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Abstract: 14	

1. Animal migration is a key process underlying active subsidies and species dispersal over 15	

long distances, which affects the connectivity and functioning of ecosystems. Despite 16	

much research describing patterns of where animals migrate, we still lack a framework 17	

for quantifying and predicting how animal migration affects ecosystem processes. 18	

2. In this study, we aim to integrate animal movement behavior and ecosystem functioning 19	

by developing a predictive modeling framework that can inform ecosystem management 20	

and conservation. Our framework models individual-level migration trajectories between 21	

populations’ seasonal ranges as well as the resulting dispersal and fate of propagules 22	

carried by the migratory animals, and it can be calibrated using empirical data at every 23	

step of the modeling process. 24	

3. As a case study, we applied our framework to model the spread of guava seeds, Psidium 25	

guajava, by a population of migratory Galapagos tortoises, Chelonoidis porteri, across 26	

Santa Cruz Island. Galapagos tortoises are large herbivores that transport seeds and 27	

nutrients across the island, while Guava is one of the most problematic invasive species 28	

in the Galapagos archipelago. 29	

4. Our model is able to predict the pattern of spread of guava seeds alongside tortoises’ 30	

downslope migration range, and it identified areas most likely to see germination success 31	

and establishment. Our results show that Galapagos tortoises’ seed dispersal may 32	

particularly contribute to guava range expansion on Santa Cruz Island, due to both long 33	

gut retention time and tortoise’s long-distance migration across vegetation zones. In 34	

particular, we predict that tortoises are dispersing a significant amount of guava seeds 35	

into the Galapagos National Park, which has important consequences for the native flora. 36	

5. The flexibility and modularity of our framework allows for the integration of multiple 37	

data sources. It also allows for a wide range of applications to investigate how migratory 38	
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animals affect ecosystem processes, including propagule dispersal but also other 39	

processes such as nutrient transport across ecosystems. Our framework is also a valuable 40	

tool for predicting how animal-mediated propagule dispersal can be affected by 41	

environmental change. These different applications can have important conservation 42	

implications for the management of ecosystems that include migratory animals. 43	

 44	

Key words: seed dispersal, ecosystem process, animal migration, migratory connectivity, 45	

Galapagos tortoises  46	
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1.0 Introduction 47	

Ecosystems are connected through flows of energy and materials transported passively by the 48	

abiotic environment or actively through the transport of individuals, gametes or spores (Loreau 49	

et al. 2003). The movement of animals is a key process shaping active subsidies and dispersal 50	

of plants, which affects the functioning and connectivity of ecosystems (Côrtes & Uriarte 2013; 51	

Earl & Zollner 2017; Schmitz et al. 2018; Subalusky & Post 2018; Ellis-Soto et al. 2020). In 52	

particular, animal migration – the regular, directional movement of animals between specific 53	

destinations – involves billions of animals across the planet (Hu et al. 2016; Dokter et al. 2018) 54	

and provides important ecosystem services (Bauer & Hoye 2014). However, despite the 55	

ecological importance of the migration phenomenon and the research efforts to describe 56	

patterns of where animals migrate, we still lack a predictive framework that we can use to 57	

quantify how migratory animals impact ecosystem functioning. 58	

One of the main ecosystem services provided by migratory animals is propagule 59	

dispersal, and particularly seeds (Bauer & Hoye 2014). More than half of all plant species are 60	

dispersed by animals (Aslan et al. 2013), and such animal-mediated seed dispersal influences 61	

plant species survival and range expansion into new environments (Nathan & Muller-Landau 62	

2000; Kendrick et al. 2012; Travis et al. 2013). The movement ecology of seeds has thus been 63	

highlighted as a key knowledge gap to improve our understanding of plant distribution 64	

(Beckman et al. 2019). Quantifying and predicting the role of animals in seed dispersal is also 65	

particularly relevant given that the scale of animal movements is declining globally in response 66	

to human activities (Tucker et al. 2021), which has important implications for plant-animal 67	

interactions (Neuschulz et al. 2016). Animal migrations, in particular, are disappearing at 68	

alarming rates (Wilcove & Wikelski 2008) with unknown, but likely significant, consequences 69	

on ecosystem functioning. For instance, the loss of Pleistocene megafauna and their long 70	
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ranging movements is thought to have significantly reduced seed dispersal across large spatial 71	

scales (Malhi et al. 2016; Pires et al. 2018).  72	

Dispersal kernels, which allow modeling how far seeds can be dispersed, have been 73	

usually employed to understand dispersal of plant species (Nathan 2006; Nathan et al. 2012; 74	

