- 1 A novel *SERPINE1-FOSB* fusion gene in a case of pseudomyogenic
- 2 hemangioendothelioma results in activation of intact FOSB and the
- 3 PI3K-AKT-mTOR signaling pathway and responsiveness to sirolimus
- 4 Abbreviated title: A novel SERPINE1-FOSB fusion gene in PHE
- 5 Jun Ren^{1§}, Xiaohui Wang^{1§}, Yulin Zhou², Xin Yue³, Shouhui Chen⁴, Xin Ding⁴,
- 6 Xiaoyong Jiang¹, Xiaokun Liu¹, and Qiwei Guo^{2*}
- ⁷ ¹ Department of Dermatology, Zhongshan Hospital Xiamen University, Xiamen,
- 8 Fujian 361004, China.
- 9 ² United Diagnostic and Research Center for Clinical Genetics, Women and
- 10 Children's Hospital, School of Medicine & School of Public Health, Xiamen
- 11 University. Xiamen, Fujian 361102, China.
- ³ Department of Radiology, Zhongshan Hospital Xiamen University, Xiamen, Fujian
- 13 361004, China.
- ⁴ Department of Pathology, Zhongshan Hospital Xiamen University, Xiamen, Fujian
- 15 361004, China.
- 16 [§] These authors contributed equally to this work.
- 17 * Correspondence to: Qiwei Guo, United Diagnostic and Research Center for
- 18 Clinical Genetics, Women and Children's Hospital, School of Medicine & School of
- 19 Public Health, Xiamen University. Xiamen, Fujian 361102, China.
- 20 Email: guoqiwei@xmu.edu.cn. Phone: (86)592-7805028.
- 21
- 22

23 Abstract

24	Pseudomyogenic hemangioendothelioma (PHE) is an extremely rare disease that		
25	affects mainly the young and more men than women. PHE are multicentric, locally		
26	aggressive, have low metastatic potential, and affect multiple tissue planes. Genetic		
27	aberrations are frequently detected in PHE and may play important roles in the		
28	occurrence, development, and treatment of this disease. In this study, we report a case		
29	of PHE with a novel SERPINE1-FOSB fusion gene. The fusion introduced a strong		
30	promoter near the coding region of FOSB, resulting in overexpression of intact FOSB		
31	Immunohistochemical analysis showed overexpression of pAKT and mTOR in tumor		
32	cells, suggesting activation of the PI3K-AKT-mTOR signaling pathway. The patient		
33	responded well to targeted therapy with sirolimus, an mTOR inhibitor. Our study		
34	correlated dysregulation of a specific signaling pathway and the effectiveness of a		
35	targeted therapy to a specific genetic aberration. This information may be useful for		
36	future investigations of targeted therapeutics and provide a potential predictive		
37	biomarker for therapeutic effectiveness in cases of PHE with this genetic aberration.		
38			
39	Keywords		
40	FOSB, PI3K-AKT-mTOR signaling pathway, pseudomyogenic		

41 hemangioendothelioma, SERPINE1-FOSB fusion, sirolimus

42

43 Introduction

44	Pseudomyogenic hemangioendothelioma (PHE) is an extremely rare disease that was			
45	included in the 2013 WHO classification of soft tissue and bone tumors. ¹ This disease			
46	occurs mainly in the young population and affects more men than women. PHE are			
47	typically multicentric, locally aggressive, have low metastatic potential, and affect			
48	multiple tissue planes. ^{1, 2}			
49	Histologically, PHE is characterized by loose fascicles of spindled and epithelioid			
50	cells, abundant eosinophilic cytoplasm, and vesicular nuclei with distinct nucleoli. In			
51	some cases, neutrophilic inflammatory infiltrates have been noted. ^{1, 2}			
52	Immunohistochemically, tumor cells are positive for factor VIII, FLI-1, INI-1,			
53	vimentin, MDM2, CDK4, CD31, cytokeratin AE1/AE3, EMA, and P63 and negative			
54	for CD34, S-100, SMA, desmin, MyoD1, and HMB45. ^{2, 3} Genetically, chromosomal			
55	rearrangements that result in the fusion of all or part of the FOSB coding region with			
56	the promoters of other genes, such as SERPINE1, ACTB, WWTR1, and CLTC, have			
57	been frequently identified in PHE, suggesting that activation of FOSB plays an			
58	important role in the pathogenesis. ^{2, 4-11}			
59	In terms of PHE treatment, the multifocal nature and high risk of relapse limit the			
60	efficacy of surgical excision. ^{3, 12} Conventional chemotherapy has been administered in			
61	some cases, with variable efficacy. However, intolerable toxic effects have been			
62	noted. ¹² In contrast, several targeted drugs, such as sirolimus, everolimus, and			
63	telatinib, have shown efficacy with fewer side effects than chemotherapy. ¹²⁻¹⁶			
64	Unfortunately, the low incidence of PHE does not allow investigators to perform			

