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Abstract 13 

House mice communicate through ultrasonic vocalizations (USVs), which are above the range of human 14 

hearing (>20 kHz), and several automated methods have been developed for USV detection and 15 

classification. Here we evaluate their advantages and disadvantages in a full, systematic comparison. We 16 

compared the performance of four detection methods, DeepSqueak (DSQ), MUPET, USVSEG, and the 17 

Automatic Mouse Ultrasound Detector (A-MUD). Moreover, we compared these to human-based 18 

manual detection (considered as ground truth), and evaluated the inter-observer reliability. All four 19 

methods had comparable rates of detection failure, though A-MUD outperformed the others in terms of 20 

true positive rates for recordings with low or high signal-to-noise ratios. We also did a systematic 21 

comparison of existing classification algorithms, where we found the need to develop a new method for 22 

automating the classification of USVs using supervised classification, bootstrapping on Gammatone 23 

Spectrograms, and Convolutional Neural Networks algorithms with Snapshot ensemble learning 24 

(BootSnap). It successfully classified calls into 12 types, including a new class of false positives used for 25 

detection refinement. BootSnap provides enhanced performance compared to state-of-the-art tools, it has 26 

an improved generalizability, and it is freely available for scientific use.  27 

 28 

Keywords: mice ultrasonic vocalizations, supervised learning, imbalanced data, bootstrap, 29 

Convolutional Neural Networks (CNNs), Generalizability   30 

 31 

1. INTRODUCTION 32 

The ultrasonic vocalizations (USVs) of house mice (Mus musculus) and rats (Rattus norvegicus) 33 

are becoming increasingly interesting and are investigated to better understand animal communication 34 

(for reviews see (Brudzynski, 2018; Ehret, 2018; Heckman et al., 2016)) and as a model for studying the 35 
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genetic basis of autism and speech disorders in humans (Fischer et al., 2011; Scattoni et al., 2008). Rodent 36 

vocalizations are surprisingly complex and our focus here is on the USVs of house mice. Mice emit 37 

USVs in discrete units called syllables or calls, separated by gaps of silence, which have been classified 38 

into several different types by visually inspecting spectrograms (Brudzynski, 2018; Ehret, 2018; 39 

Heckman et al., 2016; Hoffmann et al., 2012; Marconi et al., 2020; Musolf et al., 2015; Nicolakis et al., 40 

2020; von Merten et al., 2014) i.e., the squared modulus of the short-time Fourier transforms (STFT) 41 

(Oppenheim et al., 1999) (Fig. 2), or, less often, by statistical clustering analyses (Burkett et al., 2015; 42 

Chabout et al., 2017; Coffey et al., 2019; Dou et al., 2018; Hastie et al., 2009; Van Segbroeck et al., 43 

2017). USVs are classified according to their shape and other spectro-temporal features, including the 44 

length of each syllable, their frequency content, and degree of complexity (frequency-jumps or 45 

harmonics). Our understanding of USVs has greatly improved in recent years; however, spectrograms 46 

are still usually analyzed manually (visual inspection), which is extremely time-consuming and better 47 

methods are needed for detecting and classifying USVs. Manually detecting each vocalization in many 48 

recordings can take an enormous amount of time, and though semi-automatic methods are useful, they 49 

are still time-consuming (e.g., semi-automatic detection using Avisoft SASLab Pro and manual checks 50 

requires 1–1.5 hours merely to detect 150-300 USVs (M. Binder et al., 2020), and some datasets contain 51 

tens of thousands of USVs (Marconi et al., 2020)). The time required to classify USVs takes even longer 52 

than detection, and classification is a necessary step to evaluate qualitative differences in vocalizations 53 

and to conduct analyses of USV sequences (syntax) (e.g., von Merten et al. (2014)).    54 

Several software tools have recently become available for automating USV detection, including 55 

MUPET (Van Segbroeck et al., 2017), MSA (Chabout et al., 2017), DeepSqueak (DSQ) (Coffey et al., 56 

2019), USVSEG (Tachibana et al., 2020), Automatic Ultrasound Detector (A-MUD) (Zala et al., 2017a), 57 

Ultravox (Noldus; Wageningen, NL) (commercial), and SONOTRACK (commercial). These tools 58 

enhance the efficiency of processing USV data, but they can generate erroneous results for several 59 

reasons. Failing to detect actual USVs (false-negative rate or FNR) can result in missing actual 60 

differences in the vocalizations of mice, and erroneous detections (false positive rate or FPR) can lead to 61 

failure to detect actual differences and generate false differences. The challenge for any USV detection 62 

algorithm is maximizing the true positive rate (TPR) while minimizing the FNR and FPR. Moreover, 63 

automatic methods can have systematic biases depending on how they are developed. For example, 64 

automated methods for detection or classification developed using only one mouse strain, one sex, one 65 

particular state, or recorded in only one context can increase both types of error (See Table 1 for the mice 66 

and recording conditions used for developing different USV detection tools if applied in other settings). 67 
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Thus, automated methods can greatly enhance the efficiency of processing USV data, but it is critical 68 

that they have low and unbiased error rates. Results should be treated with caution until the error rates in 69 

the detection and classification method are evaluated. 70 

Table 1: Types of rodents and recording contexts used in different studies. 71 

 72 

Study Rodents 1 Sex / Age 
Recording 

context 
Reference 

USVSEG 

Laboratory mice (C57BL/6J, 
BALB/c, Shank2), Adult 
female rat (Rattus norvegicus 
domesticus), Mongolian gerbil 

(Meriones unguiculatus) 

Mice: adults of 

both sexes and 
pups; Female 
rats  

Mice: opposite-sex 
interactions2 

(Tachibana 
et al., 2020) 

A-MUD 
Wild-derived mice  
(Mus musculus musculus) 

Adult males  
Male response to a 
female stimulus 

(Zala et al., 
2017a) 

MUPET 
Laboratory mice (DBA/2 x, 
C57BL/6, B6D2F1, 9 F2 from 
DBA/2 x C57BL/6) 

Male / adult 

Male response to 
female urine, an 
anesthetized 
female, and awake 
female 

(Van 
Segbroeck 

et al., 2017) 

DSQ 
Laboratory mice 
(B6D2F1) 

Male / adult 

Male response to 

anesthetized 
males and female 
urine 

(Coffey et 
al., 2019) 

1 USV studies are mainly conducted with domesticated, laboratory mice (Mus laboratorious), which are genomic 73 

mixtures of three different Mus musculus subspecies, though mainly Mus musculus domesticus. They are 74 

artificially bred for breeding in captivity, highly inbred, obese, and carry deleterious genes that cause neural, visual, 75 

auditory defects (e.g., many strains show age-related hearing loss). Findings from one inbred strain often do not 76 

generalize to other strains or to wild mice, and their behavior is very different from wild house mice. 77 
2 10 recording sessions of 6 male mice (C57BL/6J or BALB/c) after introducing an adult female of the same strain 78 

into the cage for 1 min. For Shank2- mice (a disease model), a dataset from MouseTube was used and the procedure 79 

was similar. Mouse pups were C57BL/6J recorded at postnatal day 5–6. Adult female rats were recorded after 80 

being stroked by the experimenter to elicit 'pleasant calls' or received air-puff stimuli to elicit distress calls. Gerbils 81 

were recorded targeting only calls observed under conditions that appear to be mating and non-conflict contexts. 82 

 83 

 84 

Only five studies to our knowledge have compared the performance of USV detection algorithms: 85 

(1) M. Binder et al. (2020) compared MSA and Avisoft for detecting USVs emitted from different strains 86 

of mice (C57BL/6, Fmr1-FVB.129, NS-Pten-FVB, and 129). They concluded that Avisoft outperformed 87 

MSA for C57BL/6 and NS-Pten-FVB strains, but these two methods performed similarly for strain 129. 88 

Thus, there are strain-specific differences between these two detection tools. (2) In another study, M. S. 89 

Binder et al. (2018) compared the quantity of USVs detected by Avisoft to those detected by Ultravox 90 

(2.0) and reported significant differences in USV detection and weaker than expected overall correlations 91 

between the systems under congruent detection parameters. (3) Van Segbroeck et al. (2017) compared 92 

MUPET and MSA for detecting USVs emitted by B6D2F1 males from MouseTube ("MouseTube,") and 93 

found that these methods generated similar call counts and spectro-temporal measures of individual 94 
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syllables. (4) Coffey et al. (2019) compared MUPET, Ultravox, and DSQ for detecting USVs by 95 

analyzing the TPR and precision (the ratio of detected true USVs to false positives). For this purpose, 96 

they manipulated a recording from MouseTube in two ways to gradually degrade its quality. In the first 97 

experiment, increasing levels of Gaussian white noise were added to recordings, and DSQ outperformed 98 

MUPET and Ultravox in terms of TPR and precision in all Gaussian noise levels. In the second 99 

experiment, real noise was added to recordings, and DSQ again outperformed MUPET in terms of 100 

precision and Ultravox in terms of precision and TPR. (5) (Zala et al., 2017a) compared the performance 101 

of Avisoft and A-MUD (version 1.0) in identifying USVs of wild-derived Mus musculus musculus. They 102 

concluded that the latter method is superior in terms of TPR and FPR. Zala et al. (2020) have since 103 

provided an updated version of A-MUD, which overcomes previous difficulties in identifying faint and 104 

short USVs.  105 

Our first aim here is to systematically compare the performance of four commonly used USV 106 

detection tools, MUPET, DSQ, A-MUD, and USVSEG, and we addressed three main questions:  107 

(1) How does the performance of these detection methods compare to each other? Previous 108 

studies indicate that A-MUD outperforms Avisoft, which outperforms MSA; MSA is comparable to 109 

MUPET and DSQ outperforms MUPET and Ultravox. To our knowledge, no study has systematically 110 

compared the performance of A-MUD and DSQ, nor evaluated more than two of these methods together, 111 

except for (Coffey et al., 2019), which compared DSQ, MUPET, and Ultravox.  112 

(2) How does the performance of these detection methods compare to the ground truth (i.e., 113 

detection by trained researchers)? Evaluation of detection methods rarely include a positive control (e.g., 114 

manual detection), though this is necessary to obtain absolute versus relative estimates of performance 115 

(e.g., see (Zala et al., 2017a)). For example, M. Binder et al. (2020), M. S. Binder et al. (2018), and Van 116 

Segbroeck et al. (2017) compared Avisoft and MSA, Ultravox and Avisoft, and MUPET and MSA only 117 

based on the number of USVs detected by each of the two methods, no comparisons were made with the 118 

ground truth. Coffey et al. (2019) used about 100 manually detected USVs as ground truth for comparing 119 

DSQ, MUPET, and Ultravox.  120 

(3) How well do USV detection tools generalize and perform when using data that differs from 121 

the training set (by generalization or out-of-sample error)? To our knowledge, only one study (M. Binder 122 

et al., 2020) has tested whether USV detection methods generalize to other strains (i.e., Avisoft and 123 

MSA), and only one study has compared MSA and MUPET for different recording conditions (males 124 

vocalizing in response to female urine, an anesthetized female, and awake female) (Van Segbroeck et 125 
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al., 2017). Van Segbroeck et al. (2017) and Coffey et al. (2019) only used the recordings from B6D2F1 126 

and (Zala et al., 2017a) from wild-derived Mus musculus. Consequently, it is unclear how well current 127 

detection methods perform whenever applied to new recordings that differ from the data used to develop 128 

and evaluate the tool. This problem is well known in the machine learning community and there are 129 

particular approaches towards this “transfer learning” (Pan et al., 2009). Thus, addressing these three 130 

questions is central to evaluating the performance of USV detection methods. 131 

To compare the performance of these USV detection tools, we used recordings of house mice, 132 

including both domesticated laboratory mice (Mus laboratorius) and wild-derived house mice (Mus 133 

musculus musculus), and we used recordings made under different social contexts and recording 134 

conditions. To evaluate the absolute performance of these models, we applied a new dataset of manually 135 

detected USVs as ground truth with a total of 3955 USVs. The FPR is problematic for existing tools 136 

when analyzing recordings with unwanted disturbing sounds (false positives (FPs)), i.e., non-USV 137 

sounds generated because of poor recording instruments, movements of the mouse (and bedding), and 138 

social interactions during recording. Low-SNR recordings usually occur when mice are recorded with 139 

bedding in their cage and especially during social interactions, as this provides a much more natural 140 

environment for the animals. False negatives are, of course, problematic as those represent data that are 141 

just purely lost for the subsequent analysis. Signal detection theory predicts that there is an inevitable 142 

trade-off between FP and FN in the detection step (Wiley, 1983). Using a refinement step, we can set the 143 

parameters of detection such that it errs on the negative rather than the positive set, as FPs can be deleted 144 

in the refinement step. To remove FPs, MUPET and DSQ, therefore, include a preliminary detection 145 

refinement step using either an unsupervised approach, which groups data based on similarity measures 146 

rather than manually labeled USVs (both approaches), or a supervised approach, which requires manually 147 

labeled USVs for training a classifier (DSQ and (Smith et al., 2017)). Our preliminary evaluation found 148 

that DSQ outperforms MUPET in the detection refinement step (using the K-means clustering (Kanungo 149 

et al., 2002)), however, its performance differs depending on the different data. Thus, we designed a 150 

method better suited to deal with the problems mentioned above and we, therefore, compared the ability 151 

of DSQ and our classifier to detect FPs, as this is a critical step for accurate USV classification. 152 

Classification poses an even greater challenge than detection. First pilot approaches for a similar 153 

evaluation of classification tools made it clear to us that there is potential for improvement here. 154 

