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ABSTRACT

We present recount3, a resource consisting of over 750,000 publicly available human and mouse RNA
sequencing (RNA-seq) samples uniformly processed by our new Monorail analysis pipeline. To facilitate
access to the data, we provide the recount3 and snapcount R/Bioconductor packages as well as
complementary web resources. Using these tools, data can be downloaded as study-level summaries or
queried for specific exon-exon junctions, genes, samples, or other features. Monorail can be used to
process local and/or private data, allowing results to be directly compared to any study in recount3. Taken
together, our tools help biologists maximize the utility of publicly available RNA-seq data, especially to
improve their understanding of newly collected data. recount3 is available from http://rna.recount.
bio.

INTRODUCTION

RNA sequencing (RNA-seq) is a key tool in the
study of disease and biology. The public Sequence
Read Archive (SRA), which contains RNA-seq and
other sequencing data types, doubles in size approx-
imately every 18 months (Langmead and Nellore,
2018). We describe the recount3 project that makes
archived RNA-seq datasets—both from the SRA
and from compendia like The Genotype-Tissue Ex-
pression (GTEx) project—readily queryable, allow-
ing users to access, combine and analyze datasets
in new ways.

While other projects have summarized public
RNA-seq datasets, most provide only gene- and
transcript-level annotation-dependent summaries

(Lachmann, Torre, et al., 2018; Ziemann et al.,
2019; Tatlow and Piccolo, 2016). In addition to
gene and transcript-level summaries, Toil produced
annotation-guided splice junction quantifications
(Vivian et al., 2017). The RNAseq-er gateway
(Petryszak et al., 2017) continually analyzes RNA-
seq datasets deposited in the European Nucleotide
Archive and chiefly provides tabular gene and exon-
level summaries, though genomewide annotation-
agnostic coverage vectors are also available. The
Expression Atlas (Papatheodorou et al., 2020) draws
on datasets from GEO (Barrett et al., 2013) and
Array Express (Athar et al., 2019), and the related
Single Cell Expression Atlas (Papatheodorou et al.,
2020) includes a further 180 single-cell RNA-seq
studies from several species. But these contain
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Table 1. Size and computational cost of Monorail runs. Processing wall-clock times are estimated
from run logs and are approximate. Wall times are roughly “node hours”, where a typical node used
here has 48 cores and 192 GB of RAM. Node types vary somewhat across clusters used. Input and
output sizes are calculated from compressed files.
* Output size for GTEx v6 includes BAM files in addition to typical summaries
† Number of additional junctions beyond those in GTEx v6.
‡ Total after counting only the distinct junctions.

Collection
Input
Size
(TB)

Output
Size
(TB)

#
Sequence
Runs

#
Studies

#
Junctions (M) # bigWigs (M)

Processing
Wall
Time (h)

SRA Human v3 474 72 316,443 8,677 228 1.2 1,728
SRA Mouse v1 362 62 416,859 10,088 148 1.7 1,608

TCGA 75 7 11,348 1 31.5 0.045 170
GTEx v6 35 6.7∗ 9,911 1 22 0.040 168

GTEx v7 & v8 46 4.9 9,303 1 10.6† 0.037 123
Total 992 152.6 762,995 18,768 396‡ 3.022 3,797

Table 2. Monorail performance metrics run on TACC, AWS and MARCC. Statistics for GTEx
and TCGA were extrapolated from a subset of each project (9277, 1567 samples respectively). GTEx
output was increased by keeping whole BAM files for a subset of the samples. These numbers tally
the number of run accessions processed, which can exceed the numbers in Table 1 due to some runs
being processed multiple times, and due to runs that were later removed for QC or metadata reasons.
Missing from this table are several thousand SRA human run accessions that were analyzed on
MARCC but whose log files were discarded.

Metric
Human

SRA
TACC

Human
SRA
AWS

Mouse
SRA

TACC

Mouse
SRA
AWS

Human
GTEx

MARCC

Human
TCGA

MARCC
Totals

Sequencing Runs Processed 286,000 27,618 304,131 109,889 19,214 11,348 758,200
Compressed input size (TBs) 441.78 44.2 236.28 111.873 81 75 990.133

Compressed output size (TBs) 64.81 6.5 39.7 16.7 11.6 7.0 146.31
Node hours (NHs) 10,133 798 8,179 5,967 2421 1467 28,965

NHs per sequencing run 0.035 0.029 0.027 0.054 0.126 0.129 0.038
NHs per compressed input TB 22.9 18.1 34.6 53.3 29.9 19.6 29.3

Sequencing runs per NH 28 35 37 18 8 8 26
Compressed input TB per NH 0.044 0.055 0.029 0.019 0.033 0.051 0.034

only annotation-dependent gene-level summaries.
Related work is detailed in Supplementary Note S1.

recount3 provides access to gene expression data
in several resolutions and shapes, which enable
studying expression using both gene reference
annotation-dependent (gene, exon) and annotation-
agnostic methods (exon-exon junctions, expressed
regions) (Collado-Torres, Nellore, and Jaffe, 2017;
Morillon and Gautheret, 2019). recount3 thus
provides the basis for re-using public RNA-seq data

to answer diverse biological questions.
recount3 includes a total of 316,443 human and

416,803 mouse run accessions (individual datasets)
collected from the SRA, as well as large-scale human
consortia including Genotype-Tissue Expression
(GTEx version 8) and The Cancer Genome At-
las (TCGA). Second, recount3 includes several
ways for users to query and use these annotation-
dependent and annotation-agnostic expression sum-
maries such as the recount3 Bioconductor (Huber
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et al., 2015) package. The snapcount Biocon-
ductor package, as well as the integrated Snap-
tron (Wilks et al., 2018) service, allow users to
perform rapid queries across all summaries at
once, e.g. across all the 316K human SRA samples.
Lastly, our Snakemake-based (Köster and Rahmann,
2018) analysis pipeline monorail used to produce
the summaries is designed to be easy for users
to run on their own local RNA-seq reads across
computing environments through the form of a
single Docker/Singularity image.

Since its summaries were processed in a uniform
and annotation-agnostic way, recount3 can fuel
various analysis types. These could involve com-
parisons between human and mouse, cross-study
comparisons, meta analyses, re-purposing of data to
answer a new question, or broad explorations of the
unannotated transcriptome. To illustrate, we survey
splicing patterns in 700,000 run accessions and
explore the fraction of exon-exon splice junctions
that are present across several widely-used gene
annotations. recount3 captures much of the cell
type-specific splicing across various mouse cell
types and cell type-specific junctions are depleted
in gene annotations relative to junctions overall.
We then demonstrate how our base-level coverage
summaries reveal examples of non-coding and
unannotated tissue- and cell-type specific transcrip-
tion. Finally, we study the source of variation in
gene expression across all the human and mouse
samples, identifying key technical and biological
sources of variation.

RESULTS

The recount3 resource

We developed a new distributed processing system
for RNA-seq data called Monorail (Figure 1, Meth-
ods: Monorail, Supplementary Figures S1, S2, S3,
S4, Supplementary Note S2). Using Monorail,
we processed and summarized over 763K human
and mouse sequencing runs, including GTEx v8,
TCGA, and 732,246 runs from the Sequence Read
Archive (Table 1), 416,803 of those from mouse. In
compiling recount3, we processed 990 TB of com-
pressed sequencing reads, used approximately 3.3
node-years of computation (29K node-hours) and
produced over 150 TB of summarized data (Tables
1, 2, Supplementary Figures S5, S6, Supplementary

Note S3).
Monorail is not dependent on any specific

compute backend and is capable of seamlessly
utilizing heterogeneous compute resources. As
an illustration of this, we highlight that recount3
was processed on 3 very different high performance
systems: TACC, AWS and MARCC. TACC (Texas
Advanced Computing Center) is part of the XSEDE
super-computer ecosystem (Towns et al., 2014),
AWS (Amazon Web Services) is a commercial cloud
computing vendor and MARCC (Maryland Ad-
vanced Research Computing Center) is a traditional
high-performance compute cluster. The Monorail
system is available both as an open source suite
of software, and as a self-contained public Docker
image that produces identical results. This allows
users to process private data and/or local read files
using the same system used to produce recount3.
In particular, Monorail can be used for processing
dbGaP-protected data (Supplementary Note S4).
Roughly half the runs in recount3 are from whole-
transcript single-cell protocols such as Smart-seq
(Goetz and Trimarchi, 2012) and Smart-seq2 (Picelli
et al., 2013).
Monorail uses STAR (Dobin and Gingeras, 2016)

and related tools to summarize expression at the
gene and exons levels (annotation-dependent), to
detect and report exon-exon splice junctions, and to
summarize coverage along the genome as a bigWig
file (Kent et al., 2010). The first step in this process
consists of splicing-aware alignment of reads to
the genome as well as quantification of exon-exon
splice junction; this step is annotation-agnostic.
Following this, as a second step, we quantify gene
and exon expression using a specific annotation; for
human samples we used Gencode v26, Gencode
v29, FANTOM-CAT v6 and RefSeq v109 (Supple-
mentary Table S1, Supplementary Note S5). The
majority of the computational effort is spent on
the annotation-agnostic first step. It is therefore
possible to re-analyze the data using newer gene
annotations or genomic regions of interest that
use the same genomic coordinates, such as the
FANTOM-CAT v6 case (Hon et al., 2017), with
low computational effort. A detailed description
of changes from recount2 (Collado-Torres, Nellore,
Kammers, et al., 2017) is in Supplementary Note S6.

We developed a number of tools to facilitate user
interaction with the processed data. Data can be
accessed at the project/”dataset” level using the
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Figure 1. Overview of resource and grid design. (a) We use the Monorail system (detailed in
panel b) to analyze and summarize data from archived sequencing datasets, yielding the recount3
and Snaptron resources. recount3 consists of five types of data summaries — Quality Control (QC),
gene-level quantification, exon-level quantification, junction counts, and per-base coverages —
packaged into tables with associated metadata and organized at the study level. The Snaptron
resource consists of the same summaries, but organized at the level of a “collection,” where a single
collection might include many studies, and indexed in a way that permits fast queries. Bottom: a few
common ways that users can query and interact with the resources. QC, gene and exon-level
summaries are compiled using gene annotations, but junction and bigWig coverage summaries are
compiled without use of an annotation. (b) Illustration of Monorail’s grid design, split into
Orchestration, Analysis and Aggregation layers. Supplementary Figures S1, S2, S3, S4 and
Supplementary Note S2 contain details about Monorail and its analysis and aggregation
components.

recount3 R/Bioconductor package (Supplemen-
tary Note S7). We integrated processed recount3
data into the Snaptron (Wilks et al., 2018) sys-
tem for indexing and querying data summaries.
Further, we added a new R/Bioconductor inter-
face to Snaptron called snapcount (Supplemen-
tary Note S8), which uses Snaptron to query re-
count3 summaries. Between the recount3 and
snapcount packages, it is easy to slice summa-
rized data in various ways. For example, users
can query specific genes across all samples or
query specific projects across all genes. The re-
sults of these queries are delivered in annotated
(across both samples/columns and genes/rows)
RangedSummarizedExperiment objects (Huber
et al., 2015). While we have focused on the R
ecosystem, all our data are available in language
independent data formats, including as text files
and from the REST API from Snaptron.

