio (Fig 142 

1A-D). Furthermore, the AH:CpG formulation significantly enhanced hACE2/RBD binding 143 

inhibition compared to all the other AH:PRR agonist formulations (Fig 1E). Abs induced by 144 

monomeric RBD immunization recognized the native trimeric Spike protein, as demonstrated by 145 

a binding ELISA with prefusion stabilized form of spike trimer (Fig 1F). To assess long-term 146 

immunogenicity, we then evaluated Ab responses and hACE2/RBD binding inhibition on Day 147 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444848doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444848


 

9

210 (Fig 1G-J). Of note, AH:CpG formulation maintained high hACE2/RBD binding inhibition 148 

while other adjuvant formulations waned their immune responses (Fig 1E, J). 149 

 150 

AH:CpG-formulated RBD vaccine is immunogenic in aged mice 151 

To assess the vaccine response in the context of aging, the immunogenicity of RBD vaccines 152 

adjuvanted with AH:PRR agonists was further studied in aged mice (14-month-old). Similar to 153 

young mice, the AH:CpG formulation also elicited the highest humoral immune response after 154 

prime-boost immunization in aged mice (Fig 2A-F). Of note, the vaccine adjuvanted with 155 

AH:CpG produced significantly higher hACE2/RBD inhibition and neutralizing titers compared 156 

to the vaccine adjuvanted with AS01B, which is known as a potent adjuvant in the human elderly 157 

population (33, 34) (Fig 2E, F). However, Ab levels were generally lower in aged mice, and the 158 

magnitude of the immune response of aged mice receiving the AH:CpG vaccine was 159 

significantly lower than that of young mice, suggesting an impaired vaccine response due to 160 

immunosenescence in the elderly population (Fig S1). To determine whether an additional dose 161 

can improve vaccine immunogenicity in aged mice, we administered a second booster dose two 162 

weeks after the last immunization. On Day 42 (two weeks after the 2nd boost), enhancement in 163 

humoral responses was observed in AH:PRR agonist formulations (Fig 2G-L). Notably, a 164 

significant enhancement of hACE2/RBD inhibition was observed in aged mice receiving the 165 

two-boost AH:CpG vaccination regimen, with inhibition reaching the level of young mice that 166 

had received AH:CpG in a prime-boost regimen (Fig S1). High serum neutralizing Ab titers 167 

were observed in the AH:CpG and AS01B adjuvanted groups after the 2nd boost but not in the 168 

non-adjuvanted nor AH alone-adjuvanted RBD groups. Assessment of cytokine production by 169 

splenocytes isolated from immunized mice and restimulated in vitro with Spike peptides 170 
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demonstrated high Th1 (IFNγ and IL-2) and low Th2 (IL-4) cytokine production in the AH:CpG 171 

and AS01B groups (Fig 2M). These results demonstrate that the AH:CpG-adjuvanted RBD 172 

vaccine is highly immunogenic in aged mice and an additional booster dose can further enhance 173 

anti-RBD humoral responses to match those observed in young mice. 174 

 175 

AH:CpG-formulated RBD vaccine protects aged mice from lethal viral challenge 176 

Neutralizing Abs are key to protecting from SARS-CoV-2 infection. Since RBD formulated with 177 

AH:CpG elicited high titers of neutralizing Abs, we assessed the protection of immunized mice 178 

in a challenge model. To this end, we employed the mouse-adapted SARS-CoV-2 MA10 virus 179 

strain (35). When tested in young (3-month-old) and aged (14-month-old) BALB/c mice, SARS-180 

CoV-2 MA10 elicited dose-dependent weight loss (Fig 3A, B). Notably, aged mice challenged 181 

with 103 PFU or more exhibited dose-dependent mortality by 4 days post-infection (dpi) (Fig 182 

3C). None of the young mice died by 4 dpi, including those that received the highest viral dose, 183 

in contrast with aged mice. Next, immunized aged mice were challenged with SARS-CoV-2 184 

MA10 six weeks after the second boost. Bodyweight changes were assessed daily up to 4 dpi 185 

when the mice were sacrificed for viral titer and histopathology analyses. Aged mice immunized 186 

with the AH:CpG and AS01B adjuvanted vaccines showed no weight loss up to 4 dpi, whereas 187 

aged mice immunized with non-adjuvanted or AH-adjuvanted RBD showed rapid and significant 188 

bodyweight loss of >10% through 4 dpi (Fig 4A). Lung tissues were harvested and tested for 189 

SARS-CoV-2 viral titer in lung. No detectable live virus in lung tissues was observed in the 190 

AH:CpG and AS01B adjuvanted groups, while viral titers were detectable in the vehicle, non-191 

adjuvanted, and AH-adjuvanted groups (Fig 4B). Histopathological analysis conducted in lung 192 
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tissues further confirmed the reduced SARS-CoV-2 infection in aged animals vaccinated with 193 

AH:CpG and AS01B adjuvants (Fig 4C, D). 194 

 195 

AH:CpG-formulated RBD and Spike mRNA vaccines elicit comparable levels of neutralizing 196 

antibodies against wild type SARS-CoV-2 and variants 197 

Recently, it has been reported that SARS-CoV-2 mRNA vaccines are more immunogenic than 198 

RBD adjuvanted with oil-in-water emulsions (36). To assess whether this is a general feature of 199 

RBD protein vaccines, we used the clinical-grade authorized BNT162b2 Spike mRNA vaccine 200 

(Pfizer-BioNTech) as a benchmark and compared it to RBD formulated with AddaS03 (a 201 

commercially available version of the oil-in-water emulsion AS03) and to AH:CpG in aged mice. 202 

Along with CpG-2395, we also tested CpG-1018, which is included in the Heplisav-B vaccine 203 

and has also been tested in combination with Spike/RBD and AH in SARS-CoV-2 studies 204 

including human vaccine trials (12, 16, 37). In accordance with previously published data, the 205 

mRNA vaccine was highly immunogenic, while RBD formulated with AddaS03 failed to induce 206 

significant levels of neutralizing Abs (Fig 5A-D). Of note, both AH:CpG formulations elicited 207 

levels of anti-RBD (Fig 5A), anti-Spike (Fig 5B) and neutralizing Abs (Fig 5C, D) comparable 208 

to or greater than the mRNA vaccine.  209 

SARS-CoV-2 variants such as B.1.1.7 and B.1.351 have emerged with reduced 210 

neutralization from serum samples of convalescent or vaccinated individuals (38-41). A recent 211 

report showed that the mRNA BNT162b2 vaccine maintained its effectiveness against severe 212 