Therefore, we developed an enhanced method for automatic classification, of USV syllable types. This 155 

can be achieved through unsupervised (Chabout et al., 2017; Coffey et al., 2019; Dou et al., 2018; Hastie 156 

et al., 2009; Van Segbroeck et al., 2017) and supervised (Coffey et al., 2019) classifiers. The advantage 157 
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of unsupervised classification (‘clustering’) is that it does not require a predefined number of classes or 158 

manually labeled observations. The number of classes is based on the information contained in the dataset 159 

rather than the researchers' assessment. However, these clusters do not always match those classified by 160 

researchers and it is unclear how they are perceived by mice (see Conclusions). In contrast, supervised 161 

classification (‘classification’) methods require labeled data in which USVs are classified by researchers 162 

for training a classifier (machine learning), and they have higher accuracy compared to clustering 163 

approaches (Goudbeek et al., 2008; Guerra et al., 2011). To our knowledge, only a few studies have used 164 

supervised methods for classifying mouse USVs: (1) Vogel et al. (2019) classified USVs from C57BL/6J 165 

mice into 9 classes, including ‘s’, ‘ui’, ‘c’, ‘f’, ‘up’, ‘d’, ‘c2’, ‘c3’, and ‘c’, using Random Forest 166 

(Breiman, 2001), an ensemble learning classifier of decision trees. To provide input, 104 features had 167 

first been extracted for 25-high signal-to-noise-ratio (SNR) instances from each class, and their classifier 168 

yielded a classification accuracy of 85%. (2) (Coffey et al., 2019) developed a classifier (in DSQ) based 169 

on Convolutional Neural Networks (CNNs) (Krizhevsky et al., 2012), which was trained on 56000 USVs 170 

acquired from B6D2F1 mice (MouseTube dataset). Using interpolated spectrogram images, it categorizes 171 

USVs into 5 default classes: ‘split’, ‘ui’, ‘rise’, ‘c’, and ‘c2’. (3) We (Abbasi et al., 2019) classified the 172 

elements detected from adult wild-derived house mice (Mus musculus musculus) into the classes ‘c2’, 173 

‘c3’, USVs without jumps (‘no-jump’), and FP. In this work, the supervised CNNs was trained using 174 

1200 samples and fed by 2D Gammatone filtered spectrograms (GSs), adapted to the frequency range of 175 

mice. The evaluation of its performance showed a macro-F1 score of 90±2.7%. (4) Recently, (Premoli 176 

et al., 2021) classified USVs of mice into 10 classes using different machine learning methods. The 177 

classes included ‘c’, ‘h’ (i.e., 'c' with additional calls of different frequencies), ‘c2’, ‘up’, ‘d’, ‘ui’, ‘s’, 178 

‘f’, ‘c3’, and ‘composite’ (i.e., two harmonically independent components). They used 48,669 USVs of 179 

NF-kB p50 knock-out mice (B6; 129P2-Nfkb 1tm 1 Bal/J) and control wild-type mice (B6; 129PF2). 180 

Avisoft was used for USV detection. They compared the performance of CNNs fed by spectrogram 181 

images and different classical machine learning algorithms (including support vector machines) fed by 182 

20 features. The features were obtained by Avisoft. They concluded that there is a 'significant' advantage 183 

using images, which contain the entire time/frequency information of the spectrogram (78.8% accuracy), 184 

rather than a subset of numerical features for classifying USVs (73.9% accuracy).  185 

Since the generalizability of USV classifiers has never been investigated (unlike methods for 186 

classifying bird vocalizations (Brandes, 2008)), it is not known how well the current methods can classify 187 

USVs for novel datasets. So again, for this task, a systematic evaluation on a new dataset neither used 188 
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for training nor for the testing is interesting. We identified three key factors that can reduce the 189 

performance and generalizability of USV classifiers:  190 

(1) Noise is a potential problem for classification, as for detection, but this issue has not received 191 

sufficient consideration. Some methods only used high-SNR data for developing their models and to 192 

improve their classification performance (e.g., (Vogel et al., 2019), (Coffey et al., 2019), and (Premoli et 193 

al., 2021)). This step results in reduced performance for newly recorded low-SNR recordings (Wu et al., 194 

2008), which are common in practice, as argued above. This problem is exacerbated if the model is 195 

developed using predefined features extracted from spectrograms (e.g., see (Vogel et al., 2019)), as the 196 

extraction of these features from low-SNR signals already introduces high variance.  197 

(2) Imprecise USV detection generates follow-up classification errors. As the main output after 198 

detection is usually the time and frequency range of USVs, the classification will only include the region 199 

of the spectrogram limited to the detected minimum and maximum USV frequency (Coffey et al., 2019; 200 

Vogel et al., 2019). Our investigations, however, revealed that faint portions of USVs are often not 201 

included inside this window, leading to significant errors in feature estimation and classification.  202 

(3) Limited training and evaluation inflate model performance. The performance of any model is 203 

over-optimistic whenever the same type of data (same mouse strain or recording contexts) is used for the 204 

model development and also its evaluation (Abbasi et al., 2019; Premoli et al., 2021; Vogel et al., 2019). 205 

Using such a limited training set conceals the model's shortcomings in dealing with different strains or 206 

recording conditions, but surprisingly, no previous studies have considered this issue.  207 

Thus, to develop new and improved methods for USV classification, we aimed at the following 208 

principles:  209 

(1) Develop the first classifier based on the CNNs algorithm, which is accurate even with noisy 210 

(low-SNR) data.  211 

(2) Use the full time-frequency images based on the entire frequency range and reduce the 212 

dimensionality (and thereby the computational load) using Gammatone filters applied to the 213 

spectrograms.  214 

(3) Compare our new method with DeepSqueak (DSQ), which is currently the state-of-the-art 215 

classification tool, and evaluate it using USVs recorded under different conditions and from different 216 

mice strains than the conditions and strains used in the training step.  217 
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2. DATA and METHOD 218 

2.1. USV data  219 

2.1.1. Subjects 220 

The data used in this study was first divided into two meta-sets: we have used one development set (DEV) 221 

to develop, train and test the developed detection and classification method. To test the generalizability 222 

of the methods we use an additional evaluation (EV) set. For a direct test, as well as estimating the meta-223 

parameters of the classifier, using stratified 8-fold cross-validation, the DEV dataset was further divided 224 

into three subsets including DEV_train, DEV_validation, and DEV_test (see Table 1). We report the 225 

performance of the proposed classifier in Sections 3.2 and 3.3 over the DEV_test dataset. The DEV 226 

dataset (Zala et al., 2020; Zala et al., 2017a) combined two pre-existing datasets: the first dataset was 227 

from 11 wild-derived male and 3 female mice (Mus musculus musculus) recorded for 10 min in the 228 

presence of an unfamiliar female stimulus (Zala et al., 2017b). In the second data set, 30 wild-derived 229 

male mice (M. musculus musculus) were recorded for 10 min in the presence of an unfamiliar female on 230 

2 consecutive days, first sexually unprimed and then sexually primed (Zala et al, unpublished data). 231 

These were F1 and F2 descendants from wild-caught mice, respectively, which for brevity, we refer to 232 

as 'wild mice.' 233 

The EV dataset consists of two datasets, and a part was obtained from wild mice (‘EV_wild’) (as 234 

in DEV), but under different conditions (Marconi et al., 2020). The vocalizations were obtained from 22 235 

sexually experienced adult wild-derived (F3) male M. musculus musculus (Marconi et al., 2020). Male 236 

vocalizations were recorded without and also during the presentation of a female urine stimulus over 237 

three recording weeks, one time per week and each time for 15 minutes. To evaluate classifier 238 

performance, we used three arbitrarily chosen recordings out of these 66 recordings, and manually 239 

classified them for this study. The other part of the EV data is taken from the MouseTube dataset used 240 

for developing DSQ (‘EV_lab’) (B6D2F1 mice recorded by Chabout et al. (2015)) and  two arbitrarily 241 

selected recordings were sampled out of these 168 recordings. Although we only used a few recordings 242 

to evaluate the methods, these recordings contained a large number of USVs (Table 1). See Section 243 

Supplementary materials for more detailed information on all datasets. 244 

2.1.2. Detection 245 

For USV detection, we applied A-MUD (version 3.2) using its published default parameters for both the 246 

DEV and the EV datasets. Because FPs and syllables are detected during the detection process, we call 247 

the detected USVs ‘elements’ rather than ‘syllables’. The parameters that affect A-MUD performance 248 
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are o1_on, o1_off and if oo is enabled, oo_on and oo_off, which are amplitude thresholds in decibel. For 249 

this study, we use two A-MUD outputs: the elements time slot and the estimated track of the 250 

instantaneous frequency over time (frequency track; FT), called ‘segment info’ (Fig. 1). We also 251 

compared A-MUD to the three other detection tools, MUPET, DSQ, and USVSEG. To ensure a 252 

comparison, where AMUD is certainly not privileged, the parameters of AMUD were fixed while those 253 

of the other approaches were optimized, through trial-and-error, i.e., we used the best parameters, which 254 

provide the highest true positive rates for each detection tool, and not the default settings. The parameters 255 

used for evaluating the different tools are presented in Table 1 in Supplementary materials. 256 

Since the detection tools that we compared in this study were developed and evaluated using 257 

USVs of wild mice (A-MUD) and laboratory mice (DSQ, USVSEG, and MUPET), we also use USVs 258 

from both types of mice for our evaluation (two recordings for wild mice from the DEV and EV_wild + 259 

two recordings for the lab mice from EV_lab). The DEV_1 (1 sound file from DEV data), EV_wild_1 260 

(sound file 1 from EV_wild data), EV_lab_1 (sound file 1 from EV_lab data), and EV_lab_2 (sound file 261 

2 from EV_lab data) signals consist of 947, 771, 1013, and 1224 USVs, respectively. 262 

2.1.3. Manual annotation of detections 263 

After automatically detecting all elements, the DEV dataset was manually classified into 12 264 

classes (Figure 2), depending on the USVs’ spectro-temporal features (Hanson et al., 2012; Marconi et 265 

al., 2020; Musolf et al., 2015; Nicolakis et al., 2020; Scattoni et al., 2008; Zala et al., 2020) (Table 2 in 266 

Supplementary materials). These classes are based on frequency changes (Zala et al., 2020) (> 5 kHz 267 

increase “up”, > 5 kHz decrease “d”), on the number of components (corresponding to breaks in the 268 

frequency track; “c2” with 2 and “c3” with 3 components), on changes of frequency direction (≥ 2 269 

changes “c”) or shape (u-shape, “u”, u-inverted shape, “ui”), on frequency modulation (< 5kHz, “f”), on 270 

time (5-10 ms, “s”, < 5ms, “us”), and harmonic elements, “h”. It is worth noting that there are 2 more 271 

USV classes, USVs with 4 “c4” and 5 “c5” components. Due to their infrequency, however, they are 272 

excluded from the training task (DEV dataset), but they are used for the evaluation step (EV dataset).   273 

When using low-SNR recordings, or recordings with faint or short USVs, certain background 274 

noises are sometimes mistakenly detected as USVs. These errors are false positives (FPs), whereas USVs 275 

that are missed are false negatives (FNs). As mentioned above, minimizing one of these types of errors 276 

increases the other one, due to inevitable tradeoffs in signal detection (Macmillan et al., 2004). FPs are 277 

preferable over FNs, as they can be excluded in a follow-up step, and thus we included ‘FP’ as a target 278 

class. The DEV dataset contained 16958 elements including 6465 FPs in total (Table 1). 279 
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Table 2. Number of instances for each class in the different datasets 280 

Data set Number of members in each class 

DEV_train 

C c2 c3 c4 c5 h d up u f us S ui FP 

308 241 69 0 0 124 299 4343 298 1277 74 291 543 4849 

DEV_validation 53 42 12 0 0 21 52 753 52 221 13 51 94 840 

DEV_test 50 39 11 0 0 20 48 695 48 205 12 47 87 776 

EV_wild 

C c2 split Rise ui FP 

20 224 334  1025 110 234 

EV_lab 61 404 739 819 200 389 

 281 

When comparing our model with DSQ, the EV data (EV_lab and EV_wild) were manually 282 

labeled into 6 classes: ‘c2’, ‘split’ (pool of ‘c3’, ‘c4’, ‘c5’, and ‘h’), ‘c’, ‘ui’, ‘FP’, and ‘rise’ (pool of 283 

‘up’, ‘d’, ‘f’, ‘s’, ‘us’, and ‘u’). We created the classes ‘split’ and ‘rise’ because DSQ reported them 284 

together with ‘c2’, ‘c’, ‘ui’, and ‘FP’ as the output classes. The EV dataset consisted of 4500 elements 285 

including FP, of which 1947 and 2615 instances belonged to wild mice and lab mice, respectively.  286 

2.1.4. Input images for the classifier 287 

Handcrafted, pre-determined features (such as slope, modulation frequency, number of jumps, etc.) are 288 

affected by noise, so the development of a classifier based on these features increases the error of the 289 

classification, as discussed in the Introduction. Therefore, we developed an imaged-based supervised 290 

classification built on the STFT of detected elements, followed by a set of filters and a zero-padding 291 

method (Figure 1). 292 

After applying the time segmentation obtained from A-MUD, a 750-point Short Time Fourier 293 

Transform (STFT) (Oppenheim et al., 1999) (NFFT = 750) with a 0.8-overlapped Hamming window is 294 

applied to the signals, as shown in Figure 1. The desired information in the frequency interval of 20 kHz 295 

to 120 kHz is extracted (“TF windowing”, Figure 1). Then, following Van Segbroeck et al. (2017), a 296 