Finally, we created a free, notebook-based com-

putational resource where users can run R and
Python based analyses on the same computer
cluster at Johns Hopkins University where recount3
summaries are hosted. This makes use of the
existing SciServer-Compute system (Taghizadeh-
Popp et al., 2020) and allows users to run analyses
on a free system where datasets are available locally,
avoiding any extensive downloading. The contents
of the resource and its user interfaces are illustrated
in Figure 1a. In addition to SciServer-Compute,
we have made recount3 available from AnVIL
(Schatz et al., 2021), the genomic data science cloud
platform from NHGRI.

In summary, we created an RNA-seq processing
framework and resulting resource to facilitate re-
analysis of hundreds of thousands of RNA-seq
samples.
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Figure 2. Annotation status and cumulative arrival of exon-exon splice junctions. (a) The number
of exon-exon junctions present in at least x human runs accessions. Colors represent different degrees
to which the junctions are annotated: completely annotated (purple) both donor and acceptor
annotated but not in combination with each other (exon skip, blue), only donor or only acceptor
annotated (one annotated, green), and neither annotated (red). Curves are cumulative across
categories; thus, the number of unannotated junctions is given by the difference between the purple
and red lines. (b) The same as (a) but for mouse run accessions. (c) The cumulative number of
exon-exon junctions (in millions) across time for four different thresholds for the number of human
run accessions where a junction is observed. (d) The same as (c) but for mouse run accessions.

Human and mouse splicing in SRA

Using recount3 splice-junction summaries, we sur-
veyed unannotated splicing in the SRA, building on
previous work (Nellore et al., 2016), but expanded to
an unprecedented scale including both human and

mouse. Further, we use an updated and expanded
set of gene annotations, including Gencode (up
to V33) and CHESS 2.2 (Pertea et al., 2018). We
considered the subset of junctions that appear in
at least 5% of SRA run accessions (15,773 out
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Figure 3. Cell-type enrichment of unannotated exon-exon junctions. Heatmap showing the
cell-type enrichment results for novel exon-exon junctions similar to the one performed in the
ASCOT study (Ling et al., 2020). The X-axis shows the bins of the -10 log p-values for cell type
specificity using a Mann-Whitney U test comparing coverage within a cell type to coverage in all cell
types. Each of the cell types evaluated are shown on the Y-axis with the percent of exon-exon
junctions annotated denoted by a color gradient from dark blue (0%) to light yellow (50%) to dark
red (100%). The row and column means are shown with the same color scale. The column mean,
Col.Mean, shows that the average percent of annotated exon-exon junctions decreases as the cell
type specificity increases on the X-axis.

of 316,443 samples for human or 20,846 out of
416,803 for mouse, Methods: Analyses). We found
that about 16% of human junctions and 12.5% of
mouse junctions were not present in any tested
annotation (Figure 2). Of the junctions in this subset,
about 5% (human) and 3.5% (mouse) had both
donor and acceptor sites present in the annotation,
but not associated with each other, indicating an
unannotated exon skipping or similar event. About
8.5% (human) and 7% (mouse) had either the donor
or the acceptor present in the annotation, but not
both. Remaining junctions (2.5% for human, 2% for

mouse) had neither donor nor acceptor annotated.
The 5% threshold is chosen to obtain junctions that
might be considered “common”; we tested other
thresholds in Supplementary Tables S2, S3.

We next asked whether cell type-specific splicing
patterns tend to be annotated or unannotated. In
the ASCOT study (Ling et al., 2020), we asked a
similar question while focusing on cassette exons
and on datasets where cell type was purified us-
ing fluorescence-activated cell sorting (FACS) or
affinity purification. With recount3, we adapted
this analysis to consider all splice junctions (not
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only cassette exons) and by additionally asking:
what fraction of cell-type-specific splice junctions
are present in any annotation? We considered the
same purified datasets as the previous study, which
included neuronal cell types, pancreas, muscle stem
cells, CD4+ T-cells, B-cells, as well as ovary, testes,
kidney, and stomach tissues among others. For each
junction that occurred in at least one sample, we
tested its cell type specificity using a Mann-Whitney
U test comparing coverage within a cell type to
coverage in all other cell types (403 samples in 34
studies). We binned the resulting -10 log p-values
and calculated the percent of junctions in each
bin that appeared in any tested gene annotation
(Supplementary Table S1, Methods). We observed
that more cell-type-specific junctions are less likely
to appear in annotation (Figure 3). This suggests
that the more specific a splicing pattern is to a
particular cell type, the more likely it is to be
ignored by analyses that quantify a gene annotation.
These analyses highlight the utility of recount3
and producing RNA-seq alignments for splicing-
based analyses of both annotated and unannotated
sequences.

Non-coding and unannotated transcription

Since recount3’s bigWig files can be inputs to
software for compiling gene and exon-level quan-
tifications, we can quantify recount3 with respect
to a new gene annotation that uses the same
reference genome coordinates without re-aligning
the reads. This is an important property of the
recount3 resource as it enables quantifying ex-
pression summaries for diverse genomic regions
of interest that annotation-dependent methods do
not support, which can be done efficiently with
Megadepth (Wilks et al., 2021). This feature facili-
tated generating the four quantifications included
in recount3, ranging from smaller, more stringent
annotations (RefSeq, O’Leary et al. (2016)), to
more inclusive annotations (GENCODE, Frankish
et al. (2019)), and to annotations focusing on 5’
boundaries and non-coding RNAs (FANTOM-CAT,
Hon et al. (2017)).

The advantage of diverse annotations is illus-
trated by the FC-R2 study (Imada et al., 2020), which
quantified recount2’s bigWigs using the FANTOM-
CAT annotation, which includes a large number
of non-coding RNAs (Hon et al., 2017). The study

reported the tissue specificity of different classes of
RNA: coding mRNA, divergent promoter lncRNA,
intergenic promoter lncRNA, and enhancer lncRNA.
Using recount3’s FANTOM-CAT quantifications,
we updated that analysis to use the recount3 quan-
tifications, including the additional runs present
in GTEx v8 (FC-R2 used about half as many runs,
Methods: Analyses). These results confirm those
of the earlier study that ncRNAs tend to have more
tissue-specific expression patterns than mRNA cod-
ing genes (Figure 4a).

To further show the utility of coverage-level
summaries, we consider a recount2-based study
by Zhang et al. (2020). With the premise that cell
type-specific splicing patterns are less likely to be
annotated, the authors used derfinder (Collado-
Torres, Nellore, Frazee, et al., 2017) to analyze 41
GTEx v6 tissues and identify genomic intervals that
were not present in any gene annotation but that
were transcribed in a tissue-specific way. They
found several such regions and used other sources
of evidence (conservation, genetic constraint, pro-
tein coding ability) to argue that the discoveries
could be potentially functional. Here we further use
the bigWig files for the SRAv3 collection to show
that the intronic ERs identified by Zhang et al have
substantially more coverage in SRAv3 compared to
length-matched, randomly chosen intronic intervals
(Figure 4b, Methods: Analyses). The availability of
coverage summaries therefore highlight the ease
in re-quantifying RNA-seq alignments to updated
and/or novel gene annotations and further permit
the study of unannotated transcription.

The landscape of transcription

To understand the sources of variation in gene
expression, we conducted a principal component
analysis (PCA) of the recount3 data, separately for
human and mouse samples. One challenge in fully
interpreting this analysis involves the incomplete
sample metadata from SRA and GEO, so we man-
ually curated a subset of studies including TCGA
and GTEx (Methods: Analyses).

The largest source of variation for the expression
of protein coding genes was whether the experi-
ment type was bulk or single-cell (Supplementary
Figure S7). We therefore built a simple predictor for
experiment type (Methods: Analyses) and analyzed
each type separately.
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Figure 4. Non-coding and unannotated transcription. (a) Expression profiles across GTEx v8
tissues. Density and boxplots showing the tissue specificity of human coding and non-coding
mRNAs from the FANTOM-CAT annotation (Imada et al., 2020) using data from GTEx v8. The
specificity is based on the entropy computed from the median expression of each gene across the
tissue types, as was done previously. (b) Evaluation of un-annotated genomic intervals powered by
the base-pair coverage data in recount3. Previous work (Zhang et al., 2020) identified un-annotated
genomic intervals that are expressed, conserved and overall not artifacts. Using the base-pair
coverage data we can validate these genomic intervals compared to 99 sets of randomly selected
intervals with the same length distributions matched by chromosome. This panel shows the density
for the distribution, across the 99 random sets of intervals, of the mean sum of expression across
base-pairs for intervals that are present in at least 500 samples. The red vertical line denotes the
observed value from the intervals by Zhang et al. (2020).

For bulk data, for both human and mouse, neither
of the top principal components were correlated
with library size (Figure 5a). Instead, the largest
source of variation were correlated with tissue (cell)
type (Figure 5b, Supplementary Figure S8). The
clear clustering by tissue carries over to at least
the first 4 principal components. In the human
data, a large separate group consisted of blood
samples (including lymphoblastoid cell lines, which
are derived from B cells) (Figure 5c). Indeed, the
first principal component of the human data is
associated with the expression of hemoglobin genes
(Supplementary Figure S9). Hemoglobin expression
varies substantially even within blood samples
because studies vary in the degree to which they
deplete hemoglobin prior to assaying blood; GTEx
is an example of a large study where hemoglobin
was not depleted. These observations – including
blood as an outlier group in the first two principal
components for the human data – carry over to
lncRNAs (Supplementary Figure S10.)

For single-cell data, with far fewer studies avail-
able, and therefore a higher degree of confounding
between tissue/cell type and study, the first princi-
pal component of the protein coding genes is library
size, a technical covariate which is coupled to the
degree of sparsity of the sample (Supplementary
Figure S11, correlation between log2(library size)
and the first principal component is 0.57). There is a
singularity point with very low library size, where
we observe very little between variation between
samples. In contrast, as library size increases, the
second principal component becomes cell type.

These large-scale analyses of gene expression
levels can classify samples by experiment type and
identify other important contributions of expression
variation.

DISCUSSION

recount3 is an easy-to-use resource for querying and
obtaining annotation-dependent and annotation-
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Figure 5. Gene expression variation. Principal component analysis of protein coding genes. (a) All
human, bulk samples (165,880 samples) with color indicating the library size. (b) As (a) but only
including samples with a labelled tissue (41,218 samples) colored by tissue. (c) As (a) but only
including blood samples (4,731 samples) with color differentiating blood and lymphoblastoid cell
lines (LCL) samples. Supplementary Figure S7 shows the variation across bulk and single-cell
RNA-seq. The percentage of variance explained by the Principal Component (PC) is given in the axis
labels.

agnostic expression summaries of public RNA-seq
datasets. It includes roughly 800,000 run accessions
divided evenly between human and mouse and
includes all of GTEx v8 and TCGA. To create
recount3, we created the Monorail system which
runs on a variety of compute backends, including
TACC/XSEDE, AWS and classic HPC systems. The
availability of Monorail, as software and as a
Docker image, makes it possible for users to process
their own data for analysis alongside recount3
as described in the recount3 documentation web-
site http://rna.recount.bio. This important
Monorail feature enables comparing local and/or
private data against the public data provided by
recount3.

Importantly, the Monorail workflow does not use
a gene annotation and is not biased against unan-
notated splicing patterns. While this requires that

reads be aligned in a spliced fashion to the reference
genome — a process that is more computationally
expensive than quantifying a gene annotation —
the resulting summaries enable crucial insights
into the annotated transcriptome. Our results here
showed that many well supported splicing events
are unannotated and that cell-type-specific splicing
events are particularly likely to be unannotatted,
consistent with prior observations (Nellore et al.,
2016; Ling et al., 2020). By further including
base-pair resolution summaries, we also enable
users to study transcription in any genomic region,
annotated or not.