Bullock et al. 2017; Pires et al. 2018). For animal-mediated seed dispersal, however, it is 75	

important to take into account intra-specific variation in the seed dispersal ability of animals 76	

(Zwolak 2018). In addition, modeling seed dispersal must ideally be spatially-explicit in order 77	

to account for the context dependency of where seeds are deposited and the probability of 78	

successful germination and establishment (Nathan & Muller-Landau 2000). Developments in 79	

tracking technologies allow quantification of the movement of animals at fine spatio-temporal 80	

scales for long periods of time (Kays et al. 2015). This opens up opportunities to study animal 81	

movement and understand its underlying environmental and internal drivers (Nathan et al. 82	

2008; Hawkes et al. 2011; Jesmer et al. 2018). Recent years have seen an increase in studies 83	

coupling GPS tracking of animals with ecosystem processes, especially seed dispersal 84	

(Kleyheeg et al. 2017, 2019; Oleksy et al. 2017; van Toor et al. 2019). This approach provides 85	

a spatially explicit, individual-based understanding of seed dispersal by migratory animals that 86	

integrates animal movement, seeds dispersed and gut retention times. However, previous 87	

studies have only modeled dispersal from a single location, which limits the potential 88	

applications of such approach. In addition, these studies do not use empirical data explicitly to 89	

model the fate of the dispersed seeds once released in the environment.  90	

Here we propose a novel modeling framework that combines simulation and empirical 91	

data from a variety of sources to model the spread of seeds by migratory herbivores. Our 92	

framework allows to model individual-level migration trajectories between the seasonal 93	

distributions of populations together with the resulting dispersal and fate of seeds carried by the 94	

migratory animals, and it allows using empirical data to calibrate every steps of the modeling 95	
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process. This approach aims to quantitatively harmonize behavioral ecology and ecosystem 96	

process and make quantitative predictions that could inform ecosystem management and 97	

conservation. As a case study, we applied our framework to model the spread of guava seeds, 98	

Psidium guajava (Linnaeus), by a population of migratory Galapagos tortoises, Chelonoidis 99	

porteri (Rothschild) (IUCN critically endangered), across Santa Cruz Island. Galapagos 100	

tortoises are the largest terrestrial ectotherms worldwide and are considered ecosystem 101	

engineers through the transport of seeds and nutrients, as well as herbivory and trampling 102	

(Gibbs et al. 2010; Blake et al. 2012; Ellis-Soto 2020), while Guava is one of the most 103	

problematic invasive species in the Galapagos archipelago, having been introduced in the late 104	

19th century (Walsh et al. 2008). 105	

Santa Cruz Island contains the highest human population on the Galapagos. The island 106	

harbors more introduced plant species that native species (Guézou et al. 2010), which threatens 107	

endemic biodiversity. On Santa Cruz Island, presence of invasive guava has modified native 108	

plant community and ecosystems, especially so in the humid highlands (Guézou et al. 2010), 109	

and several ongoing eradication initiatives have so far proven unsuccessful (Gardener et al. 110	

2010). Guava is heavily consumed by Galapagos tortoises (Blake et al. 2015), which perform 111	

seasonal migrations across the elevational gradient of the island, and disperse guava seeds 112	

throughout their range (Blake et al. 2012, 2013; Ellis-Soto et al. 2017). Most of the island’s 113	

surface is located within the Galapagos National Park (GNP) and surrounds heavily degraded 114	

agricultural land where invasive species such as guava are widespread (Trueman et al. 2014; 115	

Benitez-Capistros et al. 2019). The permeability of national park boundary to agricultural lands 116	

means that animals like tortoises can regularly cross from the park into farm land, where they 117	

consume introduced plants including fruits, before returning to the park (Benitez-Capistros et 118	

al. 2018). Taking advantage of a long-term study on Galapagos tortoises (Blake et al. 2012, 119	

