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Abstract 

Inverted encoding models have recently become popular as a method for decoding 
stimuli and investigating neural representations. Here we present a novel modification to 
inverted encoding models that improves the flexibility and interpretability of stimulus 
reconstructions, addresses some key issues inherent in the standard inverted encoding 
model procedure, and provides trial-by-trial stimulus predictions and goodness-of-fit 
estimates. The standard inverted encoding model approach estimates channel 
responses (or “reconstructions”), which are averaged and aligned across trials and then 
typically evaluated using a metric such as slope, amplitude, etc. We discuss how this 
standard procedure can produce spurious results and other interpretation issues. Our 
modifications are not susceptible to these methodological issues and are further 
advantageous due to our decoding metric taking into account the choice of population-
level tuning functions and employing a prediction error-based metric directly comparable 
across experiments. Our modifications also allow researchers to obtain trial-by-trial 
confidence estimates independent of prediction error which can be used to threshold 
reconstructions and increase statistical power. We validate and demonstrate the 
improved utility of our modified inverted encoding model procedure across three real 
fMRI datasets, and additionally offer a Python package for easy implementation of our 
approach. 
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1. Introduction 

A mental representation can be defined as the “systematic relationship between 

features of the natural world and the activity of neurons in the brain” (Poldrack, 2020). 

Encoding models describe this relationship computationally, typically by reducing the 

complexity of the input data with a set of functions that, when combined, roughly 

approximate the neural signal. Encoding and decoding models (aka voxel-based 

modeling or stimulus-model based modeling) have become a standard method for 

investigating neural representational spaces and predicting stimulus-specific information 

from brain activity (Naselaris, Kay, Nishimoto, & Gallant, 2011; Naselaris & Kay, 2015; 

Popov, Ostarek, & Tenison, 2018). The key advantages of such models over other 

computational approaches such as multivariate pattern classification, representational 

similarity analysis, or population receptive field mapping are typically touted as the 

following: (1) Encoding models can take inspiration from single-unit physiology by 

consisting of tuning functions in stimulus space (aka feature space), allowing both the 

maximally receptive feature and the precision/sensitivity of the tuning to be estimated 

across a population of neurons; (2) The encoding model that transforms stimuli into 

brain activity can be inverted into a decoding model capable of predicting stimuli given a 

pattern of neural activity; and (3) The decoding model can predict novel stimuli or 

experimental conditions not used in the training of the model. The features of an 

encoding model can be anything from Gabor filters (Kay et al., 2008; Naselaris et al., 

2009) to perceptual colors (Brouwer & Heeger, 2009) to acoustic musical features 

(Casey et al., 2012) and even human faces (Lee & Kuhl, 2016).  
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The inverted encoding model (IEM) is one example of an encoding and decoding 

model that uses simple linear regression and a basis set representing the hypothesized 

population-level tuning functions, consisting of several channels that are modeled as 

cosines (or von Mises) equally separated across stimulus space (e.g., orientation, color, 

spatial location). Due to its simplicity, robust performance, and grounding in single-unit 

physiology principles, inverted encoding models have quickly risen to prominence in the 

cognitive neuroscience community (e.g., Ester, Sprague, & Serences, 2020; Foster, 

Bsales, & Awh, 2020; Henderson, Vo, Chunharas, Sprague, & Serences, 2019; Kim, 

Hong, Shevell, & Shim, 2020; Kok, Rait, & Turk-Browne, 2020; Lorenc, Vandenbroucke, 

Nee, de Lange, & D’Esposito, 2020; Oh, Kim, & Kang, 2019; Rademaker, Chunharas, & 

Serences, 2019; Sutterer, Foster, Adam, Vogel, & Awh, 2019; Yu, Teng, & Postle, 

2020). The basic idea behind IEMs is that each channel in the basis set can be 

assigned a weight per voxel1 and hence a model can be trained to predict the activity of 

each voxel using the weights of each channel as predictors (i.e., the regressors in a 

linear regression). Then, this trained encoder is inverted such that it becomes a decoder 

capable of predicting, or reconstructing, a trial’s stimulus when provided with a novel set 

of voxel activations. 

Here we present a novel modification to IEMs that improves the interpretability of 

stimulus reconstructions, addresses some key issues inherent in the standard IEM 

procedure, and provides trial-by-trial stimulus predictions and goodness-of-fit estimates. 

 
 
1 In this paper we adopt fMRI nomenclature (voxels), but IEMs have been successfully applied to 
neuroimaging modalities besides fMRI, including EEG and MEG, and our modified procedure can be 
applied to other modalities as well. 
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In the sections that follow, we briefly review the standard procedure used for 

implementing IEMs, present an overview of our modified procedure, and discuss 

methodological issues and limitations with the standard procedure that our modified 

procedure addresses. We then present results comparing the standard procedure to our 

modified procedure using three existing fMRI datasets. These results validate our 

approach and highlight its practical advantages in terms of improved flexibility and 

interpretability. We also offer a publicly available Python package for researchers to 

easily implement inverted encoding models using our modified approach.  

 

1.1 Standard procedure for inverted encoding models 

 
The standard IEM procedure is illustrated in Figure 1A-B using a toy example 

where a participant was shown eight trials of colored squares and the researcher used 

an IEM to reconstruct the presented colors based on the pattern of activity in a six-voxel 

brain region. Note that this “standard procedure” is our depiction of the typical steps 

used to implement IEMs in the neuroimaging literature, but there may be nuances 

particular to specific papers that deviate from this procedure.  
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Figure 1. Simulated example of an fMRI experiment using the standard IEM procedure and our 
modified procedure, where a participant was shown eight trials of colored squares and the 
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researcher used an IEM to decode the presented colors with a six-voxel brain region. (a) The 
top row depicts the encoding model where the weights matrix is estimated (via linear 
regression) and the second row depicts the decoding model where the channel responses for 
the test data are estimated using the trained weights from the encoding model. (b) The standard 
procedure involves aligning and averaging reconstructions and measuring the result according 
to a variety of possible metrics (e.g., amplitude, slope). (c) Our modified procedure deviates 
from the standard procedure by evaluating prediction errors rather than an averaged 
reconstruction. We correlate the basis channel with reconstructions to estimate predicted 
stimuli, use iterative shifting of the basis set to allow channel space to equal stimulus space, 
and estimate goodness-of-fits for each trial reconstruction which can be used as a measure of 
confidence for each trial’s predicted stimulus. For simplicity, this example shows the encoder 
trained on the first half of trials and the decoder used to predict the color of the remaining trials, 
but in most applications cross-validation should be used such that every trial may be decoded 
while avoiding circularity/double-dipping.  

