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 2 

Abstract 40 
Background: The objective of this study was to determine if mechanistic target of 41 

rapamycin (mTOR) inhibition with or without AMP-activated protein kinase (AMPK) 42 

activation can protect against primary, age-related OA.  43 

Design: Dunkin-Hartley guinea pigs develop mild primary OA pathology by 5-months of 44 

age that progresses to moderate OA by 8-months of age. At 5-months, guinea pigs 45 

sacrificed as young control (n=3) or were fed either a control diet (n=8), a diet enriched 46 

with the mTOR-inhibitor rapamycin (Rap, 14ppm, n=8), or Rap with the AMPK-activator 47 

metformin (Rap+Met, 1000ppm, n=8) for 12 weeks. Knee joints were evaluated by OARSI 48 

scoring, micro-computed tomography, and immunohistochemistry. Glenohumeral 49 

articular cartilage was collected for western blotting.  50 

Results: Rap and Rap+Met treated guinea pigs displayed lower body weight than control. 51 

Rap and Rap+Met inhibited articular cartilage mTORC1 but not mTORC2 signaling. 52 

Rap+Met, but not Rap alone, stimulated AMPK. Despite lower body weight and articular 53 

cartilage mTORC1 inhibition, Rap and Rap+Met treated guinea pigs had greater OA 54 

severity in the medial tibial plateau due to articular cartilage structural damage and/or 55 

proteoglycan loss. Rap and Rap+Met increased plasma glucose compared to control. 56 

Plasma glucose concentration was positively correlated with proteoglycan loss, 57 

suggesting hyperglycemic stress may have contributed to worsened OA. 58 

Conclusions: This is the first study to show that Rap induced increase in plasma glucose 59 

was associated with greater OA severity. Further, articular cartilage mTORC1 inhibition 60 

and bodyweight reduction by dietary Rap and Rap+Met did not protect against primary 61 

OA during the prevailing hyperglycemia. 62 

Key Words: Aging, mTOR, AMPK, Dunkin Hartley Guinea Pig, Primary Osteoarthritis 63 
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Background 64 

Primary, age-related osteoarthritis (OA) is estimated to account for as many as 90% 65 

of all knee OA cases in humans (1). However, preclinical research commonly relies on 66 

experimental models of secondary OA. Although primary and secondary OA share similar 67 

pathological outcomes, there is a growing body of evidence to suggest they are driven by 68 

distinct mechanisms. Retrospective analysis of differentially expressed genes from 69 

separate cohorts of primary and secondary OA patients relative to their healthy controls 70 

found that only 10% of differentially upregulated and 35% of differentially downregulated 71 

genes in OA vs non-OA samples are conserved between primary and secondary OA 72 

(2,3). Therefore, 65-90% of differentially expressed genes may be unique to primary 73 

versus secondary OA. Additionally, transgenic animal models have revealed that several 74 

genes are differentially involved in the progression of primary and secondary OA (4–9). 75 

For example, deletion of Panx3 protects against secondary OA yet dramatically worsens 76 

primary OA (4), and deletion of JNK1/2 accelerates the development of primary OA while 77 

having no effect on secondary OA progression (9). Together, these studies reinforce that 78 

unique mechanisms underpin these two forms of OA. 79 

Age is one of the greatest risk factors for nearly every chronic disease, including 80 

primary OA. Two evolutionarily conserved kinases, mechanistic target of rapamycin 81 

(mTOR) and AMP-activated protein kinase (AMPK), are energy sensing pathways 82 

similarly dysregulated during aging and OA (10–13). The mTOR inhibitor rapamycin (Rap) 83 

can extend lifespan in mice and delay the onset of several age-related morbidities (12,14). 84 

The anti-diabetic drug metformin (Met) can activate AMPK and, when added to Rap, 85 

extends lifespan to a greater extent than historical cohorts of mice treated with Met or 86 
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Rap alone (15). Additionally, Met is the first drug being tested to slow age-related multi-87 

morbidity in humans (16). While the prospect of lifespan extension is tantalizing, 88 

extending lifespan without delaying the onset or slowing the progression of the most 89 

debilitating age-associated conditions could be viewed as detrimental. Therefore, it is 90 

imperative to understand if purported lifespan-extending therapies that target the 91 

fundamental biology of aging are also capable of delaying the onset of chronic diseases, 92 

such as primary OA. 93 

mTOR exists as complex I (mTORC1) and complex II (mTORC2). mTORC1 regulates 94 

cellular proliferation, protein synthesis, senescence, and survival while mTORC2 95 

functions downstream of insulin signaling on substrates such as PI3K-Akt (12). In articular 96 

cartilage, mTORC1 activity increases with age and is sufficient to induce OA in young 97 

male mice (10).  In non-articular tissues, acute or intermittent Rap selectively inhibits 98 

mTORC1 while chronic Rap administration for durations greater than 14 days also inhibits 99 

mTORC2 activity (17). Cartilage-specific deletion of mTOR and systemic or intra-articular 100 

injections of Rap and the mTORC1/2 inhibitor Torin 1 lower secondary OA in young-male 101 

mice and rabbits (18–21). While these findings support mTOR-based therapeutics for OA, 102 