2013, 2015; Yackulic et al. 2016; Benitez-Capistros et al. 2019, Sadeghayobi et al. 2011), we 120	
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use data on tortoise ecology, migratory behavior, seed dispersal ability, diet preference and gut 121	

retention times in order to calibrate our modeling framework and simulate how tortoises spread 122	

guava across Santa Cruz island. Specifically, we aim to (i) simulate realistic migration 123	

trajectories for tortoises across the population’s geographical range, (ii) model how guava seeds 124	

are spread by migrating tortoises, and (iii) use empirical data to calibrate the model and validate 125	

the seed dispersal predictions. 126	

 127	
2.0 Material and Methods 128	

2.1 Empirical data 129	

2.1.1 Study site and habitat 130	

We obtained a landcover map for Santa Cruz Island, Galapagos, from (Rivas-Torres et al. 131	

2018a) and shapefiles of the Galapagos National Park and agricultural land from the 2014 132	

census conducted by the Ecuadorian Ministry of Agriculture (CGREG 2015). This allowed us 133	

to estimate the proportion of different habitats where invasive guava is deposited through seed 134	

dispersal by C. porteri as well as the ratio of seed deposition in national park and agricultural 135	

land to better understand the context dependency of these events. To estimate available 136	

resources for tortoises, we used the Normalized Difference Vegetation Index (NDVI), a remote-137	

sensing measure of greenness that correlates well with primary productivity, and which has 138	

been shown to be an important drivers of tortoises annual migration (Blake et al. 2013; Yackulic 139	

et al. 2016; Bastille-Rousseau et al. 2019). To estimate the spatial distribution of guava, we 140	

made use of a recently published land cover classification of the Galapagos which provides the 141	

distribution of guava patches at very high resolution in Santa Cruz Island (Laso et al. 2019). 142	

To estimate whether guava seeds can germinate and become adult reproductive trees, 143	

we made use of a species distribution model (SDM) for guava previously published (Ellis-Soto 144	

et al. 2017). This model relates environmental predictors (i.e., temperature and precipitation 145	

long term averages and seasonality commonly referred to as bioclimatic variables; (Hijmans et 146	
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al. 2005)) to georeferenced guava locations and indicates how suitable a given location in Santa 147	

Cruz is for this plant species. This model was then overlaid on adult guava trees on Santa Cruz 148	

to understand at which suitability score guava plants can germinate, survive and establish under 149	

current and future climatic conditions. 150	

2.1.2 Tortoise migratory movements 151	

We used tracking data of 9 tagged adult male Galapagos giant tortoises for which hourly 152	

locations were recorded between 2013 and 2018 (attachment procedures and GPS sampling 153	

regimes are described in Blake et al. 2013). To identify the starting and end locations of 154	

individual downslope migrations between 2013 and 2018, we made use of the locator() function 155	

from the graphics package in R on plots representing individual tortoise net square displacement 156	

(Singh et al. 2016), which provided us with 16,464 GPS tortoise locations. We removed 157	

empirical migratory tracks that were too sinuous as their characteristics generate convergence 158	

issues for the model described below. We retained 19 downslope migration trajectories from 5 159	

individuals (i.e. individuals were tracked for several years; Fig. S1), sampling each track to one 160	

point per day (i.e., taking the first GPS point when multiple points where present for a single 161	

day).  162	

2.1.3 Tortoise diet and gut retention 163	

Sampling of 222 tortoise dung piles revealed that guava is the most common dispersed plant 164	

species by C. porteri with an average of 624 seeds per dung pile (Ellis-Soto et al. 2017). Feeding 165	

trial experiments with pseudo seeds identified the gut retention time of C. porteri during the 166	

period of downslope migration (μ = 7.5, σ = 2.16 in days, respectively) (Sadeghayobi et al. 167	

2011), which applies to guava seeds. In addition, ex situ germination trials suggests that tortoise 168	

ingestion and dung does not influence germination success of guava seeds neither positively 169	

nor negatively (Blake et al. 2012). 170	

2.2 Modeling framework 171	
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2.2.1 Model overview 172	

We simulated the migratory movement of tortoises from the highlands to the lowlands of Santa 173	

Cruz Island using a two-step modeling process: first, we simulated the migratory connectivity 174	

of the population (i.e. links between seasonally-occupied sites based on individual tortoises 175	

migratory movements), and second, we simulated the trajectory of migrating individuals (Fig. 176	