The prerequisites for implementing an IEM are (1) an array specifying the feature 

values of the presented stimulus for every trial, (2) a trial-by-voxel matrix containing the 

observed brain activations2 for every voxel per trial, and (3) a basis set representing the 

hypothesized population-level tuning functions. Typically, researchers use a basis set 

consisting of several equidistant channels modeled as cosines raised to the number of 

channels minus 1. This means that each channel is modeled as 

cos $(𝜃 − 𝜇)
𝜋

𝑠𝑡𝑖𝑚𝑢𝑙𝑢𝑠_𝑟𝑎𝑛𝑔𝑒7
!"#_%&'!!()*+,

 

where θ is degrees in stimulus space, μ is the center of each channel, and 

stimulus_range is the range of stimulus space (e.g., 360° for hues on a color wheel 

spanning 0-359°). The reasoning behind raising cosines to the num_channels-1 is to 

make the tuning curves narrower and more comparable to physiological findings 

(Brouwer & Heeger, 2011), and the specification of the number of channels is mostly 

 
 
2Observed brain activations could be beta weights from general linear model estimation (e.g., Mumford, 
Turner, Ashby, & Poldrack, 2012) or raw BOLD signal from a block or slow-event related design.  
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arbitrary (more channels are typically chosen if suspecting narrow tuning and vice-versa 

for broad tuning).  

The encoder models each voxel’s response as the weighted sum of the 

channels, such that the observed trial-by-voxel fMRI activation matrix is equal to the dot 

product of the basis set and the weight matrix, 

𝑏𝑎𝑠𝑖𝑠_𝑠𝑒𝑡[𝑡𝑟𝑖𝑎𝑙_𝑓𝑒𝑎𝑡𝑢𝑟𝑒𝑠, : ] ⋅ 	𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑏𝑦_𝑣𝑜𝑥𝑒𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠 = 	𝑡𝑟𝑖𝑎𝑙_𝑏𝑦_𝑣𝑜𝑥𝑒𝑙_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛  

where trial_features is the feature (e.g., color) of the stimulus and basis_set is 

the matrix of channels with shape (stimulus_range, num_channels) described above. 

Given that the trial-by-voxel matrix and the basis set are already given, the weights 

matrix can be estimated via least-squares linear regression.  

 Once the weights matrix is estimated from the training dataset, it can be inverted 

such that the encoder becomes a decoder for the test dataset. Now, instead of 

estimating the weights matrix via least-squares linear regression, the weights matrix and 

the trial-by-voxel matrix are given and the channel responses (i.e., reconstructions) are 

estimated.  

𝑡𝑟𝑖𝑎𝑙_𝑏𝑦_𝑣𝑜𝑥𝑒𝑙_𝑎𝑐𝑡𝑖𝑣𝑎𝑡𝑖𝑜𝑛 ⋅ 	𝑐ℎ𝑎𝑛𝑛𝑒𝑙_𝑏𝑦_𝑣𝑜𝑥𝑒𝑙_𝑤𝑒𝑖𝑔ℎ𝑡𝑠+, = 	𝑟𝑒𝑐𝑜𝑛𝑠𝑡𝑟𝑢𝑐𝑡𝑖𝑜𝑛𝑠	  

The resulting estimated channel responses, or simply reconstructions, is a trial-by-

num_channels matrix where each trial has its own reconstruction composed of weighted 

cosines.  

In the standard procedure, all the trial-by-trial reconstructions are then circularly 

shifted along the x-axis such that the channel that should have been maximally 

responsive on every trial (i.e., the channel closest to the ground truth stimulus feature) 

is aligned to the center of the x-axis (Figure 1B). The aligned reconstructions are then 
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averaged together to result in a single reconstruction. Assuming that the model 

performs well, the averaged reconstruction should resemble the shape of the original 

basis channel with the highest point centered on the aligned location. The averaged and 

aligned reconstruction is then typically assessed using a number of possible metrics 

(see Figure 2). As Figure 2 illustrates, there is substantial variability in the choice of 

metrics used to evaluate IEMs, with the most common metrics being the amplitude or 

slope of the aligned and averaged reconstruction, or assessing reconstruction quality 

following a model fitting step. 
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Figure 2. Summary of metrics used to evaluate IEM reconstructions in a sampling of published 
papers. Note that the methodological concerns about spurious conclusions raised in Section 
1.3.1 apply to the metrics labeled under the standard approach, although our proposed 
modifications pose improvements over typical applications of “maximum point” and “correlation 
table” approaches as well. The non-standard approaches can be quantified with a single value 
(like the standard approach metrics) by taking the mean absolute error between predicted and 
actual stimuli.  

 

Typically, the chosen reconstruction metric is calculated and then subjected to 

statistical analysis (e.g., permutation testing to assess whether the reconstruction metric 

is significantly different from what would be expected to occur by chance, or 

comparisons between reconstruction metrics obtained under different conditions). For 

permutation testing, the stimulus labels are randomly shuffled, and the average 

§ Amplitude: Measure the height of the aligned x-axis location of 
the reconstruction.

§ Slope: Fold the reconstruction in half (vertically), average the two 
halves and then take the resulting slope.

§ Fit amplitude: Fit a gaussian distribution to the reconstruction and 
then measure the resulting amplitude at the aligned x-axis location. 

§ Fit bandwidth: Fit a gaussian distribution to the reconstruction 
and then measure the resulting standard deviation.

§ Vector mean: Multiply the reconstruction by a cosine (with height 
ranging from -1 to 1) and then average the amplitudes across all 
points.

§ Maximum point: The point in stimulus space with the highest 
amplitude becomes that trial’s predicted stimulus.

§ Correlation table: For each trial, correlate the reconstruction with 
a basis channel centered at every integer in stimulus space. Select 
the channel with the largest correlation coefficient. Predicted 
stimulus = center of this channel.