COVID-19 with the B.1.351 variant at greater than 90% (42). We therefore evaluated whether 213 

RBD + AH:CpG and mRNA BNT162b2 vaccines elicit neutralizing Abs against these variants. 214 

As expected, we observed reduced titers against the variants, especially against the B.1.351 (Fig 215 
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5E). The neutralization titers of RBD + AH:CpG decreased by 3.2-fold against B.1.351, and the 216 

mRNA BNT 162b2 decreased by 6.0-fold. Neutralizing titers against the B.1.351 were 217 

comparable between RBD + AH:CpG (GMT 382) and mRNA BNT162b2 (GMT 109). 218 

 219 

Innate signaling potentiated by AH:CpG formulation is well preserved in aged mice 220 

Lymph nodes (LNs) are critical sites for the interaction between innate and adaptive immune 221 

systems and orchestrate the development of vaccine immune responses (43, 44). Specifically, 222 

activation of the innate immune system can induce a rapid response in the LN characterized by 223 

LN expansion, which is driven by lymphocyte accrual and expression of proinflammatory 224 

molecules (45, 46). To gain further insights into the mechanism of action of the AH:CpG 225 

formulation, we collected draining LNs (dLNs) 24 hours post injection of AH:CpG or either 226 

adjuvant alone. CpG and AH:CpG induced comparable dLN expansion in both age groups (Fig 227 

6A). To characterize the molecular events associated with these treatments further, RNA isolated 228 

from dLNs after injection of vehicle, CpG, or AH:CpG was subjected to a quantitative real-time 229 

PCR array comprised of 157 genes related to cytokines, chemokines, and type 1 IFN responses. 230 

Principal component analysis and hierarchical cluster analysis demonstrated a marked separation 231 

between AH and CpG-containing treatments, whereas similar patterns were observed between 232 

groups treated with AH:CpG and CpG alone in both age groups (Fig 6B, C). Generalized linear 233 

model analysis comparing gene expressions after AH, CpG, and AH:CpG treatments further 234 

revealed similar gene enrichment patterns between young adult and aged mice (Fig 6D, E). 235 

These results suggest that CpG and AH:CpG activate similar pathways in young and aged mice 236 

to elicit a LN innate response. 237 

 238 
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AH:CpG synergistically enhances proinflammatory cytokines from human elderly PBMCs  239 

In order to assess the translational relevance of an adjuvant formulation it is key to confirm its 240 

ability to activate human immune cells. To this end, we stimulated human peripheral blood 241 

mononuclear cells (PBMCs) isolated from young adults (18-40 years old) and elder adults (≥65 242 

years old) with CpG, AH, and the admixed AH:CpG formulation and measured cytokine and 243 

chemokine production. Whereas AH induced limited or no cytokine production, both CpG alone 244 

and AH:CpG activated young adult and elderly PBMCs in a concentration-dependent manner 245 

(Fig 7A-D, Fig S2). PBMCs of both age groups treated with AH:CpG produced significantly 246 

higher levels of various proinflammatory cytokines and chemokines than those treated with CpG 247 

alone (Fig 7A-D). Of note, CpG and AH synergistically induced IL-6, IL-10, TNF, CCL3, and 248 

GM-CSF production in both young adult and elderly PBMCs, as defined mathematically (D 249 

value, see Methods) (Fig 7C, D, Fig S2).   250 
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DISCUSSION 251 

The risk of COVID-19-related morbidity and mortality increases with age (47, 48). Currently 252 

authorized SARS-CoV-2 vaccines have proven effective at preventing severe COVID-19 (2-4). 253 

Nevertheless, there is still the need to develop affordable and accessible vaccines that can 254 

provide protection across several age groups, especially for low- and middle-income countries (1, 255 

10, 49). Protein subunit vaccines formulated with appropriate adjuvants represent a promising 256 

strategy to address this urgent need. Here, we performed a comprehensive head-to-head 257 

comparison of multiple adjuvants in age-specific in vivo and ex vivo animal models, along with 258 

age-specific human in vitro screening, to determine the appropriate adjuvant for a SARS-CoV-2 259 

RBD vaccine in the young and the aged, focusing on the innate and humoral immune response 260 

reported to align best with known correlates of protection (50, 51). We found that the AH:CpG 261 

adjuvant formulation enhances anti-RBD neutralizing Ab titers and type 1 immunity (i.e. IgG2a 262 

switching, Th1 polarization) in both age groups. Aged mice immunized with AH:CpG are 263 

protected from live SARS-CoV-2 challenge. Of note, RBD adjuvanted with AH:CpG elicited 264 

levels of neutralizing Abs comparable to the clinical-grade BNT162b2 Spike mRNA vaccine. 265 

The translational relevance of our findings is also highlighted by the synergistic activation of 266 

human PBMCs from older individuals upon stimulation with AH:CpG. Overall, our results 267 

expand upon recent preclinical and clinical studies on the enhanced immunogenicity of Spike 268 

formulated with AH:CpG by showing that a vaccine composed of RBD and AH:CpG can also 269 

induce a robust anti-SARS-CoV-2 immune response across different age groups. Since an RBD 270 

antigen is amenable to high-yield manufacturability (52-54), our study also supports the 271 

development of RBD formulated with AH:CpG as an affordable and accessible vaccine. 272 

 273 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444848doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444848


 

15

Among various AH:PRR agonist formulations, AH:CpG elicited the highest immune responses 274 

in both young and aged mice. We observed that vaccine immune responses were generally lower 275 

in aged mice than in young adult mice, even in the group receiving RBD formulated with 276 

AH:CpG. While the lower levels of anti-RBD Abs observed in aged mice are likely sufficient for 277 

protection, we found that an additional booster dose in the aged overcame the observed age-278 

dependent reductions in vaccine response and protected aged mice from SARS-CoV-2 challenge. 279 

We employed AH, which has been used for >90 years with a firmly established record of safety 280 

and efficacy (32) and AS01B, which recently demonstrated excellent adjuvant effects among 281 

elderly humans (33, 34), as “benchmarking” adjuvants to compare the exploratory adjuvanted 282 

formulations with more established adjuvants. In this context, we demonstrated that the AH:CpG 283 

adjuvanted vaccine was superior to a vaccine adjuvanted only with AH and was non-inferior to 284 