A strength of the Monorail workflow is that it can
rapidly re-quantify datasets using new or updated
gene annotations starting from the coverage (big-
Wig) files, bypassing the need to re-run the aligner
or to store large BAM files. This will be important in
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the future as new annotations emerge and existing
annotations undergo revisions and improvements.

We provide powerful interfaces via the
recount3 and snapcount R/Bioconductor
packages, as well as through the Snaptron web
service. Snaptron supports a wide variety of
queries (eg. which samples supports a given splice-
junction) and snapcount provides an R interface
for these. Individual studies and metadata are
accessible both through standard file formats (text,
bigWig, Matrix Market) and through an R interface
which delivers standard Bioconductor-supported
objects for immediate analysis.

Though recount3 includes hundreds of thou-
sands of run accessions, the utility of these data is
often hampered by unreliable or missing metadata.
This points to multiple directions for future work.
First, it will be important to continue to build better
models for predicting missing metadata and correct-
ing mistakes in metadata (Ellis et al., 2018). Second,
it will be important to enable users with more
detailed knowledge of the datasets to create their
own collections of related datasets, possibly with
their own hand-curated metadata (Razmara et al.,
2019), and allow the sharing of such hand-curated
collections with the wider community. Third, since
metadata can sometimes be an unreliable way to
find relevant datasets, it will be important to design
methods that search for related datasets based on
their contents rather than their metadata, e.g. using
genomic sketching (Ondov et al., 2016; Baker and
Langmead, 2019).

A critical concern when combining public studies
is technical confounding and batch effects (Leek et
al., 2010). In light of this, it is perhaps surprising
that our work shows the primary source of variation
across all publicly available human and mouse
RNA-seq data to be tissue, since we analyzed essen-
tially uncorrected data. This agrees with previous
work (Lee et al., 2020). However, we caution against
over-interpreting this result. Here we studied total
variation across all human and mouse tissues. In
contrast, most biological questions of interest are
more focused, concerning perturbations (such as
disease) within a tissue or cell type. Expression vari-
ation associated with such perturbations is small
compared to the total variation across all tissues.
There is an ongoing need to adapt existing tools
for removing unwanted variation to this setting of
massive data with sometimes unreliable metadata,

to make it possible to study such perturbations
across data sources.

In summary, recount3 provides a way for all
researchers, regardless of computing resources, to
do large-scale analysis of gene expression.

METHODS

Monorail

Grid design Monorail’s design follows the grid
computing model. A large-scale analysis is centrally
scheduled and orchestrated, with units of work
handled by computers that might be spread across
the world (Figure 1b). For our experiments, or-
chestration was handled by a collection of services
running in the Amazon Web Services commercial
cloud. Computing work was handled in three com-
puting venues: (a) the Stampede2 cluster, located
at the Texas Advanced Computing Center (TACC),
accessed via the National Science Foundation’s
XSEDE network, (b) instances on the AWS cloud’s
Elastic Compute Cloud service, and (c) the Mary-
land Advanced Compute Center at Johns Hopkins
University. The bulk of the work was performed at
Stampede2, since it had both large capacity and no
per-unit-time cost to us. But our grid design also
enabled us to perform privacy-sensitive work on
the local, dbGaP-approved MARCC cluster. Addi-
tionally, Monorail is designed to be fault tolerant,
track provenance, centrally aggregate logs from
all components of the architecture, and provide
dashboards for monitoring and debugging. More
details are provided in Supplementary Note S2.

Obtaining data Sequence runs from both human
and mouse were selected from the Sequence Read
Archive (SRA) using filters designed to capture Illu-
mina RNA-seq sequencing runs for bulk or whole-
transcript single-cell sequencing experiments (Sup-
plementary Table S4, Supplementary Note S9). We
parsed metadata for these SRA runs and studies
from the NCBI SRA metadata obtained using the
Entrez API (Supplementary Note S9). For GTEx v8,
we obtained the sequencing data from both SRA
and the Google Cloud Platform, getting metadata
from the from the Annotations section of the GTEx
portal. For TCGA, we obtained the sequencing data
using the GDC Download Client tool and inherited
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curated metadata from the earlier recount2 project
(Supplementary Note S10).

Monorail: QC and Alignment The Monorail
analysis pipeline uses standard tools for analyzing
RNA-seq data and compiling QC measures. In
particular: (a) STAR (Dobin and Gingeras, 2016)
to align RNA-seq reads in a spliced fashion to
the reference genome, (b) seqtk (H Li, 2020) for
analysis of base qualities and base composition,
(c) Megadepth (Wilks et al., 2021) for analysis of
fragment length and distribution of coverage across
chromosomes, and (d) featureCounts (Liao et al.,
2014) for a coarse QC analysis of gene expression
levels. Details on the workflow used to generate
expression and splicing summaries, as well as QC
measures, can be found in Supplementary Note S11.

Monorail: Gene and exon quantification
Monorail uses Megadepth (Wilks et al., 2021)
to analyze the spliced-alignment BAM file output
by STAR. Megadepth produces a bigWig file
representing depth of coverage at every genomic
base (Supplementary Note S12). Megadepth also
summarizes the amount of sequencing coverage
within genomic intervals defined in a provided
BED file. We build this BED file by taking all
disjoint exonic intervals from one or more gene
annotations. This allows us to quantify the intervals
once using Megadepth, then sum the resulting
quantities into exon- and gene-level quantities for
all relevant annotations in the aggregation step.
The specific gene annotations used are listed in
Supplementary Note S5.

Given Megadepth’s coverage counts for the
disjoint exonic intervals, Monorail’s aggregator
uses a custom tool to sum these back into the full
set of annotated genes and exons. The result is a
tab-separated value (TSV) file containing coverage
sums across all genes and exons in a set of gene
annotations. This is the form the data takes in
in recount3; being a TSV file, it is generically
compatible with various programming languages
and analysis environments. When the user obtains
this data using the recount3 R/Bioconductor
package, the package translates the TSV file into
a RangedSummarizedExperiment object (Huber
et al., 2015) with all relevant row and column
metadata. More information on the recount3
R/Bioconductor package and the organization of

the exon- and gene-level summaries is provided in
Supplementary Note S7 and S13. See Supplemen-
tary Note S14 for information on the Snaptron data
formatting and indexing steps.

Monorail: Summarizing splicing When STAR
performs spliced alignment, it outputs a high-
confidence collection of splice-junction calls in a
file named (SJ.out.tab). This file describes each
junction called by STAR, including its beginning
and end, strand, splice motifs, and the number of
spliced alignments supporting the junction call.
Starting from these files — one per run accession
— the Monorail aggregator combines them into
both study- and collection-level matrices. These
matrices are naturally sparse, having mostly 0
entries, since many splice junctions appear only
in a small number of run accessions. Study-level
junction-count matrices are then converted into
Matrix Market and included in the recount3
resource. Collection-level matrices are indexed
using SQLite and/or tabix in preparation for
Snaptron queries.

Running Monorail We used Stampede2, AWS
EC2, and an institutional cluster (MARCC) to pro-
cess approximately 760,000 human and mouse
sequencing runs comprising 990 TB of compressed
data over six months starting October 2019 (Table
2). We used about 29,000 node hours in total, or
0.038 node-hours per sequencing run. We estimate
this would cost about $0.037 per accession using
equivalent cloud resources, improving substantially
on the $0.91 per accession achieved by our previous
Rail-RNA system (Nellore et al., 2017). Details
of the cost calculation are given in Supplementary
Note S3.

Roughly speaking, this cost is higher but within a
factor of about four times the per-accession costs of
other large-scale analysis pipelines (Ziemann et al.,
2019; Lachmann, Torre, et al., 2018). The difference
is because Monorail produces a wider palette of
outputs — e.g. a summary of both annotated and
unannotated splicing, bigWig files — allowing more
downstream analyses and relying less on a gene
annotation. Also, other systems generally require
a re-run of the workflow to adapt to a change in
gene annotation; Monorail can quantify a new
gene annotation directly from the per-base coverage
files, bypassing realignment. Details on Monorail
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cost and throughput are provided in Supplementary
Note S3.

Analyses

The GitHub repositories with the code for these
analyses are listed at http://rna.recount.
bio/docs/related-analyses.html.

Human and mouse splicing in SRA. We adapted
the analysis from the ASCOT study (Ling et al.,
2020), which gathered various studies of purified
cell types in mouse, to consider all splice junc-
tions individually rather than as cassette exons.
Given the junction-level summaries produced by
the Monorail workflow, we measured the fraction
of cell-type-specific splice junctions present in any
of recount3’s gene annotations for mouse. For each
junction that occurred in at least one sample, we
tested its cell type specificity using a Mann-Whitney
U test comparing coverage within a cell type to
coverage in all other cell types (403 samples in 34
studies). We binned the resulting -10 log p-values
and calculated the percent of junctions in each
bin that appeared in any tested gene annotation
(Supplementary Table S1).

Non-coding and unannotated transcription. Us-
ing recount3’s FANTOM-CAT quantifications, we
updated the previous analysis (Imada et al., 2020)
to use the recount3 quantifications, including the
additional runs present in GTEx v8. Briefly, this
involving computing the counts per million (CPM)
for the GTEx v8 data, then computing the entropy
across the different GTEx tissues, and using the
FANTOM-CAT annotation (Imada et al., 2020) we
made Figure 4a.

We obtained the intronic ERs identified
previously (Zhang et al., 2020), separated them by
chromosome, to then generate randomly chosen
intervals with the same length distribution from
the same chromosomes as the intronic ERs. We
repeated this process 99 times in order to generate
99 sets of random intervals that are length and
chromosome-matched to the intronic ERs. We
then quantified the sum of the base-pair coverage
across each of those random intervals on the
human bigWig files from SRA studies using
Megadepth version 1.0.3 (Wilks et al., 2021) with
the --annotation and --op sum arguments.

We then filtered the random intervals to keep those
with non-zero expression in at least 500 samples.
Then we computed the mean sum of base-pair
expression among the random intervals for each
of the 99 random sets, and finally we show the
distribution of these 99 means in Figure 4b.

Differentiating between bulk and single-cell.
We built a simple predictor based on the sparsity
pattern of a set of labelled data. We estimate
empirical distributions of the percentage of genes
with 0 expression, separately for each of the two
labelled groups, yielding two observed training
distributions fb and fsc. Samples were predicted
to be either bulk or single-cell based on the ratio
r = fb/( fb + fsc). We also considered using library
size as predictor, but decided to not include it.

For the mouse data we used simple text analysis
(Supplementary Note S9) of the SRA meta data
records to predict whether a sample was single-
cell or bulk; this was used as labelled data. We
made predictions on all samples (which could
differ from the predictions based on text analysis),
using the cutoffs r(sample) > 0.825 to predict
bulk, r(sample) < 0.1 to predict single-cell and the
remaining samples were unclassified. We used the
gencode v25 annotation.

For the human data we used a larger set of
labelled samples, both based on the text analysis
(as for mouse) and also manual curation. We
had ∼50k manually curated samples (of which
∼48k was bulk) and ∼92k samples based on text
analysis. Predictions were made using the cutoffs
r(sample) > 0.5 to predict bulk and r(sample) <
0.5 to predict single-cell. We used the gencode v29
annotation.

Manual curation. We performed PCA on the
protein coding genes in mouse to investigate gene
expression variation. Using both the PCA plot as
well as study size, we chose studies for manual
curation, based on selecting 2-4 studies out of the
5 largest studies. We subsequently added samples
from studies of testes.