Standard approach (aligned and averaged reconstruction)

Non-standard approach (individual trial estimates)

Metrics used to evaluate inverted encoding models

Cai, Sheldon, Yu, & Postle (2019)
Chen, Bi, Zhou, Li, Liu, & Fang (2015)
Ester, Sprague, & Serences (2013)
Ester, Anderson, Serences, & Awh (2015)
Foster, Sutterer, Serences, Vogel, & Awh (2017)
Foster, Bsales, & Awh (2020)
Garcia, Srinivasan, & Serences (2013)
Henderson, Vo, Chunharas, Sprague & Serences (2019)
Ho, Brown, van Maanen, Forstmann, Wagenmakers, & Serences (2012)
Kok, Mostert, & de Lange (2017)
Kok & Turk-Browne (2018)
Kok, Rait, & Turk-Browne (2019)
Liu, Cable, & Gardner (2018)
Lorenc, Sreenivasan, Nee, Vandenbroucke, & D’Esposito (2018)
Mostert, Albers, Brinkman, Todorova, Kok, & de Lange (2018)
Oh, Kim, & Kang (2019)
Qing, Teng, & Postle (2020)
Rademaker, Chunharas, & Serences (2019)
Samaha, Sprague, & Postle (2016)
Sprague & Serences (2013)
Sprague, Ester, & Serences (2014)
Sprague, Ester, & Serences (2016)
Sprague, Itthipuripat, Vo, & Serences (2018)
Sutterer, Foster, Adam, Vogel, & Awh (2019)
Tang, Arabzadeh, & Mattingley (2019)
van Moorselaar, Foster, Sutterer, Theeuwes, Olivers, & Awh (2017)
Vo, Sprague, & Serences (2017)
Yu & Shim (2017)

Brouwer & Heeger (2009)
Kim, Hong, Shevell, & Shim (2020)
Kok, Brouwer, van Gerven, & de Lange (2013)

Amplitude
Slope

Fit amplitude
Fit bandwidth
Vector mean

Max. point
Corr. table
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reconstruction is evaluated for every iteration. These iterations form a null distribution 

(e.g., 1,000 slopes for 1,000 iterations) and then the actual reconstruction’s measure is 

compared to this null distribution.  

 
1.2 Overview of our modified IEM procedure 

 The core steps depicted in Figure 1A – using least-squares linear regression for 

estimating the channel weights (for the encoder) and estimating the channel responses 

(for the decoder), as well as the use of a basis set of hypothesized population-level 

tuning functions – remain the same between the standard and our modified IEM 

procedures. Our modified procedure (Figure 1C) differs from the standard procedure in 

three key ways. As a brief overview, our first modification is to repeat the entire IEM 

procedure multiple times with slightly shifted basis sets such that reconstructions are in 

stimulus space rather than channel space. This iterative shifting modification has been 

employed in a few previous papers (Kim, Hong, Shevell, & Shim, 2020; Rademaker, 

Chunharas, & Serences, 2019), however, it is not common practice. This step is 

important because otherwise stimulus predictions will be biased by the arbitrary 

placement of the basis channels, as described in section 1.3.2.  

Second, and most critically: we evaluate reconstructions in terms of average 

prediction error instead of the aligned and averaged reconstruction metrics described 

above. Trial-by-trial predictions may be compared to the ground truth stimuli to calculate 

each trial’s prediction error, which may be averaged across trials and assessed via 

permutation testing just like the standard IEM procedure. Our modified IEM procedure 

obtains trial-by-trial stimulus predictions using the correlation table approach (the only 

approach for obtaining a decoding metric in Figure 2 that adapts to the shape of the 
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basis channel, see section 1.3.1) and calculates prediction error using mean absolute 

error (MAE), which we recommend as a simple and interpretable metric. (Note that 

other error metrics are also possible in this framework, including signed error metrics if 

there is reason to expect asymmetric reconstructions.) This modification is critical 

because it resolves several methodological concerns inherent in the standard approach, 

as described more below, and prediction error is an easily interpretable metric.  

Our final modification takes the trial-by-trial prediction approach described above 

one step further. Using the correlation table approach to determine the best-fitting basis 

channel, the center of that best-fitting channel is taken as the stimulus prediction, but 

the goodness-of-fit (correlation) values themselves can also be optionally leveraged to 

estimate trial-by-trial confidence of predictions (see section 1.3.3). This modification 

adds substantial flexibility to the IEM procedure; e.g., allowing for thresholding 

reconstructions to potentially increase statistical power, as we demonstrate in the 

Results. We discuss these modifications in more depth in the subsequent sections, 

while highlighting the advantages of our modified procedure over the standard 

procedure.   

 

1.3 Value of our approach over the standard approach 

As summarized above, the modified IEM approach that we present here is a 

combination of several modifications and improvements on the standard IEM procedure. 

The value of these modifications is primarily in terms of evaluating IEM results: We 

propose that our modified approach is better than the standard IEM approach in terms 

of improved interpretability, flexibility, and robustness to methodological concerns. We 
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also offer our modified approach as a standardized set of “best practices”. As depicted 

in Figure 2, various approaches exist for evaluating IEMs and often researchers report 

several decoding metrics due to ambiguity over which metric is best. Our modified 

approach is the combination of specific practices (some previously employed, some 

novel) intended to offer a preferred solution.  

Below we describe several methodological concerns and limitations of the 

standard IEM procedure that are addressed by our modified procedure. (In the Results 

section, we further demonstrate the appeal of our approach in terms of improved 

flexibility and interpretability.) 

 

1.3.1 Standard procedure can produce misleading or difficult to interpret results 

The standard procedure is susceptible to inappropriate decoding evaluations, 

largely due to the align-and-average step. Aligning and averaging across trial 

reconstructions loses information that is important for evaluating decoding performance 

and can be prone to heavy bias from outliers. Moreover, the metrics used to evaluate 

the aligned and averaged reconstructions are not easily interpretable.  

As depicted in Figure 3, averaging can obscure important information present in 

trial reconstructions. Panels 3a and 3b would be interpreted identically according to the 

standard procedure even though one example shows every channel correctly predicted 

(i.e., predicting the correct stimulus feature with minimal error) and the other example 

shows every channel incorrectly predicted (large errors). Our modified approach using 

MAE would correctly identify the first case as demonstrating superior decoding 

performance. The takeaway here is that averaging across prediction errors, and not 
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across trial reconstructions, avoids the pitfall of interpreting Figures 3a and 3b as 

reflecting the same level of stimulus-specific brain signal despite clear support for 

Figure 3a demonstrating improved decoding on a trial-by-trial level. 

