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Abstract
Motivation: Because they effectively represent mass action kinetics, ordinary differen-
tial equation models are widely used to describe biochemical processes. Optimization-
based calibration of these models on experimental data can be challenging, even for
low-dimensional problems. However, reliable model calibration is a prerequisite for
many subsequent analysis steps, including uncertainty analysis, model selection and
biological interpretation. Although multiple hypothesis have been advanced to explain
why optimization based calibration of biochemical models is challenging, there are few
comprehensive studies that test these hypothesis and tools for performing such studies
are also lacking.
Results: We implemented an established trust-region method as a modular python
framework (fides) to enable structured comparison of different approaches to ODE
model calibration involving Hessian approximation schemes and trust-region subprob-
lem solvers. We evaluate fides on a set of benchmark problems that include exper-
imental data. We find a high variability in optimizer performance among different
implementations of the same algorithm, with fides performing more reliably that other
implementations investigated. Our investigation of possible sources of poor optimizer
performance identify shortcomings in the widely used Gauss-Newton approximation.
We address these shortcomings by proposing a novel hybrid Hessian approximation
scheme that enhances optimizer performance.
Availability: Fides is published under the permissive BSD-3-Clause license with source
code publicly available at https://github.com/fides-dev/fides. Citeable releases
are archived on Zenodo.
Contact: fabian froehlich@hms.harvard.edu and peter sorger@hms.harvard.edu
Supplementary information: Supplementary data are available at Bioinformatics
online and at https://github.com/fides-dev/fides-benchmark.

1 Introduction

Mass action biochemical systems can be accurately described in the continuous (large number
of molecules) approximation by ordinary differential equation (ODE) models. ODE model-
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ing applies remarkably well to biochemical processes in animal as well as human cells (Klipp
et al., 2005). To ensure these models can recapitulate and predict experimental observations,
model parameters must be inferred from data. This inference problem can be formulated
as optimization problem, where the objective function describes the discrepancy between
a solution to the ODE and and experimental data. Finding and adequate solution to this
optimization problem can be computationally demanding, since evaluation of the objective
function and it’s derivatives requires numerical integration (Fröhlich et al., 2019). Model
analysis such as uncertainty quantification via profile likelihood or sampling is typically ini-
tialized at the solution to the this optimization problem (Ballnus et al., 2018; Raue et al.,
2009). Moreover, model selection using established measure such as AIC, BIC or other meth-
ods for penalizing complexity (Loos et al., 2018; Steiert et al., 2016) depend on optimization
results. Thus, reliably finding adequate solutions to the optimization problem is of upmost
importance for many aspects of model analysis.

In general, the optimization problem for ODE models is non-convex, resulting in few the-
oretical convergence guarantees for numerical optimizations. Researchers must therefore rely
on empirical evidence to select appropriate optimization algorithms (Fröhlich et al., 2019).
For a broad set of biochemical problems, Trust-Region methods initialized from a large num-
ber of random initial parameter values have performed well (Hass et al., 2019; Raue et al.,
2013). Trust-Region methods use local (quadratic) approximations of the objective function
to propose parameter update and iteratively refine their trust-region, i.e., the local neighbor-
hood in which the local approximation can expected to adequately recapitulate the shape of
the true objective function (Nocedal and Wright, 2006). Popular implementations of trust
region methods are available in the MATLAB optimization toolbox or the scipy optimization
module. However, for a considerable subset of problems, including low dimensional prob-
lems with as few as 20 parameters, these optimizers do not consistently converge to the
same final values for the objective function (Hass et al., 2019), strongly suggesting that the
global optimum - and perhaps not even a local optimum - has been reached. Specifically, for
the problem based on work of Fujita et al. (2010), the difference in negative log-likelihood
between the best and second best parameter values exceeds 10, the statistical threshold for
model rejection according to criteria such as AIC or BIC, and could thus erroneously lead
to rejection of the model . Thus, the presence of inconsistent final objective function values
effectively precludes accurate investigation of the model.

Inconsistent final objective function values (Fig 1A) can either indicate that optimization
has converged on one of several critical points (local minima, saddle points) (Fig 1B right)
or that optimization was terminated before convergence was achieved (Fig 1B left). Most
problems of interest in cell biology feature multiple local minima, which can be a result of
curvature of the model manifold (Transtrum et al., 2011). Thus, when repeated local op-
timization runs consistently converge to a small set of similar objective function values the
model is may be non-identifiable, but there is not necessarily a problem with optimization
itself. However, when no consistency is achieved despite a large number of runs, it is unclear
whether optimization did not converge or the objective function is ”rugged” (Fröhlich et al.,
2019) with many local minima. Non-convergent optimization can be consequence of model
simulation, in which lax integration tolerances result in inaccurate numerical evaluation of
the objective function value and its gradient (Tönsing et al., 2019). Inaccurate gradients
often result in poor parameter update proposals, slowing the search in parameter space, and
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Figure 1: Illustration of final objective function values consistency and possible objective
function landscapes. A: Waterfall plot with examples of consistent (blue) and inconsistent
(red) final objective function values. B: Possible objective function landscapes that could
explain the waterfall plots in A.