For the human data we manually curated tis-
sue types and experiment types for 30,473 SRA
samples of 373 SRA studies. We used the meta-
data provided by SRA selector or corresponding
GEO samples. The experiment types are broadly
classified into 4 categories: bulk RNA-seq, single

Wilks et al. | 2021 | bioRχiv | Page 12

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.05.21.445138doi: bioRxiv preprint 

http://rna.recount.bio/docs/related-analyses.html
http://rna.recount.bio/docs/related-analyses.html
https://doi.org/10.1101/2021.05.21.445138
http://creativecommons.org/licenses/by/4.0/


cell RNA-seq, small/Micro RNA-seq, and others.
Others consist of a range of experiment types, such
as locus-targeted sequencing and ribosome sequenc-
ing, which are usually quite different from tradi-
tional bulk RNA-seq (Supplementary Figure S7);
users should check the SRA database if interested
in these other experiment types. We supplemented
these SRA studies with GTEx and TCGA.

Data Presentation

recount3 The recount3 R/Bioconductor
package allows users to download gene, exon,
and exon-exon junction counts data provided by
the recount3 resource. recount3 is designed to
be user friendly and enable users to utilize
the full set of analytical and visualization
software available in Bioconductor for RNA-
seq data. recount3 achieves this by enabling
downloads per study and by presenting the
data through RangedSummarizedExperiment
R/Bioconductor objects (Huber et al., 2015).
recount3 provides multiple options for
converting the base-pair coverage counts (Collado-
Torres, Nellore, and Jaffe, 2017) into read counts,
RPKM values, among other options. Furthermore,
recount3 provides the URLs for accessing all of
the recount3 resource text files such as the sample
bigWig coverage files (Kent et al., 2010), enabling
non-R users to build their own utilities for accessing
the data. See Supplementary Note S7 for more
details.

Snaptron While recount3 offers the user a way
of accessing gene, exon, and junction coverage, it
is limited to providing that only at the study level.
Snaptron (Wilks et al., 2018) and its newly added R
interface, snapcount, provide the ability to query
precise regions of the genome for the coverage gen-
erated in Monorail. Queries can be made across all
samples or for a specific subset. Queries can request
summaries at the gene, exon, or junction level.
Queries can be further filtered by aggregate sample
occurrence and read coverage. Additionally, these
tools enable “higher-level” analyses to be carried
out across region queries to support operations such
as percent spliced in (PSI) and tissue specificity
(in the case of GTEx). snapcount specifically
creates filtered RangedSummarizedExperiment
objects (Huber et al., 2015) dynamically based on

the user’s query in contrast to the fixed nature of
recount3’s study-level data objects. See Supplemen-
tary Note S8 for more details.
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Ramı́rez, F, Ryan, DP, Grüning, B, Bhardwaj, V, Kilpert,
F, Richter, AS, Heyne, S, Dündar, F, and Manke, T
(2016). deepTools2: a next generation web server
for deep-sequencing data analysis. Nucleic Acids
Research 44, W160–5. D O I: 10.1093/nar/gkw257.

Razmara, A, Ellis, SE, Sokolowski, DJ, Davis, S, Wilson,
MD, Leek, JT, Jaffe, AE, and Collado-Torres, L (2019).
recount-brain: a curated repository of human brain
RNA-seq datasets metadata. bioRxiv, 618025. D O I :
10.1101/618025.

Schatz, MC, Philippakis, AA, Afgan, E, Banks, E, Carey,
VJ, Carroll, RJ, Culotti, A, Ellrott, K, Goecks, J,
Grossman, RL, et al. (2021). Inverting the model
of genomics data sharing with the NHGRI Genomic
Data Science Analysis, Visualization, and Informatics
Lab-space (AnVIL). bioRxiv, 2021.04.22.436044. D O I:
10.1101/2021.04.22.436044.

Shepherd, L and Morgan, M (2020). BiocFileCache:
Manage Files Across Sessions. R package version 1.15.1.

Srivastava, A, Malik, L, Smith, T, Sudbery, I, and Patro,
R (2019). Alevin efficiently estimates accurate gene
abundances from dscRNA-seq data. Genome Biology
20, 65. D O I: 10.1186/s13059-019-1670-y.

Wilks et al. | 2021 | bioRχiv | Page 15

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.05.21.445138doi: bioRxiv preprint 

https://doi.org/10.1093/gigascience/giaa117
https://doi.org/10.1093/gigascience/giaa117
https://doi.org/10.1038/nrg2825
https://doi.org/10.1186/1471-2105-12-323
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1093/bioinformatics/btt656
https://doi.org/10.1038/s41467-019-14020-5
https://doi.org/10.1038/s41467-019-14020-5
https://math.nist.gov/MatrixMarket/
https://math.nist.gov/MatrixMarket/
https://doi.org/10.1186/s13059-019-1710-7
https://doi.org/10.1186/s13059-019-1710-7
https://doi.org/10.1093/bioinformatics/btw575
https://doi.org/10.1093/bioinformatics/btw575
https://doi.org/10.1186/s13059-016-1118-6
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1093/nar/gkv1189
https://doi.org/10.1186/s13059-016-0997-x
https://doi.org/10.1093/nar/gkz947
https://doi.org/10.1093/nar/gkz947
https://doi.org/10.1038/nmeth.4197
https://doi.org/10.1038/nbt.3122
https://doi.org/10.1186/s13059-018-1590-2
https://doi.org/10.1186/s13059-018-1590-2
https://doi.org/10.1093/bioinformatics/btx143
https://doi.org/10.1093/bioinformatics/btx143
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1038/nmeth.2639
https://doi.org/10.1093/nar/gkw257
https://doi.org/10.1101/618025
https://doi.org/10.1101/2021.04.22.436044
https://doi.org/10.1186/s13059-019-1670-y
https://doi.org/10.1101/2021.05.21.445138
http://creativecommons.org/licenses/by/4.0/


SciServer: a Collaborative Workspace for Data Analysis,
Sharing and Storage in the Cloud (2020). Vol. 522, 279.

Tange, O et al. (2011). Gnu parallel-the command-line
power tool. The USENIX Magazine 36, 42–47.

Tatlow, PJ and Piccolo, SR (2016). A cloud-based
workflow to quantify transcript-expression levels in
public cancer compendia. Scientific Reports 6, 39259.
D O I: 10.1038/srep39259.

Towns, J, Cockerill, T, Dahan, M, Foster, I, Gaither, K,
Grimshaw, A, Hazlewood, V, Lathrop, S, Lifka, D,
Peterson, GD, et al. (2014). XSEDE: accelerating scien-
tific discovery. Computing in science & engineering
16, 62–74.

Vivian, J, Rao, AA, Nothaft, FA, Ketchum, C, Arm-
strong, J, Novak, A, Pfeil, J, Narkizian, J, Deran, AD,
Musselman-Brown, A, et al. (2017). Toil enables re-
producible, open source, big biomedical data analyses.
Nature Biotechnology 35, 314–316. D O I : 10.1038/
nbt.3772.

Wilks, C, Ahmed, O, Baker, DN, Zhang, D, Collado-
Torres, L, and Langmead, B (2021). Megadepth: effi-
cient coverage quantification for BigWigs and BAMs.
Bioinformatics. D O I : 10.1093/bioinformatics/
btab152.

Wilks, C, Gaddipati, P, Nellore, A, and Langmead, B
(2018). Snaptron: querying splicing patterns across
tens of thousands of RNA-seq samples. Bioinformatics
34, 114–116. D O I : 10.1093/bioinformatics/
btx547.

Xie, Y, Cheng, J, and Tan, X (2021). DT: A Wrapper of the
JavaScript Library ’DataTables’. R package version 0.17.

Zerbino, DR, Johnson, N, Juettemann, T, Wilder, SP,
and Flicek, P (2014). WiggleTools: parallel process-
ing of large collections of genome-wide datasets for
visualization and statistical analysis. Bioinformatics
30, 1008–1009. D O I : 10.1093/bioinformatics/
btt737.

Zhang, D, Guelfi, S, Garcia-Ruiz, S, Costa, B, Reynolds,
RH, D’Sa, K, Liu, W, Courtin, T, Peterson, A, Jaffe,
AE, et al. (2020). Incomplete annotation has a
disproportionate impact on our understanding of
Mendelian and complex neurogenetic disorders. Sci-
ence Advances 6, eaay8299. D O I: 10.1126/sciadv.
aay8299.

Ziemann, M, Kaspi, A, and El-Osta, A (2019). Digital
expression explorer 2: a repository of uniformly
processed RNA sequencing data. GigaScience 8. D O I:
10.1093/gigascience/giz022.

Wilks et al. | 2021 | bioRχiv | Page 16

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.05.21.445138doi: bioRxiv preprint 

https://doi.org/10.1038/srep39259
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1038/nbt.3772
https://doi.org/10.1093/bioinformatics/btab152
https://doi.org/10.1093/bioinformatics/btab152
https://doi.org/10.1093/bioinformatics/btx547
https://doi.org/10.1093/bioinformatics/btx547
https://doi.org/10.1093/bioinformatics/btt737
https://doi.org/10.1093/bioinformatics/btt737
https://doi.org/10.1126/sciadv.aay8299
https://doi.org/10.1126/sciadv.aay8299
https://doi.org/10.1093/gigascience/giz022
https://doi.org/10.1101/2021.05.21.445138
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY MATERIALS

recount3: summaries and queries for large-scale
RNA-seq expression and splicing

Christopher Wilks, Shijie C. Zheng, Feng Yong Chen, Rone Charles, Brad Solomon, Jonathan P.
Ling, Eddie Luidy Imada, David Zhang, Lance Joseph, Jeffrey T. Leek, Andrew E. Jaffe,

Abhinav Nellore, Leonardo Collado-Torres, Kasper D. Hansen∗, Ben Langmead∗

(∗ correspondence to langmea@cs.jhu.edu, khansen@jhsph.edu)

Contents

• Supplementary Notes S1–S14.

• Supplementary Figures S1–S7.

• Supplementary Tables S1–S4.

Wilks et al. | 2021 | bioRχiv | Page S1

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.05.21.445138doi: bioRxiv preprint 

langmea@cs.jhu.edu
khansen@jhsph.edu
https://doi.org/10.1101/2021.05.21.445138
http://creativecommons.org/licenses/by/4.0/


SUPPLEMENTARY TABLES

Supplementary Table S1. Junction annotation sources. Descriptions are from the UCSC Table Browser
track detail page or the Gencode website. See also Supplementary Note S5.