1). 177	

2.2.2 Simulating migratory connectivity 178	

We simulated migratory connectivity between the seasonal distributions of tortoises, i.e., in the 179	

highlands and in the lowlands. To map areas seasonally utilized by tortoises, we calculated 95 180	

percentile utilization distribution (UD) (Fieberg & Kochanny 2005) for each of the nine 181	

tortoises (see 2.1.2) using the adehabitatHR package (Calenge 2006). We then drew a geometric 182	

convex hull around these UD’s to obtain a population-level highland and lowland range. 183	

Highland and lowland areas were converted into presences and absences on a grid of hexagons 184	

with equal area (~1.18 km2) and shape covering Santa Cruz Island. 185	

To simulate migratory connectivity between the seasonal distributions of tortoises, we 186	

used a model called the Optimal Redistribution Simulator (ORSIM), which was shown to 187	

capture well avian migratory connectivity patterns (Somveille et al. in review). This model is 188	

based on energy optimization, and captures two processes: minimizing energetic costs 189	

associated with relocating between seasonal grounds, and intra-specific competition for access 190	

to energy supply. ORSIM uses a solution to the Monge-Kantorovich transportation problem 191	

(Hitchcock 1941; Rachev 1984) from linear optimization, which can be formalized linear 192	

programming as follows. 193	

Let 𝐻 = #$ℎ!, 𝑘"!(, … , $ℎ#, 𝑘""(* be the distribution of energy available during the 194	

season spent in the highland, where ℎ$ is highland site 𝑖 and 𝑘"# is the weight of this site, which 195	

corresponds to the energy available at this site; and 𝐿 = #$𝑙!, 𝑘%!(, … , $𝑙&, 𝑘%$(*  be the 196	
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distribution of energy available during the season spent in the lowland, with 𝑛 lowland sites, 197	

where 𝑙'  is lowland site 𝑗 and 𝑘%%  is the weight of this site, which corresponds to its energy 198	

supply. We want to find a total flow 𝐹 = 1𝑓$'3, with 𝑓$' the flow of energy between ℎ$ and 𝑙', 199	

that minimizes the overall cost 200	

𝐶(𝐻, 𝐿, 𝐹) =77𝑐$'

&

'(!

#

$(!

𝑓$' 201	

where 𝑐$' is the energetic cost associated with relocating between sites ℎ$ and 𝑙'. This function 202	

is	subject to the following constraints: 203	

𝑓$' ≥ 0  1 ≤ 𝑖 ≤ 𝑚,  1 ≤ 𝑗 ≤ 𝑛      (1) 204	

∑ 𝑓$'&
'(! ≤ 𝑘"#    1 ≤ 𝑖 ≤ 𝑚            (2) 205	

∑ 𝑓$'#
$(! ≤ 𝑘%%   1 ≤ 𝑗 ≤ 𝑛         (3) 206	

∑ ∑ 𝑓$'&
'(!

#
$(! = min B∑ 𝑘"#

#
$(! , ∑ 𝑘%%

&
'(! C      (4) 207	

Constraint (1) allows energy to move from 𝐻 to 𝐿 and not vice versa. Constraint (2) limits the 208	

amount of energy that can move away from the highland sites in 𝐻 and reflects the energy 209	

demand of departing individuals. Constraint (3) limits the lowland sites in 𝐿 to receive no 210	

more energy than their energy supply. Finally, constraint (4) specifies that the total amount of 211	

energy must be equal to either the total energy demand of highland sites or the total energy 212	

supply of lowland sites, whichever one is the smallest, thus forcing to move the maximum 213	

amount of energy possible.  214	

This modeling framework assumes that energy is transferred between highland and 215	

lowland sites via migrating tortoises, which are energetically equivalent, i.e., they all have the 216	

same energetic needs and cost function, and the same competitive ability.	Energy availability 217	

across the highland and lowland distributions of tortoises was estimated using NDVI values 218	

(see 2.1.1). We rescaled these NDVI values so that a total of 1000 migrating individuals were 219	
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generated by the model. For a complete description of ORSIM including more details about the 220	

underlying assumptions see Somveille et al. (in revision). 221	

A solution to the transportation problem from linear optimization is implemented in the 222	

Earth Mover’s Distance (EMD) algorithm (Rubner et al. 2000), which uses the transportation-223	

simplex method (Hillier & Lieberman 1990). To simulate migratory connectivity, we used the 224	

FastEMD algorithm (Pele & Werman 2008, 2009), which is implemented in the Python wrapper 225	