inaccurate objective function values may result in incorrect rejection of parameter updates,
both of which can erroneously suggest convergence of optimization and thus lead to prema-
ture termination of optimization. Tönsing et al. (2019) found that prematurely terminated
runs were often located in the neighborhood of local minima, corroborating the hypothesis of
premature termination and suggested that a nudged elastic band method might by effective
in improving optimization. Premature termination can also arise from poor performance
of the optimization method. Dauphin et al. (2014) found that saddle points are prevalent
in the objective function of neural network models and that optimization methods that do
not account for directions of negative curvature may perform poorly in the vicinity of saddle
points. However, neither the prevalence of saddle points, nor their impact on premature opti-
mizer termination have been investigated in the case of biochemical ODE models. Similarly,
Transtrum et al. (2011) have suggested that the use of Gauss-Newton Hessian approxima-
tions may not work well for sloppy problems, i.e., when the objective function Hessian has a
broad eigenvalue spectrum, suggesting non-identifiability of parameters and ill-conditioning
of the optimization problem. Sloppiness is believed to be a universal property of biochemical
models (Gutenkunst et al., 2007). However, the method proposed by Transtrum et al. (2011)
to address the limitations of Gauss-Newton Hessian approximation has not seen wide adop-
tion, likely due to high computational cost and the complexity of current implementations.
Overall, the findings described above show that early optimizer termination is a recurrent
problem and may have a variety of causes, but a comprehensive evaluation of these causes
as well as development and testing of methods to identify or resolve these issues are missing.
In principle, this could be resolved by adapting optimization algorithms. For example, issues
with the Gauss-Newton Hessian approximation could be resolved by using alternative ap-
proximation schemes such as the Broyden-Fletcher-Goldfarb-Shanno (BFGS (Broyden, 1970;
Fletcher, 1970; Goldfarb, 1970; Shanno, 1970). Issues with Saddle points could be resolved
by employing symmetric rank-one (SR1) (Conn et al., 1991) approximations that account for
negative curvature directions. However, many optimization algorithms were written decades
ago and are difficult to customize or extend.

To address these and other challenges, this paper re-implements a trust-region algorithm
in python and uses it to investigate several hypotheses about causes and potential solutions
for poor optimizer performance. We find that use of an inaccurate Hessian approximation
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Table 1: Feature overview for different trust-region optimization implementations. The non
least-squares column indicates whether the method is applicable to non least-squares prob-
lems. The free column indicates whether the implementation is freely available or proprietary
software.

Optimizer Subspace
Non least-

squares
BFGS/

SR1
Programming

Language
free

lsqnonlin S2D � � MATLAB �
fmincon S2D � MATLAB �
ls trf Rnθ , S2D � � python
fides Rnθ , S2D python

is one important contributor to poor optimization performance and propose a novel hybrid
Hessian approximation scheme and demonstrate that this approach outperforms existing
approaches on a set of benchmark problems.

2 Materials and Methods

For the purpose of this study, we considered four different optimizers that all implement the
interior-trust-region algorithm proposed by Coleman and Li (1992): fmincon, referring to the
MATLAB function of the same name and with trust-region-reflective as algorithm and
ldl-factorize as subproblem algorithm, lsqnonlin, referring to the MATLAB function of
the same name, ls trf, referring to the scipy function least squares with trf algorithm,
and fides, the novel implementation we provide with this manuscript. Below we describe
algorithmic details as well as the benchmark problems we used to evaluate these algorithms.

2.1 Model Formulation

An ODE model describes the temporal evolution of abundances of nx different molecular
species xi. The temporal evolution of x is determined by the vector field f and the initial
condition x0:

ẋ = f(t,x,θ), x(t0) = x0(θ). (1)

Both may depend on the unknown parameters θ ∈ Θ ⊂ Rnθ such as catalytic rates or
binding affinities. Restricting optimization to the parameter domain Θ can constrain the
search space for parameter values to biologically reasonable values and prevent numerical
integration failures. For most problems, Θ is the tensor product of scalar search domains
(li, ui) with li < ui and li, ui ∈ R ∪ {−∞,∞} for every parameter θi

Experiments usually provide information about observables y which depend abundances
x and parameters θ. A direct measurement of x is usually not possible. The dependence of
the observable on abundances and parameters is described by

y(t,θ) = h(x(t,θ),θ). (2)
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2.2 Optimization Problem