AS01B. In the context of the aged mice prime-boost setting, AH:CpG-adjuvanted SARS-CoV-2 285 

RBD significantly outperformed AS01B with respect to functional anti-RBD inhibition 286 

(Geometric mean (GM) with SD, 57±2% vs. 14±3%) and neutralizing Abs titers (2344 ± 7 vs. 287 

117± 4). 288 

 289 

In this study, AH:CpG dramatically enhanced vaccine immune responses compared to vaccines 290 

adjuvanted with AH or CpG alone in both young and aged mice. AH:PRR agonist formulations 291 

have shown promising adjuvanticity in preclinical models, and AS04 (a formulation of 292 

aluminum salts and MPLA) is employed in several licensed vaccines (32). While the precise 293 

mechanism of action of AH:PRR agonist formulations has not been completely uncovered and is 294 

potentially influenced by the degree of adsorption of PRR ligands onto AH, the effects of these 295 

formulations are at least in part mediated by enhanced activation of innate immune cells at the 296 
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injection site (31, 55). In our murine model, we also show that AH:CpG and CpG alone induce 297 

comparable proinflammatory gene expression profiles in dLNs. To gain additional mechanistic 298 

insight and increase the translational relevance of our findings, we tested the activity of AH:CpG 299 

on human PBMCs isolated from young adults and older individuals and found that this adjuvant 300 

formulation synergistically enhances cytokine and chemokine production compared to AH or 301 

CpG. These results might be explained by either 1) synergistic activation by AH and CpG of 302 

distinct molecular pathways, and/or 2) adsorption of CpG onto AH leading to the formation of 303 

macromolecular complexes that are more efficiently internalized and/or lead to enhanced TLR9 304 

activation. Further work is required to define the underlying molecular mechanism of action of 305 

AH:CpG in vivo and in vitro. 306 

 307 

The rationale for use of a synthetic TLR9 agonist CpG as an adjuvant for SARS-CoV-2 subunit 308 

vaccine is multi-fold. First, CpG has been used as a vaccine adjuvant in licensed vaccines with 309 

well-known mechanisms, substantial safety data, and confirmed effectiveness (56, 57). Second, 310 

CpG has demonstrated adjuvant effects in elderly populations. CpG enhanced vaccinal antigen 311 

immunogenicity in aged mouse and porcine models (58-63). Several human trials demonstrated 312 

that older individuals had a higher seroprotection rate when immunized with the CpG-adjuvanted 313 

hepatitis B vaccine compared to the conventional alum-adjuvanted vaccine (64, 65). Finally, 314 

AH:CpG-adjuvanted SARS-CoV-2 Spike vaccines have demonstrated safety, immunogenicity, 315 

and efficacy in several young adult animal models (51, 66, 67), and in a human clinical study 316 

involving an older population (12). Furthermore, Biological E has recently completed early 317 

phase (1 and 2) trials of a AH:CpG-adjuvanted SARS-CoV-2 RBD protein vaccine (trial # 318 

CTRI/2020/11/029032) which was intended for low- and middle-income countries, and are 319 
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currently advancing through manufacturing and clinical development through a large-scale phase 320 

3 trial in India (17). CpG is classified into 4 major classes, with distinct activation profiles of 321 

human cells (68). Class B CpG-1018 has been extensively evaluated in clinical trials. We 322 

observed that CpG-1018 and the class C CpG-2395 formulated with AH elicit comparable levels 323 

of neutralizing Abs, resulting in adjuvanted RBD formulations that were both non-inferior to the 324 

clinical-grade BNT162b2 Spike mRNA vaccine. Studies of TLR7/8 agonists as precision 325 

adjuvants with robust activity in early life (69), including in enhancing Spike immunogenicity in 326 

the young (70), further support the use of adjuvants to enhance vaccine immunogenicity in target 327 

populations. Together, and in light of our results in the older individuals, these studies suggest 328 

that precision adjuvant approaches hold substantial promise to generate scalable adjuvanted 329 

SARS-CoV-2 vaccine formulations that do not require freezing and afford robust protection to 330 

vulnerable populations across the lifespan.   331 

 332 

Our study features several strengths, including (a) defining a combination adjuvantation system 333 

based on the common AH backbone that demonstrated mathematical synergy in its ability to 334 

activate human mononuclear cells; (b) accounting for age-specific immunity that can play major 335 

roles in vaccine immunogenicity and is often overlooked in vaccine discovery; (c) accounting for 336 

species-specificity by assessing the activity of the adjuvant formulation in human PBMCs in 337 

vitro and in mice in vivo; (d) testing the ability of the adjuvanted formulation to protect in a 338 

SARS-CoV-2 challenge model; and (e) benchmarking to the authorized BNT162b2 Spike 339 

mRNA vaccine to place our studies in context. As with any research our study also has some 340 

limitations, including that (a) we performed in vivo analysis only in mice, establishing the need 341 

for future translational research in additional animal models and humans and (b) all 342 
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adjuvants/antigens were compared in single dose and further analysis should be performed in 343 

multiple doses to evaluate both efficacy and reactogenicity. Nevertheless, since we used standard 344 

doses of adjuvants/antigens in mouse systems (e.g., 1/30 and 1/18th of the human dose for CpG 345 

(12) and BNT162b2 (3) respectively, to compare the CpG-adjuvanted RBD subunit vaccine to 346 

the mRNA vaccine), it should be underscored that the results in this study hold promising value 347 

from a translational perspective. 348 

 349 

Recently, several SARS-CoV-2 variants of concern have emerged harboring mutations in the 350 

RBD region and showing various degrees of reduced neutralization by serum samples obtained 351 

from convalescent or vaccinated individuals (38-40). It is likely that booster doses that account 352 

for mutations in the Spike protein will be required in order to achieve complete immunity against 353 

such variants (71). Several vaccines composed of multiple protein antigens adsorbed onto 354 

aluminum salts alone or co-formulated with MPLA have been produced (55, 72). We speculate 355 

that an AH:CpG-adjuvanted coronavirus vaccine formulation incorporating RBD proteins from 356 

different SARS-CoV-2 strains (and potentially other coronaviruses) may promote cross-strain 357 

protective immunity.  358 

 359 

Overall, the current study aimed to evaluate an optimal adjuvant formulation to improve the 360 

protective response of RBD-based subunit vaccines in the elderly population, which is otherwise 361 

reduced as an effect of aging. We show that an AH:CpG adjuvant formulation induces potent 362 

anti-RBD responses in both young and aged mice and overcomes both the poor immunogenicity 363 

of the antigen and impaired immune responses in the aged. We discovered unique 364 

immunological properties of the AH:CpG adjuvant formulation that demonstrated synergistic 365 
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enhancement of the production of multiple cytokines and chemokines from human adult and 366 

elderly PBMCs in vitro. These data indicate that formulating RBD with AH:CpG represents a 367 

promising approach to develop a practical (e.g., not requiring low temperature storage), scalable, 368 

effective, and affordable vaccine that may be effective across multiple age groups and could 369 

potentially incorporate multiple RBD proteins to achieve cross-strain protection. 370 