the completed studies were exclusively in injury-induced models of OA and have not been 103 

investigated in primary, age-related OA. 104 

Recently, it has been proposed that the positive effects of mTOR inhibition on OA 105 

pathology may be diminished by feedback activation of PI3K and has raised questions 106 

about the need for a dual treatment strategy that inhibits both mTOR and upstream PI3K 107 

signaling (22,23). In addition to activating AMPK, Met has pleotropic effects including 108 

inhibition of PI3K signaling in rheumatoid arthritis fibroblast-like synoviocytes (24). 109 
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Moreover, Met and other AMPK-activators have chondroprotective effects against 110 

inflammatory-induced protease expression in vitro (25,26) and protect against injury-111 

induced OA in young male mice and rhesus monkeys (27). Treatment with Met is also is 112 

associated with a lower rate of medial tibiofemoral cartilage volume loss and risk of total 113 

knee replacement in obese patients (28). However, Met as an adjuvant therapy to Rap 114 

has not been investigated in primary OA.  115 

The Dunkin-Hartley guinea pig is a well-characterized outbred model of primary OA. 116 

The progression of OA in guinea pigs is related to bodyweight (29) and shares a similar 117 

age-related and spatial progression to humans (30). Mild OA pathology develops by 5 118 

months in guinea pigs that progresses to moderate OA by 8-9 months of age (30–32). 119 

Therefore, at 5 months of age we treated guinea pigs with lifespan-extending doses of 120 

Rap or a combination of Rap+Met for 12 weeks to slow the progression from mild to 121 

moderate OA. This study is the first to evaluate if lifespan extending treatments can 122 

modify primary OA, the most prevalent form of OA observed in older adults. 123 
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Methods 124 

Animal Use 125 

All tissues were collected at the University of Illinois Urbana-Champaign and 126 

approved by the Institutional Animal Care and Use Committee. Data collection and 127 

analysis were completed at University of Wisconsin-Madison and William S. Middleton 128 

Memorial Veterans Hospital. Because male Dunkin-Hartley guinea pigs develop more 129 

severe OA pathology than female (33), we used male animals to maximize the potential 130 

for the interventions to slow the progression of OA. Therefore, similar to previous work 131 

(34), male Dunkin-Hartley guinea pigs (Charles River) were singly housed in clear plastic, 132 

flat bottomed cages (Thoren, Model #6) with bedding. Guinea pigs were single housed to 133 

measure food consumption. 12-hour light/dark cycles were used beginning at 0600. 134 

Guinea pigs acclimated for 2-3 weeks and were provided standard chow diet (Evigo 2040) 135 

fortified with vitamin C (1050 ppm) and Vitamin D (1.5 IU/kg) and water ad libitum until 5 136 

months of age. Guinea pigs were then sacrificed to serve as young control (n=3), 137 

randomized to continue the standard diet (n=8), or receive standard diets enriched with 138 

encapsulated rapamycin (14 ppm, n=8) or the combination of encapsulated rapamycin 139 

and metformin (14 ppm, 1000 ppm, n=8) for 12 weeks. Guinea pigs were randomized to 140 

match bodyweight between groups prior to beginning treatment. Diets were enriched with 141 

microencapsulated rapamycin (Rapamycin holdings) and/or metformin (AK Scientific, 142 

I506) at concentrations previously shown to extend lifespan in mice (14,15,35). Food 143 

consumption was recorded on Monday, Wednesday, and Friday between 8 and 9 AM, 144 

and body weight was recorded before feeding on Monday. Guinea pigs treated with Rap 145 

or Rap+Met diet had ad libitum access to food. Dietary Rap treatment has been shown to 146 
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significantly reduce bodyweight in mice (36,37). Therefore, we matched food 147 

consumption in the control group to the Rap diets to minimize the influence of food intake 148 

on dependent variables.  One guinea pig in the Rap+Met group was euthanized early due 149 

to a wound on the gums which led to suppressed appetite and infection. Tissues from this 150 

animal were not collected for analysis. It could not be determined if this was due to a 151 

laceration or an oral ulcer, the latter of which is a known side effect of mTOR inhibitors 152 

(38). 153 

 154 

Tissue Collection 155 

Two animals were sacrificed daily between 7 and 10 AM. Food and water were 156 

removed from the cages 2-4 hours before euthanasia. Animals were anesthetized in a 157 

chamber containing 5% isoflurane gas in oxygen and maintained using a face mask with 158 

1.5-3% isoflurane. Blood was collected by cardiac venipuncture followed by excision of 159 

the heart. The right hind limb was removed at the coxofemoral joint, fixed in 10% neutral 160 

buffered formalin (NBF) for 48 hours, and transferred to 70% ethanol until processed for 161 

histology. Glenohumeral cartilage was collected, snap frozen in liquid nitrogen, and stored 162 

at -80C for further analysis. Because testicular atrophy has been observed following Rap 163 

treatment (39), the left testicle was preserved in 10% NBF and weighed. Although tissues 164 

are commonly weighed before fixation, previous work demonstrates that fixation 165 

negligibly effects testicle weight in similarly sized rodents (40).  166 

 167 

 168 

 169 
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Analysis of Experimental Diets and Blood 170 