To build predictive models, the model parameters θ have to be inferred from experimental
data. Experimental data are subject to measurement noise. A common assumption is that
the measurement noise for nt time-points tj and ny observables yi is additive and independent,
normally distributed for all time-points:

ȳij = yi(tj,θ) + εij, εij
id∼ N (0, σ2

ij(θ)). (3)

The model can be inferred from experimental data by maximizing the likelihood, which
yields the maximum likelihood estimate (MLE). However, the evaluation of the likelihood
function, involves the computation of several products, which can be numerically unstable.
Thus, the negative log-likelihood

J(θ) =
1

2

ny∑
i=1

nt∑
j=1

log
(
2πσ2

ij(θ)
)

+

(
ȳij − yi(tj,θ)

σij(θ)

)2

(4)

is typically used as objective function for minimization. As the logarithm is a strictly
monotonously increasing function, the minimization of J(θ) is equivalent to the maximization
of the likelihood. Therefore, the corresponding minimization problem

θ∗ = arg min
θ∈Θ

J(θ), (5)

will infer the MLE parameters. If the noise variance σ2
ij does not depend on the parameters

θ, (4) is a weighted least-squares objective function. As we discuss later, this least-squares
structure can be exploited by using several optimization methods. Optimizers that do not
require least-squares structure can also work with other noise models.

For the MATLAB optimizers fmincon and lsqnonlin, the objective function and it’s
derivatives were evaluated using data2dynamics (Raue et al., 2015) (commit b1e6acd), which
was also by Hass et al. (2019). For the python optimizers ls trf and fides, objective function
and it’s derivates were evaluated using AMICI (Fröhlich et al., 2021) 0.11.16 and pyPESTO
0.2.5.

2.3 Trust-Region Optimization

Trust-region methods minimize the objective function J by iteratively updating parameter
values θk+1 = θk + ∆θk according to the local minimum ∆θk = p∗ = argmin

p
mk(p) of

an approximation mk to the objective function. In many applications, a local, quadratic
approximation is used, which that means the trust-region subproblem

p∗ = argmin
p∈Rn

mk(p) = fk + gTk p+
1

2
pTBkp s.t. ||p|| ≤ ∆k (6)

is solved in every step k, where fk is the value, gk is the gradient and Bk is the Hessian of
the objective function, all evaluated at θk. ∆k is the trust-region radius that restricts the
norm of parameter updates. ∆k is updated in every iteration depending on the agreement
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Table 2: Overview of properties of different Hessian approximation schemes. BFGS is the
Broyden-Fletcher-Goldfarb-Shannon algorithm. SR1 is the symmetric rank-1 update. GN
is the Gauss-Newton approximation. The construction column indicates whether pointwise
evaluation is possible or whether iterative construction is necessary. The indefinite column
indicates whether the approximation can yield indefinite approximations. The convergence
column indicates whether convergence to the true Hessian is generally possible.

Scheme Construction Indefinite Convergence

BFGS iterative �
SR1 iterative
GN pointwise � �

between the predicted decrease and actual decrease in objective function value (Nocedal and
Wright, 2006). While gk can be efficiently and accurately computed using forward or adjoint
sensitivity analysis (Fröhlich et al., 2017), it is computationally more demanding to compute
Bk (Stapor et al., 2018).

2.4 Hessian Approximation

Due to the high computational cost of exact Hessians Bk, many calibration tools resort to
approximating the Hessian using a the Gauss-Newton (GN) method. The GN approximation
B(GN) is based on a linearization of residuals rij

rij(θ) =
ȳij − yi(tj,θ)

σij(θ)
B

(GN)
kl =

1

2

ny∑
i=1

T∑
j=1

∂rij
∂θk

∂rij
∂θl

, (7)

which yield a symmetric and positive semi-definite approximation, i.e., does not account
for negative curvature. At the maximum likelihood estimate, the B(GN) is equal to the
negative empirical Fisher Information Matrix, if σij does not depend on parameters θ. For
parameter dependent σ, the log(σ) term in (4) cannot be assumed to be constant, which
results in a non least-squares optimization problem. For non least-squares problems, the
adequateness and formulation of the GN approximation is not well established. Raue (2013)
proposes to transform the problem into least-squares form by introducing additional error
residuals reij and adding a corresponding correction to the Gauss-Newton approximation

B(GN) from (7), yielding B(GNe):

reij(θ) =
√

2 log(σij(θ)) + C

B
(GNe)
kl = B

(GN)
kl +

∂σij
∂θl

∂σij
∂θk

σij(θ)2(2 log(σij(θ)) + C)
,

(8)

where C is some arbitrary, but sufficiently large constant that ensures 2 log(σij(θ)) +C > 0.
This condition ensures that residuals are real-valued and the approximation B(GNe) is positive
semi-definite. Adding the constant C to residuals adds a constant to the objective function
value and, thus, neither influences its gradient and Hessian nor the location of minima.
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However, C does enter the GNe approximation, with unclear implications. In contrast, Stapor
et al. (2018) suggest to ignore the second order derivative of the log(σ) term in (4), which
corresponds to the limit limC→∞B