371 
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MATERIALS AND METHODS 372 

Study design. The aim of this study was to assess optimal combinations of RBD antigen and 373 

adjuvants in pre-clinical models that take age-dependent vaccine immune responses and COVID-374 

19 susceptibility into account. To this end, we used age-specific mouse in vivo and human in 375 

vitro models. Sample size and age criteria was chosen empirically based on results of previous 376 

studies. Mouse experiments aimed to include in total 10 mice per group and were combined from 377 

two individual experiments. Mice were randomly assigned to different treatment groups. In order 378 

to assess the translational relevance and potential mechanism of an adjuvant formulation, we 379 

designed human in vitro study with peripheral blood collected from healthy young adults, aged 380 

18–40 y (n = 6), and older participants, aged ≥ 65 years (n = 6), with approval from the Ethics 381 

Committee of the Boston Children’s Hospital (protocol number X07-05-0223) and Institutional 382 

Review Board of Brigham and Women’s Hospital, Boston (protocol number 2013P002473). All 383 

participants signed an informed consent form prior to enrollment. Investigators were not blinded. 384 

No data outliers were excluded.  385 

 386 

Animals. Female, 3 months old BALB/c mice were purchased from Jackson Laboratory (Bar 387 

Harbor, ME). Female, 12-13 months old BALB/c mice purchased from Taconic Biosciences 388 

(Germantown, NY) were used for aged mice experiments. Mice were housed under specific 389 

pathogen-free conditions at Boston Children’s Hospital, and all the procedures were approved 390 

under the Institutional Animal Care and Use Committee (IACUC) and operated under the 391 

supervision of the Department of Animal Resources at Children’s Hospital (ARCH) (Protocol 392 

number 19-02-3897R). At the University of Maryland School of Medicine, mice were housed in 393 
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a biosafety level 3 (BSL3) facility for all SARS-CoV-2 infections with all the procedures 394 

approved under the IACUC (Protocol number #1120004) to MBF. 395 

 396 

SARS-CoV-2 Spike and RBD expression and purification. Full length SARS-CoV-2 Spike 397 

glycoprotein (M1-Q1208, GenBank MN90894) and RBD constructs (amino acid residues R319-398 

K529, GenBank MN975262.1), both with an HRV3C protease cleavage site, a TwinStrepTag 399 

and an 8XHisTag at C-terminus were obtained from Barney S. Graham (NIH Vaccine Research 400 

Center) and Aaron G. Schmidt (Ragon Institute), respectively. These mammalian expression 401 

vectors were used to transfect Expi293F suspension cells (Thermo Fisher) using 402 

polyethylenimine (Polysciences). Cells were allowed to grow in 37°C, 8% CO2 for additional 5 403 

days before harvesting for purification. Protein was purified in a PBS buffer (pH 7.4) from 404 

filtered supernatants by using either StrepTactin resin (IBA) or Cobalt-TALON resin (Takara). 405 

Affinity tags were cleaved off from eluted protein samples by HRV 3C protease, and tag 406 

removed proteins were further purified by size-exclusion chromatography using a Superose 6 407 

10/300 column (Cytiva) for full length Spike and a Superdex 75 10/300 Increase column 408 

(Cytiva) for RBD domain in a PBS buffer (pH 7.4). 409 

 410 

Adjuvants and immunization. The adjuvants and their doses used were: Alhydrogel adjuvant 411 

2% (100 µg), 2'3'-cGAMP (10 µg), Poly (I:C) HMW (50 µg), CpG-ODN 2395 (50 µg), 412 

AddaS03 (25 µL) (all from InvivoGen, San Diego, CA), CpG-ODN 1018 (50 µg, 5’ TGA CTG 413 

TGA ACG TTC GAG ATG A 3’) (Integrated DNA Technologies, Coralville, IA), PHAD (50 414 

µg) (Avanti Polar Lipids, Alabaster, AL), and AS01B (40 µL) (obtained from the Shingrix 415 

vaccine, GSK Biologicals SA, Belgium). Mice were injected with 10 µg of recombinant 416 
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monomeric SARS-CoV-2 RBD protein, with or without adjuvants. Each PRR agonist was 417 

formulated with and without aluminum hydroxide. Mock treatment mice received phosphate-418 

buffered saline (PBS) alone. BNT162b2 Spike mRNA vaccine (Pfizer-BioNTech) was obtained 419 

as residual volumes in used vials from the Boston Children’s Hospital employee vaccine clinic, 420 

strictly using material that would only otherwise be discarded, and was used within 6 hours from 421 

the time of reconstitution. BNT162b2 suspension (100 µg/mL) was diluted 1:3 in PBS, and 50 422 

µL (1.67 µg) was injected. Injections (50 µL) were administered intramuscularly in the caudal 423 

thigh on Days -0, -14 (both age groups), and Day 28 (aged mice only, where relevant). Blood 424 

samples were collected 2 weeks post-immunization.  425 

 426 

ELISA. RBD- and Spike-specific antibody levels were quantified in serum samples by ELISA 427 

by modification of a previously described protocol(73). Briefly, high-binding flat-bottom 96-well 428 

plates (Corning, NY) were coated with 50 ng/well RBD or 25 ng/well Spike and incubated 429 

overnight at 4 °C. Plates were washed with 0.05% Tween 20 PBS and blocked with 1% BSA 430 

PBS for 1 h at room temperature (RT). Serum samples were serially diluted 4-fold from 1:100 up 431 

to 1:1.05E8 and then incubated for 2 hours at RT. Plates were washed three times and incubated 432 

for 1 hour at RT with HRP-conjugated anti-mouse IgG, IgG1, IgG2a, or IgG2c (Southern 433 

Biotech). Plates were washed five times and developed with tetramethylbenzidine (1-Step Ultra 434 