PyEMD. No distance threshold was used when running FastEMD. 226	

 227	

2.2.3 Simulating migration trajectories 228	

We simulated the explicit migration trajectories of migrating tortoises between their starting 229	

point in the highland and the respective destinations in the lowland that are generated by the 230	

migratory connectivity model (2.2.2). To do so, we used the empirical Random Trajectory 231	

Generator (eRTG; Technitis et al. 2015) in the R environment. This algorithm generates the 232	

movement between two endpoints with a fixed number of steps, which retains the geometric 233	

characteristics of real observed trajectories based on tracking data (see detailed description in 234	

Kleyheeg et al. 2019 and van Toor et al. 2019). The eRTG is similar to a biased correlated 235	

random walk and can be best described as a mean-reverting Ornstein-Uhlenbeck process 236	

(Smouse et al. 2010). The algorithm uses empirical tracking data as a template, and takes 237	

empirical distributions of the following characteristics of animal movement: step length, 238	

turning angles, their autocorrelation at a lag of one step, and the covariance of step length and 239	

turning angle. We estimated the distributions of these movement characteristics using the 240	

empirical tracking data on tortoises’ downslope migratory movement described above.  241	

Using the eRTG, we simulated the movement trajectories of the 1000 migrating 242	

tortoises generated by the model of migratory connectivity. For each simulated migrating 243	

tortoise, we used the following procedure: we ran eRTG 10 times with the shortest empirical 244	
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track (i.e., with the least number of movement daily steps); if the model converged, we selected 245	

the resulting simulated trajectory, but if the model did not converge at least once, we then ran 246	

eRTG 10 times with the second shortest empirical track; and we continued for all 19 empirical 247	

tracks until the model converged. All models (i.e., for each simulated individual) ultimately 248	

converged. 249	

2.2.4 Simulating seed dispersal 250	

To simulate the spread of guava seeds by migrating tortoises, we combined the simulated 251	

migration trajectories with an empirically informed simulator of tortoises’ consumption and 252	

excretion of guava seeds. In our model, tortoises are assumed to engage in migratory movement 253	

once a day, although we also ran a sensitivity analysis in which tortoises move twice and four 254	

times a day. During the rest of the day when they are not migrating, tortoises are assumed to 255	

stay put, eat and produce excrements. When not migrating, if a tortoise is located where guava 256	

is present, we assumed that it eats guava. In addition, each tortoise has a probability of excreting 257	

guava seeds based on gut retention time and the results of previous feeding events, determined 258	

as:  259	

𝑃) = 7 𝑅(𝑑, 𝐹*)
*"&'

*(!

 260	

with 𝑃): probability of excreting guava seeds ; 𝑑: number of days since a feeding event; 𝐹*: 261	

results of foraging event at 𝑑  (i.e. whether or not guava was eaten); 𝑅: gut retention time 262	

distribution, which was estimated empirically as a truncated normal distribution with 𝜇 = 7.5 263	

and 𝜎 = 2.16 (Sadeghayobi et al. 2011); and 𝑑#+, indicates a threshold, which was set to 20 264	

days, above which guava seeds were considered to be no longer present in the gut. For each of 265	

the 20 days preceding the start of the simulation, a tortoise was set to have eaten guava given 266	

probability = 0.21, which corresponds to the proportion of the highland distribution that is 267	

covered by the spatial distribution of guava. 268	
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To determine whether guava is excreted when a tortoise in not migrating, we sampled a 269	

value between 0 (no guava excreted) and 1 (guava excreted) based on 𝑃). Then, if guava is 270	

excreted, the number of guava seeds excreted during the excretion event is determined by 271	

randomly sampling an empirically-estimated truncated normal distribution with 𝜇 = 1443 and 272	

𝜎 = 2057 (Ellis-Soto et al. 2017). Using this methodology, we modeled where and how many 273	

guava seeds are excreted along the migratory trajectory of each simulated migrating tortoises, 274	

which we call ‘seed rain’. We then overlaid the seed rain on the projection of the SDM that 275	

predict germination success (i.e. binary value of successful versus non-successful germination, 276	

based on Ellis-Soto et al. 2017; see section 2.1.1) in order to determine whether seeds are likely 277	

to germinate or not (i.e. seed fate). 278	

2.3 Model validation 279	

To validate the seed dispersal prediction of our model, we used information of collected dung 280	

piles containing guava seeds from Ellis-Soto et al. (2017) and added a few others 281	

opportunistically collected since them. We obtained a total of 101 dung piles containing guava 282	

across an elevation gradient from 28m to 419m. To better understand the spatial context in 283	

which tortoise-dispersed guava seeds are deposited across our study area, we associated dung 284	

pile occurrences with landcover classes of Santa Cruz Island from (Rivas-Torres et al. 2018b). 285	