 

 

Figure 3. Cartoon example depicts some problems with the standard procedure of evaluating 
the aligned and averaged reconstruction and using a decoding metric that does not consider the 
shape of the basis channel or the variability of trial reconstructions. For each of the 3 simulated 
data examples, the top row depicts four single-trial reconstructions, and the bottom row depicts 
the aligned-and-averaged reconstruction. In (a) each individual trial’s reconstruction accurately 
predicts the correct channel (i.e., the correct stimulus feature), appropriately reflected in the 
averaged reconstruction. In (b) each individual trial’s reconstruction predicts an incorrect 
channel. Averaging across trials leads to a misleading result, i.e., the standard approach would 
consider (b) to reflect the same level of decoding performance as (a). In (c) each individual 
trial’s reconstruction is essentially noise, such that the averaged reconstruction results in a false 
peak around the aligned point; the standard procedure using align-and-average metrics would 
result in spuriously superior decoding performance than both (a) and (b), with (c) having a 
higher amplitude, steeper slope, and narrower standard deviation when fit with a gaussian 
distribution. Our modified procedure, calculating MAE from trial-wise prediction error, would 
correctly conclude that case (a) shows the best decoding performance.  

 

MAE is also less prone to bias from outlier reconstructions compared to any of 

the align-and-average metrics. In the standard procedure, a single outlier reconstruction 

Trial reconstructions

Averaged reconstruction

Aligned channel space

Aligned channel space

Trial reconstructions

Averaged reconstruction

Aligned channel space

Aligned channel space

Trial reconstructions

Averaged reconstruction

Aligned channel space

Aligned channel space

According to our method a correctly outperforms b and c

(a) (b) (c)

According to the standard procedure a = b and c outperforms them both (according to all metrics)
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can disproportionately bias the averaged reconstruction, potentially completely flipping 

the averaged reconstruction in the most extreme cases. In contrast, imagine an 

example worst-case scenario for MAE where an experiment is composed of 300 trials 

and 299 trials predicted the correct stimulus and one trial predicted the stimulus 180° 

away (assuming 360° stimulus space). The result would remain at near-perfect 

performance at 0.6° MAE. For 100 trials the performance would be 1.8° MAE and for 

1,000 trials performance would be 0.18° MAE. Outlier bias is minimized because the 

worst possible prediction error for a single trial is capped at the range of stimulus space 

divided by two (for circular stimulus spaces), whereas there is no defined limit for the 

standard IEM procedure. 

 

1.3.2 Standard procedure does not account for the shape of the basis channels 

IEMs produce reconstructions that depend on the choice of basis set (e.g., Liu, 

Cable, & Gardner, 2018; Sprague, Boynton, & Serences, 2019). The decoding metrics 

commonly used to evaluate averaged reconstructions in the standard IEM procedure, 

however, do not take this observation into account. That is, intuition – and standard 

practice – wrongly assume that a monotonic relationship exists between decoding 

metrics such as slope, amplitude, and bandwidth and a greater amount of stimulus-

specific information in the brain signal. A perfect reconstruction returns the shape of the 

basis channel, and so it makes sense to compare the shape of the reconstruction to the 

shape of the basis channel to make predictions and evaluations. The correlation table 

approach employed in our modified procedure leverages this observation to provide the 

most direct relationship between IEM performance and stimulus-specific brain signal.  
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The correlation table approach operates as follows and has been previously used 

in a small number of papers (e.g., Brouwer & Heeger, 2009; Kim, Hong, Shevell, & 

Shim, 2020). For each trial, compute a set of correlation coefficients, each reflecting the 

correlation between that trial’s reconstruction and a canonical basis channel (i.e., a 

perfect reconstruction) centered at every integer in stimulus space (e.g., resulting in 360 

correlation coefficients for a stimulus space ranging from 0-359°). The highest of these 

correlation coefficients is determined to be the best fit for that trial, and the predicted 

stimulus feature for that trial is simply the center of that best-fitting basis channel. In this 

manner, the predictions obtained from the correlation table metric automatically adjust 

to consider the shape of the basis channel because it is the basis channel itself that is 

being used to obtain predictions.  

Simply put, amplitude, slope, bandwidth, etc. are inferior metrics compared to the 

correlation table metric because they do not adapt to the choice of basis set. For 

instance, using the amplitude metric, a higher amplitude at the aligned point is thought 

to reflect improved performance. If the basis channel ranges from 0 to 1, a perfect 

reconstruction should have an amplitude of exactly 1 at the aligned point, but 

reconstructions can feasibly have amplitudes far greater than 1. Such a problem is 

demonstrated visually in Figure 3 where it is clear that Figure 3c looks to be a worse 

reconstruction than Figure 3a, but align-and-average metrics would produce spuriously 

high values for this case. 

It is possible to partially account for the shape of the basis channel by, for 

example, fitting the reconstruction with a gaussian distribution (e.g., Henderson et al., 

2019). However, such fitting procedures may be problematic because such a procedure 
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forces the reconstruction to appear to be a reasonable gaussian shape regardless of 

the data (e.g., fitting Figure 3c with a gaussian distribution would still lead to the same 

incorrect conclusion of superior decoding performance compared to Figure 3a).  

 Given the various ways to measure IEM performance listed in Figure 2, the 

correlation table approach best takes the shape of the basis set into account, but one 

limitation is that the basis channels are in stimulus space, but the reconstructions are in 

channel space. That is, to properly correlate the shape of the basis channel to the 

reconstruction, one must linearly interpolate between points in channel space. Our 

modified procedure solves this limitation by employing iterative shifting (e.g., Kim, Hong, 

Shevell, & Shim, 2020; Rademaker, Chunharas, & Serences, 2019). By repeatedly 

fitting the encoding model with every possible (circular) shift of the basis set and then 

combining all of these iterations together, a fuller reconstruction is obtained that is no 

longer impoverished by a limited number of num_channels points (i.e., the range of 

channel space becomes equal to the range of stimulus space).  