Samples of diets enriched with Rap, Met or the combination of Rap+Met, and 171 

aliquots of whole blood (n=4 per group) were sent to the Bioanalytical Pharmacology Core 172 

at the San Antonio Nathan Shock Center to confirm drug concentrations in the diet and 173 

in circulation. Analysis was performed using tandem HPLC-MS as described previously 174 

(14,41,42). Frozen aliquots of plasma were thawed to measure glucose and lactate 175 

concentrations using the YSI Biochemistry Analyzer (YSI 2900). 176 

 177 

Micro Computed Tomography (µCT) 178 

Right hind limbs from half of each treatment group (n=4 per group) were scanned 179 

using a Rigaku CT Lab GX130 at 120 µA and 110 kV for 14 minutes, achieving a pixel 180 

size of 49 µm. Scans were first processed in Amira 6.7 (ThermoFisher) where epicondylar 181 

width was measured and a series of dilation, erosion, filling, and image subtraction 182 

functions were used to isolate trabecular and cortical bone as described previously (43). 183 

Scans were then resliced 4 times along axes perpendicular to medial and lateral tibial 184 

and femoral articular surfaces and binarized using identical thresholds. NIH ImageJ 185 

software and BoneJ plugin were used to quantify thickness, spacing, and volume fraction 186 

measurements. Cortical thickness was measured by placing polygonal regions of interest 187 

(ROI) in resliced scans to encompass the articular surfaces in each joint compartment. 188 

Trabecular thickness, spacing, and bone volume fraction were measured by placing 189 

transverse ROIs (2.4x2.4x1mm) in the trabecular bone of each joint compartment.   190 

 191 

 192 
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 9 

Histology 193 

Knee joints were decalcified in a 5% ethylenediaminetetraacetic acid, changed every 2-194 

3 days for 6 weeks. Joints were then cut in a coronal plane along the medial collateral 195 

ligament, paraffin embedded and sectioned at 5um increments for Toluidine Blue 196 

staining and immunohistochemistry (IHC). Slides were scanned using the Hamamatsu 197 

NanoZoomer Digital Pathology System, providing 460nm resolution. Scan focus points 198 

were set manually along the articular cartilage. Imaged slides were then scored by two 199 

blinded reviewers for OA severity following OARSI Modified Mankin guidelines as 200 

described (32). Briefly, toluidine blue stained histology slides were assigned scores for 201 

severity of articular cartilage structural damage (0-8), proteoglycan loss as assessed by 202 

absence of toluidine blue staining (0-6), disruption of chondrocyte cellularity (0-3), and 203 

tidemark integrity (0-1), with a total possible score of 18 per joint compartment (Total 204 

OARSI Score). One guinea pig each from the Rap and Met groups were unable to be 205 

analyzed due to off-axis transection before embedding. One control animal was a 206 

statistical outlier as detected by Grubb’s test and was excluded from the study. 207 

Therefore, n=7 per group were used for histopathological analysis.  208 

 209 

Immunohistochemistry  210 

 Antigen retrieval was performed in 10mM sodium citrate for 7 hours at 60C. 211 

Endogenous peroxidase activity was quenched using 3% H2O2 for 15min before blocking 212 

in 5% normal goat serum diluted in TBST for 1 hour at RT. Slides were incubated 213 

overnight in 200-300 uL of either p-RPS6 (1:200 dilution; Cell Signaling, 4858) or a rabbit 214 

IgG isotype control (Cell Signaling, 3900) diluted to match primary antibody concentration. 215 
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Primary antibodies against p-Akt Ser473 (1:100 dilution; 4060) and p-AMPK Thr172 216 

(1:200 dilution; 50081) from Cell Signaling were attempted, but reactivity was not seen in 217 

guinea pig articular cartilage. 150-200uL of goat anti-rabbit secondary antibody (Cell 218 

Signaling, 8114) was added for 1 hour at room temperature followed by exposure in 3,3’-219 

diaminobenzadine (DAB; Cell Signaling, 8059) for 10 minutes. Slides were then 220 

counterstained using hematoxylin, dehydrated, and cleared through graded ethanol and 221 

xylene, coverslipped using Permount (Electron Microscopy Sciences), and viewed and 222 

imaged under a brightfield microscope. No DAB staining was seen following incubation 223 

with the IgG control or secondary antibody alone, confirming specificity of the primary 224 

antibody. For quantification, ROIs were placed to encompass areas of staining in the 225 

medial tibial articular cartilage, and cells were counted to determine the percent-positive 226 

cells. For intensity-based quantification, a color deconvolution for DAB staining was 227 

applied in ImageJ, and mean integrated intensity was quantified by averaging two p-RPS6 228 

replicates and subtracting background staining of IgG controls. 229 

 230 

Western Blot 231 

Cartilage was removed from the glenohumeral joint using a scalpel and placed in 232 

reinforced Eppendorf tubes containing 500 mg of ceramic beads (Fisher, 15-340-160) 233 

and 200 µL of RIPA buffer with protease and phosphatase inhibitors (Sigma, 234 

5892970001), and homogenized by 2, 30-second cycles at 6 m/s in the Omni 235 

BeadRuptor. Homogenate was transferred to microcentrifuge tubes and spun at 10,000g 236 

for 10 min at 4C. Supernatants were diluted to equal concentration following a BCA assay. 237 