Gammatone (GT) filter bank (De Boer et al., 1978) is used to reduce the size of the STFT array along 297 

the frequency axis from 251 × 401 to 64 × 401 while simultaneously maintaining the key spectro-298 

temporal features. This reduction can be interpreted as a pooling operator using a re-weighting step, 299 

similar to filterbanks adopted to human auditory perception (Balazs et al., 2017). Note that we adapted 300 
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the frequency distribution to make our method applicable to the auditory range of mice (Van Segbroeck 301 

et al., 2017). 302 

 303 

Figure 1. Block diagram showing the procedure for USV detection and input preparation for the classifier. 𝒏 is the 304 
Gammatone (GT) filter order. STFT, A-MUD, ARMA, and GS are the abbreviation for short-time Fourier transform, 305 
automatic mouse ultrasound detector, autoregressive moving-average, and Gammatone spectrograms, respectively. TF in ‘TF 306 

windowing’ is the abbreviation for time-frequency. 307 

 308 

GT filter bank computations are provided in a MATLAB script by (Slaney, 1998). These 309 

computations were converted into the Python language for the present study. For each filter, a central 310 

frequency and bandwidth are required. The bandwidth and center frequency equations obtained in 311 

MUPET are also employed here (see Supplementary materials). In MUPET, the midpoint frequency 312 

parameter (Equation 2 in Supplementary materials) used to calculate the central frequencies was chosen 313 

as 75 kHz. The midpoint frequency can be interpreted as the frequency region where most information 314 

is processed (Van Segbroeck et al., 2017). Because the authors acknowledged that this value may not 315 

apply to all mice, we estimated the optimum value by calculating the median frequency (i.e., 63.5 kHz) 316 

from the FTs of all detected syllables, omitting FPs. Then, in a pilot test, we updated this value to 68 kHz 317 

to minimize the information loss from USVs. The central frequency was calculated based only on the 318 

DEV data. A more detailed explanation of how to determine these two parameters is given in the 319 

Supplementary materials (the Gammatone filterbank section). To further eliminate the background noise 320 

from the images, following MUPET, we calculated the maximum value between the Gammatone-filtered 321 

STFT pixels and the floor noise (10-3). The logarithm of the output was smoothed using an auto-322 

regression moving-average (ARMA) filter (C.-P. Chen et al., 2002) with order 1 (see Supplementary 323 

materials). Finally, a median filter (T. Huang et al., 1979) was applied to remove stationary noise. The 324 

product of the pre-processing is a smoothed, denoised spectrogram with a reduced size of 64*401, called 325 

Gammatone spectrograms (GSs). Figure 2 shows the GSs of five samples of each 12 studied classes. 326 

These samples have the minimum Manhattan distance to other members of each class.  327 
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  328 

Figure 2. Gammatone Spectrograms (GSs) of five of five members of 12 studied classes that have the minimum 329 
Manhattan distance to other members of 12 USV classes in the development (DEV) dataset.  330 

 331 
 332 

2.2. CNN classifier 333 

For our study, we used convolutional neural networks (CNNs), a particular form of the deep neural 334 

network (Goodfellow et al., 2016) first introduced by (Fukushima, 1980) and further developed by 335 

(LeCun et al., 1998). The following is a brief description of how this model works and how we 336 

implemented it. 337 

2.2.1. Classifier architecture 338 

We used several layers: an input layer, convolution layers, pooling layers, two fully connected (FC) 339 

layers, and the output layer. The extraction of information in the CNNs is based on the 2D convolution 340 

of kernels and their receptive fields (areas on the input image determined by height and width of the 341 

kernel). The 2D convolution is performed by sliding the kernel over the entire image. The resulting matrix 342 

is called a feature map (𝑧𝑖𝑗): 343 

𝑧𝑖𝑗 = ∑ ∑ 𝑤𝑚𝑛

𝑁−1

𝑛=0

. 𝑥(𝑖+𝑚+𝑠𝑡𝑟𝑖𝑑𝑒−1)(𝑗+𝑛+𝑠𝑡𝑟𝑖𝑑𝑒−1) + 𝑏𝑖𝑗

𝑀−1

𝑚=0

 ,                                (1) 344 

𝑎𝑖𝑗 = 𝜎 (𝐵𝑁(𝑧𝑖𝑗 )) 345 

Here, 𝑤 is the convolution kernel matrix, 𝑏 is the bias, 𝑥 is the input image, and 𝑀 and 𝑁 are the 346 

lengths and the width of the kernel. In Equation 2, the stride parameter specifying the number of pixels 347 

to shift the convolution filter is 2 for the first layer and 1 for all other convolutional layers. The batch 348 

size represents the number of training samples used for training before updating the network weights 349 

during one epoch. We trained our network with a batch size of 32 with 200 epochs. The batch-350 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444981doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444981
http://creativecommons.org/licenses/by-nc-nd/4.0/


13 

 

normalization layer (BN) (Ioffe et al., 2015) is calculated by normalizing the input of the layer by 351 

subtracting the batch mean and dividing it by the batch variance. The nonlinear activation function (𝜎) 352 

is applied to each layer output. In the current study, ELU (Clevert et al., 2015) is used for all layers except 353 

for the last one (it is softmax for the last one). After applying the activation function on the feature maps, 354 

the size of its output is reduced using a pooling layer. We used maximum pooling, which applies no 355 

smoothing and retains the key features of the image (Scherer et al., 2010). Then, the output of the last 356 

convolution layer is assigned to the FC layers to allow interactions also on a global level. The activation 357 

function of the last layer is the softmax function. The final output is calculated by taking the maximum 358 

of the softmax function output. Other activation functions (like ELU) provide an output of real-valued 359 

scores that are not conveniently scaled to be used as classifier output. However, the softmax function 360 

partitions the probability among the classes helping with the interpretation of the output, without loss of 361 

information.  362 

 363 

Figure 3. Classifier architecture. Module 1 consists of the following layers: Batch normalization + ELU + Maxpooling 2*2. 364 
Module 2 consists of the following layers: Batch normalization + ELU. Conv2D (32, 3*18) is a 2-dimensional convolution 365 

layer with a kernel size of 3*18 and the number of filters is 32. FC (128) is a fully connected layer with 128 neurons. 366 

 367 

The architecture of our network is shown in Figure 3. In this depiction, e.g., Conv2D (32, 3*18) 368 

denotes a 2-dimensional convolution layer with a kernel size of 3*18 and 32 filters. The FC (128) is a 369 

fully connected layer with 128 neurons. After two FC layers, a dropout layer with the probability of 0.5 370 

is used. This step reduces the risk of overfitting (Srivastava et al., 2014). Our model has 110k parameters 371 

to be determined. The implementation is based on the Keras library ("Keras,") (version 2.2.4) and we run 372 

the models training on the Acoustic Research Institute’s clusters with 64 GB RAM, 12-core CPUs, and 373 

NVIDIA Titan Xp GPUs, and the other with 64 GB RAM, 8-core CPUs, and NVIDIA GeForce GT 374 

GPUs. 375 
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Data processing and analysis were conducted using Python 3.6, employing NumPy 1.16.2. Also, 376 

Sklearn 0.22.1 was used as the framework for model building and training. Figures were produced with 377 

Matplotlib 3.1.3.  378 

2.2.2. Methods for optimization and loss function  379 

In machine learning algorithms, the general aim is to find the optimal weight to minimize the loss 380 

function. In this study, we used the categorical cross-entropy (CCE) (Goodfellow et al., 2016; Murphy, 381 

2012), which computes the dissimilarity between the distribution of the classifier output and the manual 382 

labels. For the reduction of the overfitting (Y. Chen et al., 2016), 𝐿2  regularization (Hoerl et al., 1970), 383 

also known as Tychonov or Ridge, is added to CCE as follows,  384 

𝐿𝑜𝑠𝑠 𝑓𝑢𝑛𝑐𝑡𝑖𝑜𝑛 = 𝐶𝐶𝐸 +
𝜆

2𝑚
∗ ∑‖𝑤‖2    , 𝑤ℎ𝑒𝑟𝑒   𝐶𝐶𝐸 = − ∑ yi log(𝑝𝑖 )

𝐶

𝑖=1

               (2) 385 

Here, 𝑤 is the weights matrix of the CNN, ‖ . ‖ is the 𝐿2  norm, the regularization parameter λ is 386 

set to 10-4 and 𝑚 is the batch size. The ground truth is denoted by yi while ci denotes the predicted 387 

probability of a training sample (i.e., the output of the last layer). c is the number of classes. To optimize 388 

the loss function, we used the stochastic gradient descent with Nesterov momentum (Nesterov, 1983) 389 

and we initialized the weights of the convolution and FC layers using the He-initialization (He et al., 390 

2015). 391 

To reduce overfitting and to promote the generalizability of the model (C. Chen et al., 2020), we 392 

performed the augmentation of the training dataset using random shifts of width and height by 10%. 393 

Other augmentation methods such as zooming and normalizing were excluded from this setup as in pilot 394 

tests, they increased the validation error of the classifier.  395 

2.2.3. Imbalanced data distribution 396 

As shown in Table 1, the DEV_train dataset is significantly unbalanced, with 69 occurrences of the c3 397 

and 4849 of the FP class, a typical situation in real applications of machine learning. To investigate how 398 

this uneven distribution affects the performance of the classifier, we fit the model with the original 399 

DEV_train data and it was resampled by three different approaches.  400 

(1) In the first approach, the original input data are bootstrapped 10 times to increase the 401 

generalizability and reliability of the classifier (Anguita et al., 2000; Yan et al., 2015). In each bootstrap 402 

iteration, samples are drawn from the original dataset with repetition, so some samples may appear more 403 

than once or some not at all. Then, we fitted a model for each bootstrapped dataset. The final model 404 
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performance was evaluated by the average over the 10 models. Bootstrapping reduced the ratio of data 405 

imbalance from 76 to 4. 406 

(2) In the second scenario, all classes, except the classes ‘c3’ and ‘us’, which only have a 407 

maximum data number of 69 and 74, are randomly under-sampled to 124 samples.  408 

(3) In the last scenario, all classes, except FP and ‘up’, are over- and under-sampled to the number 409 

of samples of the majority class, i.e., 4849. We used the Synthetic Minority Oversampling Technique 410 

Edited Nearest Neighbor (SMOTEENN) (Batista et al., 2004) and the number of neighbors was selected 411 

as 3. 412 

To tackle the imbalanced distribution, during the model training we also weighed the loss function 413 

inversely proportionally to the number of class members (King et al., 2001) for the original, bootstrapped, 414 

and under-sampled data using the following equation:  415 

𝑊𝐶𝐶𝐸 = − ∑ 𝑐𝑤𝑖  yi log(𝑝𝑖 )

𝐶

𝑖=1

, 𝑤ℎ𝑒𝑟𝑒    𝑐𝑤𝑖 =
𝑁

𝑐 ∗ 𝑛𝑖
           (3)  416 

N and 𝑛𝑖 are the total number of samples and class members. CCE in equation 2 was updated to WCCE. 417 

2.2.4. Model ensemble 418 

The weights optimized on a particular dataset are not guaranteed to be optimal (or even useful) for 419 

another dataset. At the same time, different machine-learning algorithms can lead to different results 420 

even for the same dataset. In ensemble methods (Zhou, 2012) the final output is taken from combining 421 

the outputs of different models and thus reducing the variance of the classifier output. Rather than training 422 

a model from scratch for different sets of hyperparameters, we produced 5 trained models during the 423 

training of a single model using Snapshot Ensemble with cosine annealing learning rate scheduler (G. 424 

Huang et al., 2017). They were trained consecutively, so the final weights of one model are the initial 425 

weights of the next. In this approach, the CNN weights are saved at the minimum learning rate of each 426 

cycle (Figure 2 in Supplementary materials), which occurs after every 40 epochs. To determine the best 427 

combination of these 5 models, we have cross-validated 4 approaches: 1) using the predictions of the 5th 428 

model, 2) using the average prediction from the last 3 models, 3) combining the predictions of the last 3 429 

models by Extreme Gradient Boosting Machines (XGBMs) (T. Chen et al., 2016), and 4) combining the 430 

predictions of all 5 models using XGBMs. In explaining the third and fourth methods, instead of taking 431 

the average of the predictions (used for the second method), the predictions of the last three and five 432 
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models of the DEV_validation data together with their ground truth are used for training the XGBMs. In 433 

this case, the final output of the classifier is the output of XGBMs. 434 

Thus, to develop our classifier, these four ensemble methods were applied for each resampling 435 

approach namely under-sampling, over-sampling, and bootstrapping, and for the original data.  436 

2.3. Statistical test  437 

To determine whether the duration of USVs was statistically significant over- or under-estimated 438 

by a detection tool, a regression line (i.e., y = b0 + b1*x) was fitted between the estimated (x) and 439 

observed USV duration (y). This regression line was obtained based on ordinary least squares, which is 440 

a maximum likelihood estimator. Then, using a t-test, the P-values were calculated for the estimated 441 

intercept (b0) and slope (b1) of the regression line. These P-values assess whether the coefficients are 442 

significantly different than zero. These analyses were conducted using a Python module called 443 

statsmodels.  444 

2.4. Inter-observer reliability (IOR) 445 

Our ground truth (or 'gold standard') was based on manual classification, and we used two 446 

independent observers to classify USVs and to evaluate our ground truth, we evaluated inter-observer 447 

reliability (IOR). The first 100 USVs of 10 sound files were manually classified into 15 USV types  by 448 

two of the authors, and both have much experience (Nicolakis et al. (2020), Marconi et al. (2020), and 449 

Zala et al. (2020)). We used five arbitrarily selected sound files from the DEV dataset and all five sound 450 

files used for the EV dataset (EV_wild and EV_lab). Both observers were blind to their respective labels 451 

and to the original labels used for the development or evaluation of BootSnap. The USV labels were 452 

extracted and exported into Excel files. The exported parameters included the start time, end time, and 453 