TMB-ELISA Substrate Solution, ThermoFisher, for RBD-ELISA, and BD OptEIA Substrate 435 

Solution, BD Biosciences, for Spike ELISA) for 5 min, then stopped with 2 N H2SO4. Optical 436 

densities (ODs) were read at 450 nm with SpectraMax iD3 microplate reader (Molecular 437 

Devices). End-point titers were calculated as the dilution that emitted an optical density 438 
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exceeding a 3× background. An arbitrary value of 50 was assigned to the samples with OD 439 

values below the limit of detection for which it was not possible to interpolate the titer. 440 

 441 

hACE2/RBD inhibition assay. The hACE2/RBD inhibition assay employed a modification of a 442 

previously published protocol(74). Briefly, high-binding flat-bottom 96-well plates (Corning, 443 

NY) were coated with 100 ng/well recombinant human ACE2 (hACE2) (Sigma-Aldrich) in PBS, 444 

incubated overnight at 4°C, washed three times with 0.05% Tween 20 PBS, and blocked with 445 

1% BSA PBS for 1 hour at RT. Each serum sample was diluted 1:160, pre-incubated with 3 ng 446 

of RBD-Fc in 1% BSA PBS for 1 hour at RT, and then transferred to the hACE2-coated plate. 447 

RBD-Fc without pre-incubation with serum samples was added as a positive control, and 1% 448 

BSA PBS without serum pre-incubation was added as a negative control. Plates were then 449 

washed three times and incubated with HRP-conjugated anti-human IgG Fc (Southern Biotech) 450 

for 1 hour at RT. Plates were washed five times and developed with tetramethylbenzidine (BD 451 

OptEIA Substrate Solution, BD Biosciences) for 5 min, then stopped with 2 N H2SO4. The 452 

optical density was read at 450 nm with SpectraMax iD3 microplate reader (Molecular Devices). 453 

Percentage inhibition of RBD binding to hACE2 was calculated with the following formula: 454 

Inhibition (%) = [1 – (Sample OD value – Negative Control OD value)/(Positive Control OD 455 

value – Negative Control OD value)] x 100. 456 

 457 

SARS-CoV-2 neutralization titer determination. All serum samples were heat-inactivated at 458 

56°C for 30 min to remove complement and allowed to equilibrate to RT prior to processing for 459 

neutralization titer. Samples were diluted in duplicate to an initial dilution of 1:5 or 1:10 460 

followed by 1:2 serial dilutions (vaccinated sample), resulting in a 12-dilution series with each 461 
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well containing 100 µL. All dilutions were performed in DMEM (Quality Biological), 462 

supplemented with 10% (v/v) fetal bovine serum (heat-inactivated, Sigma), 1% (v/v) 463 

penicillin/streptomycin (Gemini Bio-products) and 1% (v/v) L-glutamine (2 mM final 464 

concentration, Gibco). Dilution plates were then transported into the BSL-3 laboratory and 100 465 

µL of diluted SARS-CoV-2 (WA-1, courtesy of Dr. Natalie Thornburg/CDC) inoculum was 466 

added to each well to result in a multiplicity of infection (MOI) of 0.01 upon transfer to titering 467 

plates. A non-treated, virus-only control and mock infection control were included on every plate. 468 

The sample/virus mixture was then incubated at 37°C (5.0% CO2) for 1 hour before transferring 469 

to 96-well titer plates with confluent VeroE6 cells. Titer plates were incubated at 37°C (5.0% 470 

CO2) for 72 hours, followed by CPE determination for each well in the plate. The first sample 471 

dilution to show CPE was reported as the minimum sample dilution required to neutralize >99% 472 

of the concentration of SARS-CoV-2 tested (NT99). 473 

 474 

Pseudovirus neutralization assay. The SARS-CoV-2 pseudoviruses expressing a luciferase 475 

reporter gene were generated in an approach similar to as described previously (75, 76). Briefly, 476 

the packaging plasmid psPAX2 (AIDS Resource and Reagent Program), luciferase reporter 477 

plasmid pLenti-CMV Puro-Luc (Addgene), and spike protein expressing pcDNA3.1-SARS 478 

CoV-2 SΔCT of variants were co-transfected into HEK293T cells by lipofectamine 2000 479 

(ThermoFisher). Pseudoviruses of SARS-CoV-2 variants were generated by using WA1/2020 480 

strain (Wuhan/WIV04/2019, GISAID accession ID: EPI_ISL_402124), B.1.1.7 variant (GISAID 481 

accession ID: EPI_ISL_601443), or B.1.351 variant (GISAID accession ID: EPI_ISL_712096). 482 

The supernatants containing the pseudotype viruses were collected 48 h post-transfection, which 483 

were purified by centrifugation and filtration with 0.45 µm filter. To determine the neutralization 484 
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activity of the plasma or serum samples from participants, HEK293T-hACE2 cells were seeded 485 

in 96-well tissue culture plates at a density of 1.75 x 104 cells/well overnight. Three-fold serial 486 

dilutions of heat inactivated serum or plasma samples were prepared and mixed with 50 µL of 487 

pseudovirus. The mixture was incubated at 37oC for 1 h before adding to HEK293T-hACE2 cells. 488 

48 h after infection, cells were lysed in Steady-Glo Luciferase Assay (Promega) according to the 489 

manufacturer’s instructions. SARS-CoV-2 neutralization titers were defined as the sample 490 

dilution at which a 50% reduction in relative light unit (RLU) was observed relative to the 491 

average of the virus control wells. 492 

 493 

Splenocyte restimulation assay. Immunized mice were sacrificed 2 weeks after the final 494 

immunization, and spleens were collected. To isolate splenocytes, spleens were mashed through 495 

a 70 µm cell strainer, and the resulting cell suspensions were washed with PBS and incubated 496 

with 2 mL of ACK lysis buffer (Gibco) for 2 minutes at RT to lyse erythrocytes. Splenocytes 497 

were washed again with PBS and plated in flat-bottom 96-well plates (2 x 106 cells per well). 498 

Then, SARS-CoV-2 Spike peptides (PepTivator SARS-CoV-2 Prot_S, Miltenyi Biotec) were 499 

added at a final concentration of 0.6 nmol/ml in the presence of 1 μg/mL anti-CD28 antibody 500 