Short name Description Reference build

Acembly
AceView gene models from
cDNA by Danielle and Jean Thierry-Mieg at NCBI,
using their AceView program

hg19, mm9

Chess 2.2 Chess transcripts assembled using StringTie based on GTEx (Pertea et al., 2015) hg38

ccdsGene
Human genome high-confidence gene annotations from the
Consensus Coding Sequence (CCDS) project

hg19, hg38, mm9, mm10

Gencode
19 (hg19), 24-26, 29, 33 (hg38)
1 (mm9), 2-24 (mm10)

hg19, hg38, mm9, mm10

GSE72311 lncrna long non-coding RNA transcripts from the GSE72311 study mm10

knownGene
A set of UCSC gene predictions based on data from RefSeq,
GenBank, CCDS, Rfam, and the tRNA Genes track

hg19, hg38, mm9, mm10

lincRNAsTranscripts
Human Body Map lincRNAs (large intergenic non
coding RNAs) and TUCPs (transcripts of uncertain coding potential)

hg19, hg38

mgcGenes
The Mammalian Gene Collection
(MGC) of full-length open reading frames (ORFs) in the genome.

hg19, hg38, mm9, mm10

refGene
The NCBI RNA reference sequences
collection (RefSeq)

hg19, hg38, mm9, mm10

sibGene Swiss Institute of Bioinformatics cDNA/EST-based gene predictions hg19, hg38

vegaGene
Annotated genes from the Vertebrate Genome Annotation (VEGA)
database (Human chr14, 20, 22 only)

hg19, mm9

Supplementary Table S2. SRA Human v3 Annotated Junction Percentages. First column specifies the
filtering criterion: only junctions appearing in at least this percent of run accessions are included. Other
columns specify the percentage of these junctions that appear entirely in some annotation (“%
annotated”), where both the donor and acceptor appear in some annotation, but never together in the
same junction (“% exon skip”), where either the donor or the acceptor do not appear in annotation (“%
one annotated”), and where neither donor nor acceptor appear in annotation (“% neither annotated”).
We used an inclusive set of gene annotations including all the annotated junctions in several Gencode
versions up to V33, as well as CHESS 2.2. The full set of annotations is listed in Supplementary Table S1.

%-of-samples threshold % annotated % exon skip % one annotated % neither annotated

1 54.4 10.7 24.8 10.0
2 67.7 8.7 17.7 5.9
5 84.0 5.0 8.5 2.5

10 93.4 2.4 3.2 1.0
20 98.3 0.8 0.6 0.3
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Supplementary Table S3. SRA Mouse v1 Annotated Junction Percentages. Same as previous table, but
considering junctions from SRA Mouse v1. We used an inclusive set of gene annotations including all the
annotated junctions in Gencode versions up to V24. The full set of annotations is listed in Supplementary
Table S1.

%-of-samples threshold % annotated % exon skip % one annotated % neither annotated

1 55.7 8.7 23.9 11.6
2 70.6 6.8 16.5 6.2
5 87.5 3.5 7.0 2.0

10 95.4 1.5 2.4 0.7
20 98.8 0.5 0.4 0.2

Supplementary Table S4. Bulk versus single-cell run accessions processed. Metadata fields were
used to subdivide the run accessions into “Smart-seq” and “Bulk” categories, according to criteria
described in Supplementary Note S9.

Bases Terabytes
Runs Studies ×1012 (compressed)

Human Bulk 218,978 8,357 868 451
Smart-seq 97,465 320 60 30
Total 316,443 8,677 928 481

Mouse Bulk 203,144 9,407 657 329
Smart-seq 213,715 681 75 34
Total 416,859 10,088 732 363
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Supplementary Figure S1. The Monorail relational database model. Rectangles denote tables and arcs
denote the key relationships between tables. This image was created using the
sqlalchemy schemadisplay package. See also Figure 1 and Supplementary Note S2.
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Supplementary Figure S2. Monorail workflow parallelism. Illustration of how Monorail ensures
parallelism both across nodes of the cluster (node manager launching many simultaneous runners) and
across cores on a single cluster node (runner launching many simultaneous processes). Supplementary
Figure S3 shows a single Monorail analysis workflow. See also Figure 1 and Supplementary Note S2.
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Supplementary Figure S3. Monorail analysis workflow. Illustration of key steps and key inputs and
outputs of the Monorail analysis workflow. Not shown: reference, gene annotation and index files are
also stored on the local filesystem and loaded by tools like STAR and featureCounts as needed. The
workflow is driven by Snakemake and runs within a Singularity container on a cluster node.
Supplementary Figure S2 illustrates how many such workflows run in parallel on a cluster. See also
Figure 1 and Supplementary Note S2.

Wilks et al. | 2021 | bioRχiv | Page S6

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted October 4, 2021. ; https://doi.org/10.1101/2021.05.21.445138doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445138
http://creativecommons.org/licenses/by/4.0/


Merge by 
study

Merge by 
collection

Add motifs

Add annotation status

Index
SQLite / Tabix

Snaptronrecount3

Sum into 
whole genes

Sum into 
whole exons

Tabulate by 
study

Tabulate by 
collection

Tabulate by 
study

Tabulate by 
collection

QC summaries

Merge by 
study

Merge by 
collection

QC summariesSample 
metadata & QC 

summaries

Junction 
summaries

Disjoint exonic 
interval 

summaries

Repeat for each 
gene annotation

Index
Lucene

Index
SQLite / Tabix

Index
SQLite / Tabix

Supplementary Figure S4. Monorail Aggregation Workflow. Illustration of Monorail’s aggregation
workflow. The workflow runs on a single computer, taking all run-level analysis outputs as its input. Its
outputs are the study- and collection-level objects and indexes hosted by recount3 and Snaptron. The
disjoint exonic interval summaries furnish raw counts that can be summed into both exon- and gene-level
counts. The “add motifs” step for junctions adds the specific donor and acceptor dinucleotide patterns
present in the reference in genome for that junction. For the “add annotation status” step for junctions, an
inclusive set of gene annotations is used, as detailed in Supplementary Note S5. Not pictured: metadata
is also aggregated and hosted by recount3 and Snaptron. Also not pictured: bigWig files are organized
into per-study subdirectories on the host filesystem. See also Figure 1 and Supplementary Note S2.
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Supplementary Figure S5. Dashboard at peak throughput. Example of how the Monorail dashboard
captured an instance of peak throughput when using 24 out of our maximum allocated 25 simultaneous
Skylake nodes on the Stampede2 supercomputer at the Texas Advanced Computer Center. The red box
indicates the hour when we achieved peak throughput of around 3.63 TB per hour. The red arrow points
to the data point in the ”In Throughput” dashboard element showing that measurement. The green box
and arrow indicate that, throughout this time period, the fraction of the wall clock time spent on the
download step of the workflow stayed steady at about 15–19%, indicating that downloading from the
Sequence Read Archive was not a particular bottleneck during this approximately 12-hour period. See
also Supplementary Note S3.
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Supplementary Figure S6. Dashboard at input bottleneck. Example of dashboard during a period
where downloading from the SRA became a bottleneck. The blue rectangles highlight a period where
Input Throughput was low (left panel, middle plot) and the fraction of the wall clock time spent on the
download step of the workflow climbed to over 90%, staying there for a few hours before the bottleneck
resolved. See also Supplementary Note S3.
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Supplementary Figure S7. Differentiating bulk and single-cell RNA-seq data. (a) The distribution of
zeroes for different types of labelled human data. (b-d) PCA of human data colored by (b) library size; (c)
curated labels; (d) precited and curated labels. (e) Percent of zeroes from labelled mouse data. (f-g)
Predicted labels from mouse data (f) bulk, (g) single-cell. The percentage of variance explained by the PC
is given in the axis labels. Legends for (a-d): Bulk, manual - manually curated bulk samples; Sc, manual -
manually curated single-cell samples; Sc, text mining - single-cell samples labelled by text analysis ;
Small-RNA, manual - manually curated samples which were identified as small-RNA-seq; Other, manual
- manually curated samples which were identified as other assayssuch as ribosome profiling; Unlabelled -
all other samples before we differentiated bulk and single-cell samples using the percentage of zero as the
predictor; Predicted Bulk - predicted bulk samples using the predictor; Predicted Sc - predicted single-cell
samples using the predictor. Before doing PCA, we removed some samples which we believe are not
RNA sequencing samples, which accounts for the sample number difference between (a) and (b,c,d).
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Supplementary Figure S8. Principal component analysis of protein coding genes of bulk samples
faceted by tissue types. This figure is tissue type faceted version of Figure 5. Each panel highlights one
tissue type and display all other cells as gray points in the back. The percentage of variance explained by
the PC is given in the axis labels.

Supplementary Figure S9. Variation of hemoglobin genes. (a) The sum of 3 hemoglobin genes (HBA1,
HBA2, HBB) is correlated with PC1. PCC: Pearson Correlation Coefficient. Blood: manually curated
blood samples; GTEx: GTEx blood samples; LCL: lymphoblastoid cell lines; WB: manually curated
whole blood samples; Other: all other samples, which are colored as gray. (b) Similar to (a), but now we
cut the log2(CPM sum) into four groups. The box shows the median, upper quartile and lower quartile
of PC1 values for each group.
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Supplementary Figure S10. Principal component analysis of human bulk lncRNA data. This figure is
similar to Figure 5, but for lncRNA data. (a) All human, bulk samples (207,417 samples) with color
indicating the library size. (b) As (a) but only including samples with a labelled tissue (45,077 samples)
colored by tissue. (c) As (a) but only including blood samples (5,966 samples) with color differentiating
blood and lymphoblastoid cell lines (LCL) samples. The percentage of variance explained by the
Principal Component (PC) is given in the axis labels. Note that the sample size is different to the protein
coding gene data because we did separate filtering.
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Supplementary Figure S11. Principal component analysis of protein coding genes of single-cell
samples. Similar to Figure 5, but we are now showing the top 2 PCs of protein coding genes of all human
single cell samples (122,776 samples). (a) All human single cell samples are colored by the library size.
(b) As (a), but only including samples with a cell type label inferred by SingleR package and colored by
the cell type (121,837 samples). The percentage of variance explained by the PC is given in the axis labels.
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Supplementary Note S1
Detailed related work
For recount2, we previously analyzed 70,603 sequencing runs from the Sequence Read Archive (SRA),
GTEx project (GTEx Consortium, 2013), and TCGA consortium (Cancer Genome Atlas Research Network
et al., 2013), compiling splice-junction, gene, exon, and per-base coverages into the recount2 (Collado-
Torres, Nellore, Kammers, et al., 2017) and Snaptron (Wilks et al., 2018) resources.

Other projects have worked to summarize public RNA-seq datasets, with most providing only gene-
and transcript-level summaries. ARCHS4 (Lachmann, Torre, et al., 2018) used the Elysium web service
(Lachmann, Z Xie, et al., 2018) – which in turn used Kallisto (Bray et al., 2016) – to quantify isoforms in
187,946 human and mouse run accessions from GEO and SRA. ARCHS4 was later updated to include over
520K accessions. The DEE2 project used STAR (Dobin and Gingeras, 2016) and Kallisto to produce gene-
and transcript-level summaries for 580K run accessions, later growing to over 1 million, spanning human,
mouse and seven other model organisms. Similarly, the refine.bio resource (Greene et al., 2021) used
Salmon to analyze over 1.3 million samples spanning over 200 species. Tatlow et al. (Tatlow and Piccolo,
2016) used Kallisto to analyze approximately 12K TCGA and CCLE (Barretina et al., 2012) samples, also
producing gene- and transcript-level summaries. Toil (Vivian et al., 2017) used STAR, Kallisto and RSEM
(B Li and Dewey, 2011) to generate both spliced alignments (BAM files) and information about splice
junctions detected (bedGraph files). However, it was only run on approximately 20K samples, including
TCGA, TARGET, and a previous version of GTEx (about 7K samples).

Other projects have, like recount, produced larger and more multi-purpose summaries from archived
RNA-seq datasets. RNASeq-er (Petryszak et al., 2017) uses the iRAP pipeline to continually analyze
new RNA-seq datasets deposited in the European Nucleotide Archive. The effort has produced CRAM,
bigWig and bedGraph summaries for over 1 million run accessions to date, which are accessible via
a REST API. The Expression Atlas (Papatheodorou et al., 2020) draws on datasets from GEO (Barrett
et al., 2013) and Array Express (Athar et al., 2019) to form a compilation of over 1M RNA assays – mostly
microarray-based but also many RNA-seq – from multiple species. RNA-seq accessions are analyzed with
iRAP. The Single Cell Expression Atlas (Papatheodorou et al., 2020) extends the facility to include over
100 single-cell RNA-seq studies from several species, using Alevin (Srivastava et al., 2019) for analysis.