The iterative shifting procedure also aids more generally in producing more 

interpretable and less biased reconstructions, as illustrated in Figure 4. Iterative shifting 

of the basis set is especially important because our decoding model must be capable of 

predicting any possible feature in stimulus space (that is, not solely the stimuli that are 

located at the centers of the basis channels) if we want to obtain accurate trial-by-trial 

stimulus predictions. Note that iterative shifting does not change the fact that different 

basis sets result in different reconstructions, rather, it simply allows for the most 

accurate reconstruction given a set number of channels with defined bandwidths.  
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Figure 4. Simulated data depicting how a slightly altered basis set (means shifted by 20°) can 
alter reconstructions, even if the same signal is present in all cases. Here the trial by voxel 
activations reflect perfect (zero noise) information with identical train and test sets, such that the 
resulting reconstructions should also be perfect. (a) Basis set perfectly reflects the underlying 
voxel tuning functions (simulated ground truth). (b) Reconstruction of the same data, now with 
basis set of channels circularly shifted 20°. (c) By combining the results of both basis sets, the 
channel space changes from num_channels to num_channels*2, leading to a fuller 
reconstruction. Iterative shifting in our modified procedure repeats this procedure for all possible 
shifts of the basis set to make the channel space equal the stimulus space, decreasing variation 
and allowing the correlation table metric to be optimally applied. The code to reproduce this 
figure from simulated data can be found at https://osf.io/et7m2/ (also contains code for 
reproducing Figures 1 and 3).  

 

1.3.3 Standard procedure lacks a measure of decoding uncertainty 

Another limitation of the standard approach resolved by our modified approach is 

that the standard IEM procedure does not incorporate uncertainty into decoding 

performance. Individual trials can vary substantially in signal quality, driven by factors 

including attentional fluctuations, alertness, head motion, and scanner noise. Noisier 

trials could potentially obscure an underlying signal, but as exemplified in Figure 3, 
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highly variable trial reconstructions are not weighted differently from robust 

reconstructions according to the standard procedure. The lack of uncertainty information 

has been noted in other contexts, with some recent alternatives to IEM proposed to 

incorporate uncertainty (e.g., TAFKAP probabilistic decoding model: Li, Sprague, Yoo, 

Ma, & Curtis, 2021; van Bergen & Jehee, 2021). However, here we demonstrate that 

our modified procedure can easily and automatically produce a trial-by-trial measure of 

prediction uncertainty within the IEM framework itself, which can then be used in flexible 

and accessible ways. 

The correlation table approach produces a best-fitting stimulus prediction – and 

associated goodness-of-fit value (correlation coefficient) – for each trial. We propose 

that the correlation coefficient of the best-fitting basis channel can be used as a proxy to 

estimate the confidence, or reliability, of trial-by-trial predictions. It is important to 

emphasize that the correlation coefficient reflects the degree to which the reconstruction 

matches the best-fitting basis channel, not the basis channel centered on the correct 

stimulus. In other words, this goodness-of-fit information is obtained independently and 

prior to any calculation of prediction error. 

This trial-by-trial prediction uncertainty information could be used in a number of 

different ways. One suggestion we put forth is that goodness-of-fit can be used to 

threshold reconstructions, such that worse-fitting trials may be excluded from analysis. 

This principle is analogous to the phase-encoded retinotopic mapping and population 

receptive field modeling techniques, where a set of models spanning the full stimulus 

space is evaluated for every voxel, and the parameters of the best-fitting model are 

selected as that voxel’s preferred stimulus, with the goodness-of-fit values then used to 
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threshold the results (Dumoulin & Wandell, 2008; Engel, Glover, & Wandell, 1997; 

Sereno et al., 1995).   

In the Results section we provide a proof of concept using real fMRI data to 

demonstrate the utility of using trial-by-trial goodness-of-fit values to threshold IEMs 

based on confidence. Note that although r-squared is the more commonly used statistic 

for computing goodness-of-fit in linear regression, squaring the correlation coefficient is 

not preferred here because the sign of the correlation coefficient is informative (e.g., a 

perfectly inverted reconstruction should not be assigned equal confidence as a perfect 

reconstruction), so we recommend the use of the r-statistic. 

 

2. Results 

To validate our modified IEM procedure and demonstrate its practical 

advantages, we implemented both the standard IEM procedure and our modified IEM 

procedure across three real fMRI datasets. The three datasets (Chen, Scotti, Dowd, & 

Golomb, 2021; Henderson, Vo, Chunharas, Sprague, & Serences, 2019; Rademaker, 

Chunharas, & Serences, 2019) span the research topics of perception, attention, and 

memory. We demonstrate how our modified procedure improves over the standard 

procedure in terms of flexibility (potential to exclude low-confidence trial reconstructions) 

and interpretability (reconstruction performance in terms of prediction error) while 

avoiding the methodological pitfalls discussed in the previous section. See the Online 

Methods for information regarding each dataset and how data were obtained and 

processed. 
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2.1 Validating our method on real fMRI data  

Figure 5 shows the results from both a standard IEM procedure and our modified 

procedure. First, to validate our method, we confirmed that across all three datasets our 

modified IEM replicated the overall pattern of results obtained with the standard IEM. In 

the Perception dataset (Henderson et al., 2019), we used both techniques to decode 

the horizontal position of a stimulus in V1, V4, and IPS. The standard IEM procedure 

(quantified by the slope metric) revealed significant decoding performance in all 3 ROIs, 

with the strongest decoding (greatest slope) in V1, followed by V4, and then IPS. The 

modified IEM replicated this pattern. In the Attention dataset (Chen et al., 2021), we 

used both techniques to decode the attended color within a multi-item, multi-feature 

stimulus array, in the same three ROIs. The standard IEM procedure revealed 

significant decoding performance in V1 and V4, but not IPS. The modified procedure 

again replicated this pattern. Finally, in the Memory dataset (Rademaker, Chunharas, & 

Serences, 2019), we used both techniques to decode the remembered orientation of a 

stimulus over two types of working memory delays, blank and with distractor. With the 

standard procedure, the remembered orientation could be successfully decoded in V1, 

V4, and IPS, with significantly greater decoding during the blank (vs distractor) delay in 

V1 and V4. With the modified procedure, we replicated each of those results, with the 

additional finding of significantly greater decoding during the blank vs distractor delay in 

IPS as well. 