(total cell culture volume, 200 µL per well). After 24 (for IL-2 and IL-4) and 96 (for IFNγ) hours, 501 

supernatants were harvested, and cytokine levels were measured by ELISA (Invitrogen) 502 

according to the manufacturer’s protocol. 503 

 504 

SARS-CoV-2 mouse challenge study. Mice were anesthetized by intraperitoneal injection 50 505 

μL of a mix of xylazine (0.38 mg/mouse) and ketamine (1.3 mg/mouse) diluted in PBS. Mice 506 

were then intranasally inoculated with 1 x 103 PFU of mouse-adapted SARS-CoV-2 (MA10, 507 
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courtesy of Dr. Ralph Baric (UNC)) in 50 μL divided between nares(35). Different doses of 508 

SARS-CoV-2 were used where indicated. Challenged mice were weighed on the day of infection 509 

and daily for up to 4 days post-infection. At 4-day post-infection, mice were sacrificed, and lungs 510 

were harvested to determine virus titer by a plaque assay and prepared for histological scoring. 511 

 512 

SARS-CoV-2 plaque assay. SARS-CoV-2 lung titers were quantified by homogenizing 513 

harvested lungs in PBS (Quality Biological Inc.) using 1.0 mm glass beads (Sigma Aldrich) and 514 

a Beadruptor (Omni International Inc.). Homogenates were added to Vero E6 cells and SARS-515 

CoV-2 virus titers determined by counting plaque-forming units (pfu) using a 6-point dilution 516 

curve. 517 

 518 

Histopathology analysis. Slides were prepared as 5-μm sections and stained with hematoxylin 519 

and eosin. A pathologist was blinded to information identifying the treatment groups and fields 520 

were examined by light microscopy and analyzed. The severity of interstitial inflammation was 521 

evaluated and converted to a score of 0-4 with 0 being no inflammation and 4 being most severe. 522 

Interstitial inflammation was evaluated for the number of neutrophils present in the interstitial 523 

space as well as the extent of neutrophilic apoptosis. Once scoring was complete, scores for each 524 

group were averaged and the standard deviation for the scoring was computed.  525 

 526 

Mouse in vivo LNs gene expression analysis by quantitative real-time PCR array. Mice were 527 

subcutaneously injected on Day 0 with the indicated treatments in a volume of 50 µL on each 528 

side of the back (one side for the compound and the contralateral side for saline of vehicle 529 

control). Twenty-four hours post-injection, draining (brachial) LNs were collected for 530 
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subsequent analysis. LNs were transferred to a beadbeater and homogenized in TRI Reagent 531 

(Zymo Research). Samples were then centrifuged, and the clear supernatant was transferred to a 532 

new tube for subsequent RNA isolation. RNA was isolated from TRI Reagent samples using 533 

phenol-chloroform extraction or column-based extraction systems (Direct-zol RNA Miniprep, 534 

Zymo Research) according to the manufacturer’s protocol. RNA concentration and purity 535 

(260/280 and 260/230 ratios) were measured by NanoDrop (ThermoFisher Scientific). cDNA 536 

was prepared from RNA with RT2 First Strand Kit, according to the manufacturer’s instructions 537 

(Qiagen). cDNA was quantified using 96-well PCR array analysis on a PAMM-150ZA plate 538 

(Cytokines & Chemokines) and PAMM-016ZA plate (Type I Interferon Response) (both 539 

Qiagen). Quantitative real time-PCR (QRT-PCR) was run on a 7300 real-time PCR system 540 

(Applied Biosystems – Life Technologies, Carlsbad, CA). mRNA levels were normalized to 3 541 

housekeeping genes: Actb, Gapdh, and Gusb. Relative quantification of gene expression was 542 

calculated by the ΔΔCt (relative expression over PBS treatment group). 543 

 544 

Human PBMC isolation. PBMCs were isolated based previously described protocols (77). 545 

Briefly, heparinized whole blood was centrifuged at 500 g for 10 min, then the upper layer of 546 

platelet-rich plasma was removed. Plasma was centrifuged at 3000 g for 10 min, and platelet-547 

poor plasma (PPP) was collected and stored on ice. The remaining blood was reconstituted to its 548 

original volume with heparinized DPBS and layered on Ficoll-Paque gradients (Cytiva) in 549 

Accuspin tubes (Sigma-Aldrich). PBMCs were collected after centrifugation and washed twice 550 

with PBS.  551 

 552 
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Human PBMCs stimulation. PBMCs were resuspended at a concentration of 200,000 cells per 553 

well in a 96-well U-bottom plate (Corning) in 200 µL RPMI 1640 media (Gibco) supplemented 554 

with 10% autologous PPP, 100 IU/mL penicillin, 100 µg/mL streptomycin, and 2 mM L-555 

glutamine. PBMCs were incubated for 24 hrs at 37ºC in a humidified incubator at 5% CO2 with 556 

indicated treatments. After culture, plates were centrifuged at 500 g and supernatants were 557 

removed by pipetting without disturbing the cell pellet. Cytokine expression profiles in cell 558 

culture supernatants were measured using customized Milliplex human cytokine magnetic bead 559 

panels (Milliplex). Assays were analyzed on the Luminex FLEXMAP 3D employing xPONENT 560 

software (Luminex) and Millipore Milliplex Analyst. Cytokine measurements were excluded 561 

from analysis if fewer than 30 beads were recovered. Synergy was evaluated using the Loewe 562 

definition of additivity, with D > 1 indicating antagonism, D = 1 additivity, and D < 1 synergy 563 

(78). In order to fit regression curves more closely to the data, higher concentrations were 564 

excluded from linear regressions when calculating D values if the cytokine levels plateaued or 565 

decreased. 566 

 567 

Statistical analysis. Statistical analyses were performed using Prism v9.0.2 (GraphPad 568 

Software) and R software environment v4.0.4. P values < 0.05 were considered significant. Data 569 

were analyzed by one- or two-way ANOVAs followed by post-hoc Tukey's test or Dunnett’s test 570 

for multiple comparisons. Non-normally distributed data were log-transformed. In the animal 571 

experiences, time to event were analyzed using Kaplan-Meier estimates and compared across 572 

groups using the Log-rank test. For human in vitro PBMC assay, unpaired Mann-Whitney tests 573 

were applied at each concentration. We conducted gene expression analyses with R 4.0.4 using 574 

packages ‘ggplot2’, ‘dplyr’, and ‘MASS’ for the transcript abundance determination of gene 575 
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arrays in each group. We log-transformed data before performing principal component analysis 576 