65	systematic clinical trials to evaluate the efficacy of a specific treatment, and long-term		
66	follow-up data for a specific treatment are limited. Therefore, no systemic therapies		
67	have been officially approved for the management of PHE. Thus, in depth knowledge		
68	regarding the pathogenesis and treatment and follow-up data for each case of PHE are		
69	valuable for understanding and managing this rare disease.		
70	Here, we report the diagnosis, genetic examination, treatment, and follow-up of a		
71	patient with PHE and discuss the correlation of genetic aberrations with signaling		
72	pathway dysregulation and therapeutic effectiveness.		
73	Materials and methods		
74	Histological and immunohistochemical analysis		
75	Resected tumor samples were fixed in 10% buffered formalin and embedded in		
76	paraffin to prepare 4-mm sections. For histological analysis, the sections were stained		
77	with hematoxylin and eosin. Immunohistochemical analysis of cytokeratin AE1/AE3,		
78	CD31, ERG, INI-1, BCL-2, Ki67, CD34, D2-40, S-100, SMA, and STAT6 was		
79	performed using the BenchMark XT automated slide preparation system (Roche).		
80	Immunohistochemical analysis of FOSB, pAKT, and mTOR was performed as		
81	follows. The paraffin was removed from the sectioned tumor samples with xylene,		
82	and the sections were rehydrated in a graded series of ethanol, followed by		
83	heat-induced epitope retrieval in a pressure cooker and blocking of endogenous		
84	peroxidase activity. Next, the sections were incubated with primary antibodies		
85	overnight at 4 °C and then with a rabbit secondary antibody and finally reacted with 3,		
86	3'-diaminobenzidine. The samples were counterstained with hematoxylin. Finally, the		

87 slides were analyzed using an E200MV microscope (Nikon).

88 Detection of the SERPINE1-FOSB fusion gene

- 89 RNA was extracted from a freshly resected tumor sample using the RNeasy Mini Kit
- 90 (Qiagen) and reverse transcribed using the RevertAid First Strand cDNA Synthesis
- 91 Kit (Thermo Fisher) according to the manufacturer's protocol. The cDNA was
- 92 amplified in a 20- μ L reaction containing 1× FastPfu Buffer (TransGen Biotech,
- 93 Beijing, China), 1 U of TransStart® FastPfu DNA polymerase (TransGen Biotech),
- 94 2.5 mmol/L Mg²⁺, 0.2 mmol/L of each deoxy-nucleoside triphosphate, and 0.2 μ mol/L
- 95 each forward and reverse primer. Based on a previous study,⁴ an upstream primer
- 96 targeting SERPINE1 (5'-AGAGCGCTGTCAAGAAGACC-3') and a downstream
- 97 primer targeting *FOSB* (5'-GTTCCCGGCATGTCGTAG-3') were used. PCR was
- 98 performed on a ProFlex PCR System (Thermo Fisher) under the following cycling
- 99 conditions: 95 °C for 3 min, followed by 30 cycles at 95 °C for 30 s, 58 °C for 30 s,
- and 72 °C for 3 min, with a final extension for 5 min at 72 °C.
- 101 The PCR products were examined by electrophoresis on a 1% agarose gel containing
- 102 $1 \times$ GoldViewTM Dye (SBSGENE, Shanghai, China) for staining. The recovered PCR
- 103 products were examined using commercial Sanger sequencing (Sangon, Shanghai,
- 104 China).
- 105 **Ethics statement**
- 106 Signed informed consent was obtained from the patient for the use of his materials
- 107 and publication of de-identified clinical data, including photographs. The study was
- 108 approved by the Research Ethics Committee of Zhongshan Hospital Xiamen