The important takeaways from these validations are that (1) the modified 

procedure is not susceptible to the methodological concerns raised earlier that plague 

the standard procedure, and yet (2) the results from the two techniques produce largely 
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consistent patterns across these datasets, in terms of significance testing and overall 

patterns of decoding. We note that these three datasets were useful validation cases 

because they contained robust results (as may be more likely with published, publicly 

available datasets); however, we would not necessarily expect the modified and 

standard procedures to always produce consistent patterns, especially in cases where 

data are less robust and therefore more susceptible to the aforementioned 

methodological concerns. In those cases, we argue that the modified procedure offers a 

more accurate reflection of decoding performance, as illustrated in Figure 3. 

 
2.2 Demonstrating the improved flexibility and interpretability of our method 

Having validated our method across three diverse fMRI datasets, we next use 

these same datasets to illustrate the practical advantages of our modified IEM method. 

First, the modified procedure yields metrics that are easily interpretable and comparable 

across datasets due to decoding performance being measured in terms of prediction 

error rather than arbitrary units. For example, in the Memory dataset, the standard 

procedure in V1 results in decoding performance with a slope of .006 for the blank delay 

condition and .004 for the distractor delay condition; the modified procedure replicates 

this pattern, but now with a more interpretable and meaningful metric: orientation can be 

decoded with an error of 27.9 degrees in the blank delay and 32.5 degrees in the 

distractor condition. 
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Figure 5. Results of the standard IEM procedure and our modified IEM procedure across three 
real fMRI datasets spanning the topics of perception (a), attention (b), and memory (c). For each 
dataset, results are plotted obtained from the standard procedure (orange boxes), modified 
procedure with full data (purple boxes, top plots), and modified procedure using increasingly 
stringent cutoffs based on goodness-of-fit (purple boxes, bottom plots). Bar plots depict the 
average slope (Standard procedure; higher is better) and MAE (Modified procedure; lower is 
better) across subjects, with individual subjects overlaid as colored dots. Error bars depict SEM, 
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V1 V4 IPS

Perception (Henderson, Vo, Chunharas, Sprague, Serences, 2019)
Decode horizontal position

Standard procedure

Modified procedure

Using goodness-of-fit to threshold

Percent of trials excluded
V1 V4 IPS

Attention (Chen, Scotti, Dowd, & Golomb, 2021)
Decode attended color

Using goodness-of-fit to threshold

Percent of trials excluded

Task: report orientation 
of target gabor
following a WM delay

V1 V4 IPS

Using goodness-of-fit to threshold

Percent of trials excluded

Decode orientation during WM delay
Memory (Rademaker, Chunharas, Serences, 2019)

Task: report color or orientation 
of spatially cued gabor

Task: detect brief change 
of the fixation point

Modified procedure

Standard procedure

Modified procedure

Standard procedure

(c)

(a) (b)



IMPROVING IEMS 
 
 

24 
 
 

dotted black lines represent chance decoding, and asterisks represent statistically significant 
decoding (p<.05). Overall results show that conclusions are similar between the standard and 
modified procedures, but MAE is more interpretable (not based in arbitrary units) and not prone 
to methodological concerns discussed in the Introduction. In addition, each dataset showed that 
MAE consistently improved with increasing exclusion thresholds, demonstrating the flexibility of 
goodness-of-fit to exclude noisy trials. See Online Methods for additional information. 
 

Next, we tested the flexibility of the modified procedure to make use of the trial-

by-trial goodness-of-fit information. For each trial, the modified procedure produces a 

predicted stimulus value, associated prediction error, and a goodness-of-fit value. The 

goodness-of-fit value is a measure of how well the predicted stimulus fits an ideal basis 

function centered at that predicted value. That is, it is a measure of the confidence of 

that prediction, not the accuracy of the prediction, and so is obtained independently of 

prediction error. To test the impact of using goodness-of-fit information on decoding 

performance, we performed an analysis where we excluded trials with the lowest 5%, 

10%, 25%, and 50% of goodness-of-fit values (Figure 5). This resulted in visible 

improvements in MAE for increasing numbers of trials excluded for all three datasets 

(linear regression revealed significant negative slope across averaged MAEs of 0%, 

5%, 10%, 25%, and 50% thresholds in all cases except for IPS in the Attention dataset). 

Most notably, in the Attention dataset, MAE improved with increasing confidence 

thresholds in V1 and V4 (where decoding was significant in the unthresholded analysis) 

but not in IPS (where decoding was at chance in the unthresholded analysis). Thus, the 

goodness-of-fit information can be used to improve decoding performance when a brain 

region contains reliable information about a stimulus feature, but does not produce false 

positives in the absence of observable stimulus-specific brain activity. These findings 

suggest that not only does the modified procedure produced more interpretable and 
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less potentially flawed results by using MAE, but statistical power can be further 

increased using the modified procedure by excluding trials with lower goodness-of-fit 

values. 

3. Discussion 

     Inverted encoding modeling has become a popular method for predicting stimuli 

and investigating neural representations because of its robust performance, simplicity of 

linear modeling, ability to predict untrained classes, and grounding in single-unit 

physiology. There are various approaches researchers have employed to evaluate 

reconstructions, typically by averaging across trial-by-trial reconstructions and 

evaluating the result using metrics such as slope or amplitude. We discuss how our 

modifications improve the flexibility and interpretability of inverted encoding modeling 

while fixing important methodological concerns surrounding the standard procedure, 

namely how the standard procedure ignores trial-by-trial variability, does not account for 

the fact that a perfect reconstruction returns the basis channel, and cannot leverage 

uncertainty in its evaluations. The practical advantages of our method are made 

tangible by comparing the results of the standard procedure and our modified procedure 

across three real fMRI datasets, highlighting the wide range of applications intended for 

this modified procedure. 

Importantly, our method can increase statistical power of inverted encoding 

modeling by leveraging uncertainty in model fits. Researchers have the flexibility to 

exclude trials with noisier reconstructions as assessed by evaluating how similar in 

shape each reconstruction is to the perfect possible reconstruction (i.e., the basis 
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channel) at the predicted stimulus. Note that we do not prescribe a specific cutoff for 

determining confidence thresholds in this paper, rather, we simply offer that such an 

approach is possible for increasing statistical power. For example, a researcher could 

weight trials with higher confidences more heavily or simply decide to exclude the 

noisiest 20% of trials. 

