Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Stem cells commit to differentiation following multiple induction events in the Drosophila testis

View ORCID ProfileAlice C Yuen, View ORCID ProfileKenzo-Hugo Hillion, View ORCID ProfileMarc Amoyel
doi: https://doi.org/10.1101/2021.05.20.444930
Alice C Yuen
1Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Alice C Yuen
Kenzo-Hugo Hillion
2Department of Biochemistry and Molecular Pharmacology, New York University School of Medicine, 550 1st Avenue, New York, NY 10016, USA
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Kenzo-Hugo Hillion
Marc Amoyel
1Department of Cell and Developmental Biology, University College London, Gower Street, London WC1E 6BT, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Marc Amoyel
  • For correspondence: marc.amoyel@ucl.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

How and when potential becomes restricted in differentiating stem cell daughters is poorly understood. While it is thought that signals from the niche are actively required to prevent differentiation, another model proposes that stem cells can reversibly transit between multiple states, some of which are primed, but not committed, to differentiate. In the Drosophila testis, somatic cyst stem cells (CySCs) generate cyst cells, which encapsulate the germline to support its development. We find that CySCs are maintained independently of niche self-renewal signals if activity of the PI3K/Tor pathway is inhibited. Conversely, PI3K/Tor is not sufficient alone to drive differentiation, suggesting that it acts to license cells for differentiation. Indeed, we find that the germline is required for differentiation of CySCs in response to PI3K/Tor elevation, indicating that final commitment to differentiation involves several steps and intercellular communication. We propose that CySC daughter cells are plastic, that their fate depends on the availability of neighbouring germ cells, and that PI3K/Tor acts to induce a primed state for CySC daughters to enable coordinated differentiation with the germline.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY 4.0 International license.
Back to top
PreviousNext
Posted May 20, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Stem cells commit to differentiation following multiple induction events in the Drosophila testis
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Stem cells commit to differentiation following multiple induction events in the Drosophila testis
Alice C Yuen, Kenzo-Hugo Hillion, Marc Amoyel
bioRxiv 2021.05.20.444930; doi: https://doi.org/10.1101/2021.05.20.444930
Reddit logo Twitter logo Facebook logo LinkedIn logo Mendeley logo
Citation Tools
Stem cells commit to differentiation following multiple induction events in the Drosophila testis
Alice C Yuen, Kenzo-Hugo Hillion, Marc Amoyel
bioRxiv 2021.05.20.444930; doi: https://doi.org/10.1101/2021.05.20.444930

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (4672)
  • Biochemistry (10336)
  • Bioengineering (7655)
  • Bioinformatics (26283)
  • Biophysics (13497)
  • Cancer Biology (10664)
  • Cell Biology (15408)
  • Clinical Trials (138)
  • Developmental Biology (8485)
  • Ecology (12802)
  • Epidemiology (2067)
  • Evolutionary Biology (16819)
  • Genetics (11380)
  • Genomics (15458)
  • Immunology (10593)
  • Microbiology (25164)
  • Molecular Biology (10196)
  • Neuroscience (54377)
  • Paleontology (399)
  • Pathology (1664)
  • Pharmacology and Toxicology (2889)
  • Physiology (4332)
  • Plant Biology (9223)
  • Scientific Communication and Education (1585)
  • Synthetic Biology (2554)
  • Systems Biology (6769)
  • Zoology (1459)