Some design improvements in recount3 can be more directly compared and contrasted with prior
projects. In particular:

• Monorail grid-computing design, detailed in Supplementary Note S2, is similar to that of ARCHS4
(Lachmann, Torre, et al., 2018), which also orchestrates the analysis work centrally (from a “scheduler
database”) and uses containers to encapsulate the analysis pipeline. A practical difference is that
Monorail was run on a variety of compute clusters, academic and commercial, whereas ARCHS4
was run entirely on the Amazon Web Services cloud. However, the design of ARCHS4 does allow
for multi-locus computation in principle. Toil (Vivian et al., 2017), DEE2 (Ziemann et al., 2019) and
the system of Tatlow and Piccolo, 2016 also use containers to encapsulate analysis.

• Monorail’s strategy of quantifying genes and exons starting from the bigWig coverage files, rather
than from the spliced alignments, makes it particularly convenient to re-analyze datasets already
summarized in recount3 but using a new gene annotation. This is further enabled by the efficient
Megadepth software tool (Wilks et al., 2021). This contrasts with previous projects, most of which
do not make bigWig files available. Though the RNASeq-er API (Petryszak et al., 2017) does produce
bigWig files, its gene- and exon-level quantifications are calculated with respect to alignments,
making these far less convenient to requantify using new annotations.

• Monorail uses a strategy of performing full spliced alignment with respect to a reference genome,
without using a gene annotation to limit or guide the alignment process. This allows recount3 to
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include and quantify splice junctions without any bias against unannotated junctions. This contrasts
with previous projects; e.g. previous projects that used Kallisto (Bray et al., 2016) or Salmon (Patro
et al., 2017) to quantify a gene annotation are not able to discover or quantify junctions absent from
the annotation (Ziemann et al., 2019; Tatlow and Piccolo, 2016; Vivian et al., 2017; Greene et al., 2021).
While many of the tools mentioned above do use STAR, they use it only in a mode that is guided by
gene annotation (Ziemann et al., 2019; Vivian et al., 2017), and so either omit or are biased against
unannotated junctions.

• recount3’s inclusion of the Snaptron infrastructure (Wilks et al., 2018) allows recount3 summaries to
be rapidly queried by users. The query interface is available by REST API and via the snapcount
R/Bioconductor package. This contrasts with past projects which have tended to make summaries
available only as files — as we also do in recount3 — compiled at a pre-determined levels of
granularity (study, run, etc). The Snaptron facility, by contrast, allows users to rapidly ask and answer
questions about expression levels and splicing patterns across all run accessions in a compilation,
e.g. all 316,443 human SRA samples, and retrieve a specific answer within seconds without having
to download larger summaries. Importantly, these searches can be conducted not just by filtering by
sample metadata, but also by specifying genomic intervals and/or expression/splicing patterns of
interest. For example, a query can ask to list all of the run accessions where one splicing pattern is
much more frequent than an alternative splicing pattern. Or a query can ask for all the junctions that
occur more than 10 times in at least 100 run accessions. While targeted summaries are available for
querying through the RNASeq-er API (Petryszak et al., 2017), these queries are less flexible, requiring
the user to know a gene, study or run of interest ahead of time. A similar point is true of many of the
user interfaces provided in the above systems; they usually require that the user first identify a gene,
study or run of interest, before producing a figure that summarizes the corresponding data.

For details on how recount3 differs from recount2, and the advantages associated with decisions made
in recount3, see Supplementary Note S6.
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Supplementary Note S2
Monorail details
Here we detail the design and implementation of Monorail, focusing on portions of the system that
generate the data summaries for recount3 and Snaptron. The system has additional tools and features
not described here, but these are experimental and/or not required to produce the standard RNA-seq
summaries needed for recount3.

Orchestration Monorail follows a grid computing design, meaning that computational tasks can take
place on various systems at various times, with all computation coordinated over the Internet by a few
centralized services. Monorail’s centralized components run on Amazon Web Services. A database
server hosts a database containing the overall data model, discussed later. This is a db.t2.medium
instance from the Amazon Relational Database Service (RDS) running PostgreSQL version 10. A job
queue provides a centralized, synchronized way for various analysis nodes to obtain the next available
unit of work. Since it is synchronized, there is no chance of a “race condition” in the event that many
analysis nodes ask for the next unit of work at the same time. This facility uses AWS’s Simple Queue
Service (SQS), which also provides a degree of fault tolerance via timeout and job-visibility mechanisms.
A reference file repository stores the reference files — e.g. genome assembly FASTA files, index files,
gene annotation files — used across the project. This uses AWS’s Simple Storage Service (S3). Finally,
a centralized logging service provides a single place for all the components of the system to keep logs.
Analysis nodes, orchestration services, and client software all archive messages in this central repository.
We use the AWS CloudWatch service for this facility. CloudWatch additionally allows us to visually follow
the state of the system by viewing a CloudWatch Dashboard. Examples are shown in Supplementary
Figures S5 & S6.

Though the orchestration layer consists of multiple cloud-based components, we adopted a decoupled
web-services design that enabled local testing. This in turn allowed us to implement and iterate the
design more quickly. Integration tests were accomplished using Docker Compose in conjunction with a
collection of published container images that emulated each of the key components. For the PostgreSQL
database server, we used the 10.4 version of the PostgreSQL published Docker image at https://hub.
docker.com/_/postgres. For the SQS queueing service, we used the 0.14.6 version of the elasticmq
published Docker image at https://hub.docker.com/r/softwaremill/elasticmq. For the S3
storage service, we used an adapted version of the minio published Docker image (tag 2019-03-27T22-35-
21Z) at https://hub.docker.com/r/minio/minio. For testing, the CloudWatch logging service
was replaced with the standard Python logging module.

Data Model The Monorail data model, pictured in Figure S1, defines the kinds of information that
can be tracked by the orchestration layer. For instance, the input table describes all the sequencing-
read input files for all the computations. For some files, these might “point to” the dataset via an SRA
accession; for others, this might use a URL to locate the file. The annotation and source tables
contain information about the origin of all the reference files used, including genome indexes and gene
annotations. The analysis table describes all the Docker and/or Singularity images that might be
used to analyze an input dataset. The data model can be created and modified using Python scripts
in the orchestration software, available at https://github.com/langmead-lab/recount-pump.
This software uses the SQLAlchemy object-relational model to map tables in the PostgreSQL database to
objects in the Python infrastructure.

Managers and runners Now we describe the software that runs on the compute clusters that obtain
jobs from the orchestration layer, perform the analysis, and store the outputs. The highest level, an
analysis node runs a node manager, which launches a number of individual “job runners,” each allocated
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a fraction of available memory and hardware threads. The bottom layer is the runner which runs on
the compute-node “slice” allocated to it by the node manager. A runner enters a “job loop,” where
it repeatedly checks a queue of all pending tasks for the project. Once it has obtained a job, a runner
launches a Singularity container that in turn runs the corresponding workflow. This is illustrated in
Figure S2.

Workflow The Monorail analysis workflow is driven by a Snakemake workflow that runs inside a
Singularity container. The use of a container system allows us to package all of the constituent software
tools and all their dependencies in a single image. We use Singularity (rather than Docker, for example)
because it runs with non-root privileges on multi-user systems. Singularity is commonly available on
scientific clusters including on our local MARCC cluster and on the Stampede2 cluster.

Here we list each major tool used in the workflow along with its version number. For a more complete
account of the workflow, see the code in the workflow/rs5 subdirectory of the https://github.
com/langmead-lab/recount-pump repository.

• Singularity: >=2.6.0, 3.4.2

• Snakemake: 5.4.0

• prefetch and fastq-dump (SRA Toolkit): 2.9.1-1

• parallel-fastq-dump: 0.6.3

• Google Cloud Platform gsutil: 4.47

• Rsync: 3.1.2

• Samtools: 1.9

• NCI Genomic Data Commons gdc-client: 1.3.0

• STAR: 2.7.3a

• featureCounts: 1.6.3

• Megadepth: 0.4.0

• seqtk: 1.3-r106

• GNU parallel: 20130922

• Python: 2.7.5, 3.6.7

• PyPy: 5.10.0 (Python 2.7.13)

• zstd: 1.4.0

• pigz: 2.4

• SQLite: 3.28.0

• Tabix: 1.9
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Workflow: Alignment The STAR aligner takes either unpaired or paired-end FASTQ files as input,
together with a suffix-array-based index of the reference genome sequence. STAR then performs spliced
alignment with respect to the reference sequence. Though STAR can be provided with a gene annotation,
which provides “hints” as to where splice junctions might occur, Monorail does not use this feature of
STAR. To emphasize: STAR can align reads in a spliced fashion across splice junctions of which it has no
foreknowledge. STAR does have foreknowledge of common splice-junction motifs. Specifically, STAR
understands the typical GT/AG donor/acceptor motif, as well as the and GC/AG, AT/AC motifs (and
their reverse complements). Further, it allows other motifs besides these, i.e. “non-canonical” motifs.
Motifs besides GT/AG receive additional penalties, with GC/AG motifs receiving a milder penalty, and
AT/AC and non-canonical motifs receiving a higher penalty. More details are provided in the STAR
manual.

STAR’s outputs include (a) a BAM file containing the spliced alignments, (b) a “sjout” file containing
a summary of all the splice junctions detected and the level of evidence for each, (c) a file consisting of
reads that failed to align, and (d) information about any chimeric alignments found. Later tools in the
Monorail workflow use outputs (a)–(c) to obtain the final summary files.

Workflow: Gene and exon level summaries The process by which the analysis produces gene and exon
level summaries is described in Methods and illustrated in Supplementary Figure S3 and Supplementary
Figure S4.

Workflow: Junction-level summaries The process by which the analysis produces junctions level
summaries is described in Methods and illustrated in Supplementary Figure S3 and Supplementary
Figure S4.

Aggregation The runners produce output files that are either transferred immediately to the aggregation
node via Globus, or stored locally and periodically transferred to the aggregation node in bulk. Once a
complete set of outputs are available on the aggregation node, we use our software tool (“recount-unifier”)
to combine them into the tables and indexes required for recount3 and Snaptron. The unifier performs
the following steps (also illustrated in Figure S4):

• Decompress exon- & junction-level summaries

• Paste exon sums together into study- and collection-level summaries

• Given gene annotations and exon sums for disjoint exonic intervals, combine these into sums across
annotated genes, split by study

• Merge junction counts into a sparse matrix, only including samples which had > 0 splits reads for a
junction

• Add information about which junctions were present in which existing gene annotations

• Split junction coverage into per-study sparse matrices in the Matrix Market format for recount3

The unifier output provides the underlying data files for both the Snaptron and recount3 projects,
though these are formatted differently. Further, QC statistics are aggregated across sequence runs for
the tranche. The unifier consists chiefly of a Snakemake workflow, using the GNU parallel utility (Tange
et al., 2011) to split work across processors.
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Supplementary Note S3
Monorail cost & throughput
Monorail uses a grid computing model to spread computing work over compute clusters. Two of the
clusters we used — “Stampede2” at the Texas Advanced Compute Center (TACC), and the Maryland
Advanced Research Computing Center (MARCC) cluster — were free of charge, subject only to disk-
space and job-queue quotas. The third venue — the Elastic Compute Cloud (EC2) on the Amazon Web
Services (AWS) commercial cloud — did incur charges, allowing us to calculate the costs of at the analyses
we performed there and, by extrapolation, a hypothetical overall cost for our analysis work. Here we
measure and report those costs and report a few other summary measures of Monorail’s throughput
and reliability.