Our method also improves model interpretability by evaluating reconstructions in 

terms of prediction error. For example, “V1 showed 10° average prediction error and V4 

showed 20° average prediction error” is more interpretable than “V1 showed .02 

amplitude and V4 showed .01 amplitude” because the latter is in arbitrary units, 

whereas MAE is in meaningful units. Further, unlike amplitude or slope, the magnitude 

of prediction error is not dependent on the choice of basis set and can be directly 

compared to other experiments using the same stimulus space.  

We demonstrated the above two advantages using three real fMRI datasets. Our 

validations across real fMRI datasets further demonstrated how our IEM approach can 

be applied to both circular and non-circular stimulus spaces, is sensitive to variations in 

decoding performance across brain regions and experimental conditions, and can be 

used to accurately decode the contents of perception, attention, and internally held 

working memory. Our modifications allowed for the decoding performance of each 

dataset to be directly compared to each other and demonstrated how uncertainty, 

measured via goodness-of-fit, can indeed be leveraged to increase statistical power. 

Note that just because these three datasets produced consistent overall results (in 

terms of significance testing) across procedures does not ensure this will always be the 
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case—for less reliable results, the methodological pitfalls discussed in the Introduction 

become increasingly problematic for the standard procedure.  

In this paper we have referred to IEMs as a specific kind of encoding and 

decoding model that involves simple linear regression with population-level tuning 

functions to decode experimental stimuli or conditions. There are more complex 

neuroimaging methods that can similarly be used to produce reconstructions via 

hypothesized tuning functions. For instance, Kay et al. (2008) decoded natural images 

from brain activity via voxel-level receptive field models that describe tuning functions 

across space, orientation, and spatial frequency. Naselaris et al. (2009) further 

produced Bayesian reconstructions of natural images via the combination of encoding 

models meant to estimate structural and semantic content. Van Bergen and colleagues 

(van Bergen et al., 2015; van Bergen & Jehee, 2018, 2021) introduced models where 

voxels with similar tuning account for shared noise and which produce trial-by-trial 

probability distributions such that trial-by-trial uncertainty can be obtained similarly to 

our procedure (although the researchers discuss this in terms of testing Bayesian 

theories of neural computation rather than trial thresholding). An advantage of our 

modified IEM procedure is that improvements to the standard IEM approach are 

accomplished without sacrificing simplicity—the encoding model weights and the 

decoding model channel responses are simply estimated via ordinary least-squares 

estimation. 

Inverted encoding modeling has become increasingly popular in recent years, 

and yet the proper method for evaluating IEMs has become increasingly uncertain. As 

depicted in Figure 2, researchers often report IEM performance according to several 
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metrics because of a lack of consensus regarding the “correct” way to evaluate 

reconstructions. Other decoding techniques in neuroimaging, such as support vector 

machines or neural networks, use the easily interpretable metric of classification 

performance (% correct), but IEMs are typically evaluated in terms of arbitrary units that 

are abstracted away from the stimulus space they were intended to predict. We 

demonstrate a clear and practical advantage for evaluating reconstructions according to 

our method: researchers can increase their statistical power via thresholding, compare 

decoding performance across experiments, evaluate performance in stimulus space, 

and obtain concrete stimulus predictions (with corresponding goodness-of-fits) for every 

trial rather than rely on a summary statistic based in arbitrary units. Future work 

involving IEMs can easily adopt our modified procedure, which can be implemented via 

one line of code with our Python package (https://pypi.org/project/inverted-encoding; 

see Online Methods). 
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Online Methods 

 
We performed analyses on two publicly available published datasets 

(Henderson, Vo, Chunharas, Sprague, & Serences, 2019; Rademaker, Chunharas, & 

Serences, 2019) and one unpublished dataset from our lab (Chen, Scotti, Dowd, & 

Golomb, 2021). Note that we only analyzed a subset of the data from each dataset, 

analyzing one or two conditions across three brain regions for the sake of simplicity. 

The experimental paradigms and conditions / regions chosen are described more in 

each dataset’s respective subsection below. 

 

Inverted encoding model procedures 

For all datasets, we performed a set of analyses using both the standard and 

modified IEM procedures, as described in the Introduction, with the exception that we 

used iterative shifting for both the standard and modified IEM. The basis set was 

composed of nine equidistant channels each modeled as cos H(𝜃 − 𝜇) -
,./
I
.
. We used 

10-fold cross-validation, such that each iteration trained the model on 90% of the data 

and tested the model on the remaining 10%, repeated such that all trials were at one 

point decoded as part of the testing set.   

For the standard IEM procedure, we aligned and averaged the single trial 

reconstructions into an average reconstruction and calculated slope as a traditional 

decoding metric. For the modified IEM procedure, we calculated absolute prediction 

error for each trial via the correlation table metric and then calculated MAE. We 

performed these steps for each subject, ROI, and condition, and then we calculated the 
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average slopes and MAEs across subjects. For each condition and ROI, we assessed 

significance via permutation testing. Significance tests were one-sided and uncorrected, 

calculated by comparing the t-statistic calculated from the actual data against the 

permuted null distribution of t-statistics (one t-statistic per each of 5,000 permutations). 

For the modified IEM procedure, we also repeated this analysis pipeline using varying 

levels of goodness-of-fit thresholds. That is, we discarded a certain percent of trials 

based on the worst goodness-of-fits and then calculated MAE using the remaining trials. 