(GNe) = B(GN).
As alternative to the GN approximation, BFGS or SR1 approximation schemes permit

iterative construction of an approximate Hessian. The BFGS approximation guarantees a
positive semi-definite approximation as long as a curvature condition is satisfied (Nocedal
and Wright, 2006). Thus, it is usually only applied with line search methods that guarantee
satisfaction of the curvature condition by selecting the step length according to (strong)
Wolfe conditions (Nocedal and Wright, 2006). However, BFGS can also be used in trust-
region methods by rejecting updates when the curvature condition is not satisfied, at the
cost of losing some theoretical convergence guarantees (Nocedal and Wright, 2006). The
SR1 approximation scheme can also yield indefinite approximations, incorporating negative
curvature information, and has no step requirements.

fmincon and lsqnonlin were only evaluated using the GNe approximation as imple-
mented in data2dynamics. ls trf only implements the GN approximation. Fides was eval-
uated using BFGS and SR1 using respective native implementations as well as GN and GNe
as implemented in AMICI. We used the default value of C = 50 for the computation of GNe
in both data2dynamics and AMICI.

2.5 Subproblem Solution

More (1978) proposes an approach to solve (6) via eigenvalue decomposition of Bk. How-
ever, Byrd et al. (1988) note the high computational cost of this approach and suggest an
approximate solution by solving the trust-region problem over a two dimensional subspace
S2D, spanned by gradient gk and Newton search directions B−1

k gk, instead of Rnθ . Specifically
for objective functions requiring numerical integration of ODE models, the cost of eigenvalue
decomposition is generally negligible for problems involving fewer than 103 parameters.

A crucial issue for the two-dimensional subspace approach are problems with indefinite
(approximate) Hessians. For an indefinite Bk, the Newton search direction may not be a
descent direction. This can be addressed through dampening of Bk (Nocedal and Wright,
2006). For boundary constrained problems additional considerations are necessary (Coleman
and Li, 1992) and require the identification of a direction of strong negative curvature. In
fides, this negative curvature direction is computed using the the Lanczos method (Gould
et al., 1999) implemented in scipy.sparse.linalg.eigs.

fmincon and lsqnonlin implement optimization only over S2D, where the Newton search
direction is computed using preconditioned direct factorization. Fides and ls trf implement
optimization over S2D (denoted by 2D in text and figures) and Rnθ (denoted by ND in
text and figures). For ls trf, we specified tr solver="lsmr" for optimization over S2D

and tr solver="exact" for optimization over Rnθ . ls trf and fides both use (regularized)
least-squares solvers to compute the Newton search direction, which is equivalent to using
the Moore-Penrose pseudoinverse.
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2.6 Handling of Boundary Constraints

The trust-region region subproblem (6) does not account for boundary constraints, which
means that respectively θk+∆θk may not satisfy these constraints. For this purpose Coleman
and Li (1992) introduced a rescaling of the opimization variables depending on how close
current values are to parameter boundaries. Moreover, they propose a stepback strategy,
where solutions to (6) are reflected at the parameter boundary. To ensure convergence, ∆θk
is then selected based on the lowest mk(p) value along the reflection of p∗ at the parameter
boundary and the cauchy point, which is the minimizer of (6) along the gradient (Nocedal
and Wright, 2006). fmincon, lsqnonlin and ls trf all implement rescaling, but only allow
for a single reflection at the boundary. Fides implements the rescaling and allows for a single
or arbitrarily many reflections until the first local minimum is encountered. As the reflection
of p∗ at the parameter boundary defines a one-dimensional search space, the local minimum
can be computed analytically at minimal computational cost.

2.7 Optimizer Performance Evaluation

To evaluate optimization performance, Hass et al. (2019) counted the number nsuccess of
optimization runs that reached a final objective function value sufficiently close to the ”best
value” and divided that by the time to complete all optimization runs ttotal. The best objective
function value was defined as the lowest value reach by any method we investigated. This
implements the performance metric introduced by Villaverde et al. (2019) except that we
replaced ttotal with the number of gradient evaluations ngrad. For the calculation of nsuccess
we used a threshold of 0.05, which is equivalent to the threshold 0.1 used in (Hass et al.,
2019) since the objective function we used was scaled by a factor of 2. The performance
metric φ = nsuccess/ngrad ignores differences in computation time for gradients at different
parameter values and prevents computer or simulator performance from influencing results.
This provides a fairer evaluation of the algorithm or method itself and is particularly relevant
when optimization is performed on computing clusters having heterogeneous nodes. For all
trust-region optimizers we employed, the number of gradient evaluations was equal to the
number of iterations.