109	University.

110 **Results**

111 Clinical diagnosis of the case

- 112 A 61-year-old man with no specific history of disease presented with rapidly
- 113 progressive multifocal nodules and localized pain in the left hip and left iliac region
- 114 for more than 2 months. The skin lesions were discontinuous, raised, or subcutaneous,
- 115 0.3–1.5 cm in diameter, with a smooth surface (Fig. 1A). The physical examination
- 116 was otherwise normal, and superficial lymph nodes were not enlarged. Magnetic
- 117 resonance imaging (MRI) revealed multiple lesions in the ilium (Fig. 1C), gluteus

118 medius, gluteus mininus, and subcutaneous region of the left hip (Fig. 1H).

- 119 As shown in Fig. 2, histopathological examination of a biopsy sample from the left
- 120 hip revealed that the nodule was in the dermis and subcutaneous tissue and was
- 121 composed of loose fascicles of spindled and epithelioid cells, with abundant
- 122 eosinophilic cytoplasm and vesicular nuclei with distinct nucleoli. Neutrophil

123 infiltration and intravascular tumor thrombus were also observed.

- 124 Immunohistochemical analysis revealed that the biopsy was positive for cytokeratin
- 125 AE1/AE3, CD31, ERG, INI-1, BCL-2, and Ki67 (15%) (Fig. 3) and negative for
- 126 CD34, D2-40, S100, SMA, and STAT6 (data not shown).
- 127 Based on the clinical presentation, histomorphology, and expression of keratins and
- 128 endothelial markers in the immunohistochemical analysis, the nodules were diagnosed
- 129 as PHE.
- 130 The tumor was responsive to sirolimus

131	After diagnosis, the patient underwent surgical resection to remove the palpable		
132	nodules and was administered two cycles of anlotinib hydrochloride (10 mg/d) every		
133	2 weeks. During the first cycle of chemotherapy, fresh nodules developed, and pain		
134	remained. During the second cycle of chemotherapy, no evidence of tumor		
135	development was observed, and the pain was alleviated. However, no evident		
136	improvement was noted on follow-up MRI, and chemotherapy was halted due to		
137	drug-induced nosebleeds and periungual sclerosis (Fig. 1D and I). The patient was		
138	then treated with radiotherapy 5 days a week (Monday–Friday) via $6\square$ MV linear		
139	accelerator at a dose of 5000 cGy. Unfortunately, no improvement was noted after 5		
140	weeks of radiotherapy (Fig. 1E and J).		
141	Eventually, targeted therapy with sirolimus, an orally available mTOR inhibitor, was		
142	started (1 mg/day), and oxycodone (50 mg bid) was administered for pain control. At		
143	2-month follow-up, no fresh nodules had developed, and the pain was alleviated (Fig.		
144	1B). Moreover, no drug-induced toxic effects were noted on physical examination.		
145	Therefore, the dose of sirolimus was increased to 2 mg/day. Follow-up MRI was		
146	performed at 5 and 20 months after sirolimus treatment, which showed general		
147	improvement of the disease (Fig. 1F, G, K and L), and the largest lesion in the left		
148	gluteus medius had progressively shrunk. Since the pain was alleviated, a reduced		
149	dose of oxycodone (10 mg each night) was sufficient for pain control. Based on the		
150	clinical improvement and lack of side effects, sirolimus therapy and follow-up are		
151	ongoing.		