Samples were prepared in reducing conditions with β-mercaptoethanol in 4x Laemmli 238 
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Sample Buffer (BioRad, 1610747) and heated at 95C for 5 minutes. 10 µg of protein was 239 

separated on 4-15% TGX precast gels (BioRad, 4561083) and transferred to PVDF 240 

membranes (BioRad, 1620177). Membranes were blocked in TBST with 5% bovine 241 

serum albumin (Sigma, A9647) for 1 hour at RT and incubated overnight at 4C in primary 242 

antibodies against p-RPS6 Ser235/236 (4858), RPS6 (2217) p-Akt Ser473 (4060), Akt 243 

(4685), P-AMPK Thr172 (50081), AMPK (2532), and LC3B (3868) from Cell Signaling 244 

and ADAMTS5 (ab41037), MMP-13 (ab39012), and b-Actin (ab8226) from Abcam. HRP-245 

conjugated anti-Rabbit (Cell Signaling) or anti-Mouse (Abcam) secondary antibodies 246 

were diluted 1:5,000 for all proteins except b-Actin (1:10,000 dilution). All membranes 247 

were imaged using a UVP BioSpectrum 500 (UVP) following 5-minute incubation in a 2:1 248 

combination of SuperSignal Pico (Fisher, 34577) and Femto (Fisher, PI34095) 249 

chemiluminescent substrates except b-Actin which received Pico alone. Densitometric 250 

analysis was performed using VisionWorks (Analytikjena). Phosphorylated proteins are 251 

expressed relative to their total protein and other targets are expressed relative to b-Actin. 252 

 253 

Statistical Analysis 254 

 Previous work demonstrated that a sample size of n=6 is adequately powered to 255 

detect changes between groups in guinea pigs (34). Therefore, we a priori determined 256 

our sample size (n=7-8 per group) to be appropriate to detect differences between 257 

treatment groups. All data were subjected to normality testing via the Shapiro-Wilk test. 258 

Comparisons of normally distributed data were performed using two-way unpaired t-tests 259 

or one-way ANOVA followed by Holm-Sidak’s multiple comparison test. Data with non-260 

Gaussian distribution were compared using non-parametric Mann-Whitney tests or the 261 
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Kruskal-Wallis test followed by Dunn’s multiple comparisons test. A two-way repeated 262 

measures ANOVA (time x treatment) was performed to determine differences in food 263 

consumption and body weight. Upon a significant interaction, Holm-Sidak’s multiple 264 

comparisons test was used. Because we were interested in determining if treatments 265 

impacted the trajectory of OA pathogenesis compared to aged controls, differences in all 266 

other variables besides plasma glucose were made using one-way ANOVA comparing 267 

treatment groups to 8-month controls. Due to previous reports that Met can rescue the 268 

hyperglycemic effects of Rap (37), comparisons were made between all groups for 269 

plasma glucose. Pearson’s R was used to determine correlation between variables. P-270 

values <0.05 were considered statistically significant. Data are presented as scatter plots 271 

with mean or mean ± standard deviation (SD). 272 

 273 

 274 

 275 

 276 

 277 

 278 
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Results 279 

Influence of rapamycin and rapamycin+metformin on guinea pig physical and metabolic 280 

characteristics 281 

Figure 1A shows the average daily food consumption per week of standard diet or 282 

standard diet enriched with Rap or Rap+Met. The average daily intakes of Rap and Met 283 

based on food consumption and dietary concentration are reported in Table 1. Compared 284 

to control, there was decreased food consumption in guinea pigs receiving Rap+Met 285 

during week 2 (P=0.04). There were no significant differences between 286 

treatments. Despite largely matching food intake, there was a significant effect for 287 

treatment (P=0.004) and an interaction between time and treatment (P<0.0001) on 288 

bodyweight. Rap+Met (P=0.01) and Rap-treated guinea pigs (P=0.02) were smaller than 289 

control starting at week 3 and week 4, respectively, until the end of the study (Figure 1B). 290 

At sacrifice, Rap (P=0.002) and Rap+Met-treated guinea pigs (P=0.001) were 15% and 291 

22% smaller than control.  292 

Treatment with Rap (396±61 mg/dL; P<0.0001) and Rap+Met (334±53 mg/dL; 293 

P=0.007) increased plasma glucose compared to control (234±55 mg/dL), and the 294 

addition of Met to Rap decreased plasma glucose compared to Rap alone (P=0.05; Figure 295 

1C). Lactate concentration trended to be elevated by 66% in Rap+Met-treated guinea 296 

pigs, only (P=0.07; Figure 1D). Testicle weight in guinea pigs receiving Rap (P=0.006) 297 

and Rap+Met (P=0.0003) were 27% and 44% lower than control, respectively, suggesting 298 

gonadal atrophy (Figure 1E). We analyzed blood for the circulating Rap and Met 299 

concentrations ~3-hours after food had been removed from the cage (Table 2). This 300 

timing aligns with a measurement of peak circulating Rap and Met. We saw that 301 
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experimental diets were sufficient to increase Rap and Met concentrations in the blood, 302 

and that Rap values were not different when providing diets individually or in combination. 303 