USV type of each vocalization. Then, the labels from both observers were aligned according to the start 454 

time of each segment. Thus, vocalizations with the same starting time were compared between the two 455 

observers. Segments that were labeled as false positive by the observers but detected by A-MUD as 456 

candidate USVs, were included and segments that were labeled as unclassified (“uc”) and were excluded 457 

from the analyses. Segments classified as the same type by both observers were scored as 'agreement'. 458 

Segments that were either detected by only one observer or were classified into a different class were 459 

scored as 'disagreement'. Then, we calculated the percentage of correctly classified USVs by both 460 

observers, reported as IOR. We calculated the IOR for DEV and EV data for all segments (including 461 

FPs), and when including and excluding USVs detected by only one observer and not the other (i.e., 462 

labeled as ‘missed’ USVs). In addition to the original data, we calculated the IOR and F1-score when 463 
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excluding ‘s’ and ‘us’ classes, to evaluate how these two classes affected the IOR, and when pooling the 464 

original data into 12, 11, 6, 5, 3, and 2 classes, respectively, to compare the IOR and F1-score with the 465 

performance of BootSnap (see Table 6 and Table 7). 466 

2.5. Performance statistics 467 

The performance of the detection tools was evaluated based on TPR and FPR, which are defined 468 

as follows: 469 

𝑇𝑃𝑅 = 𝑟𝑒𝑐𝑎𝑙𝑙 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑛
,      (4)  470 

𝐹𝑃𝑅 =
𝑓𝑝

𝑓𝑝 + 𝑡𝑛
  ,    471 

where tp and fp are true and false positives, i.e., the number of correctly and falsely detected 472 

samples of USVs, while tn and fn are true and false negatives, i.e., the correct and false number of omitted 473 

USVs.  474 

To evaluate the performance of the classifiers, the macro F1-scores, i.e., the unweighted average 475 

of the F1-score of each class was calculated. This metric, unlike accuracy, is not affected by the 476 

imbalance distribution of the classes (Sun et al., 2009). We also used TPR and FNR (Equation 6) for 477 

producing a confusion matrix (Sammut et al., 2011).  478 

 479 

𝑓1 − 𝑠𝑐𝑜𝑟𝑒 = 2 ∗
𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 ∗ 𝑟𝑒𝑐𝑎𝑙𝑙

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑟𝑒𝑐𝑎𝑙𝑙
,          where               (5) 480 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑡𝑝

𝑡𝑝 + 𝑓𝑝
   481 

FNR =
𝑓𝑛

𝑓𝑛 + 𝑡𝑝
      (6)        482 

3. RESULTS 483 

3.1. Comparing detection algorithms  484 

Figure 4 shows the performance (TPR and FPR) of the four detection tools, MUPET, DSQ, USVSEG, 485 

and A-MUD. A-MUD was tested using its default parameters, whereas the others were implemented 486 

using the combination of parameters that provided the best results for the chosen dataset. We also 487 
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compared the performance of these methods using other parameters (see Figure 2 in Supplementary 488 

materials).  489 

 490 

Figure 4. Best performance of four USV detection methods for four recordings. (a) The True Positive Rate shows the 491 
ratio of the number of USVs correctly detected to the total number of manually detected USVs * 100. (b) The False Positive 492 
Rate shows the ratio of the number of unwanted sounds (noise) incorrectly detected as USVs to the total number of detected 493 
elements * 100. The MUPET (2) method implemented MUPET with the noise-reduction parameter set at 5 and a minimum 494 
frequency of 30 kHz (Van Segbroeck et al., 2017). DSQ (4) used DSQ detection with the short rat call_network_v2 network 495 

with a high “recall” parameter (Coffey et al., 2019). USVSEG (3) applied USVSEG detection with the threshold parameter 496 
set at 3.5, the minimum gap between syllables at 5ms, and the minimum length of USVs at 4 ms (Tachibana et al., 2020). A-497 
MUD was run using its default parameters (Zala et al., 2017a). The legend shows the four recordings that were compared for 498 
each method (i.e., lab mice vs wild mice for both DEV (i.e., DEV_1 and EV_wild_1) and EV datasets (i.e., EV_lab_1 and 499 
EV_lab_2) and the mean of these four recordings. DEV_1 and EV_lab_1 are examples of high-SNR recordings and EV_lab_2 500 
is an example of low-SNR recording.  501 

 502 

A-MUD (using the default parameters) correctly detected the largest number of USVs (TPR were 503 

all >97%), though it was closely followed by USVSEG (using the optimal parameters), and MUPET had 504 

the lowest mean TPR (<90%) (Figure 4a). A-MUD and USVSEG also provided the best performance 505 

when evaluating the detection of USVs from low-SNR recordings (DEV_1 and EV_lab_1, which include 506 

USVs from wild-derived and laboratory mice, respectively). We evaluated the performance of USVSEG 507 

using recordings of lab and wild mice and found that it has a higher TPR for lab mice. This result is likely 508 

because this method is primarily parameterized and evaluated based on recordings of lab mice. In 509 

contrast, A-MUD has a high TPR for both types of data, despite that it was parameterized and evaluated 510 

using recordings of wild mice only. The presence of faint USVs (in EV_wild_1) had little effect on the 511 

TPR for most methods, except MUPET (the TPR for this method was reduced from 95% to 75.6% when 512 

recordings contained faint USVs). When comparing FPRs, we found that USVSEG had the lowest error 513 

rates, though all four methods were similar ranging from 8% to 13% (Figure 4b). It is possible to improve 514 

the model's performance to reduce the FPRs with an additional refinement step (see next section). 515 
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Here, we compared the estimated USV duration by USVSEG and A-MUD with the observed 516 

USV duration (i.e., manually checked and corrected USV duration). In wild mice, USVSEG 517 

underestimated the duration of USVs compared to A-MUD, which had a higher accuracy than USVSEG 518 

(Figure 5a). The duration of USVs and the mean bias values (-3.81 ms vs -0.39 ms; Figure 5c) were 519 

significantly underestimated by USVSEG (see Table 3). Also, the R-squared (R2) and root-mean-square 520 

error (RMSE) values, which show the correlation of the predicted and observed values and the standard 521 

deviation of the prediction error, respectively, show that A-MUD estimated the duration of USVs from 522 

wild mice with higher accuracy. 523 

 524 

Figure 5. Joint plot between manually corrected (i.e., observed) and estimated duration of detected segments (by A-525 
MUD (orange) and USVSEG (blue)) in (a) DEV_1 and EV_wild_1 data and (b) EV_lab_1 ad EV_lab_2 data. (c) 526 
Evaluation metrics for the linear regression models between observed and estimated duration of segments. The black 527 
dashed line in figures (a) and (b) is the identity line. The evaluation metrics in the table (c) are R-squared (R2), root-mean-528 

square error (RMSE), and mean bias between observed and estimated duration of segments. Mean bias is the average 529 
difference between the estimated and observed duration of detected segments. 530 

 531 

In contrast, the duration of USVs from laboratory mice was significantly overestimated by both 532 

methods. Here, USVSEG outperformed A-MUD, as the former had less RMSE (i.e., 13.08 vs 16.3) and 533 

higher R2 (i.e., 0.84 vs 0.76) than the latter. The overestimation of the duration of the USVs by both 534 

methods is probably because the USVs from lab mice were very loud and, in most cases, had a strong 535 

echo, so both methods considered these echoes as the USVs themselves. However, for the observed 536 

durations, the USVs were shortened to the end of the clear tone of the USVs. 537 

 538 

 539 
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Table 3. Statistical tests comparing observed and estimated USVs duration for DEV_1 and EV_wild_1 and 540 

EV_lab_1 ad EV_lab_2 data by A-MUD and USVSEG. 541 

Parameters Estimate Std. error t value P value 

DEV_1 and EV_wild_1 

Intercept_A-MUD 3.7885 0.298 12.693 2.920787*10-35 

Slope_A-MUD 0.8941 0.009 104.872 < 2.22*10-16 

Intercept_USVSEG 7.5821 0.318 23.863 4.396634*10-108 

Slope_USVSEG 0.8684 0.010 87.224 < 2.22* 10-16 

EV_lab_1 ad EV_lab_2 

Intercept_A-MUD -1.1628 0. 45 -2.58 9.8*  10-3 

Slope_A-MUD 0. 84 000. 6 149.926 < 2.22* 10-16 

Intercept_USVSEG -1.5588 0.348 -4.479 8*10-8 

Slope_USVSEG 0.875 0.004 195.535 < 2.22* 10-16 

 542 

3.2. Selecting the best classifier  543 

To develop our classifier, the detected elements were first manually classified into 12 types of 544 

USVs (ground truth). In addition to the original data, three types of resampling approaches were 545 

examined (under-sampling, over-sampling, and bootstrapping) to overcome the uneven distribution 546 

between USV classes (see Section 2.2.4). For each type of resampling, four model ensemble methods 547 

were applied to the outputs, which include the predictions of the last Snapshot ensemble (‘sn’), the 548 

average prediction of the last 3 Snapshot ensemble models (‘sn_avg_3’), and a combination of the 549 

predictions of the last 3 (‘sn_xgb3’) and 5 Snapshot ensemble models (‘sn_xgb5’) by XGBMs (see 550 

Section 2.3.3). Figure 6 shows the performance of the models with different combinations of resampling 551 

and ensemble methods compared to the control run using the original data.  552 

The bootstrap and under-sampling methods always had the highest and lowest average F1-score, 553 

respectively, regardless of the ensemble method. Using the last model obtained from the Snapshot 554 

ensemble gave the highest average F1-score (76.6%) with bootstrapping. ’sn_xgb5’ outperformed the 555 

other ensemble methods for the original data and two other resampling methods (under-sampling and 556 

over-sampling). The last model of the Snapshot ensemble also provided the lowest variation in 557 
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bootstrapped data (1.4% STD). The differences between the ensemble methods are not large if used 558 

together with bootstrapping. 559 

 560 

Figure 6. Performance of classifiers based on four resampling methods for four types of ensemble models. For each 561 
type of resampling, four ensemble models have been applied to the outputs, including the predictions of the last Snapshot 562 
ensemble (‘sn’), the average prediction of the last 3 Snapshot ensemble models (‘sn_avg_3’), and combining the predictions 563 
of the last 3 (‘sn_xgb3’) and 5 Snapshot ensemble models (‘sn_xgb5’) by XGBMs. The mean +SD of macro F1-score of test 564 
datasets over 8-fold cross-validation are shown.  565 

 566 

 Neither the under-sampling (F1-scores = 69%) nor the over-sampling (F1-scores = 73.5%) 567 

methods, improved the performance of the model compared to the best model from the original data (F1-568 

score = 74.5%). While this result is not surprising for the under-sampled case, the performance of the 569 

oversampling case shows that the variance is not a problem for small classes. The poor performance of 570 

the model fed by under-sampled data can be attributed to the random discard of samples and thus the 571 

deletion of useful information. The over-sampling method may have failed to improve the model 572 

performance because the images produced by the SMOTEENN are very similar to the original data 573 

(Figure 7 in Supplementary materials) leading to model overfitting. As a result, the combination of 574 

bootstrapped data and the last Snapshot model provided the best classifier (hereafter called BootSnap).  575 

Next, we examined the class-wise performance of the best model for each combination of 576 

resampling and ensembling method, including original + ‘sn_xgb5’, under-sampled + ‘sn_xgb5’, over-577 

sampled + ‘sn_xgb5’, and bootstrapped + ‘sn’ (BootSnap). As shown in Figure 7, BootSnap improved 578 

the F1-scores of classes ‘c’ and ‘c3’ by about 5% and class ‘us’ by about 10%. The number of classes 579 

‘c3’ and ‘us’ in the original data is lower than in other classes, and bootstrapping seems to effectively 580 

increase the number of class members used during the model development. For classes, ‘c2’, ‘d’, ‘f’, and 581 
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‘u’, BootSnap increased the average macro F1-score by about 2%-3%. The classes ‘FP’, ‘h’, ‘ui’, and 582 

‘up’ in the original + ‘sn_xgb5’ and BootSnap models have approximately equal average macro F1-score. 583 

Somewhat surprisingly, the average macro F1-score of the classes ‘h’ and ‘ui’ did not increase by 584 

bootstrapping, so it seems that the number of these data points is sufficient for our method. It appears 585 

that only for the class ‘s’ bootstrapping did not help, but the abundance of class members of ‘up’ and 586 

‘FP’ in the original data defused the effect of bootstrapping. The average macro F1-score of BootSnap in 587 

the class ‘s’ is about 2% less than in the model fed by the original data. 588 

 589 

Figure 7. Performance of the best model for each combination of resampling and ensemble method for different USV 590 
classes.  The mean +SD of the class-wise macro F1-scores in the 8-fold cross-validation are shown. 591 

 592 

BootSnap also reduced the variation in the macro F1-scores for almost all USV classes, and the 593 

largest reduction in variation was for classes ‘u’, ‘c3’, and ‘us’. However, the classes ‘us’ and ‘c3’ had 594 

the highest macro F1-score STD in all resampling methods; a result that might be due to the very low 595 

number of samples in these two classes (99 and 93 members respectively). 596 

3.3. Evaluating BootSnap for classifying USVs  597 

To evaluate the performance of BootSnap for different types of USVs, we generated a row-wise 598 

normalized confusion matrix (or error matrix) (Sammut et al., 2011). To prepare this matrix, we used the 599 

manual annotations and predicted labels from BootSnap of the test dataset (of 8-fold).  600 
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 601 

Figure 8. Confusion matrix of a 12-class classification using BootSnap. The main diagonal represents the recall of each 602 

USV class. The other values in each row are FNRs, which indicate the percentage of each class of USVs incorrectly labeled 603 
or classified. 604 