We focused specifically on an area locally known as ‘La Reserva’ to the south and southwest 286	

of the island, which is the core distribution area of C. porteri (Ellis-Soto et al. 2017). We 287	

extracted landcover information at the location of the observed and simulated dung piles 288	

containing guava. We inspected whether the frequency density of dung piles containing guava 289	

seeds across elevation as well as the distribution of dung piles containing guava seeds across 290	

habitats, in particular in agricultural areas versus the Galapagos National Park, were similar for 291	

simulated versus observed dung piles. 292	

2.4 Seed fate 293	
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Besides landcover, we made use of a previously estimated species distribution model (SDM) 294	

for guava as a proxy of seed fate for seeds deposited across a gradient of climatic suitability. 295	

We used the thresholded guava SDM from Ellis-Soto et al. (2017) to identify suitable habitat 296	

for establishment of guava (seed dispersal efficiency). Briefly, the threshold was chosen based 297	

on the minimum climatic suitability in which an actual guava plant was observed during a 298	

vegetation survey across Santa Cruz Island. 299	

3.0 Results 300	

3.1 Simulated and observed seed dispersal by migratory tortoises 301	

Our data-driven modeling framework was able to simulate the downslope migration of adult 302	

male Galapagos tortoises between highland and lowland seasonal grounds on Santa Cruz Island 303	

(Fig. 2a). The vast majority of trajectories and the overall migration pattern of the population 304	

simulated by the model appear realistic. The resulting dispersal of guava seeds by migrating 305	

tortoises spreads from the highland distribution to the lowland distribution, decreasing in 306	

intensity as tortoises arrive closer to the lowlands (Fig. 2b). This pattern matches well empirical 307	

data of dung piles containing guava seeds that were not used to parameterize the model (Fig. 3, 308	

Fig. S2). The occurrences of observed and simulated dung piles containing guava peak at ca. 309	

180m and 150m in elevation respectively, with a decay towards lower (Galapagos National 310	

Park areas) and higher (Agricultural and privately owned areas) elevations (Fig. 3a,c). 311	

However, simulated guava seeds appear to be somewhat higher than observed at lower 312	

elevations, c.a. 80m, and lower than observed at high elevation, c.a. 400m (Fig. 3a,c, Fig. S2). 313	

Both observed and simulated dung piles containing guava seeds are outside the current 314	

elevational range of guava in Santa Cruz Island, potentially facilitating the expansion of this 315	

invasive species (Fig. 3). The sensitivity analysis of the number of times tortoises engage in 316	

migratory movement per day indicates that simulation results match empirical data less well 317	
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when modeled tortoises were migrating, eating and execrating more often, in particular because 318	

it increases unrealistically the long-distance dispersal of guava seeds to the lowland (Fig. S3).  319	

3.2 Estimating seed fate using landcover and species distribution models 320	

By combining the guava seed rain simulated from our model (Fig. 2b) with landcover 321	

categories, we provide a spatial and ecological context in which guava seeds were deposited. 322	

Simulated guava seeds were deposited in five different landcover classes, with a pattern of 323	

deposition in these different landcover classes that largely matches the one from empirical data 324	

(Figs. 3b,d and S4). Guava seeds were deposited mostly in agricultural areas but also reached 325	

the Galapagos National Park (Fig. 3b,d). Some discrepancies exist between simulation and 326	

empirical data, notably that the model predicts guava seeds to be deposited substantially more 327	

than suggested from empirical data in areas occupied by invasive species but less than empirical 328	

data suggests in evergreen forests and shrubs (Fig. S4). In addition, when applying our threshold 329	

guava SDM mask, we were able to create a spatially explicit prediction of successful seed 330	

dispersal for C. porteri, simulating guava seeds with the potential to germinate and establish 331	

under current climatic conditions (Fig. S5).  332	

 333	

4.0 Discussion 334	

In this study, we developed a novel modeling framework for simulating the dispersal and fate 335	

of propagules carried by migratory animals. Our model couples empirical data on animal 336	

behavior related to feeding and movement as well as data on the geographical distribution and 337	

climatic/habitat suitability of the dispersed species. Our model is data-driven, spatially explicit, 338	

and it accounts for intraspecific variation in animal migratory movements. It provides a 339	

quantitative framework for predicting long-distance propagule dispersal events by animals, 340	

which have rarely been quantitatively predicted despite their ecological importance (Nathan & 341	