There was no Rap or Met detected in circulation in control animals.  304 

 305 

Rapamycin and rapamycin+metformin treatment exacerbated the age-related 306 

progression of OA  307 

Consistent with the age-related progression of mild to moderate OA in guinea pigs, 308 

we observed an increase in medial tibial total OARSI score from 5 to 8 months (P=0.03; 309 

Figure S1A-B). Surprisingly, Rap and Rap+Met treatment resulted in a ~2-fold increase 310 

in total OARSI score in the medial tibial plateau compared to 8 month old, age-matched 311 

control (P=0.02 for both Rap and Rap+Met; Figure 2B). This was driven by increased 312 

scores for articular cartilage structure (P=0.02 for Rap, P=0.11 for Rap+Met; Figure 2C) 313 

and proteoglycan loss (P=0.02 for Rap and Rap+Met; Figure 2D). There was no 314 

significant effect of Rap or Rap+Met on the OARSI score for the lateral tibia or medial or 315 

lateral femur (Figure S1C).  316 

 317 

OA pathology was correlated to plasma glucose, bodyweight, and testicle weight 318 

Because Rap and Rap+Met treated guinea pigs displayed several side effects of 319 

Rap, including increased plasma glucose, testicular atrophy, decreased bodyweight, and 320 

worsened OA pathology, we evaluated the relationship between these variables and 321 

measures of OA severity across all guinea pigs. Plasma glucose was positively correlated 322 

to proteoglycan loss (R2=0.19; P=0.04; Figure 3A), and total OARSI score was negatively 323 

correlated with both bodyweight (R2=0.19; P=0.04; Figure 3B) and testicle weight 324 
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(R2=0.20; P=0.04; Figure 3C). However, because testicle weight and bodyweight were 325 

also related (data not shown), the individual contribution of these variables cannot be 326 

resolved.   327 

 328 

Effects of rapamycin and rapamycin+metformin on mTOR, AMPK, and protease 329 

expression 330 

To evaluate mTORC1 signaling in articular cartilage, we measured the 331 

phosphorylation of ribosomal protein S6 (P-RPS6) at Ser235/236 using IHC and western 332 

blotting. Representative images of P-RPS6 IHC are shown in Figure 4A. P-RPS6 was 333 

decreased by 90-95% in the medial tibial articular cartilage of Rap and Rap+Met treated 334 

guinea pigs as assessed by percentage of P-RPS6-positive cells (P=0.001 for Rap, 335 

P=0.01 for Rap+Met; Figure 4B), and by staining intensity (P=0.02 for both; Figure 4C). 336 

mTORC1 inhibition was further supported by an 81% lower ratio of phosphorylated to 337 

total RPS6 in glenohumeral cartilage from Rap (P=0.005; Figure 4E). Rap+Met trended 338 

to decrease RPS6 phosphorylation by 48% (P=0.06). There were no signficant effect on 339 

the phosphorylation of the mTORC2 substrate Akt at Ser473 in Rap or Rap+Met 340 

compared to control (Figure 4F; P=0.11). AMPK activity was measured using western blot 341 

to assess phosphorylation of AMPK at Thr172 (P-AMPK). P-AMPK was not changed by 342 

Rap alone (P=0.83; Figure 4G) but was elevated 77% by Rap+Met (P=0.05). Rap or 343 

Rap+Met did not significantly change the conversion of LC3B I to II (P>0.99 for both; 344 

Figure 4H) nor a disintegrin and metalloproteinase with thrombospondin motifs 5 345 

(ADAMTS5; Figure 4I; P=0.97 for Rap, P=0.35 for Rap+Met). Matrix metalloproteinase 346 
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13 (MMP13) was unchanged by Rap (P>0.99) but trended higher in Rap+Met (P=0.09; 347 

Figure 4J).  348 

 349 

Rapamycin and rapamycin+metformin decreased subchondral and diaphyseal bone 350 

thickness 351 

Representative microCT images shown in Figure 5A were used to quantify the 352 

effect of experimental diets on subchondral bone parameters. Mean subchondral cortical 353 

thickness was decreased by Rap and Rap+Met in the medial (29%, P=0.003 for Rap; 354 

23%, P=0.007 for Rap+Met) and lateral (21% for Rap; 20% for Rap+Met; P=0.01 for both) 355 

tibia (Figure 5B). Rap and Rap+Met decreased trabecular spacing by 15% and 16%, 356 

respectively, in the lateral tibia only (P=0.006 for both; Figure S2B). Trabecular thickness, 357 

trabecular spacing in other compartments, and bone volume fraction were not affected by 358 

any experimental diet (Figures S2A-C). Further investigation revealed that cortical 359 

thickness at the femoral diaphysis was decreased by Rap (P=0.001) and Rap+Met 360 