 605 

This matrix shows that non-USVs (‘FP’) were classified with the highest recall (94%), which 606 

indicates that our model can successfully detect most falsely identified signals, and exclude them from 607 

further processing. It also shows that 40% to 92% of different types of USVs were accurately classified. 608 

The lowest recall was the 'us' class, and more than 40% of ‘us’ were mistakenly labeled as class ‘s’ and 609 

14% of the total members were assigned to the class ‘FP’. The classification of ‘s’ syllables (76%) was 610 

much more accurate than ‘us’, and the highest FNR value of this class (‘s’) belongs to the class ‘us’. The 611 

misclassification of these two classes can be attributed to the use of the USVs length as the only feature 612 

used for manual classification, which is not reliable ('us' also shows much lower inter-observer 613 

repeatability in manual classification than other classes; see Figure 6 in Supplementary materials). Class 614 

‘c3’ had the second-lowest recall (63%), and most of its FNs were found with the classes ‘h’ (17%), ‘c2’ 615 

(9%), and ‘c’ (5%). These errors were due to the occurrence of harmonic patterns or faint jumps in the 616 

class ‘c3’. The class ‘c’ had the third-lowest recall (67%), despite having a high number of members. 617 

The problem is that 'c' syllables were often mis-assigned due to their similarity in the spectrograms to 618 

‘ui’, ‘u’, and ‘up’ types, which resulted in the highest FN rates in these three classes. Examination of the 619 

misclassified members of the class ‘h’ indicates that they were often assigned to the class ‘f’. The highest 620 

portion of FNR (17%) of the class ‘c3’ is found with the class ‘h’. The FNR of the class ‘h’ is 5% with 621 

class ‘c3’. In other words, the members of the class ‘c3’ are much more likely to be mistaken as the class 622 

‘h’ than vice versa. It is because harmonic patterns are frequently seen with the second element (out of 623 
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three elements) in the class ‘c3’, whereas the opposite rarely occurred in our recordings. The explanation 624 

might be because the ‘h’ has always only one element (+ the harmonic) and the “c3” has three elements. 625 

As shown in Figure  2, members of the class ‘d’ resemble the members of class ‘f’, which resulted 626 

in the class ‘d’ having the most FNs with the class ‘f’. While there is no distinguished pattern of FNs 627 

distribution in other classes, it is important to note that FNs of the classes ‘c2’ and ‘c3’ mostly occur 628 

among themselves. Thus, the performance of the classifier is improved after pooling the ‘c2’ and ‘c3’ 629 

classes, as we show next. 630 

3.4. Inference classification 631 

Since it is unclear whether and how mice classify USVs, we report the performance of the best 632 

classifier (BootSnap) based on the different number of classes proposed in previous studies (Table 2). It 633 

is important to note that, unlike previous studies, we considered FP as a target class. Since BootSnap was 634 

trained using 12 classes, we pooled different types of calls in various combinations, especially for the 635 

most similar types of syllables, to compare its performance with existing literature treating other numbers 636 

of classes. This comparison provides some insights into the classification of types of USVs by 637 

researchers. 638 

Table 4. BootSnap performance in classifying the DEV_test dataset in various combinations of classes. 639 

Basis of 

classifications 

# of 

classes 
Different combinations of syllable types 

Adapted 

from 

F1-score 

(%) 

original 12 FP up d f s us u ui c c2 c3 h original 76.7±1.4 

Pool ‘s’ and 

‘us’ 
11 FP up d f short u ui c c2 c3 h 

(Hanson et 

al., 2012; 

Scattoni et 

al., 2008) 

81.1±1.6 

- 6 
FP Rise ui c c2 split 

(Coffey et al., 

2019) 
86.7±1.9 

Simple/ 

complex 
5 FP no-jump c2 c3 h 

(Wang et al., 

2008) 
86.5±2.2 

F- jumps 3 FP no-jump 
jumps and 

harmonics 

(Hoffmann et 

al., 2012) 
95.4±0.6 

FP/USV 2 FP USV - 97.1±0.4 

  640 
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The number of USV classes studied here ranged between 2 and 12 different types. As expected, 641 

classifying all 12 classes provided the lowest F1-score (76.6±1.4%). In the next step, the classes ‘us’ and 642 

‘s’, which differ only in their duration, were pooled to form a new class, labeled ‘short’. By combining 643 

these two classes, we found a significant increase in the F1-score (81.1 ± 1.6%). In addition, by 644 

combining these two classes, a significant number of ‘us’ and ‘s’ types, which were mistakenly assigned 645 

as each other (Figure 6), were correctly classified as ‘short’. In the next step, the classes ‘up’, ‘d’, ‘f’, ‘s’, 646 

‘us’, and ‘u’ were pooled to form the class called ‘rise’, and the classes ‘c3’ and ‘h’ were included in the 647 

class ‘split’. Aside from the class ‘u’, a common feature between classes pooled into ‘rise’ was having 648 

no changes in their frequency direction. These classes were mostly false positives in the 12-member 649 

classification, and thus, after pooling, the F1-score significantly increased to 86.7±1.9%, compared to 650 

the 11-class classification. 651 

Then, according to Wang et al. (2008), the number of classes was reduced to five. We pooled the 652 

classes ‘ui’, ‘c’, and ‘rise’. These classes have no jumps in their spectrograms and thus the pooled new 653 

class was labeled ‘no-jump’. Also, the classes ‘h’ and ‘c3’, which were pooled in the previous step into 654 

the class ‘split’, were separated again, but unlike the previous steps, the F1-score decreased (ca. 0.2%). 655 

This result might have been due to the separation of classes ‘h’ and ‘c3’ causing a large number of 656 

members of the latter class to be classified in the former class (Figure 5 in the Supplementary materials). 657 

In the next step, all the members of the classes ‘c2’, ‘c3’, and ‘h’ were pooled into the class ‘jumps and 658 

harmonics’ and compared with the classes ‘FP’ and ‘no-jump’. As mentioned before, all the FNs of the 659 

classes ‘c2’ and ‘c3’ were from each other (Figure 8), and as a result, pooling them in one class yielded 660 

an F1-score of about 95.4±0.6%. Finally, we classified syllables and FP into two separate classes, and 661 

this simple binary classification, which was mostly used in the USV detection step, was able to 662 

differentiate USVs from FPs with an F1-score of 97.1±0.4%. These results again show how the 663 

performance of BootSnap depends upon the type of USV, and that pooling certain classes results in better 664 

accuracy.  665 

3.5. Comparing BootSnap and DSQ: transferability to new datasets  666 

We compared the performance of BootSnap to DSQ, which we consider to provide the state-of-667 

the-art classification tool, and we used the EV_wild and EV_lab signals (Table 3). BootSnap predictions 668 

were pooled into 6 classes, which included ‘rise’, ‘split’, ‘ui’, ‘c2’, ‘FP’, and ‘c’ (DSQ reported them as 669 

the output classes). DSQ distinguishes FPs from USVs using a post hoc denoising network (Coffey et 670 

al., 2019) before the classification step. For comparison, we considered FP as one of DSQ’s final output. 671 

Since BootSnap was developed based on 8 folds, we used the mode of 8 predictions to compare it with 672 
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the DSQ output. It is also important to note that A-MUD was used to detect USVs in both algorithms to 673 

provide a fair basis for comparing the classification step in DSQ and BootSnap (this improved the average 674 

detection rate of DSQ by 5%). 675 

Table 5. Comparison of DSQ and BootSnap performances for the supervised classification of USVs in EV_wild and 676 
EV_lab recordings. The values of macro F1 (which is the average of F1-score over all classes) and class-wise F1-score (F1-677 

score computed for each class) are presented. 678 

Scheme macro 
F1-score (%) 

Class-wise F1-score (%) 

c  c2  split  FP  rise  ui  

 
DSQ 

BootSnap 

EV_wild 
  

 
   

41 

67 

0 
32 

44 
58 

56 
58 

50 
93 

82 
92 

12 
66 

DSQ 
BootSnap 

EV_lab 
      

49 
64 

24 
38 

43 

93 
74 
84 

66 
77 

69 
61 

16 
28 

 679 

As expected, BootSnap and DSQ performed better for the types of mice used for training the 680 

models (wild and lab mice, respectively; Table 5). DSQ had an F1-score of 41% for wild mice and 49% 681 

for lab mice. Similarly, BootSnap had an F1-score of 67% and 64% for wild and lab mice, respectively. 682 

Nevertheless, BootSnap outperformed DSQ for both types of mice overall. In terms of class-wise 683 

performance, BootSnap performed better in nearly all the classes (‘c’, ‘c2’, ‘split’, ‘FP’, and ‘ui’, with 684 

higher F1-scores of 32%, 14%, 2%, 43%, and 54 % for the EV_wild and higher F1-scores of 14%, 50%, 685 

10%, 11%, and 12 % for the EV_lab). DSQ outperformed BootSnap for the EV_lab for one class, ‘rise’. 686 

The reason for the superior performance of BootSnap in classifying ‘c2’ and ‘split’ classes in EV_lab 687 

over EV_wild is probably explained by the jumps that in EV_lab are stronger than in the wild mice data. 688 

Once again, an important point for developing and assessing the performance of a classifier is its 689 

generalizability, i.e., how well the model works when classifying data not used for the model 690 

development. In reviewing the above results, we observed that both DSQ and BootSnap had a relatively 691 

poor performance in the classification of the classes ‘ui’ and ‘c’. Further examinations showed that the 692 

decline in their performance in these classes was due to the significant difference in the distribution of 693 

new data with their training data. This difference is better seen in the three-dimensional t-SNE (Maaten 694 

et al., 2008) representation (using the initial dimension of 40, the perplexity of 50, and the number of 695 

iteration of 2000) shown in Figure 9. The F1-scores of ‘ui’ and ‘c’ classes were very low for both 696 

BootSnap and DSQ for lab and wild mice, still, BootSnap outperformed DSQ. In the class ‘rise’, the 697 

USVs of wild and laboratory mice have overlapped distribution, which was in contrast to the classes ‘ui’ 698 
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and ‘c’ (Figure 8c). Thus, the performance of both models for this class was much better than for other 699 

classes. 700 

 701 

Figure 9. Scatterplots of USVs from three classes comparing different types of data and mice. 3-dimensional t-distributed 702 
stochastic neighbor embedding (t-SNE) representation of the classes (a) ‘c’, (b) ‘ui’, and (c) ‘rise’. Colors indicate the dataset 703 
to which USVs belong.  704 

 705 

3.6. Inter-observer reliability 706 

When calculating the inter-observer reliability (IOR), excluding ‘missed’ segments, for the DEV 707 

dataset (n = 630 segments from 5 soundfiles), we found ca. 80% agreement between two independent 708 

observers and ca. 84% agreement for the EV dataset (n = 578 segments from 5 soundfiles), when 709 

including all classes (Table 6). The removal of the ‘missed’ segments from all class combinations has a 710 

larger effect on IOR in the DEV data than the EV data. This is probably because most of the USVs in the 711 

DEV dataset have low-SNR or they are fainter compared to USVs in the EV dataset, since the EV dataset 712 

includes the EV_lab files which usually have a high-SNR (see Table 3 in Supplementary materials). So, 713 

in the EV data, the probability of error in the detection tool and observer is less due to having louder 714 

USVs. 715 

Excluding the “us” and “s” USVs increased the IOR to 84% for the DEV data (9% of the segments 716 

excluded) and to 86% for the EV data (3.6% of the segments excluded), respectively. A detailed 717 

comparison of the manual classification by the two observers (Figure 6 in Supplementary materials) 718 

showed that the USV types “us”, “s”, “up”, “u”, “h”, “c”, “c3”, “c2”, and “ui” in the DEV dataset and 719 

“us”, “s”, “up”, “h”, “c4”, “c5”, and “ui” in the EV dataset accounted for the highest disagreement 720 

between observers. The disagreement for the type “us” was likely due to detection error since “us” USVs 721 

have <5 ms duration and might not be detected by another observer in noisy recordings. If there is a 722 

disagreement in the length of USVs (due to faint USVs or background noise) between observers, an “us” 723 

might be classified as “s” and “s” USV might be classified as “d” or “us”. We observed a low number of 724 

“s” and “us” types when analyzing the EV dataset especially within the recordings from laboratory mice 725 
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(9% of “us” and “s” in the DEV dataset compared to 3.6% in the EV dataset). Additionally, there can be 726 

disagreement between the USV types “up” and “ui”. This error is likely to occur due to the threshold of 727 

5kHz to measure the frequency modulation and used to distinguish between “up” and “ui”. USVs with 728 

upward frequency modulation of >5 kHz (“up”) often ends with a slight downward frequency 729 

modulation, which can be close to 5 kHz. USVs often have a lower amplitude at the start or the end of 730 

the vocalization, and sometimes it can be difficult to measure the exact frequency modulation in a 731 

spectrogram. In summary the main misclassifications are between 1) us and s, 2) c3 and h, 3) c3, c2, and 732 

c, 4) c, ui, u, and up, and 5) d and f. Usually, the fuzzy transition between the types is the main problem 733 

in manual classification. Thus, although USV syllables are discrete, they are not all very discrete, 734 

especially when the USVs are classified into a large number of classes (e.g., more than 5 according to 735 

Table 6). These reflect that the main difficulties of BootSnap and manual classification are similar.  736 

In our datasets, errors in manual classification were mainly due to (i) high background noise, (ii) 737 

duration or frequency thresholds used to define USV types, (iii) low or high amplitude of USVs (iv), and 738 

“noisy” vocalizations with many frequency jumps emitted by laboratory mice. The disagreement in 739 

manual classification of certain syllable types highlights the importance of finding a biologically relevant 740 

number of different USV classes, which can be reliably differentiated with low error rates by different 741 

observers. 742 

 743 
Table 6. Interobserver reliability for the subsets of DEV and EV datasets. IOR values (in percentage) are given for 744 
different combinations of classes. Two IOR values are presented for each combination of classes: IOR including ‘missed’ 745 
segments / IOR excluding ‘missed’ segments.  746 