152 The SERPINE1-FOSB fusion gene activates FOSB and the EGFR-pAKT-mTOR

153 pathway

154	Since the nodules were diagnosed as PHE and they were responsive to sirolimus, we			
155	investigated the possible pathogenetic and therapeutic mechanisms. We first examined			
156	the nodules for the presence of a SERPINE1-FOSB fusion gene. As shown in Fig. 4A,			
157	when the tumor DNA sample was amplified with primers designed for the presence of			
158	a SERPINE1-FOSB fusion gene, an amplicon was generated. Sanger sequencing of			
159	the amplicon revealed a novel SERPINE1-FOSB fusion gene, in which the			
160	breakpoints of both genes were in non-coding exon 1. Moreover, a 52-bp fragment			
161	from intron 1 of SERPINE1 was inserted at the fusion junction (Fig. 4B). Since the			
162	coding region of FOSB was unaffected, the fusion gene could generate an intact			
163	FOSB protein. Next, we examined the expression levels of FOSB, pAKT, and mTOR			
164	in the tumor. As shown in Fig. 3, strong expression was noted for these targets,			
165	suggesting that the fusion gene activates FOSB and the PI3K-AKT-mTOR signaling			
166	pathway.			
167	Discussion			
168	Genetic aberrations play important roles in the occurrence, development, and			
169	treatment of various human tumors. In PHE, chromosomal rearrangements leading to			
170	the fusion of FOSB (the whole or partial coding region) with other genes, such as			
171	SERPINE1, ACTB, WWTR1, and CLTC, have been identified. ^{2, 4-11} The common			
172	feature of these cases is that the fusion introduces a strong promoter, resulting in			
173	deregulated overexpression of intact, partial, or chimeric FOSB. However, the			
174	pathogenic mechanism by which these genetic aberrations lead to PHE, which is of			

175	value for the development of effective targeted treatments, remains largely unknown.			
176	Recently, van IJzendoorn et al. ¹⁶ demonstrated that a SERPINE1-FOSB			
177	fusion-derived chimeric protein could function as an active transcription factor that			
178	was not only capable of regulating its own transcription but also upregulating the			
179	expression of PDGFRA and FLT1. In their case, the tumors were responsive to			
180	telatinib, a drug currently in clinical trials, that can block self-regulation of the fusion			
181	gene by specifically affecting PDGFRA, FLT1, and FLT4 signaling and			
182	downregulating SERPINE1. However, the presence of different genetic aberrations,			
183	such as fusions with different genes or different domains, could alter the pathogenesis			
184	as well as the treatment. Therefore, further investigation is required to demonstrate			
185	whether this drug is effective in cases with other genetic aberrations such as			
186	SERPINE1-FOSB fusions with intact or truncated FOSB or ACTB-FOSB fusions.			
187	Similar to a previous case, ¹⁵ in our case, mTOR was overexpressed as was pAKT (Fig.			
188	3), suggesting activation of the PI3K-AKT-mTOR signaling pathway, one of the most			
189	frequently dysregulated pathways in human cancers that regulates important cellular			
190	functions, including metabolism, motility, growth, and proliferation. ¹⁷ Dysregulation			
191	of this pathway supports the survival, expansion, and dissemination of cancer cells. ¹⁷			
192	Genetic alterations in specific oncogenes or tumor suppressor genes, such as PIK3CA,			
193	PIK3R1, AKT, MTOR, TSC1, and TSC2, can aberrantly activate this pathway via			
194	diverse mechanisms. However, these genetic alterations also provide opportunities for			
195	therapeutic targeting of this pathway and potential predictive biomarkers of			

196 therapeutic effectiveness.¹⁷ Currently, several distinct classes of drugs targeting the

197	PI3K-AKT-mTOR signaling pathway, including PI3K and AKT inhibitors, as well as		
198	mTOR inhibitors, have been developed and have shown clinical potential. ¹⁸ mTOR		
199	inhibitors, such as sirolimus and everolimus, have been effectively used for targeted		
200	therapy of PHE. ¹²⁻¹⁵ However, the genetic information for mTOR inhibitor-responsive		
201	cases is limited. In some cases, the genetic information was missing, ¹⁴ while in others,		
202	although a translocation or gene fusion was reported, the translational products of the		
203	fusion gene were not described. ^{13, 15} Most recently, Bridge et al. ⁷ reported a		
204	CLTC-FOSB fusion gene resulting in a chimeric protein in a case of PHE, and the		
205	tumor was responsive to sirolimus therapy. In our study, we clearly correlated the		
206	effectiveness of sirolimus therapy with a PHE-related genetic aberration, that is, a		
207	SERPINE1-FOSB fusion resulting in overexpression of intact FOSB. This genetic		
208	aberration could be a predictive biomarker for effective sirolimus therapy. FOSB		
209	belongs to the Fos family, which is associated with various cellular functions,		
210	including proliferation, differentiation, and transformation, and it is frequently		
211	involved in the pathogenesis of vascular tumors. ¹⁹⁻²² However, the causal relationship		
212	between FOSB overexpression and activation of the PI3K-AKT-mTOR signaling		
213	pathway remains unclear. Nonetheless, the use of combinations of inhibitors targeting		
214	the PI3K-AKT-mTOR signaling pathway in PHE cases is worthwhile, since this		
215	strategy has been shown to be more effective than monotherapy, owing to the		
216	inhibition of compensatory mechanisms involved in intrinsic and adaptive		
217	resistance. ^{23, 24} Future investigations of the interconnecting cascades between the		
218	PHE-related genetic aberrations and this signaling pathway will advance our		