 

Perception dataset: Henderson, Vo, Chunharas, Sprague, and Serences (2019) 

Data were obtained by downloading post-processed fMRI data associated with 

Henderson et al (2019), publicly available on OSF (https://osf.io/j7tpf/). In this 

experiment, nine participants attended to a central fixation while a sphere (multicolored 

flickering dots positioned on the shell of a 3D sphere with radius 3.4°) was presented at 

varying positions along the horizontal and depth axes (depth achieved through 

stereoscopic MR-compatible goggles). The task was to detect a brief luminance change 

of the fixation point. Participants completed between 7 and 21 runs, where each run of 

36 trials began with a sphere presented for 3s followed by a jittered intertrial interval (2-

6s). There were also runs where participants covertly attended to the sphere, but we did 

not include these runs in the analysis. We only reconstructed horizontal position for 

simplicity and because position-in-depth was only sampled across six unique locations 

(varied sampling across the entire stimulus space is more appropriate for inverted 

encoding models) whereas horizontal position was sampled across 36 unique locations 

(from 0.9° to 9.8° eccentricity in both directions, collapsing across position-in-depth). We 
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analyzed V1, V4, and IPS regions of interest which were defined via retinotopic 

mapping protocols where participants viewed rotating wedges and bowtie stimuli (e.g., 

Wandell et al., 2007) while performing a covert attention task of detecting contrast 

dimming on a row of the checkerboard for the rotating wedge stimulus. We applied 

IEMs (following the procedures outlined earlier) to the post-processed data conducted 

by the authors of the original paper: Single-trial activation estimates consisted of 

averaged z-scored BOLD signal of the 3rd and 4th TRs following stimulus presentation. 

For more methods information, please refer to the original paper (Henderson et al., 

2019).  

 

Attention dataset: Chen, Scotti, Dowd, & Golomb (2021) 

Data were previously collected in our lab for another study (Chen et al, 2021). In 

this experiment, seven participants completed a visual attention task. Each trial started 

with a central fixation cross. After 700ms, three circle outlines were displayed at 

equidistant locations surrounding the fixation cross for 200ms. One outline was thicker 

than the others, representing the spatial cue. Participants were instructed to covertly 

attend to the spatial cue location while maintaining fixation at the fixation cross. After 

1100ms, three colored and oriented gratings were briefly displayed for 100ms, followed 

by a 200ms mask and a continuous color report. Participants were instructed to report 

the color of the grating that appeared at the location of the spatial cue. There were also 

trials where participants were asked to shift attention to a different spatial location 

before the onset of the gratings, and entire runs where participants were asked to 

attend and report the orientation of the grating (instead of color), but we did not include 
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these in our analysis. Participants completed at least 440 trials of each condition across 

multiple runs and sessions. We analyzed V1, V4, and IPS regions of interest: V1 and V4 

were defined via retinotopic mapping protocols where participants viewed rotating 

wedges and bowtie stimuli (e.g., Wandell et al., 2007), while IPS was defined from the 

Destrieux atlas (Destrieux, Fischl, Dale & Halgren, 2010) in Freesurfer (parcel labelled 

“S_intrapariet_and_P_trans”). To obtain single-trial neural activations for IEM, we 

modified a commonly used single-trial general linear model (GLM) approach (Mumford 

et al., 2012) to improve the model sensitivity and account for the large number of trials. 

Specifically, we conducted 40 GLMs per subject, where each GLM includes one 

regressor per run for one of the 40 trials in that run and one regressor per run for all the 

other remaining trials in that run. In this way, across the 40 GLMs, each trial in the 

experiment had an estimated single-trial beta weight. For more methods information, 

please refer to the original paper (Chen et al., 2021). 

 

Memory dataset: Rademaker, Chunharas, and Serences (2019) 

Data were obtained by downloading post-processed fMRI data associated with 

Rademaker et al (2019), publicly available on OSF (https://osf.io/dkx6y). We analyzed 

Experiment 1 of Rademaker et al. (2019), where six participants underwent a visual 

working memory task. For each trial, a cue indicating the distractor condition was shown 

for 1.4s, followed by a target grating shown for .5s where participants were instructed to 

memorize its orientation, followed by a 1s blank delay, and then an 11s delay where 3 

possible distractor conditions were possible: blank delay, Fourier-filtered noise, or 

distractor grating of a pseudo-random orientation. Following an additional 1s blank 



IMPROVING IEMS 
 
 

37 
 
 

delay, participants had 3s to report the orientation of the target grating, and finally a 

variable intertrial interval (3/5/8s). Each participant completed 108 trials per distractor 

condition. We only reconstructed the blank delay and distractor grating conditions for 

simplicity. We analyzed V1, V4, and IPS regions of interest which were defined via 

retinotopic mapping protocols where participants viewed rotating wedges and bowtie 

stimuli (e.g., Wandell et al., 2007). We applied IEMs to the post-processed data 

conducted by the authors of the original paper: Single-trial activation estimates 

consisted of averaged BOLD signal between 5.6-13.6s (7-17 TRs) after target onset. 

For more methods information, please refer to the original published paper (Rademaker 

et al., 2019). 

  

Python package: inverted-encoding 

We have released the Python 3 package “inverted-encoding” on PyPi 

(https://pypi.org/project/inverted-encoding/) and GitHub 

(https://github.com/paulscotti/inverted_encoding) for easy implementation of our 

modified inverted encoding model procedure. The package contains two main functions, 

“IEM” and “permutation.” 

For the “IEM” function, the only necessary inputs are an array of the stimulus 

features for every trial and a trial by voxel activations matrix (note: inputs other than 

voxels may be used for other modalities). The basis set can be specified as an optional 

parameter and will otherwise default to a basis set composed of nine equidistant 

channels each modeled as cos H(𝜃 − 𝜇) -
,./
I
.
. The stimulus space defaults to a circular 

0-179° range but can be optionally set to other ranges. Non-circular stimulus spaces 
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can be set by the Boolean parameter “is_circular.” The IEM procedure defaults to a 10-

fold cross-validation procedure but can be optionally specified. The final outputs are an 

array of each trial’s predicted stimulus and an array of each trial’s corresponding 

goodness-of-fit. The user can then compute MAE themselves by averaging the (circular) 

absolute error between the predicted stimulus features and the actual stimulus features. 

The user can decide whether they want to threshold any trials using the provided 

goodness-of-fit values prior to calculating MAE. 

For the “permutation” function, the only necessary input is an array of the actual 

stimulus features. For each iteration, the stimulus features are randomly shuffled and 

used as the predicted stimuli to compute the MAE. The function outputs a null 

distribution of MAE values for the user to compare against the MAE obtained from the 

“IEM” function. A more exact and computationally intensive method would be to rerun 

the entire IEM pipeline with shuffled stimulus labels on every iteration to obtain the null 

distribution. This can also be performed using our package by simply repeating the IEM 

function with a different shuffling of the stimulus features for every iteration. Our 

exploratory comparisons of null distributions obtained using both approaches across the 

three fMRI datasets discussed in the main text yielded no obvious differences.   

 