(PCA) and unsupervised hierarchical clustering using R packages ‘prcomp’ and ‘pheatmap’ 577 

respectively. We analyzed the differential gene expression using generalized linear models 578 

(GLMs) with treatment and age as fixed effects. We then enriched the differentially expressed 579 

genes using the blood transcriptional module method based on an existing protocol (Li et al., 580 

2013- PMC: 24336226). 581 

582 
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 1034 

Figure 1. RBD formulated with AH:CpG induces robust production of anti-RBD 1035 

neutralizing antibodies in young adult mice 1036 

Young adult, 3-month-old BALB/c mice were immunized IM on Days 0 and 14 with 10 µg of 1037 

monomeric SARS-CoV-2 RBD protein with indicated adjuvants. Each PRR agonist was 1038 

administered alone or formulated with aluminum hydroxide (AH). (A–F) Serum samples were 1039 

collected on Day 28, and (A) Anti-RBD IgG, (B) IgG1, (C) IgG2a, (D) IgG2a/IgG1 ratio, (E) 1040 

hACE2/RBD inhibition rate, and (F) anti-Spike IgG were assessed. N=10 per group. Data were 1041 
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combined from two individual experiments. (G–J) Serum samples were collected on Day 210, 1042 

and (G) Anti-RBD IgG, (H) IgG1, (I) IgG2a and (J) hACE2/RBD inhibition rate were assessed. 1043 

N=5 per group. Data were analyzed by two-way (A–C, E–F) (AH and PRR agonist) or one-way 1044 

(D, G–J) ANOVAs followed by post-hoc Tukey's test for multiple comparisons. *P <0.05, **P 1045 

<0.01, ***P <0.001, **** P <0.0001. Blue and red colored asterisks respectively indicate 1046 

comparisons to RBD and AH adjuvanted RBD groups. Box-and-whisker plots represent the 1047 

minimum, first quartile, median, third quartile, and maximum value. LLD, lower limit of 1048 

detection.  1049 
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Figure 2. AH:CpG adjuvant formulation elicits a robust anti-RBD response in aged mice 1051 

Aged, 14-month-old BALB/c mice were immunized IM on Days 0, 14, and 28 with 10 µg of 1052 

monomeric SARS-CoV-2 RBD protein with indicated adjuvants. Each PRR agonist was 1053 

formulated with aluminum hydroxide (AH). Serum samples were collected and analyzed on day 1054 

28 prior to the 2nd boost (A–F), and day 42 (G–L). (A, G) Anti-RBD IgG, (B, H) IgG1, (C, I) 1055 

IgG2a, (D, J) IgG2a/IgG1 ratio, (E, K) hACE2/RBD inhibition rate, and (F, L) neutralizing titer 1056 

were assessed. N=9–10 per group. Data were combined from two individual experiments and 1057 

analyzed by one-way ANOVAs followed by post-hoc Tukey's test for multiple comparisons. (M) 1058 

Splenocytes were collected 2 weeks after the final immunization and stimulated with a SARS-1059 

CoV 2 Spike peptide pool in the presence of anti-CD28 antibody (1 μg/mL). After 24 (for IL-2 1060 

and IL-4) and 96 (for IFNγ) hours, supernatants were harvested and cytokine levels were 1061 

measured by ELISA. N=4-5 per group. Data were log-transformed and analyzed by one-way 1062 

ANOVAs followed by post-hoc Tukey's test for multiple comparisons. *P <0.05, **P <0.01, 1063 

***P <0.001, **** P <0.0001. Blue and red colored asterisks respectively indicate comparisons 1064 

to RBD and AH adjuvanted RBD groups. Box-and-whisker plots represent the minimum, first 1065 

quartile, median, third quartile, and maximum value. LLD, lower limit of detection.  1066 
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 1067 

Figure 3. SARS-CoV-2 challenge model of young and aged mouse recapitulates human age-1068 

specific pathogenesis 1069 

Young (3-month-old) and aged (14-month-old) naïve BALB/c mice were challenged IN with 1070 

mock (PBS), or 102, 103, 104, and 105 PFU of mouse-adapted SARS-CoV-2 (MA10). 1071 

Bodyweight change of (A) young adult and (B) aged mice were assessed daily up to 4 days post 1072 

infection. Data represent mean and SEM with body weights only shown for surviving mice at 1073 
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each time-point. Data were analyzed by one-way ANOVA followed by Dunnett’s test for 1074 

comparisons against the PBS group. (C) Survival rate of aged mice. Data were analyzed by log-1075 

rank test in comparison to PBS group. (D) Viral titer in lung homogenates at 4-days post SARS-1076 

CoV-2 challenge (young: n=5 per group, aged: n=5 for 102; n=4 for 103; n=1 for 104; and n=0 for 1077 

105). Results represent mean ± SEM. (E) Representative lung histological images at 4-days post 1078 

challenge. H&E is shown. *P <0.05, **P <0.01, ***P <0.001, **** P <0.0001. 1079 
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1080 
Figure 4. AH:CpG-adjuvanted vaccine protects aged mice from SARS-CoV-2 challenge 1081 

Aged, 14-month-old BALB/c mice were immunized as in Figure 2. On Day 70 (6 weeks post 2nd1082 

boost), mice were challenged IN with 103 PFU of mouse-adapted SARS-CoV-2 (MA10). (A) 1083 

Bodyweight changes were assessed daily up to 4 days post infection. Data represent mean and 1084 

SEM with body weights shown for surviving mice at each time-point (one mouse in RBD group 1085 

died at 4 days post infection). Data were analyzed by one-way ANOVA followed by Dunnett’s 1086 

Test for comparisons between PBS group. (B) Viral titer in lung homogenates at 4-days post 1087 

SARS-CoV-2 challenge. Results represent mean ± SEM. Data were analyzed by one-way 1088 

ANOVA followed by post-hoc Tukey's test for multiple comparisons. **P <0.01, **** P 1089 

<0.0001. Black, blue and red colored asterisks respectively indicate comparisons to PBS, RBD, 1090 

and RBD + aluminum hydroxide (AH) groups. LLD, lower limit of detection. (C) Lung 1091 

interstitial inflammation was evaluated and converted to a score of 0-4 with 0 being no 1092 

inflammation and 4 being most severe. (D) Representative lung histological images at 4-days 1093 

post challenge. H&E is shown. N=4-5 animals per group.  1094 
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1095 
Figure 5. AH:CpG-adjuvanted RBD vaccines and an authorized spike mRNA vaccine elicit 1096 

comparable levels of neutralizing antibodies in aged mice 1097 

Aged, 14-month-old BALB/c mice were immunized IM on Days 0 and 14 with monomeric 1098 