Muller-Landau 2000). In particular, our model is able to predict the magnitude and direction 342	

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 23, 2021. ; https://doi.org/10.1101/2021.05.21.445111doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445111
http://creativecommons.org/licenses/by-nc-nd/4.0/


	 16	

under which a migratory animal population disperses plant species into novel habitats, and 343	

quantify how the seasonal migration of herbivores may be a major seed dispersal vector and 344	

expand the distribution range of invasive plant species.  345	

 We applied our modeling framework to guava seed dispersal by Galapagos tortoises (C. 346	

porteri) on Santa Cruz Island, which is a data-rich system with relevance for conservation. Our 347	

model has good predictive ability for the pattern of spread of guava seeds by migrating tortoises 348	

(Fig. 3), and can therefore be used for making predictions beyond the individuals and areas 349	

where data were collected. We predicted clusters of heavy seed dispersal alongside tortoises’ 350	

downslope migration range (Fig. 2) and identified areas most likely to see germination success 351	

and establishment (Fig. S5). We found that Galapagos tortoises’ seed dispersal may particularly 352	

contribute to guava downslope range expansion on Santa Cruz Island, due to both long gut 353	

retention time and tortoise’s long-distance migration across vegetation zones. In particular, we 354	

predict that tortoises are dispersing a significant amount of guava seeds into the Galapagos 355	

National Park, which has important consequences for the native flora as guava is an invasive 356	

species that has already altered natural ecosystems on the Galapagos (Wiggins & Porter 1971; 357	

Weber 2003) and is threatening local and endemic plant species (de Lourdes Torres & Mena 358	

2018). Our results also highlight that the frequency at which behavior (i.e. migratory 359	

movements, eating, excreting) is repeated during the migration season has an important role to 360	

play in predicting long-distance dispersal events (Fig. S3), thus highlighting an avenue for 361	

further research.  362	

Our framework is flexible and modular as it allows for increasing complexity and the 363	

integration of multiple data sources (Fig. 1). For example, if the number of seeds excreted and 364	

germination success are unknown for a study system, this information could be omitted and the 365	

model could simply predict the location of seed dispersal events across space. More information 366	

on population distribution and individual-level movement, which is increasing exponentially 367	
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thanks to advances in citizen science and tracking technology (Kays et al. 2020), could be used 368	

to calibrate more accurately the animal migration module (i.e. model components UD, ORSIM 369	

and eRTG; Fig. 1). In addition, besides using SDMs, other proxies for seed fate such as 370	

additional landcover information or microclimate based on fine scale topography could be 371	

employed (Leempoel et al. 2015; Maclean et al. 2019; van Toor et al. 2019). In situ germination 372	

trials of seeds along environmental gradients would provide greatest insights in the seed 373	

dispersal efficiency of a migratory animal species, which is relevant as plant mortality depends 374	

on environmental conditions and is highest when plants are seedlings (Terborgh et al. 2014). 375	

Future studies could also include plant demography in addition to the movement ecology of 376	

seeds in order to fully model the contribution of animal-mediated seed dispersal to the range 377	

expansion of an invasive species (Beckman et al. 2019).  378	

A research avenue for which our modeling framework could provide an important 379	

contribution is investigating the impact of environmental change on ecosystem processes. In 380	

particular, change in climate and habitat quality might alter animal migration patterns and seeds 381	

germination success, thus affecting animal-mediated seed dispersal. As it integrates models of 382	

animal movement influenced by the distribution of resources (using NDVI here but other data 383	

could be used) and seeds germination success based on climate suitability from species 384	

distribution modeling (Ellis-Soto et al. 2017), our approach could be used to make future 385	

predictions for where will seeds disperse and successfully establish under various scenarios of 386	

environmental change. Thus, the predictive ability and flexibility of our framework makes it a 387	

valuable tool for investigating seed dispersal under climate change, which cannot be easily 388	

predicted using existing modeling approaches. 389	

Our framework can be applied to a wide range of systems where ecosystem processes 390	