(P=0.01; Fig 5C), and this change was proportionate to the decrease observed in the 361 

medial tibial subchondral bone (Figure 5D). Further, medial tibial cortical thickness was 362 

correlated to bodyweight (R2=0.47, P=0.01; Figure 5E), suggesting the smaller body 363 

mass of Rap and Rap+Met treated guinea pigs may have contributed to decreased 364 

cortical thickness. Femoral epicondylar width (Figure 5F) was not statistically different 365 

between groups (Rap, P=0.42; Rap+Met, P=0.45), suggesting our treatments did not 366 

affect skeletal development. 367 

 368 

 369 
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Discussion 370 

 The purpose of this study was to test if dietary Rap or Rap+Met could delay the 371 

onset of age-related OA in the outbred Dunkin-Hartley guinea pig. We found that at 372 

concentrations shown to extend lifespan, dietary Rap and Rap+Met inhibited mTORC1 373 

but not mTORC2 signaling in articular cartilage, and Rap+Met increased AMPK 374 

phosphorylation. Surprisingly, guinea pigs treated with Rap, with or without Met, 375 

developed greater age-related OA compared to control. Guinea pigs receiving Rap and 376 

Rap+Met also displayed increased plasma glucose, which correlated with proteoglycan 377 

loss. These findings indicate that off-target side effects of Rap are associated with greater 378 

OA pathology. Further, in the face of these Rap-induced side effects, mTORC1 inhibition 379 

may not slow the progression of age-related OA in Dunkin Harltey guinea pigs. 380 

Despite inhibiting mTORC1 in articular cartilage, our findings indicate that guinea 381 

pigs treated with Rap, with or without Met, had exacerbated age-related OA in the medial 382 

tibial plateau. Further, Rap and Rap+Met treated guinea pigs had greater total OARSI 383 

scores even though they weighed less, which is contrary to previous work where lower 384 

body weight was accompanied by lower OA scores in guinea pigs (29). Although there is 385 

precedent that mTORC1 inhibition by intra-articular injection of Rap is associated with 386 

exacerbated temporomandibular joint (TMJ) OA (44), our findings were opposite of our 387 

original hypothesis and previous results using Rap in secondary models of knee OA 388 

(18,19). The guinea pigs in the current study received a dose of Rap that achieved similar 389 

circulating Rap concentrations shown to extend lifespan in mice (14). Additionally, the 390 

dose of Rap in guinea pigs was similar to the dose shown to protect against secondary 391 

OA in mice (0.7 vs 1 mg/kg/day in guinea pigs vs. mice) (18). These findings suggest that 392 
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dose of Rap was not a likely factor contributing to differences between studies. In our 393 

study, Rap and Rap+Met treatment inhibited mTORC1 but not mTORC2 in articular 394 

cartilage. Previous work has shown that deleting articular cartilage mTOR (21) or treating 395 

with Rap (18,19) or Torin-1 (20) can attenuate secondary OA in mice and rabbits.  These 396 

non-selective genetic and pharmacological methods likely disrupt the entire mTOR kinase 397 

and therefore could inhibit both mTORC1 and mTORC2 signaling. However, this remains 398 

speculative as mTORC2 signaling was not evaluated in these previous studies, and it 399 

continues to be unknown if mTORC2 inhibition is necessary for protection against either 400 

primary or secondary OA. In support of the notion that targeting mTORC2 modifies OA, 401 

inhibition of the mTORC2 substrate Akt protects against PTEN-deletion-induced OA by 402 

decreasing cellular senescence and oxidative stress (45). Further investigation is needed 403 

to resolve the role of each mTOR complex in the initiation, progression, and treatment of 404 

both primary and secondary OA.  405 

Despite its lifespan-extending effects, chronic Rap treatment is commonly 406 

associated with several metabolic and immunological side effects including glucose 407 

intolerance, insulin resistance, hypertriglyceridemia, immunosuppression, testicular 408 

atrophy, lower body weight, and cataracts (17,39,46).  Consistent with this, we showed 409 

that 12-weeks of dietary Rap and Rap+Met was accompanied by increased plasma 410 

glucose, testicular atrophy, and lower body weight. Despite increasing AMPK activity in 411 

articular cartilage and partially restoring glucose levels compared to Rap alone, the 412 

addition of Met to Rap did not offer protection against the detrimental effects of dietary 413 

Rap on OA pathology. The glucose lowering effects of Met are in line with previous studies 414 

where Met alleviated Rap-induced glucose intolerance only in female mice (37).  415 
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However, our OA pathology findings are in contrast to previous studies that showed Met 416 

attenuated hyperglycemia-induced OA in mice (55). In our study, medial tibial 417 

proteoglycan loss was correlated with plasma glucose, and we propose that Rap-induced 418 

hyperglycemia may have contributed to worsened OA following dietary Rap treatment. In 419 

support of this hypothesis, diabetic mice show accelerated OA after injury, and 420 

chondrocytes cultured in high glucose media display decreased expression of Collagen 421 