2.8 Implementation

Fides is implemented as modular, object-oriented python code. Specifically, the subprob-
lem, subproblem solvers, stepback strategies and Hessian approximations have class-based
implementations, making it easy to extend our methods or add new methods. Internally,
fides uses scipy and numpy libraries to store vectors and matrices and perform linear algebra
operations. To ensure accessibility to state of the art simulation and sensitivity analysis, we
implemented an interface to fides in pyPESTO, which uses AMICI (Fröhlich et al., 2021)
to perform simulation and sensitivty computation via CVODES (Hindmarsh et al., 2005).
Moreover, this enables import of biological parameter estimation problems specified in the
PEtab (Schmiester et al., 2021) format.
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Table 3: Summary of problem characteristics for benchmark examples
Problem nθ nx ny ∗ nt sloppy

Fujita 19 9 144
Boehm 9 8 48 �
Fiedler 19 6 72
Crauste 12 5 21
Brannmark 22 9 43
Weber 36 7 135
Zheng 46 15 60

2.9 Benchmark Problems

To evaluate the performance of different optimizers, we considered a total of 7 different
benchmark problems (Table 2.9) introduced by Hass et al. (2019) that were reformulated
in the PEtab (Schmiester et al., 2021) format. The selection of benchmark problems was
based on whether all functionality required for the import of respective PEtab problems was
supported and validated in AMICI and whether poor optimization performance was observed
in the original benchmark. All benchmarks problems were previously published and included
experimental data for model calibration. In the following sections we highlight three of these
benchmark problems and describe specific problem characteristics.

Boehm Benchmark Characteristics: The model by Boehm et al. (2014) describes
homo- and heterodimerization of STAT5A and STAT5B transcription factor isoforms, which
is required to form a functional complex. The model includes 8 biochemical species, 3 ob-
servables and 9 parameters. The calibration data includes 1 experimental conditions with 48
datapoints. The benchmark by Hass et al. (2019) found that the Hessian of the objective
function of this problem has a narrow eigenvalue spectrum, indicating a non-sloppy model
and the performance of optimizers we investigated was good insofar as the best objective
function value was repeatedly reached. Nonetheless, only a small fraction of optimizer runs
converged to the best identified local minimum.

Fujita Benchmark Characteristics: The model by Fujita et al. (2010) describes the
activation of the Akt signaling pathway in PC12 cells in response to epidermal growth factor
stimulation. The model includes 9 biochemical species, 3 observables and 19 parameters. The
calibration data includes 3 experimental conditions with a total of 144 datapoints. Using the
Hass et al. (2019) benchmark, this problem has a broad eigenvalue spectrum, indicating a
sloppy model and overall poor optimizer performance, as the best objective function value is
only reached once.

2.10 Simulation and Optimization Settings

We encountered difficulties reproducing results from (Hass et al., 2019) and decided to
repeat the evaluation using the latest version of data2dynamics. We deactivated Bessel
correction (Hass et al., 2019) and and increased the function evaluation limit to match the
iteration limit (see supplementary materials).

For all problems, relative and absolute integration tolerances were set to 10−8. The maxi-
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Figure 2: Comparison of MATLAB and python optimizers. Color scheme is the same in all
subplots. A,B: Waterfall plot of top 100 optimizer runs for Boehm and Fujita benchmarks.
Final objective function values are offsetted by substracting lowest value across all methods
and runs and adding 1. C,D: Convergence count nsuccess and optimizer performance φ for
all evaluated methods and benchmark problems.

mum number of iterations for optimization was set to 105. Convergence criteria were limited
to step sizes with a tolerance of 10−6, where ls trf code was modified such that the applied
convergence criteria matched the implementation in other optimizers. For all problems, we
performed 103 optimizer runs. Initial parameter values were uniformly sampled in the log-
transformed parameter domain and equal across all python optimizers. Optimization was
performed in logarithmic coordinates for all optimizers.

3 Results

3.1 Validation and Optimizer Comparison

The implementation of trust-region optimization involves complex mathematical operations
that can result in error-prone implementations. To validate the trust-region methods imple-
mented in fides, we compared the performance of different combinations of subspace choices
and Hesssian approximations against implementations of the same algorithm in MATLAB
(fmincon, lsqnonlin) and python (ls trf). In the following section, the application of fides
with different subspace solvers and Hessian approximation methods is denoted by fides
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subspace/hessian.
For the Boehm example (Fig 2A), we observed consistent final objective function values,

but fides 2D/BFGS (orange) and fides ND/SR1 (green) reached the best objective function
value about twice as often (fides 2D/BFGS: 51, fides ND/SR1: 73) compared to other python
(blue, red, pink, grey) or MATLAB methods (brown, purple) using the Gauss-Newton ap-
proach (fides 2D/GN: 15, fides 2D/GNe: 15, fmincon: 24, lsqnonlin: 23, ls trf 2D/GN:
30, ls trf ND/GN: 14). For the Fujita example (Fig 2B), fides 2D/GN (blue) and fides