 Interobserver reliability in various combinations of classes 

Dataset Original  Excluding 

‘s’ and ‘us’ 

12 classes 11 classes 6 classes  5 classes  3 classes 2 classes 

DEV 79.5 / 85.6 83.6 / 87.4 79.5 /85.6 80.6 / 86.8 83.8 / 90.2 89.2 / 96 89.2 / 96 92.4 / 99.5 

EV 84 / 85.7 85.6 / 86.4 88.7 / 90.5 88.9 / 90.6 90.1 / 92 93.2 / 95 94.6 / 96.5 97.9 / 99.8 

  747 

Table 7. F1-score of the DEV_test and subsets of DEV (DEV_IOR) and EV datasets (EV_IOR) for IOR calculation. 748 

F1-score values (in percentage) are given for different combinations of classes. The numbers provided for DEV_test is the 749 
same as the numbers in Table 4. They are presented here again for easier comparison. Since we do not have ‘missed’ segments 750 
in the DEV_test data, these segments are removed when calculating the F1 score of DEV_IOR and EV_IOR datasets. 751 

Setting F1-score in various combinations of classes  

12 11 6 5 3 2 

DEV_test 76.7±1.7 81.1±1.6 86.7±1.9 86.5±2.2 95.4±0.6 97.1±0.4 

DEV_IOR 74.8 78.7 82.8 81.3 90 99.2 

EV_IOR 82.8 83.9 89.7 84.2 97 99.6 
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 752 

Similar to the BootSnap F1-score, the IOR (Table 6) and F1-score (Table 7) of IOR data improved 753 

as we pooled the classes into fewer groups. For example, the IOR improved from 6 to 5 classes 754 

classification in the DEV (from 84% to 89%) and EV (from 90% to 93%) datasets. The improved IOR 755 

to 89% (DEV) and 94% (EV) after pooling all USVs with or without frequency jumps suggests that 756 

potential classification method that is more reliable between observers compared to a classification using 757 

>12 USV types. Additionally, manual classification showed an agreement of 92% (DEV) and 98% (EV) 758 

when distinguishing between USVs and false positive segments. The IOR increased to 99.5% (DEV) and 759 

99.8% (EV) when excluding ‘missed’ segments.  760 

Table 7 shows that in nearly all combinations of classes, F1-score of DEV_test data (calculated 761 

between ground truth and BootSnap output) is similar to the F1-score of EV_IOR and DEV_IOR 762 

datasets. F1-score of EV_IOR and DEV_IOR datasets is calculated between two observers’ labels. It can 763 

be concluded that the value of F1-score generally increases with the pooling the classes, and BootSnap 764 

classifies USVs with approximately equal accuracy as humans. 765 

3.7. Comparing BootSnap and DSQ: sensitivity to new classes  766 

One of the main performance factors of a classifier is how the classifier deals with classes for which it 767 

was not trained. The DEV data does not contain samples from two classes, ‘c4’ and ‘c5’. Therefore, to 768 

address this issue, we analyzed the performance of DSQ and BootSnap focusing on these two classes, 769 

which were present in EV_wild data. 770 

The results show that BootSnap assigned 68% and 32% of the members of these two classes to 771 

the classes ‘c2’ and ‘c3’, respectively. It is noteworthy that both ‘c2’ and ‘c3’ classes represent jump-772 

included USVs, which is also a prominent feature of the classes ‘c4’ and ‘c5’. DSQ assigned 3%, 13%, 773 

46%, 3%, and 35% of the members of the classes ‘c4’ and ‘c5’ to the classes ‘c’, ‘c2’, ‘c3’, ‘rise’, and 774 

‘ui’, respectively. Although the class ‘ui’ is relatively similar to the ‘c4’ and ‘c5’ classes based on visual 775 

inspection (see Figure 7 in Supplementary materials), the difference is that there is no jump in the class 776 

‘ui’ to which DSQ incorrectly assigned a significant number of classes ‘c4’ and ‘c5’. Thus, we conclude 777 

that BootSnap uses a measure of similarity more fitted to USVs than DSQ, assigning new class samples 778 

to the most similar classes in the training data. 779 

4. DISCUSSION AND CONCLUSIONS 780 

4.1. Comparing USV detection tools  781 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444981doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444981
http://creativecommons.org/licenses/by-nc-nd/4.0/


30 

 

Our first aim was to compare the performance of four USV detection tools with each other and the ground 782 

truth (manual detection), as the detection is an important first step for classification and other analyses 783 

of USVs. Compared to previous studies, our ground truth for comparison consisted of 40 times more 784 

samples (i.e., 4000 vs 100 in DSQ), and therefore, our results should be much more robust. Moreover, 785 

we evaluated USV detection using wild mice, as well as laboratory mice, and we also compared USVs 786 

recorded on the noisy background (DEV_1 and EV_lab_1 signals) and having faint (EV_wild_1) 787 

elements. We found that A-MUD detected the largest number of actual USVs (TPRs were all >97% with 788 

its default parameters), and USVSEG had a similar performance (TPRs were all >94% using the adaptive 789 

optimal parameters). These two tools were better at detecting USVs from recordings with low-SNR, 790 

though faint USVs were only a problem for MUPET. USVSEG had a somewhat higher TPR for 791 

laboratory mice (99%) than wild mice (94%), and this is likely because USVSEG was primarily 792 

developed based on recordings of laboratory mice. A-MUD was parameterized using recordings of wild 793 

mice, though it still had high TPRs for both types of data, indicating that it is more generalizable than 794 

USVSEG. DSQ and MUPET had the lowest mean TPRs (94% and 89 % respectively). USVSEG had the 795 

lowest rates of false positives, though all four methods had comparable mean FPRs (i.e., between 8% –796 

13%). For wild mice, USVSEG underestimated more the duration of USVs compared to A-MUD (with 797 

the mean bias of -3.81 vs. -0.39, respectively). In laboratory mice, A-MUD overestimated more calls 798 

compared to USVSEG, although both methods suffer from significant overestimation of the duration of 799 

USVs. 800 

We compared how USVSEG and A-MUD detect USVs to better understand how these methods 801 

differ. USVSEG detects USVs using the following steps:  802 

(1) it calculates spectrograms using the multitaper method, which smooths the spectrogram and 803 

reduces background noises;  804 

(2) it flattens the spectrogram using cepstral filtering, which is performed by replacing the first 805 

three cepstral coefficients to zero and subtracting the median of the spectrogram (flattening eliminates 806 

impulse and constant background noises); and 807 

(3) it estimates the level of background noise to make a threshold for the resulting spectrogram.  808 

In contrast, A-MUD (version 3.2) detects USVs using the following steps:  809 

(1) it applies an exponential mean to the spectrograms to reduce the noise contribution;  810 

(2) it estimates the envelope of the spectrograms using 6-8 cepstral DCT coefficients;  811 
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(3) it computes the segmentation parameters, which are the amplitudes (m1-m3) and frequencies 812 

(f1-f3) of the three highest peaks in the spectrum for each time position; and  813 

(4) it searches for a segment based on 4 threshold values.  814 

The main reason for the higher performances of A-MUD (version 3.2) and USVSEG compared 815 

to MUPET is presumably because it uses flattening rather than spectral subtraction for denoising. Also, 816 

DSQ is based on training a supervised model based on a dataset (which also has high-SNR), which 817 

reduces its generalizability. On the other hand, it seems that the use of the multitaper method in USVSEG 818 

reduces the false positive rate compared to A-MUD. However, this approach in some cases leads to the 819 

disappearance of ultrashort USVs, the false detection of two USVs as a single USV, and it underestimates 820 

the duration of USVs in USVSEG. For these reasons, we utilized A-MUD for our subsequent USV 821 

detection. 822 

4.2. Comparing USV classification methods 823 

Our second aim was to develop a new method for USV detection refinement and classification 824 

and compare its performance with DSQ, and especially their relative ability to generalize to novel 825 

datasets. To develop the classifier and to overcome the uneven distribution of classes, we examined three 826 

types of resampling approaches, under-sampling, over-sampling, and bootstrapping. For each type of 827 

resampling, four model ensemble methods were applied to the outputs: the predictions of the last 828 

Snapshot ensemble; the average prediction of the last 3 Snapshot ensemble models; and a combination 829 

of the predictions of the last 3 and 5 Snapshot ensemble models by XGBMs. We found that the 830 

differences between the ensemble methods are not large if used together with bootstrapping. This result 831 

can be interpreted in such a way that the ensemble of the models derived from bootstrapped data is 832 

already compensating the uneven distribution statistically. We used bootstrapped data and the last model 833 

of snapshot ensemble as the best classifier ('BootSnap'). The classifier had the highest errors for 834 

classifying ultrashort (‘us’) USVs mainly due to their similarity with ‘s’ USVs. These USVs do not differ 835 

qualitatively, they are not actually different syllables types, as they differ only in length. Another 836 

classification error was due to confusing ‘c’ and ‘c3’ syllables. The low recall in classifying "c3" syllable 837 

types was likely due to their small number used for training, and also because some members have a 838 

harmonic element, much like "h" types. The similarity in the spectrograms of 'c' to other classes as 'ui', 839 

'u' and 'up' classes lead to errors in the classification of this class. On the other hand, the model classifies 840 

classes "up", "FP", and "c2" with a recall higher than 90% and classes "ui", "u" and 'f' with a recall of 841 

more than 85%. These classes have a relatively larger number of members compared to other classes 842 
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(‘us’ and ‘c3’) and their spectrograms are relatively different from each other. The overall F1-score of 843 

the model increased from 76.7% to 81.1% by pooling ‘s’ and ‘us’ classes, which resulted in a more robust 844 

classification. 845 

We compared the performance of BootSnap to DSQ, which is currently the state-of-the-art 846 

classification tool. DSQ uses a 6-member syllable classification that includes ‘rise’, ‘split’, ‘ui’, ‘c2’, 847 

‘FP’, and ‘c’ types (i.e., a simpler classification approach based on 6 classes, see Table 5). USVs from 848 

wild mice as well as laboratory mice were used to evaluate the generalizability of these two classifiers. 849 

As expected, in BootSnap classifier, the closer the data is to the training domain, the better the overall 850 

performances. It has 85% F1-score for 6-class classification of USVs on DEV_test data (Table 4), but 851 

about 65% F1-score for EV datasets. We found that our new classification method outperformed DSQ 852 

in nearly all aspects, including USVs of both the wild and laboratory mice (macro-F1 score of 66% vs 853 

47%). This difference in performance is mainly because the DSQ classifier was developed using high-854 

SNR data, compromising its performance with new low-SNR recordings. In contrast, we used low-SNR 855 

data to develop our classifier and aimed to enhance its ability to generalize. We also used the Ensemble 856 

learning method, which is based on the Snapshot Ensemble and Bootstrapped input data for training the 857 

classifier. In Ensemble learning, base models are combined to prevent the final model from either 858 

overfitting or underfitting, making the model more stable and generalizable. 859 

BootSnap also showed better performance than DSQ in assigning new class samples to the most 860 

similar classes in training data. For example, our results show that BootSnap assigned all instances with 861 

more than 3 jumps (similar to those not found in the training data) to similar classes with less than 3 862 

jumps. However, DSQ allocates 30% of these new samples to the class without any jumps. Our method 863 

also detects noise in new data much more accurately (F1-score of 93% vs. about 50% for EV_wild and 864 

77% vs. 66% for EV_lab), and thus it is more useful for low-SNR data, which is a common challenge 865 

for USVs studies – especially studies aiming to record animals under social contexts. Another advantage 866 

is that DSQ is based on MATLAB, which requires the purchase of required licenses, whereas our method 867 

is based on Python and, thus, it is free of charge.  868 

4.3. Inter-observer reliability (IOR) 869 

To our knowledge, this is the first time that USV detection or classification tools have been 870 

evaluated that also examined the accuracy of the ground truth used to assess machine performance. 871 

According to the inter-observer reliability (IOR) results, the agreement between two observers in DEV 872 

and EV dataset was 76% and 88%, respectively. The mentioned values are related to the classification 873 
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of segments into 12 classes, and, in addition to the A-MUD detections, segments which were missed by 874 

A-MUD but manually detected by one or both observers are included. A closer look at the results reveals 875 

that mislabeling members of the classes ‘us’ as ‘s’, ui’ as ‘up’, and ‘c’ as ‘ui’ and to a lesser degree as 876 

‘up’, and vice versa, is very likely. The reason for the error in these classes is their sensitivity to the 877 

threshold (based on duration or modulation frequency) that are used in their definitions. On the other 878 

hand, in class "h", due to the possibility of a faint harmonic element, incorrect labeling of these segments 879 

is very likely. Hence, part of the classification error of a classifier can be attributed to the error in the 880 

manual labeling of segments. However, the classes can be pooled to increase the amount of IOR (from 881 

80% of 12-class classification to 84% of 6-class and to 93% of 2-class classification, see DEV dataset in 882 

Table 6), as this increased the F1-score of BootSnap (F1-score changed from 77% of 12-class 883 

classification to 87% of 6-class and 97% of 2-class classification, see Table 4). These results suggest that 884 

the error rate will depend upon the number of classes chosen for the classification, and that BootSnap 885 

can classify USVs with an accuracy similar to the results obtained from human inter-observer reliability. 886 

While completing the final draft of our present manuscript, a new tool, called 'Vocalmat' (Fonseca 887 

et al., 2021), was published that detects and classifies USVs into 11 categories. The Vocalmat classifier 888 

is trained on the USVs of mouse pups (5 to 15 days old) of both sexes of several inbred strains, including 889 