II and increased MMP13 and inflammatory mediators IL-6 and NFkB (47,48). However, 422 

intermittent intraperitoneal injections of Rap lowered glucose and mitigated diabetes 423 

accelerated secondary OA (49). It is possible that Rap did offer partial protection against 424 

hyperglycemic stress but still resulted in greater OA pathology than control, as was 425 

observed by Ribeiro et al. (50). However, this remains speculative as we did not have a 426 

group exposed to hyperglycemic stress alone. Previous work suggests Rap can have 427 

divergent effects where it is beneficial in some diabetic models but causes adverse side 428 

effects in metabolically healthy models (17,51). Collectively, these data indicate that the 429 

adverse metabolic side-effects of dietary Rap treatment are associated with a deleterious 430 

impact on primary OA pathology and could limit the utility of systemic Rap as a healthspan 431 

extending treatment.  432 

Rap has been implicated in attenuating secondary OA by increasing autophagy 433 

and decreasing protease expression (18,19). While autophagy is a highly dynamic 434 

process, the static marker of autophagy, LC3B, is commonly used as a surrogate for 435 

autophagic flux. In our study, we saw no effect by any treatment on LC3B or ADAMTS5, 436 

while Rap+Met trended to increase MMP13 in glenohumeral cartilage. Therefore, the 437 

inability to increase markers of autophagy and decrease proteases may be one 438 
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contributing factor to why our lifespan-extending treatments did not protect and even 439 

worsened OA during aging and hyperglycemia. However, because proteoglycan loss was 440 

observed independent of increased protease expression in Rap-treated guinea pigs, 441 

decreased extracellular matrix (ECM) protein synthesis may have contributed to 442 

proteoglycan loss. More work is needed to determine the molecular and cellular 443 

mechanisms responsible for the deleterious effects of Rap and Rap+Met.  444 

Treatment with Rap and Rap+Met also decreased subchondral cortical bone 445 

thickness in the medial and lateral tibia and the femoral diaphysis. As bone growth in 446 

guinea pigs ceases by 4 months (52), and epicondylar width was not different between 447 

groups, the differences in bone thickness were likely not the result of disrupted 448 

development. Decreased subchondral thickness was only observed in the tibia. Intra-449 

articular injection of Rap into the TMJ caused subchondral bone loss by inhibiting pre-450 

osteoblast proliferation (44), and Rap treatment also decreased osteoblast differentiation 451 

and bone matrix synthesis (53), which supports the idea that Rap can act directly on the 452 

bone to decrease thickness. However, we also found that subchondral thickness was 453 

highly correlated to bodyweight. This is in line with Wolff’s law and agrees with previous 454 

findings where bodyweight restriction decreased cortical bone thickness in the femoral 455 

diaphysis (54). Therefore, both local and systemic effects of Rap likely contributed to 456 

reduced cortical bone thickness. 457 

Although we provide new insight into the role of mTOR during primary OA 458 

progression, we recognize some study limitations. While the guinea pig is an excellent 459 

model of primary OA, it is not a widespread model for biomedical research and molecular 460 

probes are seldom designed for reactivity with guinea pig tissue. Due to reactivity issues 461 
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with IHC in guinea pig cartilage (Figure S3), some of our analyses relied on western blot 462 

from glenohumeral cartilage. Although guinea pigs also develop mild glenohumeral 463 

OA(30), this is not the site at which we measured OA pathology. Our study could not 464 

conclusively determine if the deleterious effects of Rap stemmed from its direct effects on 465 

the joint or off-target effects on other tissues. However, our data suggest hyperglycemia 466 

induced by off-target actions of Rap was associated with worsened age-related OA. The 467 

Dunkin Hartley guinea pig is an outbred model of primary OA which leads to inherent 468 

variability. While this could be perceived as a limitation, we contend that the variability 469 

and the choice of animal model adds translational value since this more closely 470 

recapitulates the genetic diversity and OA heterogeneity in humans. We acknowledge 471 

that although the sample size used in our study was in line with previous studies using 472 

guinea pigs, the varability could have possibly limited our ability to detect more subtle 473 

differences between groups. However, this does not detract from the findings that guinea 474 

pigs treated with both Rap and Rap+Met had worse OA. Further, the presence of largely 475 

overlapping and consistent deleterious outcomes in both groups receiving Rap increases 476 

our confidence that the side effects accompanying Rap contribute to worsened primary 477 

OA.  478 

 479 

Conclusion 480 

In summary, we have shown that at doses previously shown to extend lifespan, dietary 481 

Rap and Rap+Met caused hyperglycemia and was associated with aggravated OA in 482 

Dunkin Hartley guinea pigs despite inhibiting mTORC1 in articular cartilage. Treatments 483 

that extend lifespan without a proportional delay in age-related chronic diseases and 484 
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disabilities is counter to the concept of healthspan extension. Our findings that guinea 485 

pigs treated with Rap had worse OA pathology raises concerns regarding the efficacy of 486 

dietary Rap as a life- and healthspan-extending agent. Additional work is needed to 487 

investigate the role of alternative routes of administration or Rap anaologs that may 488 

capture the positive benefits of Rap while minimizing off-target effects. Our data also 489 

reveal that the contribution of mTOR in articular cartilage and chondrocyte metabolism is 490 

incompletely understood and additional research is needed to clarify the individual and 491 

combined role of mTORC1 and mTORC2 signaling in both primary and secondary OA.  492 

 493 
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Figure Legends 767 

Figure 1: Characterization of animals on experimental diets. Food consumption (A) 768 
and bodyweight (B) of guinea pigs were recorded for the duration of the study (data 769 
presented as mean with shaded bands representing SD). Plasma glucose (C), lactate 770 
(D), and testicle weight (E) are shown. **P<0.01 vs Con, ***P<0.001 vs Con, ****P<0.0001 771 
vs Con.  772 
 773 