are affected by migratory animal species. It would be interesting for example to investigate how 391	

migratory populations living in different environmental settings would spread an invasive plant 392	
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in different ways, such as for example how different populations of tortoises spread guava on 393	

different islands in the Galapagos. Such predictions would allow identifying which islands and 394	

ecosystems are most at risk of invasion by guava and it would therefore inform where to focus 395	

conservation efforts. In addition, our modeling framework could be used to investigate the 396	

relative roles of different animal species, given their movement ability and patterns, in 397	

spreading the seeds of an invasive plant throughout an ecosystem, which is a promising research 398	

avenue with important consequences for conservation and ecosystem functioning. In the case 399	

study presented here, giant tortoises are not the only animals capable of dispersing seeds across 400	

Galapagos Islands. Galapagos mockingbirds (Mimus parvulus), Darwin finches (Geospiza spp.) 401	

and introduced cattle, pigs and goats also consume guava, but they move shorter distances 402	

(Buddenhagen & Jewell 2006) and cross less from agricultural areas in the highlands to the 403	

national park in the lowlands when compared to tortoises. Humans in the Galapagos are also 404	

potential long-distance dispersers of guava (Auffret et al. 2014). It would be informative to use 405	

our model to quantify the relative contributions of these different vectors to the spread of guava. 406	

Finally, our modeling framework could also be used to investigate ecosystem processes other 407	

than seed dispersal. For example, it would be possible to apply it to quantitatively model how 408	

migratory animals affect nutrient transport across ecosystems, which can be quantified either 409	

through empirical measurements of excretion rate or metabolic measurements. These different 410	

applications can improve our understanding on how animals connect ecosystems and 411	

landscapes across spatiotemporal scales and have important conservation implications for the 412	

management of ecosystems that include migratory animals. 413	

 414	
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 423	

6.0 Figures 424	

 425	

Figure 1. Workflow for data-driven simulation of seed dispersal by a migrating species. 426	

Orange boxes indicate data and simulation outcomes for migratory Galapagos tortoises; green 427	

boxes indicate data and simulation outcomes for the invasive plant species guava; blue boxes 428	

indicate environmental data; and purple boxes indicate model components (see Material and 429	

Methods for details). NDVI: normalized difference vegetation index, a remote sensing 430	

measure capturing primary productivity; UD: utilization distributions, computed from 431	

empirical movement tracks; ORSIM: optimal redistribution simulator, which simulates 432	

migratory connectivity; eRTG: empirical random trajectory generator, which generates a 433	
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movement between two end points that is calibrated by empirical migration tracks; SDM: 434	

species distribution model, indicating guava germination success. Seed rain refers to the 435	

spatial distribution of the density of seeds resulting from seed dispersal by migrating tortoises; 436	

seed fate refers to the spatial distribution of the density of germinated seeds resulting from 437	

seed dispersal by migrating tortoises. 438	

 439	

 440	

Figure 2. Simulated tortoise migrations and resulting guava seed rain. (a) Simulated 441	

migration trajectories of tortoises, from highland to lowland. Each black line indicates the 442	

simulated migration of an individual. (b) Density of guava seeds dispersed by simulated 443	

migrating tortoises, also called ‘seed rain’. The highland seasonal distribution of the 444	

population is represented by the grey polygon. 445	

 446	

 447	

 448	
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 449	
Figure 3. Model simulation captures empirical dispersal of guava seeds by migrating 450	

tortoises. Distribution of observed and simulated tortoise dung piles with guava across the 451	

elevational gradient of Santa Cruz Island. Observed (a) and simulated (c) guava seed deposition 452	

(left panel density plots) and location in agricultural- and national park areas deposition (b, d, 453	

right panel boxplots) across the elevational gradient of site “La Reserva” in Santa Cruz, 454	

Galapagos. 455	

 456	

7.0 Data Availability Statement 457	

Land cover classification maps are available on the supplementary material of Rivas-Torres et 458	

al. (2018) and guava distribution in Santa Cruz Island is available on the supplementary 459	

material of Laso et al. (2019). Galápagos giant tortoise tracking data used in this study will be 460	

archived in a public Movebank data repository, should the manuscript be accepted, and the 461	

data DOI will be included at the end of the article. The computer code used for this study is 462	

available at https://github.com/msomveille/galapagos-tortoises.git. 463	

 464	
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