C57BL6/J, NZO/HlLtJ (New Zealand Obese), 129S1/SvImJ, NOD/ShiLtJ (Non-obese Diabetic NOD), 890 

and PWK/PhJ (descendants from a single pair of Mus musculus musculus). It was developed using USVs 891 

in the frequency range of 45 kHz to 140 kHz. After contrast enhancement and applying several filters, 892 

the authors calculated the spectrogram (with the size of 227*227) of 12,954 detected elements. Its 893 

classifier is the AlexNet model (Krizhevsky et al., 2012), which was pre-trained on the ImageNet dataset. 894 

Like other studies, this classifier was not compared with other USV tools and the results on its 895 

generalizability were not provided. We evaluated the performance of Vocalmat on its test data and found 896 

that the average class-wise accuracy is 79%, whereas BootSnap yielded an average class-wise accuracy 897 

of 83% for classifying DEV_test elements into 11 classes. The differences in the performances of these 898 

tools could be due to differences in the test data used for evaluation. 899 

4.4. Outlook 900 

As with existing USV models, our classification method is supervised, and so if the user wants 901 

to retrain it, manually labeled data are required. On the other hand, despite the outperformance of 902 

BootSnap over DSQ, BootSnap still has difficulties with classifying new data of a complex (with no 903 

jump), u-inverted, and 1-jump including USVs. Considering that our best model is based on the bootstrap 904 
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technique, naturally as the number of bootstrap iterations increases, so does the computation time. By 905 

default, 10 repetitions are considered for BootSnap. This means that BootSnap calculations will be 10 906 

times slower than similar models. Because manual labeling of data is a difficult and time-consuming 907 

task, it is important to be able to apply a model trained on a single data source on other data sources as 908 

well. So, to further improve the generalizability of a classifier, in addition to implementing the bootstrap 909 

technique, we will increase the number of samples by using more mice recordings. We expect that this 910 

approach will increase the predictive power of our classifier.    911 

Finally, it is important to note that the USVs of mice have been classified by human researchers 912 

based on visual inspection of spectrograms or statistical clustering models, and it is still unclear whether 913 

mice can discriminate most types of USVs. Mice can hear high frequencies and can distinguish 914 

frequencies that differ by only 3% (de Hoz et al., 2014), but there have only been few tests to determine 915 

whether mice discriminate different types of USVs. One study found that laboratory mice can be trained 916 

to discriminate simple versus complex USVs, and they also discriminated certain variations in shape and 917 

frequency (Neilans et al., 2014). A second study found that trained mice discriminate USVs depending 918 

upon their spectro-temporal similarity, and 'classified' complex calls and up-shapes, but not u-shaped 919 

calls (Screven et al., 2019). A third study found that mice fail to discriminate between synthetic sounds 920 

with different shapes, i.e. up- vs. down-shapes (Screven et al., 2016). The shapes of these synthesized 921 

sounds were very different from mouse USVs, however, and may have lacked characteristics critical for 922 

discrimination. Thus, future studies are needed to determine whether mice can discriminate the types of 923 

USVs proposed by researchers, and these should include recordings with normal variation of syllable 924 

types within and between each category (i.e., mice should be better able to discriminate between- versus 925 

within-syllable type variation). Until such studies are conducted, USVs classified by humans or statistical 926 

models would be more accurately labeled as putative mouse USVs.  927 
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Supplementary materials 1144 

1. Data 1145 

1.1. Subjects 1146 

The subjects were adult wild-derived house mice (Mus musculus musculus), F1, F2 or F3 descendants of 1147 

wild-caught mice trapped at the Konrad Lorenz Institute of Ethology, Vienna, Austria (48°12′38′′ N, 1148 

16°16′54′′E). We used wild-derived rather than wild-caught mice to control for age and rearing 1149 

conditions. Mice were weaned at 21d and kept in mixed-sex groups with ≤4 siblings per cage until the 1150 

age of 5 weeks (35d). Henceforth, adult males were housed individually to prevent fighting, and females 1151 

were housed in sister-pairs whenever possible. The mice were housed in standard cages with bedding, 1152 

nesting material, a nest box, and a cardboard roll. Food and water were provided ad libitum. Housing 1153 

facilities were kept in standard conditions (22 ± 2 °C and a 12:12 h white light: red light cycle, lights off 1154 

at 15:00). All recordings were conducted after 15:00 when the mice are most active. We also used 1155 

recordings of laboratory mice (strain B6D2F1/J) from MouseTube (Chabout et al. (2015)). 1156 

1.2. Datasets 1157 

Our analyses were conducted using 169 sound files of 48 mice from four different datasets which were 1158 

recorded in three different contexts or retrieved from MouseTube, respectively. These recordings were 1159 

either used for development (DEV) or evaluation (EV) of the new method. 1160 

The development (DEV) was conducted using sound files of 44 individual mice from two 1161 

different datasets and experiments. The first dataset in the present study consisted of 14 recordings of 10 1162 

min duration (each) from F1 mice (subjects: n= 11 males and 3 females; mean ± SD age: 204 ± 17 d; 1163 

stimulus females: n = 11 and age: 181 ± 15 d), which had been socially primed by a short direct interaction 1164 

with a female 1d before the recordings (n = 10 priming females, mean ± SD age: 184 ± 16 d) (Zala et al., 1165 

2017b); sex differences reported in (Zala et al., 2017b); results of priming effects reported in Zala et al. 1166 

(2020)). The second dataset consisted of 10 min recordings of 30 wild-derived (F2) male mice (mean± 1167 

SD age: 220± 25 d; n = 30 males; and 217 ± 30 d, n = 60 females) recorded twice over two consecutive 1168 

days (Zala et al, unpublished data). The dataset included 150 sound files from 30 mice recorded over 2 1169 

days: 100 sound files of 1 min duration (10 sound files x 5 mice x 2 days = 100 files), due to setting 1170 

adjustments, and 50 files of 10 min duration (1 sound files x 25 mice x 2 days = 50 files).  1171 

 The evaluation (EV) was conducted using 5 arbitrarily selected files from the third and fourth 1172 

datasets. The third dataset consisted of a subset (n=3 soundfiles of 5 min duration) from recordings of 1173 

wild-derived mice during stimulation with a female odor stimulus (Marconi et al. (2020)). USVs were 1174 

recorded from adult males (F3, generation, n = 2 males; mean ± SD age: 355 ± 65 d) recorded three times 1175 
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over three consecutive weeks (see below). The fourth dataset consisted of 2 arbitrarily selected sound 1176 

files of 5 min duration from 168 recordings of laboratory mice (B6D2F1 mice), which were retrieved 1177 

from MouseTube (Chabout et al. (2015)). 1178 

1.3. Recording procedures and apparatus (socio-sexual contexts) 1179 

The mice for the first dataset were recorded for 10 min while presented with an unfamiliar stimulus 1180 

female on the opposite side of a partition, which allowed visual and olfactory stimuli but not direct 1181 

contact (see details in (Zala et al., 2017a)). A condenser ultrasound microphone (Avisoft 1182 

Bioacoustics/CM16/CMPA) was positioned 10 cm above the subject's compartment and was connected 1183 

to an UltraSoundGate 116-200, Avisoft Bioacoustics, Germany. 1184 

The mice for the second dataset were recorded for 10 min while separated from a female stimulus 1185 

by a perforated partition, and then the divider was removed allowing males to interact with the stimulus 1186 

female and they were recorded for 10 min (as described in (Nicolakis et al., 2020)). The two mice were 1187 

then separated again by the divider and recorded for an additional 5 min. An ultrasound microphone 1188 

(USG Electret Ultrasound Microphone, Avisoft Bioacoustics / Knowles FG) was positioned 10 cm above 1189 

the male’s compartment and connected to an A/D-converter (UltraSoundGate 416Hb, Avisoft 1190 

Bioacoustics). This entire procedure was repeated and conducted on the next day with another unfamiliar 1191 

stimulus female (Zala et al, unpublished data.). This procedure allowed us to monitor changes in 1192 

vocalizations as courtship progressed over time, and the mice also obtained socio-sexual contact and 1193 

experience through indirect and direct interactions. We recently found that mice significantly increased 1194 

the amount of USVs (vocal performance) and the number of syllable types (vocal repertoire) after sexual 1195 

priming (Zala et al. (2020)) and after the partition was removed and they began interacting directly 1196 

(Nicolakis et al., 2020). For the second dataset of this study, we only used recordings during the first 10 1197 

min (with the divider) on both days (before and after sexual experience). All recordings for both datasets 1198 

were conducted inside a recording chamber lined with acoustic foam.  1199 

The mice for the third dataset were recorded in a cage with bedding without any stimulus for 5 1200 

min (pre-stimulation phase), and then again for an additional 10 min while presented with female urine 1201 

stimulus (as described in Marconi et al. (2020)). The urine was a 60 µl pool of thawed female urine (from 1202 

3 different unfamiliar females) presented on a cotton swab attached to the cage lid. Mice were recorded 1203 

in a separate room with no observers or other animals present. This procedure was repeated for each male 1204 

over 3 consecutive weeks, resulting in a total of 66 recordings. For USV recordings, an ultrasound 1205 

microphone (USG Electret Ultrasound Microphone, Avisoft Bioacoustics / Knowles FG) was placed 10 1206 

cm above the cage and connected to an A/D converter (UltraSoundGate 416Hb, Avisoft Bioacoustics). 1207 
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For each male, the recording of the 10 min stimulus presentation was saved as two separate 5 min sound 1208 

files to facilitate the processing of single sound files. The 3 arbitrarily selected 5 min sound files used for 1209 

the third dataset in this study were all recorded during the urine stimulation. 1210 

The fourth dataset retrieved from MouseTube (Chabout et al. (2015)) originally included 10 min 1211 

recordings of 12 adult male mice. Mice had 5 min control recordings during the habituation period 1212 

without any stimulus inside a clean cage. Then, the males were recorded when exposed to 4 different 1213 

stimuli for 5 min: fresh urine from either females or males, awake adult female, anesthetized adult female, 1214 

and anesthetized adult male. Each male was exposed to the same stimulus on three consecutive days and 1215 

to a different stimulus over 4 consecutive weeks (as described in Chabout et al. (2015)). For the USV 1216 

recordings, ultrasound microphones (UltraSoundGate CM16/CMPA) were placed over the center of the 1217 

cage in the recording box and connected to an A/D converter (UltraSoundGate 416H, Avisoft 1218 

Bioacoustics). Sound files were available on MouseTube and for the fourth dataset of this study 2 sound 1219 

files were arbitrarily selected from the available soundfiles. All recordings for all datasets were conducted 1220 

using the RECORDER USGH software (Avisoft-RECORDER Version 4.2) with a sampling rate of 300 1221 

kHz and 16-bit format with 256 Hz FFT size for the first 3 datasets, and with a sampling rate of 250 kHz 1222 

and 16-bit format with 1024 Hz FFT size for the fourth dataset, respectively. 1223 

1.4. USV detection and manual classification 1224 

For all datasets, manual USV classification was conducted in STx (Balazs et al., 2000; Kasess et al., 1225 

2013). Spectrograms in STx were generated using a Hanning window with a range of 50dB, a frame of 1226 

4 ms and an overlap of 75% and the spectrogram displayed frequencies up to 150 kHz (Zala et al., 2017a), 1227 

Zala et al, unpublished data, (Nicolakis et al. (2020), and (Marconi et al., 2020)). USVs and other 1228 

ambiguous sounds were visually and acoustically inspected. For the first three datasets, USVs were 1229 

originally labeled according to one of the 12 (first dataset) (adapted from (Musolf et al., 2015), 1230 

(Hoffmann et al., 2012), (Hanson et al., 2012), as cited in (Zala et al., 2017a) or 15 (second and third 1231 

dataset) USV categories (Nicolakis et al. (2020), Marconi et al. (2020), and Zala et al. (2020))) and for 1232 

the fourth dataset, USVs were labeled according to 6 classes. 1233 

For the DEV datasets including the first and second experiment, the USVs were classified (or 1234 

reduced) into 11 USV categories (Supplementary Table 2). The ‘uc’ and some ‘uh’ were excluded from 1235 

the classification (i.e., 10.5% of the ‘uh’ from the first dataset). However, for the first dataset 89.5% of 1236 

the ‘uh’ and for the second dataset all ‘uh’ were included in other USV categories if also their 1237 

spectrographic shape was annotated (e.g., if a USV was originally labeled as ‘uh-up’ because it was over 1238 

91 kHz and its shape was ‘up’, it was renamed to ‘up’). The ‘c4’ and ‘c5’ were rarely detected in these 1239 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 20, 2021. ; https://doi.org/10.1101/2021.05.20.444981doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.20.444981
http://creativecommons.org/licenses/by-nc-nd/4.0/


42 

 

sound files and therefore excluded. In summary, the DEV datasets included 11 USV classes (‘up’, ‘d’, 1240 

‘c2’, ‘c3’, ‘c’, ‘u’, ‘ui’, ‘f’, ‘s’, ‘us’, and ‘h’) and the FPs (false positives, errors due to the low-SNR 1241 

recordings) to reach a total of 12 classes. The EV datasets including the third and fourth datasets consisted 1242 

of 6 classes: ‘c2’, ‘split’ (pool of ‘c3’, ‘c4’, ‘c5’, and ‘h’), ‘c’, ‘ui’, ‘rise’ (pool of ‘up’, ‘d’, ‘f’, ‘s’, ‘us’, 1243 

and ‘u’), and FP. We created the classes ‘split’ and ‘rise’ because DSQ (DeepSqueak) does not 1244 

differentiate between individual USVs pooled in these two new classes. 1245 

 1246 

Supplementary Table 1. Definition of classes used in the labeling. Note that the number of members differs before and 1247 

after down-sampling. 𝑭𝒆 is the end frequency, 𝑭𝒔 is the start frequency, 𝑭𝒎𝒂𝒙 is the maximum frequency, and 𝑭𝒎𝒊𝒏 is the 1248 
minimum frequency. The number of members of each class corresponds to the DEV dataset. 1249 
 1250 