2D/GNe (red) are the only method that obtains consistent objective function values with 40
starts consistently converging to 3 distinct objective function values and 18 converging to the
best objective function value. MATLAB optimizers (brown/purple) and fides 2D/BFGS (or-
ange) reached the best objective function value, but don’t do so repeatedly (fides 2D/BFGS:
1, fmincon: 3, lsqnonlin: 3). fides ND/SR1 (green), ls trf 2D/GN (pink), ls trf ND/GN

(grey) did not reach the best local minimum.
Overall, we found that fides 2D/GN and fides 2D/GNe were the only methods that

reached the best objective function value for all 7 benchmark problems at least once and
more than 5 times (dashed line) for 6 benchmark problems (Fig 2C). For problems where
fmincon and/or lsqnonlin reached the best objective function value (Fujita, Boehm, Fiedler,
Brannmark, Zheng), optimizer performances φ, was similar (0.79 to 2.78 fold change, Boehm,
Fiedler, Brannmark) or worse (0.06 to 0.22 fold change, Fujita, Zheng) for , fmincon (purple)
and lsqnonlin (brown) compared to fides 2D/GN (blue) (Fig 2D). We observed similar
(0.46 to 1.08 fold change) performance φ for fides 2D/GN (blue) and fides 2D/GNe (red)
for all examples, indicating that difference in Hessian approximation was not responsible
for differences in performance between fides, lsqnonlin and fmincon. While ls trf 2D

and ls trf ND outperform fides 2D/GN (18.89 to 41.35 fold change) and all other methods
on the Crauste example, they perform similar to fides 2D/GN (0.75 to 1.56 fold change)
on three examples (Boehm, Fiedler, Brannmark) with the exception of ls trf 2D on the
Boehm example, which performs better (5.70 fold change), and did not reach the best local
minimum the remaining examples (Fujita, Zheng, Weber). This identifies fides 2D/GN as
good reference method that has comparable or better performance than fmincon, lsqnonlin
and ls trf on a majority of examples (Fujita, Fiedler, Brannmark, Weber, Zheng).

Fides ND/SR1 and fides 2D/BFGS perform similar or better (1.41 to 8.11 fold change)
than fides 2D/GN on three examples (Boehm, Fiedler, Crauste), even though they achieve
substantially lower (Fiedler, 11/6 vs. 45) or substantially higher (Boehm, 71/51 vs. 15)
convergence counts. However they fail to reach the best objective function value attained by
fides 2D/GN in four (Fujita, Crauste, Weber, Zheng) and three examples (Crauste, Weber,
Zheng) respectively.

Overall, these findings demonstrate that trust-region optimization implemented in fides
is competitive with the MATLAB optimizers fmincon and lsqnonlin and the python opti-
mizer ls trf, outperforming them on a majority of examples. At the same time, this also
demonstrates a surprisingly high variability in optimizer performance among methods that
all implement the same algorithm.
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Figure 3: Evaluation of hybrid Hessian approximation scheme. A,B: Iteration statistics
across all 103 optimizer runs for Boehm and Fujita benchmarks. Box with line indicate
median and first and third quantiles. Whiskers indicate minimum and maximum excluding
outliers, which are shown as diamonds. C,D: Comparison of final objective function values
between hybrid and GN Hessian approximation. Each dot corresponds to optimizer runs with
the same initialization for both methods. Values are offsetted by subtracting lowest value
across all methods and runs and adding 1. E,F: Convergence count nsuccess and optimizer
performance φ for all evaluated methods and benchmark problems.

3.2 Hybrid Approximation Scheme

We were surprised that fides 2D/BFGS outperformed fides 2D/GN for the Boehm problem
but failed on Fujita, Weber and Zheng examples. The BFGS approximations is guaranteed
to converge to the exact Hessian under mild assumptions (Nocedal and Wright, 2006), but
requires at least nθ/2 gradient evaluations to build a full rank approximation. In contrast,
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the GN approximation can immediately construct a full rank approximation, but generally
does not converge to the exact Hessian unless all residuals become zero. We observed that
some optimization runs using the GN approximation required high number of iterations with
long periods with no updates to the trust region radius. We hypothesize that this might
be a result of the poor approximation quality of GN, which motivated us to develop a novel
hybrid approach that initially uses the GN approach, constructs a BFGS approximation from
the first iteration and switches to this BFGS approach when the trust region radius was not
updated for at least nhybrid iterations.