Figure 2: Rapamycin and rapamycin plus metformin worsened primary OA. 774 
Representative images of histology from the medial tibia are shown for each group (A; 775 
scale bars are 0.5mm and 0.25mm in 5x and 10x images, respectively). Histological 776 
images were graded for total OARSI score (B; n=7 per group). The individual scores for 777 
articular cartilage structure (C), proteoglycan loss (D) and cellularity (E) are also shown. 778 
*P<0.05 vs Con.   779 
 780 

Figure 3: Proteoglycan loss correlated with hyperglycemia. Correlations between 781 
proteoglycan loss and plasma glucose (A), bodyweight and total OARSI score (B), and 782 
testicle weight and total OARSI score (C) are shown. Shaded bands represent 95% CI.  783 
 784 

Figure 4: Rapamycin and rapamycin plus metformin inhibited mTORC1 but had no 785 
effect on mTORC2 or autophagy. IHC was performed on the medial tibia for P-RPS6 786 
(A; n=7 per group) and quantified as percent positive cells (B) and mean integrated 787 
intensity (C). Red arrowheads indicate cells staining positive for P-RPS6. Western blot 788 
was performed on glenohumeral cartilage (D) for P-RPS6 (E), P-Akt (F), P-AMPK (G), 789 
LC3B (H), ADAMTS5 (I), and MMP-13 (J). n=8 per group for Rap and n=7 per group for 790 
Con and Rap+Met. Images are outlined in black to show that, while each band is from the 791 
same blot, bands were selected for presentation to best represent the mean change. 792 
*P<0.05 vs Con, **P<0.01 vs Con.  793 
 794 

Figure 5: Decreased subchondral bone thickness in rapamycin and rapamycin plus 795 
metformin treated guinea pigs. Representative microCT sagittal cross sections from 796 
the medial aspect of the joint are shown (A). Subchondral cortical thickness was 797 
measured in the medial and lateral tibial plateaus and femoral condyles (B), and cortical 798 
thickness was measured in the femoral diaphysis (C). Medial tibial cortical thickness 799 
relative to femoral diaphyseal cortical thickness was found to be similar between groups 800 
(D). Medial tibial cortical thickness was highly correlated to bodyweight (E). Femoral 801 
epicondylar width was found to be similar between groups (F). N=4 per group. Shaded 802 
bands represent 95% CI. *P<0.05 vs Con, **P<0.01 vs Con. 803 
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Individual Tables and Figures 804 
 805 

Table 1: Average consumption of rapamycin and metformin. Using the concentration 806 

of rapamycin and metformin from the diet analysis, the average doses were calculated 807 

for each group. N=7-8 per group. Data are presented as mean ± SD.  808 

 Experimental Diet  
Rapamycin Rapamycin+Metformin 

Rapamycin consumed 
(mg/kg/day) 0.72 ± 0.09 0.68 ± 0.08 

Metformin consumed 
(mg/kg/day) - 45 ± 5.6 
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Table 2: Concentrations of rapamycin and metformin in circulation. Whole blood 831 

was collected ~3 hours after food had been removed from the cages of guinea pigs and 832 

was analyzed for rapamycin and metformin concentration by tandem HPLC/MS. N=4 per 833 

group. Data are presented as mean with ± SD. 834 

 Experimental Diet  
Control Rapamycin Rapamycin+Metformin 

Circulating rapamycin 
(ng/mL) 0.4 ± 0 72 ± 8 78 ± 10 

Circulating metformin 
(ng/mL) 2 ± 0 - 282 ± 54 
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Figure 1 865 
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Figure 2 875 
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Figure 3 893 
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Figure 4 930 

 931 
 932 
 933 
 934 
 935 
 936 
 937 
 938 
 939 
 940 
 941 
 942 
 943 
 944 
 945 
 946 
 947 
 948 

.CC-BY 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted June 14, 2021. ; https://doi.org/10.1101/2021.05.21.445179doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.21.445179
http://creativecommons.org/licenses/by/4.0/


 37 

Figure 5 949 
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 972 

Supplementary Material 973 

Supplementary Figure Legends 974 

Figure S1: OA pathology increased from 5- to 8-months of age. Total OARSI scores 975 

are shown from the lateral tibia, medial femur, and lateral femur (A). Histological images 976 

of knee joints from 5- and 8-month-old guinea pigs (B; scale bars are 0.5mm and 0.25mm 977 

in 5x and 10x images, respectively) were graded for total OARSI score and individual 978 

OARSI criteria (C). N=3 for 5-month and N=7 for 8-month. *P<0.05 vs Con.  979 

 980 

Figure S2: Trabecular bone changes in response to experimental diets. Trabecular 981 

thickness (A), spacing (B), and bone volume fraction (C) were measured using microCT. 982 

N=4 per group. *P<0.05 vs Con.  983 

 984 

Figure S3: Antibody reactivity with guinea pig articular cartilage was limited. 985 

Immunohistochemical staining was performed, and no reactivity was observed using 986 

primary antibodies against P-Akt Ser473 or P-AMPK Thr172.   987 
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