SARS-CoV-2 RBD protein with indicated adjuvants, or BNT162b2 Spike mRNA vaccine as 1099 

described in Methods. Serum samples were collected and analyzed on Day 28. (A) Anti-RBD 1100 

binding ELISA, (B) anti-Spike binding ELISA, (C) hACE2/RBD inhibition rate, and (D) SARS-1101 

CoV-2 virus neutralizing titer were assessed. N=9–10 per group. Data were combined from two 1102 

individual experiments and analyzed by one-way ANOVAs followed by post-hoc Tukey's test 1103 

for multiple comparisons. (E) Pseudovirus neutralizing titers against wild-type or the B.1.17 or 1104 

B.1.351 variants were assessed. N=5 per group. The numbers indicate GMT. Each symbol 1105 

represents an animal. *P <0.05, **P <0.01, ***P <0.001, **** P <0.0001. Blue colored asterisks1106 

indicate comparisons to PBS group. Box-and-whisker plots represent the minimum, first quartile, 1107 

median, third quartile, and maximum value. LLD, lower limit of detection.  1108 
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 1109 

Figure 6. AH:CpG elicits comparable lymph node innate responses in young and aged mice1110 

Young (3-month-old) and aged (14-month-old) mice were subcutaneously injected with 1111 

aluminum hydroxide (AH), CpG, or AH:CpG. 24 hours later, draining lymph nodes (dLNs) were 1112 
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collected and RNA was extracted. (A) Weights of dLNs were measured and expressed as fold 1113 

over contralateral, PBS-injected LN. N=5 per group. # and ## respectively indicate P <0.05 and 1114 

0.01 when comparing each group against the value 1 (which represents the contralateral control 1115 

sample expressed as fold). (B–E) RNA isolated from dLNs was subjected to a quantitative real-1116 

time PCR array comprised of 157 genes related to cytokines, chemokines, and type 1 IFN 1117 

responses. N=4 animals per group. (B) Principal component analysis demonstrated a marked 1118 

separation by treatment and age. (C) Unsupervised hierarchical clustering revealed major 1119 

differences between treatments and highlighted the marked difference between AH and CpG-1120 

containing treatments. Each column represents gene categories and rows represent samples. (D) 1121 

Generalized linear model comparing treatment and age with each gene was performed. The top 4 1122 

significant genes (Ddx58, Ifit2, Isg15, Stat1) were selected and plotted with their relative 1123 

expression values by age and treatment. Statistical analysis of the plots employed the Kruskal-1124 

Wallis test to compare mean differences across groups and Wilcoxon test to compare between 1125 

ages. (E) Enrichment analysis of differentially expressed genes using the blood transcriptional 1126 

modules (Li et al., 2013- PMC: 24336226) was performed from the significant gene results after 1127 

the generalized linear model by treatment. The top 20 modules are summarized per age. 1128 
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1129 
Figure 7. AH:CpG synergistically enhances proinflammatory cytokine production from 1130 

human adult and elderly PBMCs 1131 

Human PBMCs collected from young adult (A, C) and elderly individuals (B, D) were cultured 1132 

in vitro for 24 h with CpG alone (4, 10, 20, 40, and 100 μg/mL), aluminum hydroxide (AH) 1133 

alone (8, 20, 40, 80, and 200 μg/mL), or a combination of both. Supernatants were collected for 1134 

multiplexing bead array. N=6 per age group. (A-B) Radar plot analysis of cytokines and 1135 

chemokines are presented as a fold-change over the CpG alone group for the 20 µg/mL CpG and 1136 

40 µg/mL AH conditions. (C-D) Results represent mean ± SEM. Unpaired Mann-Whitney tests 1137 

were applied at each concentration. Blue and yellow colored asterisks indicate comparisons of 1138 
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AH:CpG formulation to AH and CpG alone groups, respectively. *P <0.05, **P <0.01. Level of 1139 

synergy was calculated using an adapted Loewe definition of additivity (D <1: synergy, D=1: 1140 

additivity, D >1: antagonism).   1141 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 21, 2021. ; https://doi.org/10.1101/2021.05.20.444848doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444848


 

63

SUPPLEMENTARY MATERIALS 1142 

1143 

Supplementary Figure 1. Booster dose of AH:CpG formulation enhances hACE2/RBD 1144 

inhibition in aged mice 1145 

Young adult, 3-month-old BALB/c mice were immunized IM on Days 0 and 14, and aged, 14-1146 

month-old BALB/c mice were immunized IM on Days 0, 14, and 28 with 10 µg of monomeric 1147 

SARS-CoV-2 RBD protein with the indicated adjuvants. Serum samples were collected and 1148 

analyzed on Day 28 prior to the 2nd boost, and Day 42. hACE2/RBD inhibition rate was 1149 

assessed. N = 9-10 animals per group. Data were combined from two individual experiments and 1150 

analyzed by one-way ANOVA followed by post-hoc Tukey's test for multiple comparisons. Each 1151 

dot represents individual results. Horizontal bars demonstrate mean plus SEM. ns: not significant1152 

*P <0.05, **P <0.01. AH, aluminum hydroxide. 1153 
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1154 

Supplementary Figure 2. AH and CpG synergistically induce cytokine and chemokine 1155 

production by human young adult and elderly PBMCs 1156 

Human PBMCs collected from young adults (A) and elderly individuals (B) were cultured in 1157 

vitro for 24 hrs with CpG alone (4, 10, 20, 40, and 100 μg/mL), aluminum hydroxide (AH) alone 1158 

(8, 20, 40, 80, and 200 μg/mL), or combinations of each. Supernatants were collected for 1159 

multiplexing bead array. N=6 per age group. Unpaired Mann-Whitney tests were applied at each 1160 

concentration. Level of synergy was calculated using an adapted Loewe definition of additivity 1161 

(D <1: synergy, D=1: additivity, D >1: antagonism). D value was not calculated if the 1162 

concentration-dependent cytokine level did not fit a linear regression curve. Blue and yellow 1163 

colored asterisks indicate comparisons of AH:CpG formulation to AH and CpG alone groups, 1164 

respectively. Results represent mean ± SEM. *P <0.05, **P <0.01. 1165 
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