We compared the hybrid approach using different values of nhybrid (5, 10, 15, 20, 25) to
fides 2D/GN and fides 2D/BFGS. For the Boehm and Fujita benchmarks, we found that
while the hybrid approach does not have a strong impact on the median number of gradient
evaluations (Fig 3A,B), it reduces the number of optimization runs requiring a high number of
gradient evaluations. This improves, optimization performance by reducing the total number
of necessary gradient evaluations.

To analyse the impact of the hybrid approach on global convergence properties, we com-
pared paired final objective function values for all optimizer runs between fides 2D/GN and
the fides 2D/hybrid for late (nhybrid = 25, Fig 3C) and early switching (nhybrid = 5, Fig 3D).
We found that late switching has only minimal impact on global convergence properties, as
both methods consistently converge to the same final objective function value. The opposite
is true for early switching, suggesting that BFGS and GN approximations have substantial
impact on the region of attraction of local minima, thereby influencing global convergence
properties.

We evaluated the convergence count nsuccess (Fig 3E) and optimizer performance φ (Fig 3F)
of GN (light blue), BFGS (dark blue) and hybrid (light to dark shadings of blue). We found
that, while nsuccess of the hybrid approach varied between the values obtained for fides

2D/GN and fides 2D/BFGS, the hybrid approach outperforms both GN and BFGS in terms
of φ on a majority of benchmark problems (Fujita, Fiedler, Crauste, Brannmark) and achieves
performance between fides 2D/GN and fides 2D/BFGS on the remaining examples. Overall,
we found that the hybrid approach with nhybrid = 20 exhibited comparable or better per-
formance than fides 2D/GN on all problems, providing an average increase of 2.04 fold and
maximal increase of 9.1 fold (Fiedler) across all models. This suggests that local convergence
of fides 2D/GN is slowed by the poor approximation quality of GN. Thus, superior perfor-
mance of the hybrid approach over both GN and BFGS approximations is most consistently
achieved by a late switching by improves local convergence through BFGS and retaining good
global convergence of GN.

3.3 Negative Curvature and Saddle Points

The good performance of the fides ND/SR1 approach for the Boehm benchmark prompted us
to further investigate whether this was the result of employing a Hessian approximation that
can account for negative curvature, which is important for problems featuring saddle points,
or whether this was the result of using the exact solution to the trust-region subproblem,
which should theoretically improve local convergence rates.

We compared fides 2D/GN (dark blue), fides ND/GN (light blue), fides 2D/SR1 (dark
orange) and fides ND/SR1 (light orange) (Fig 4). Overall we did not find any consistent
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Figure 4: Analysis of saddle point influence on optimization result. A,B: Convergence count
nsuccess and optimizer performance φ for all evluated methods and benchmark problems.

trend across all benchmark examples. While the SR1 approximation improved convergence
count on one example (Boehm), noteably the only non-sloppy example, it decreased the
convergence count on all other examples. In three examples (Fujita, Fiedler, Crauste), this is
at least partially compensated for by fewer necessary gradient evaluations, suggesting better
local convergence, but for three benchmarks, the best objective function value is not reached
at all (Brannmark, Weber, Zheng). This suggest that while saddle points may be present for
some problems, they do not seem to pose a major issue for the examples we have investigated
or at least not one that can be adequately resolved by the use of the SR1 approximation.

3.4 Parameter Boundaries and Stepback Strategies

The poor performance of all methods on Brannmark, Weber and Zheng examples was not
expected. Only fides 2D/GN was able to consistently reach the best objective function
value (Fig 5A), and decided to investigate possible sources. Analysis of parameter estimates
revealed that for these problems, a large number of parameter estimates were close to the
boundary ∂Θ of the search domain Θ (distance < 10−2 in log10 space). Further investigation
revealed that a large number of unique parameter combinations close to the boundaries ∂Θ
were characteristic for these three benchmarks (152 to 865 combinations compared to 11 to
81 combinations, Fig 5B). We hypothesized that this might be the result of local minima
on ∂Θ, and accordingly quantified the ratio between the squared norm of the gradient with
respect to those parameters close to the boundary ∇bJ(θ) and the norm of the full gradient
∇J(θ):

||∇bJ(θ)| |2

||∇J(θ)| |2
, (∇bJ(θ))i =

{
∂J
∂θi

if min(θi − li, ui − θi) < 10−2

0 else.
(9)

For all problems except the Crauste benchmark, we found that only a small number of op-
timization runs yielded parameter estimates for which the fraction in (9) was smaller than 0.9
(0 to 77 runs compared to 274 runs), suggesting that most of the previously identified termi-
nation points close to parameter boundaries where not proximate to local minima and instead
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Figure 5: Evaluation of stepback strategies. A: Unique combinations of parameters close
that are close to boundaries at the end of an optimizer run. B: Number of optimizer runs
that terminated in a local minimum at the boundary. C: Convergence count nsuccess. D:
Optimizer performance φ.

the resulted of premature optimizer termination. The results for Fujita and Crauste, which
feature many minima at the boundary, but few unique parameter combinations, suggests
that minima at or near corners of Θ pose particularly challenging optimization problems.