Overall, we used these three clusters to analyze approximately 760,000 human and mouse sequencing
runs comprising 990 TB of compressed data over six months starting October 2019 (Table 2). We used
about 29,000 node hours in total, or 0.038 node-hours per sequencing run. We estimate this would
cost about $0.037 per accession using equivalent cloud resources, improving on the $0.91 per accession
achieved by our previous Rail-RNA system (Nellore et al., 2017).

The $0.037 per accession cost was estimated by processing a tranche of approximately 28,000 sequence
runs from the SRA through our workflow, but running on EC2 instances. We chose the c5d.24xlarge
instance type as it was closest in its specifications to the Skylake nodes available from Stampede2. This
instance cost approximately $0.9674 per spot-instance hour in the Ohio AWS region. Note, however, that
spot prices are like market prices that fluctuate according to supply and demand.

By (a) taking this spot-instance hour cost to be a cost estimate for a Stampede2 node, (b) using our
measurement of the number of Stampede2 node hours (SUs or “service units”) used by our project, and
(c) using the total number of run accessions we processed on Stampede2, we could extrapolate that the
cost per sequencing run was approximately $0.037 per run.

While the AWS infrastructure we used for the orchestration layer and log aggregation did also incur
some ongoing charges — mostly related to log aggregation (AWS CloudWatch) and queries to our data
model (AWS Relational Database Service or RDS) — these charges were generally in the low hundreds of
dollars per month.

When performing data analysis using the Stampede2 cluster, Monorail was at times able to achieve
an aggregate throughput of over 3.5 terabytes (TBs) of compressed input data processed in an hour.
This occurred at times when we had close to our allocated maximum of 25 simultaneous Skylake nodes
scheduled. Supplementary Figure S5 shows the dashboard view at such a throughput peak; a peak
throughput of approximately 3.63 TBs of input data per hour is visible in the red highlighted rectangle.
This was at a time when we were using 24 out of our maximum of 25 nodes.

While we occasionally observed bottlenecks due to our download throughput from the Sequence Read
Archive, evidenced by a high proportion of analysis time spent in the download step (Supplementary
Figure S6), we more typically observed only about 15–19% of the time spent in the download step
(Supplementary Figure S5), indicating the bottleneck was typically due to computation rather than data
transfer.

When processing data on the MARCC cluster, Monorail achieved an aggregate throughput of
approximately 0.563 compressed TBs using 11 Ivy Bridge-node compute jobs when processing runs in
the TCGA project downloaded from the NCI Genomic Data Commons.
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Supplementary Note S4
dbGaP Access with Monorail
Most of the data processed in this project is publicly available in the Sequence Read Archive. However,
both the GTEx and TCGA projects are considered protected data; potential users must go through
an application process and, once access is granted, must use a key to download and decrypt the raw
sequencing data. To facilitate this in Monorail, we support two different access methods to two protected
data sources: dbGaP and the NCI Genomic Data Commons (GDC). dbGaP is the primary data source for
most protected data studies’ sequence and alignment data stored in the SRA. The GDC is the primary
data source for the TCGA and TARGET cancer studies’ sequence and alignment data. Since the GTEx
and TCGA are both protected, we ran our entire Monorail analysis, including the aggregation steps,
on a local high performance computing cluster, the Maryland Advanced Research Computing Cluster
(MARCC).

To ensure the secure download tools have the information needed to use the decryption key (or other
proof of authorization), some extra configuration is required. For dbGaP, specifically with the container
approach we use in Monorail, the extra configuration is covered in detail here: https://github.
com/langmead-lab/monorail-external/blob/master/dbgap/README.md For GDC, details
are provided here: https://github.com/langmead-lab/monorail-external/blob/master/
gdc/README.md
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Supplementary Note S5
Reference files
For the human and mouse reference genomes, we used FASTA files obtained from the iGenomes resource
(https://support.illumina.com/sequencing/sequencing_software/igenome.html).
For human, we used the UCSC hg38 assembly, based on GRCh38. For mouse, we used the UCSC mm10
assembly, based on GRCm38. A STAR index was built for each, and indexes and reference files were
copied to shared filesystems on the relevant computing clusters prior to the Monorail analysis.

For both the human and mouse STAR indexes, we included control sequences from the ERCC (External
RNA Controls Consortium, 2005) project and the synthetic spliced exons from the SIRV transcriptome
project (Byrne et al., 2017). ERCC sequences were obtained from https://assets.thermofisher.
com/TFS-Assets/LSG/manuals/ERCC92.zip and SIRV sequences were obtained from https://
www.lexogen.com/wp-content/uploads.

When compiling gene and exon-level summaries for recount3 and Snaptron, we used multiple gene
annotations. We used these human gene annotations, all compatible with the hg38/GRCh38 assembly:

• Gencode V26 (G026) (also used in GTExV8)

• Gencode V29 (G029)

• RefSeq (R109)

• FANTOM-CAT V6 (F006)

We included FANTOM-CAT (v6) (Hon et al., 2017) to be more inclusive of non-coding RNA. For QC &
controls, we included the ERCC synthetic genes and SIRV transcripts.

We chose a single, recent Gencode version for our mouse annotation (M23) based on GRCm38 (mm10)
in addition to the ERCC and SIRV sets mentioned above.

For both organisms, we converted a GTF of the combined set of annotations above to the GFF3
format via the makeTxDbFromGFF function in the GenomicFeatures Bioconductor package (Lawrence
et al., 2013). We then passed that GFF3-formatted data to the exonicParts function also from the
GenomicFeatures package setting
linked.to.single.gene.only to FALSE. This produced a set of disjoint exonic intervals covering
all the annotations.

When we marked exon-exon junctions according to whether they occurred in annotation, we used a
more extensive set of annotations, laid out in Table S1.
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Supplementary Note S6
Comparison of recount2 and recount3
recount3 includes a total of 316,443 human and 416,803 mouse samples collected from the SRA, GTEx v8
release (19,214 samples from 972 individuals and 32 tissue types), The Cancer Genome Atlas (TCGA)
(11,348 samples from 10,396 individuals and 33 cancer types). This is substantially more than the 70,603
human RNA-seq samples included in our previous recount2 resource.

Also unlike recount2, roughly half the runs in recount3 are from whole-transcript single-cell protocols
such as Smart-seq (Goetz and Trimarchi, 2012) and Smart-seq2 (Picelli et al., 2013).

Improved user interface

recount3 expands users’ options for querying the data summaries. By adding the snapcount
Bioconductor (Huber et al., 2015) package and integrating Snaptron (Wilks et al., 2018), users can
now perform rapid queries across all summaries at once, e.g. across all the 316K human SRA samples.
Users can do this from the command line or from the Python or R programming languages. Between
the recount3 and snapcount R/Bioconductor packages, it is now much easier for users to discover
relevant datasets based on metadata, to download summary data at the study or run level, and to obtain
results within or across studies in metadata-rich SummarizedExperiment objects.

recount2 was accessible on the web through https://jhubiostatistics.shinyapps.io/
recount while recount3 is now accessible through http://rna.recount.bio/, with a documen-
tation website at http://rna.recount.bio/docs/. The recount3 website includes a study level
explorer made using shiny (Chang et al., 2021) and DT (Y Xie et al., 2021) which has a selector for
choosing the annotation of interest. The study selector is embedded on the documentation website such
that users can now navigate the recount3 website without timeout limitations from shinyapps.io and
is also available at https://jhubiostatistics.shinyapps.io/recount3-study-explorer/.
Based on the study and annotation selection by the user, the URLs for the appropriate raw files
are displayed on the study explorer. The different raw files provided by recount3 are described at
http://rna.recount.bio/docs/raw-files.html. These raw files are used by recount3 to
build the RangedSummarizedExperiment objects on demand, unlike recount2 where the files were
pre-generated. This new structure allows us to update individual components without having to re-create
the final objects, reduces the required disk space, and enables building interfaces to recount3 outside of R.
recount3 uses BiocFileCache (Shepherd and Morgan, 2020) to cache the raw files after down-

loading them, thus simplifying the end-user experience that users had with recount (for recount2)
when they repeatedly access the same data. Unlike recount, recount3 does not provide a function
for computing coverage for genomic regions from the recount3 bigWig files since this functionality has
been greatly improved in megadepth (Wilks et al., 2021). Furthermore, recount3 functions have a
recount url argument which can be set to a different mirror or a local directory. This enables using
recount3 with data produced by Monorail locally that is not necessarily public.

Additionally, we provide a free, notebook-based computational resource where uses can run R and
Python based analyses on the same computer cluster at Johns Hopkins University where recount3
summaries are hosted. This makes use of the existing SciServer-Compute system (Taghizadeh-Popp et al.,
2020) and allows users to “bring the computing to the data” and avoid extensive downloading.

Improved ability to process new samples

The new, Snakemake-based (Köster and Rahmann, 2018) analysis pipeline used to produce the summaries
is now much easier to use than the previous Rail-RNA software (Nellore et al., 2017). Both its analysis
and aggregation components can be run from public Docker images.
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Improved cross-study analysis

Unlike the recount R/Bioconductor package (for recount2), recount3 only provides access to GTEx
and TCGA data by tissue or tumor, respectively. The resulting RangedSummarizedExperiment objects
can be combined with cbind() if needed. This makes it easier to access a portion of GTEx or TCGA
without accessing the data from the full study.

Improved gene and exon quantification

Note that in recount2 we used GenomicFeatures::exonsBy(txdb, by = "gene") followed by
GenomicRanges::disjoin() (Lawrence et al., 2013) with the paramater ignore.strand set to the
default value FALSE as noted in the source code of recount::
reproduce ranges() and described in the recountWorkflow (Collado-Torres, Nellore,
and Jaffe, 2017). As described in Supplementary Note S5, in recount3 we used
GenomicFeatures::exonicParts(txdb) (Lawrence et al., 2013). This allows Monorail to
generate disjoint exonic intervals across genes, unlike in recount2 where the disjoint exons from one
gene were not guaranteed to be disjoint exons across genes, particularly for genes from opposite strands.
If exon e1 from gene g1 overlaps exon e2 from gene g2, Monorail generates base-pair coverage sum
counts for the up to 3 disjoint exonic intervals: disjoint exonic interval A (exclusive exonic interval from
exon e1), disjoint exonic interval B (shared exonic interval between exons e1 and e2), and disjoint exonic
interval C (exclusive exonic internal from exon e2). This allows quantifying the expression for exons e1
and e2, and ultimately genes g1 and g2, with or without considering shared elements such as disjoint
exonic interval B. The Monorail unifier described in Supplementary Note S2 by default does count
twice disjoint exonic interval B when computing the exon e1 and e2 (once for e1 and once for e2) and
ultimately the gene g1 and g2 counts, which are then accessed by recount3. Given file size limitations
and the much larger size of recount3 compared to recount2, we did not generate additional gene and
exon files excluding exonic intervals such as disjoint exonic interval B. However, using megadepth
(Wilks et al., 2021) it is possible to re-quantify the expression of a set of samples from the recount3 bigWig
files excluding disjoint exonic intervals such as disjoint exonic interval B for a given annotation of interest.
Even more efficiently, megadepth can be used to quantify the base-pair coverage sum counts from
disjoint exonic intervals such as disjoint exonic interval B and subtract it from the gene and exon counts
provided by recount3. Excluding exonic intervals shared across genes, or more simply any overlapping
genes, can be important for applications such as gene co-expression network inference.