Classes Definition Number of members 

FP Sounds falsely detected as syllables 6465 

UP Syllables with 𝐹𝑒 − 𝐹𝑠 > 5𝑘𝐻𝑧  5791 

D Syllables with 𝐹𝑠−𝐹𝑒 < 5𝑘𝐻𝑧  399 

F Syllables with 𝐹𝑚𝑎𝑥- 𝐹𝑚𝑖𝑛 < 5𝑘𝐻𝑧 1703 

S Syllables with length < 10𝑚𝑠 and > 5𝑚𝑠 389 

US Syllables with length < 5𝑚𝑠 99 

U Syllables with 𝐹𝑠 − 𝐹𝑚𝑖𝑛 and  𝐹𝑒 − 𝐹𝑚𝑖𝑛 more 

than 5𝑘𝐻𝑧 

398 

UI Syllables with 𝐹𝑚𝑎𝑥 − 𝐹𝑠 and  𝐹𝑚𝑎𝑥 − 𝐹𝑒 more 

than 5𝑘𝐻𝑧 

724 

 C Syllables with two or more directional 

changes and 𝐹𝑚𝑎𝑥- 𝐹𝑚𝑖𝑛 > 5𝑘𝐻𝑧 

411 

 C2 Syllables with one jump in frequency (not 

time) (≥ 10𝑘𝐻𝑧)  

322 

C3 Syllables with two or more jumps in 

frequency (not time) (≥ 10𝑘𝐻𝑧) 

92 

H Syllables with partially or complete harmonic 

elements 

165 

  1251 

 1252 

As mentioned in the main text, we compared different tools of USV detection. The following 1253 

table presents the various parameters used to evaluate these tools. 1254 

 1255 

 1256 
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Supplementary Table 2. The evaluated parameters for different USVs detection tools 1257 

Detection 

method 

Setting number 

1 2 3 4 

DSQ (Coffey 

et al., 2019) 

All Short 

Calls_Network_V1 
Mouse Call_Network_V2 

Short Rat 

Call_Network_V2 

Short Rat 

Call_Network_V2 

with high recall 

MUPET 

(Van 

Segbroeck et 

al., 2017) 

noise-reduction=6 

min-frequency=35kHz 

noise-reduction=5 

min-frequency=30kHz 

× × 

USVSEG 

(Tachibana 

et al., 2020) 

threshold =4.5 

min-length=5 ms 

gap min =30 ms 

threshold =3.5 

min-length =4 ms 

gap min= 30 ms 

threshold =3.5 

min-length =4 ms 

gap min= 5 ms 

× 

A-MUD  
(Zala et al., 

2017

a) 

 

o1-on=12 dB, 

o1_off=10 dB, 

min-length=5 ms 

   

 1258 
 1259 

2. Gammatone spectrograms preparation 1260 

In speech, unsupervised methods such as Non-negative matrix factorization (NMF) (Févotte et al., 2011; 1261 

Lee et al., 1999) are used to reduce the size of the spectrogram while preserving the time-frequency 1262 

information. Using NMF, the audio signal spectrogram is approximated using the weighted sum of the 1263 

basis unit functions, so that the basis unit functions and their weights are non-negative. According to 1264 

studies, the basis unit functions (or spectral bases) obtained from NMF are very similar to the human 1265 

cochlea’s biological and perceptual time-frequency resolution (Fletcher, 1940), as well as perceptual 1266 

scales, such as the Mel (Stevens et al., 1937) and bark scales (Zwicker, 1961). In MUPET, NMF has 1267 

been applied on the USVs spectrogram to reduce their size along the frequency dimension. The NMF 1268 

output is the product of spectral bases matrix, which are band-pass filters and are modeled by Gammatone 1269 

band-pass function, and their weights, which are the spectral magnitude associated with the 1270 

corresponding filter. To preserve most information and reduce the computational load, the number of 1271 

spectral bases has been selected as 64. A regression is fitted to the peak frequencies of the base functions 1272 

to determine the center frequencies and bandwidths of the gammatone filters, which are as follows: 1273 
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𝑛 =
𝑁

1 + 𝑒−𝛾(𝑓0−𝑓)
  𝑤𝑖𝑡ℎ 𝛾 =

2𝛼

𝑓𝑠
               (1) 1274 

𝐵(𝑛) =
1

2
 (𝑓𝑛−1 − 𝑓𝑛)                             (2) 1275 

 1276 

fs is the sampling frequency (i.e., 300 kHz) and N corresponds to the chosen number of filters in 1277 

the filterbank (i.e., 64). 𝑓𝑛−1and 𝑓𝑛 are the central frequency of n-1th and nth Gammatone filter, and B is 1278 

Gammatone filter bandwidth.  1279 

The midpoint frequency (f0) and the slope variable (α) were initially obtained from the MUPET 1280 

script (f0=75 kHz and α=14.2). We changed these two parameters (to 68 kHz and 16, respectively), so 1281 

that all 64 Gammatone filters are generated in the range of 20 kHz to 120 kHz. The variable slope was 1282 

set based on trial and error as 16. f0 is modified based on the mean frequency of the USVs in our data at 1283 

which most USVs occur. For the calculation of the mean frequency of USVs, we used the frequency 1284 

track of USVs, which was explained in the Methods section (Input images for the BootSnap). The middle 1285 

Gammatone filter has the lowest bandwidth (i.e., 0.57 kHz) due to the high number of USVs in midpoint 1286 

frequency. Other Gammatone filters, which are symmetrically distributed, have higher bandwidth (i.e., 1287 

between 0.57 kHz and 6.6 kHz) due to the smaller number of USVs in frequencies lower and higher than 1288 

midpoint frequency.  1289 

In the next step, the Gammatone filters are applied as weighted summation kernel to the STFT of 1290 

USVs subsequently thresholded. This threshold is 10-3, so the maximum value between the Gammatone-1291 

filtered STFT pixels and the floor noise (10-3) was calculated. The output is logarithmically transformed 1292 

and, then, it is smoothed using an Auto Regression Moving-Average (ARMA) filter (Box et al., 1970) 1293 

with order 1. 1294 

𝑪̂𝒕𝒅 = {
∑ 𝑪(𝒕−𝟏)𝒅+∑ 𝑪(𝒕+𝒋)𝒅

𝑴
𝒋=𝟎

𝑴
𝒊=𝟏

𝟐𝑴+𝟏
      𝒊𝒇 𝑴 < 𝒕 ≤ 𝑻 − 𝑴

𝑪𝒕𝒅                                     𝒐𝒕𝒉𝒆𝒓𝒘𝒊𝒔𝒆
                                             (3) 1295 

 1296 

The variable 𝐶̂𝑡𝑑 is the spectrum filtered by ARMA, the 𝐶𝑡𝑑 is the spectrum filtered by the 1297 

Gammatone filterbank, and 𝑀 is the filter order (Van Segbroeck et al., 2017). Finally, the median filter 1298 

is applied to remove stationary noise from 𝐶𝑡𝑑. Then zero padding is applied to produce images of USVs 1299 

with the same size of 401*64. 401 is the width of images, which is related to the maximum duration of 1300 

USVs (i.e., 200 ms) and 64 is the number of Gammatone filters. Supplementary Figure 1 shows (a) the 1301 

probability distribution of USVs Frequency track values used to update f0, (b) the frequency response of 1302 

32 Gammatone filters, (for simplicity 32 filters were plotted), and (c) two examples of the USVs 1303 
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spectrogram before (top row) and after applying the Gammatone filter and post-processing steps 1304 

discussed above (bottom row). 1305 

 1306 

Supplementary Figure  1. (a) Distribution of USVs Frequency Track (FT) values, extracted by A-MUD. The FT values are 1307 
related to all detected syllables, omitting false positives. (b) The frequency response of 32 Gammatone filters (we have used 1308 
64 filters, but for simplicity 32 filters are plotted here) at the frequency range of 20 kHz to 120 kHz. (c) Two examples of the 1309 
USVs spectrogram before (top row) and after applying the Gammatone filter and post -processing step (bottom row). This 1310 
image shows that by applying the preprocessing steps on the spectrogram, although the size of the images is reduced from 1311 
251 × 401 to 64 × 401, the important information of the USVs is not lost. 1312 

 1313 

3. Classifier 1314 

As mentioned in the original text, the learning rate used in this study is based on cousin learning rate, 1315 

which is defined as follows. 1316 

 1317 
Supplementary Figure  2. Schedule scheme used for the learning rate. Using this scheme of learning rate, the final weights 1318 
of the model at every 40 epochs are the initial weights of the model in the next epoch. In this approach, the CNN weights are 1319 
saved at the minimum learning rate of each cycle, i.e., at every 40 epochs. 1320 
 1321 

4. Result 1322 

 1323 

4.1. Detection 1324 

In the main text, we compared the performance of 4 USV detection tools (USVSEG, A-MUD, DSQ, and 1325 

MUPET) in a setting (i.e., input parameters) of which the selected parameters lead to their best 1326 

performance for the four-given data (DEV_1, EV_wild_1, EV_lab_1, and EV_lab_2). Here, we 1327 

compared the performance of these methods using all the combinations used for their parameters 1328 

(Supplementary Table 1).  1329 
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 1330 

 1331 

 1332 

Supplementary Figure  3. a) true positive rate (TPR) and b) false positive rate (FPR) of detection tools. If we want to 1333 
compare the best performance of each detection tool with the best performance of others, A-MUD and with a slight difference, 1334 

USVSEG are in the first and second places, followed by DSQ and MUPET. But if we do not consider the best performance 1335 
of each tool (obtained using optimal parameters), this ranking will be different. In this case, A-MUD is the best tool, and DSQ 1336 
(3) with the TPR of 90% and the FPR of 2.4% is superior to the other two methods. As a result, the type of parameter selected 1337 
for each tool affects the superiority of their performance in the USV detection compared to others. 1338 
 1339 
 1340 

4.2. Classification 1341 

 1342 

In the model design section, we used various approaches to deal with the problem of the imbalanced 1343 

datasets, including using original, down-sampled, bootstrapped, and over-sampled data. The following 1344 

figure presents the over-sampled data by Synthetic Minority Oversampling Technique Edited Nearest 1345 

Neighbor (SMOTEENN) presented. 1346 

 1347 
Supplementary Figure 4. Samples produced by SMOTEENN (Batista et al., 2004). The first column from the left is the 1348 
original instance and the next columns are the resampled samples. The first, second, third, and last rows are from the classes 1349 
‘c’, ‘c3’, ‘c2’, and ‘h’, respectively. The images produced by the SMOTEENN are very similar to the original data, so, 1350 

compared to the original data, this method did not help to improve the classifier performance. 1351 
 1352 

4.3. Interobserver reliability (IOR) 1353 

In the main text of paper, we presented IOR values for various combination of classes in DEV and EV 1354 

datasets. The following figures shows the normalized confusion matrix based on the labels assigned by 1355 

two observers. 1356 
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 1357 
Supplementary Figure  5. Agreement between two observers for two subsets of model development (DEV, left) and 1358 
evaluation (EV, right) data. ‘missed’ segments are elements that are manually detected by only one observer. Both figures 1359 
show high disagreement between the observers for both data in the ‘us’ and ‘h’ classes. In more detail, the amount of reliability 1360 
in the DEV data in ‘c3’ and ‘u’ classes is very low.  Differently, in the EV data, the reliability is less than other classes in ‘c4’ 1361 

and ‘c5’ classes. 1362 
 1363 

The table below shows the number of samples in each class in the data examined for IOR 1364 

calculation. 1365 

 1366 
Supplementary Table 3. Number of samples of each class of the observer 1 in DEV and EV subsets for IOR calculation. 1367 

In DEV sub-dataset (n=5 soundfiles), there are very few samples (i.e., 2, 4, or 6) from the classes ‘c’ and ‘c4’, ‘c3’ and classes 1368 
‘u’ and ‘h’ (i.e., 6 or 10), thus the results of these classes are not very reliable. We found similar results in the EV sub -dataset 1369 
(n=5 sound files) where there are very few samples from the classes ‘us’, ‘d’, ‘c’, and ‘c5’. 1370 

Dataset c C2 C3 C4 C5 d F fp h missed s u ui up us 

DEV 2 34 4 2 0 17 41 121 9 21 29 5 113 219 14 

EV 13 64 79 36 9 8 15 75 11 5 10 14 53 181 5 

4.5. Comparing BootSnap and DSQ: sensitivity to new classes  1371 

As mentioned in the results section (Section 3.7), the performance of a model is important when dealing 1372 

with a new class. Because there was no sample of the ‘c4’ and ‘c5’ classes in the DEV data, we compared 1373 

the output of the BootSnap and DSQ methods when the two classes were in the EV data. The following 1374 

figure shows example of members of these two classes in EV_wild data. 1375 
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 1376 
Supplementary Figure 6. Samples of USVs from the classes ‘c4’ and ‘c5’, USVs with 4 and 5 jumps, respectively. 1377 

BootSnap assigned 68% and 32% of the total members of these two classes to the 2 and 3-jump included USVs, respectively. 1378 
DSQ assigned the members of the classes ‘c4’ and ‘c5’ mostly to the 2 and 3-jump included USVs and ‘ui’. Although the 1379 
class ‘ui’ might be relatively similar to the ‘c4’ and ‘c5’ classes based on visual inspection, there is no jump in th is class. 1380 

 1381 
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