We hypothesize that the good performance of fides as compared to other optimizers
have resulted from a fully reflective strategy, which can reflect at all boundaries when close
to multiple parameter boundaries. In contrast, the single reflective method, as employed
by fmincon, lsqnonlin and ls trf, needs to reduce step size when a second boundary is
encountered. Accordingly, we compared the fully reflective method (orange) to the single
reflective method (green) on all benchmarks (Fig 5B-E). The fully reflective approach sub-
stantially improved nsuccess for Weber (14 to 21, 1.5 fold change) and Zheng (3 to 7, 2.30 fold
change) examples, which resulted in a similar increase in performance by 1.56 and 3.28 fold
respectively. This further corroborates the hypothesis that tight parameter boundaries can
cause poor optimizer performance and shows that performance can be improved by using a
fully reflective approach.
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4 Discussion

In this paper we evaluated trust-region methods implemented in fides against python and
MATLAB implementations of the same algorithm on seven benchmark examples and we
proposed a new hybrid Hessian approximation scheme. The evaluation showed that fides
can resolve issues with inconsistent final objective function values for all examples and that
optimization performance could be further enhanced by using a novel hybrid Hessian ap-
proximation scheme. This suggests that previously encountered issues with fmincon and
lsqnonlin are due to to poor optimizer performance that leads to premature optimizer
termination. Specifically, we identified tight parameter boundaries as a possible reason for
premature termination. This could be partially resolved by using a fully reflective versus
a single reflective approach. Moreover, our results corroborate previous findings showing
that the use of Gauss-Newton approximations can be problematic for optimization problems
featuring sloppy models but that saddle points do not pose a major concern. Nonetheless,
the inconsistent and sometimes poor performance of BFGS and SR1 approaches and ex-
act subproblem solvers was unexpected, since they should theoretically have better local
convergence properties than the Gauss-Newton approximation. However, our findings sug-
gest worse global convergence properties, as indicated by lower convergence counts nsuccess.
Global convergence properties depend on the shape of the objective function landscape and
are therefore expected to be problem specific. Accordingly, BFGS and SR1 may perform
better when combined with hybrid global-local methods such as scatter search (Egea et al.,
2007), which substantially benefit from good local convergence (Villaverde et al., 2019), but
rely less on global convergence properties of local optimizers. Moreover, SR1 and BFGS
approaches enable the use of trust-region optimization for problems where the GN approxi-
mation is not applicable, e.g., when a non-Gaussian error model is used (Maier et al., 2017)
or when gradients are computed using adjoint sensitivities (Fröhlich et al., 2017).

Despite our having implemented the same optimization algorithm, we observed pro-
nounced differences in optimizer performance across benchmark problems, where fides per-
formed most reliably among all evaluated implementations. We believe the most likely reason
for the difference in reliability is handling of numerical edge cases in each implementation. For
example, fides uses a Moore-Penrose pseudoinverse to compute the Newton search direction
for the 2D subproblem solver, while fmincon uses conjugate gradients and warns the user in
cases of ill-conditioning. Another possible source of difference is the use of different simula-
tion and sensitivity computation routines. While both data2dynamics and AMICI employ
CVODES (Hindmarsh et al., 2005) for simulation and computation of parameter sensitivity,
there may be slight differences in implementation of advanced features such as handling of
events or pre-equilibration. Lastly, optimizers differ in their treatment of integration fail-
ures, which fmincon, lsqnonlin and fides handle by decreasing the trust region radius,
while ls trf terminates optimization immediately. Overall, these findings demonstrate the
complexity of implementing trust-region methods and the importance of numerical subtleties
for optimizer performance. For many examples, observed differences in performance among
theoretically identical algorithms were similar in magnitude as differences observed with dif-
ferent algorithms. Thus, the evaluation of algorithms requires consistent implementations.
We anticipate that the modular implementation of fides will ease some of this burden and
drive methodological innovation in the future.
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Overall, our results demonstrate that fides not only finds better solutions to objective
function optimization when state of the art algorithms fail, but also performs on a par or
better on problems where established methods find good solutions. We expect that good
performance will generalize to other optimization problems beyond ODE models. Thus, we
expect that the modular and flexible implementation of fides will drive widespread adoption
within and outside the field of systems biology.
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Fröhlich, F., Loos, C., and Hasenauer, J. (2019). Scalable Inference of Ordinary Differential Equation Models of Biochemical Processes.

In Sanguinetti, G. and Huynh-Thu, V. A., editors, Gene Regulatory Networks: Methods and Protocols, Methods in Molecular

Biology, pages 385–422. Springer, New York, NY.
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