As a consequence of these changes, recount3 provides access to base-pair coverage counts aggregated
at the exon level whereas recount (for recount2) provided access only to disjoint exons. Thus the
annotation information in recount3 for exons is much more detailed and their size is smaller and more
manageable.
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Supplementary Note S7
recount3 R package interface
The recount3 R package is available from Bioconductor (https://www.bioconductor.org/
packages/recount3), which was first released as part of Bioconductor 3.12. This package facilitates
download of recount3 data with a focus on retrieving all data from a given project or collection. Data is
delivered as a standard Bioconductor data container, such as a RangedSummarizedExperiment, with
associated metadata including metadata from the data source (ie. SRA, GTEx, TCGA) and QC data from
recount3. There is additional documentation in the package vignette.

To use this package, the user has to select a project (roughly corresponding to the data from a given
paper) as well as a data type. Data type is one of:

1. Gene measures (annotation dependent)

2. Exon measures (annotation dependent)

3. Junction counts (annotation independent)

4. Base-pair level data (annotation independent)

For the annotation dependent data types, an annotation needs to be selected as well. Following these
choices, the data is downloaded by our data host SciServer at Johns Hopkins University (Taghizadeh-
Popp et al., 2020). Data is locally cached to avoid unnecessary downloads, using the BiocFileCache
R/Bioconductor package (Shepherd and Morgan, 2020).

Gene measures, exon measures and exon-exon junction counts are delivered as
RangedSummarizedExperiment (RSE) objects while base-level data is delivered as collection of bigWig
files.

It is not possible to retrieve parts of the data matrices, for example data on a specific gene. This is the
purpose of the Snaptron web server and the snapcount R/Bioconductor package (Wilks et al., 2018).
recount3 is designed to work with custom data web servers and local files, which enables researchers

to use this R package with their own private data processed using the Monorail system.

Note on R package names: This manuscript describes the recount3 data collection and the recount3
R/Bioconductor package. The recount2 data collection (Collado-Torres, Nellore, Kammers, et al., 2017)
is accessed using the recount R/Bioconductor package, whereas the ReCount data collection (Frazee
et al., 2011) does not have an associated R/Bioconductor package.
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Supplementary Note S8
snapcount R package interface
The snapcount Bioconductor package gives users an easy R interface for accessing gene, exon, and
junction coverage data Snaptron queries. It replicates much of the functionality in the Snaptron Python
client. This includes supports for all of the “basic” queries and filters for gene, exon and junction data.
Queries can be filtered to narrow the focus to particular genes or genomic intervals, to events with certain
prevalence, to events that do or don’t appear in gene annotation, or to samples with particular metadata.
It also includes some higher-level queries, such as the Junction Inclusion Ratio query (JIR) for studying
the relative prevalence of two or more splicing patterns, and the Tissue Specificity (TS) query for scoring
junctions according to the degree to which they exhibit tissue-specific expression in the GTEx collection.
Finally, it includes functions for merging results across multiple collections using the same reference
genome and gene annotations (e.g. the GTEx and TCGA collections).

Data matrices returned from snapcount queries are presented to the user as dynamically generated
RangedSummarizedExperiment (RSE) objects, which package the data together with metadata about
the rows (genomic features) and columns (run accessions) of the matrix. Because the user has control
over various filtering criteria pertaining to the rows and columns, this can be a more convenient and
efficient way to arrive at a specific result.

The package is available at http://www.bioconductor.org/packages/snapcount.
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Supplementary Note S9
Selection of SRA datasets
Sequence runs from both human and mouse were selected from the Sequence Read Archive (SRA) using
the search parameters defined below:

• Human Entrez search:

(((((illumina[Platform]) AND rna seq[Strategy]) AND
transcriptomic[Source]) AND public[Access]) NOT
size fractionation[Selection]) AND human[Organism], run on 2019-10-06, producing
421,794 experiments to download.

• Mouse Entrez search:

Uses the same search query as human, except with mouse[Organism], run on 2020-01-08,
producing 528,058 experiments to download.

The sequence runs for both organisms were then further filtered after retrieval of the metadata records
from SRA based on the occurrence of certain single-cell RNA (scRNA) technology key words with the
primary intention of removing any Droplet based technology derived sequence runs (e.g. Chromium)
from the set to process through Monorail. The desired set of technologies was bulk-mRNA and smartSeq
(and variants) due to the full transcriptome coverage profiles generated by such platforms. Droplet based
technologies are typically end-biased as well as requiring substantially more effort to properly process the
raw sequences due to the presence of barcodes. They are not currently supported by Monorail. Table S4
gives the breakdown sequence runs processed for both organisms.

We performed a text search on the retrieved data to identify single-cell samples. This was done by
searching the XML files obtained from SRA for the following 20 patterns

10x cel.?seq chromium ctyoseq dronc.?seq drop.?seq fluidigm
indrop mars.?seq matq.?seq quartz.?seq sci-rna.?seq seq.?well
smart2-seq smarter smart.?seq split.?seq strt.?seq strt_seq
super.?seq
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Supplementary Note S10
Obtaining GTEx and TCGA data & metadata
We obtained GTEx metadata from the “Annotations” section of the GTEx portal:

https://storage.googleapis.com/gtex_analysis_v8/annotations/GTEx_Analysis_
v8_Annotations_SampleAttributesDS.txt

Since GTEx includes multiple runs per aliquot, we extended the GTEx aliquot barcode with a “.#” to
indicate which run the barcode is referring to. This is called “rail barcode” in our files. At the time of
data collections, samples from all GTEx releases up to and including v7 were accessioned by the SRA and
visible in the SRA Run Browser. Samples in GTEx v8 (excluding v6 & v7) were not accessioned in the
SRA, and are not present on the SRA Run Browser. Sequence data for GTEx v7 & v8 samples (excluding
v6) were available only in the AWS (v7 only) or Google Cloud Platform (GCP, v7 & v8) commercial clouds.
We retrieved GTEx v7 and v8 sequence data from GCP as BAM files (9,303 files), and retrieved all the
sample sequence data up to and including v6 from the SRA directly in the normal format (9,911 files). We
used the “gsutil cp” tool to download from GCP, and the “prefetch” tool from the SRA-Toolkit (together
with “parallel-fastq-dump”) to obtain FASTQ data from the SRA. The SRA retrieval tools are part of the
Monorail Docker image; we do not include “gsutil” as we considered its use to be a one-time event.

Metadata for TCGA was inherited directly from recount2 (Collado-Torres, Nellore, Kammers, et al.,
2017). TCGA sample sequence data was downloaded from the Genome Data Commons (GDC) using the
GDC Download Client tool, version 1.4, also included in the Monorail Docker image.
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Supplementary Note S11
Quality control
We used a number of tools to collect quality-control (QC) measures for each run accession in recount3.
Specifically, we used seqtk (H Li, 2020), the idxstats subcommand of samtools, the output of STAR
(Dobin and Gingeras, 2016), our own Megadepth tool (Wilks et al., 2021), and featureCounts (Liao
et al., 2014). The full set of QC measures are listed and briefly described at http://rna.recount.
bio/docs/quality-check-fields.html.
Monorail runs the seqtk fqchk command on input FASTQ files to collect base-quality and base-

composition summaries for all sequencing cycles. We distill these into a few QC measures included with
every summarized run in recount3. Monorail uses STAR to align RNA-seq reads in a spliced fashion to
a reference genome, without using any annotation. Files output by STAR, particularly the Log.out and
Log.final.out, report a number of measures. We compile these into a number of QC measures, some
reported separately for the two ends of a paired-end read.

The Megadepth tool, which runs on the BAM files output by STAR, also provides useful QC measures.
As Megadepth performs bigWig conversion, it also summarizes the amount of sequencing coverage
within the intervals of a provided BED file representing a gene annotation. These indicate, for example,
what fraction of the coverage is within annotated genes.

Finally, Monorail runs featureCounts on the BAM files output by STAR. This provides a “second
opinion” on the quantifications produced by Megadepth. We have not found compelling examples
where the Megadepth and featureCounts outputs materially disagree, but we nonetheless keep both
kinds of summaries as potential QC measures.
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Supplementary Note S12
bigWig processing with Megadepth
Megadepth (Wilks et al., 2021) is a new tool we built to serve two main purposes in this project:

• Efficiently convert the spliced-alignment BAM files produced by STAR into bigWigs files encoding
the depth of coverage at each base

• Efficiently re-quantify coverage over the bigWig files produced in the previous step for a new
annotation/set of intervals, avoiding the re-downloading of the original sequence + alignment steps

While there were tools available for performing each of these functions — e.g. pyBigWig (Ramı́rez
et al., 2016), WiggleTools (Zerbino et al., 2014) — no one tool was able to do both these things efficiently
in a single pass over the BAM file. Megadepth performs both functions efficiently using many threads,
and adds no major software dependencies to Monorail apart from Megadepth itself.

Specifically, Megadepth produces three relevant kinds of summaries in a single pass through the STAR
BAM file:

• Area Under Coverage (AUC)—related to mapping depth and used extensively in recount2 as
described in recountWorkflow (Collado-Torres, Nellore, and Jaffe, 2017)

• Per-base coverage as a bigWig file

• Coverage across the disjoined exons from the annotations described elsewhere in this Supplement

For all coverage summaries listed above, Megadepth reports the number(s) for all reads mapping and
those reads which mapped with minimum quality >= 10 separately (6 different reports).
megadepth also has a R/Bioconductor wrapper that allows for more easy interaction with recount3

bigWig files, as described in a separate manuscript (Wilks et al., 2021).
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Supplementary Note S13
recount3 data formatting
The coverage summaries provided in recount3 are stored as tab delimited matrices in GZip compressed
flat files. Rows are genes or exons, and columns are samples. Coverage is stored as raw per-base counts
summed over the relevant annotation interval (gene or exon). Junction files follow the Market Matrix
format (Matrix Market format n.d.) which represents the junction coverage matrix as a sparse list of matrix
coordinates for those cells which are non-0. The non-0 values represent the raw count of split reads
supporting a given junction. Per-base coverage values are stored in bigWigs, one bigWig file per sample.
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Supplementary Note S14
Snaptron data formatting and indexing
Whereas recount3 organizes our data summaries in a form that is easy to download and use at the
study level, Snaptron organizes the summaries in a way that enables queries across all data in an entire
collection. Snaptron indexes the same summaries as are available in recount3, but requires a different set
of indexes and data files. Snaptron stores gene, exon, and junction coverage summaries in a Snaptron-
specific tab delimited sparse-matrix format. This format contains the coordinates of the gene, exon, or
junction. For genes and exons, it also contains relevant information identifying the exon and/or gene.
For junctions, it also contains a list of all the gene annotations it appears in. In both cases, the summary
also contains a list of sample IDs where the feature occurs in, and the associated coverage (gene, exon) or
number of split reads (junctions).

Snaptron also indexes a condensed form of the per-base coverage from the bigWigs for the GTEx and
TCGA datasets. The SRAv3 human and SRAv1 mouse datasets are too large to fit the current per-base
indexing approach in Snaptron at this time.

See the Snaptron user manual (http://snaptron.cs.jhu.edu/) and publication (Wilks et al.,
2018) for details on the REST API and queries that can be made against Snaptron. Most queries can be
answered within a few seconds, though this depends on the amount of data returned, server load, and
network conditions between the client and server among other factors.
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