- 219 knowledge of PHE and aid in the development of personalized agents with greater
- 220 target specificity and optimal therapeutic index.
- 221 In conclusion, we report a novel SERPINE1-FOSB fusion gene in a patient with PHE
- that was responsive to sirolimus therapy. The fusion gene resulted in overexpression
- of intact FOSB, pAKT, and mTOR, suggesting activation of the PI3K-AKT-mTOR
- signaling pathway. Our study correlated the dysregulation of a specific signaling
- 225 pathway and the effectiveness of a specific targeted therapy to a specific genetic
- aberration, which could promote the investigation of therapeutic targets and provide a
- 227 predictive biomarker of therapeutic effectiveness for PHE with this type of genetic
- aberration.

229 Acknowledgments

- 230 We thank Dr. Qinhe Fan and Fanfan Shu for their kind supports to this work. This
- 231 work was supported by the Key Clinical Specialty Discipline Construction Program
- of Fujian Province (Grant No. 050145).

233 References

- 234 1. Hornick JL, Fletcher CD. Pseudomyogenic hemangioendothelioma: a distinctive, often
- 235 multicentric tumor with indolent behavior. *Am J Surg Pathol* 2011; **35**: 190-201.
- 236 2. Inyang A, Mertens F, Puls F, Sumathi V, Inwards C, et al. Primary Pseudomyogenic
- Hemangioendothelioma of Bone. Am J Surg Pathol 2016; 40: 587-98.
- 238 3. Pranteda G, Magri F, Muscianese M, Pigliacelli F, D'Arino A, et al. The management of
- 239 pseudomyogenic hemangioendothelioma of the foot: A case report and review of the literature.
- 240 *Dermatol Ther* 2018; **31**: e12725.

- 241 4. Walther C, Tayebwa J, Lilljebjorn H, Magnusson L, Nilsson J, et al. A novel
- 242 SERPINE1-FOSB fusion gene results in transcriptional up-regulation of FOSB in
- 243 pseudomyogenic haemangioendothelioma. J Pathol 2014; 232: 534-40.
- 244 5. Agaram NP, Zhang L, Cotzia P, Antonescu CR. Expanding the Spectrum of Genetic
- 245 Alterations in Pseudomyogenic Hemangioendothelioma With Recurrent Novel ACTB-FOSB
- 246 Gene Fusions. *Am J Surg Pathol* 2018; **42**: 1653-61.
- 247 6. Panagopoulos I, Lobmaier I, Gorunova L, Heim S. Fusion of the Genes WWTR1 and
- 248 FOSB in Pseudomyogenic Hemangioendothelioma. *Cancer Genomics Proteomics* 2019; 16:
- 249 293-8.
- 250 7. Bridge JA, Sumegi J, Royce T, Baker M, Linos K. A novel CLTC-FOSB gene fusion in
- 251 pseudomyogenic hemangioendothelioma of bone. *Genes Chromosomes Cancer* 2021; 60:
- 252 38-42.
- 253 8. Alegria-Landa V, Santonja C, Jo-Velasco M, Kutzner H, Requena L. Cutaneous
- 254 pseudomyogenic (epithelioid sarcoma-like) haemangioendothelioma FOSB
- 255 immunohistochemistry demonstrating the SERPINE1-FOSB fusion gene. J Eur Acad Dermatol
- 256 Venereol 2017; 31: e550-e2.
- 257 9. Ide YH, Tsukamoto Y, Ito T, Watanabe T, Nakagawa N, et al. Penile pseudomyogenic
- 258 hemangioendothelioma/epithelioid sarcoma-like hemangioendothelioma with a novel pattern
- of SERPINE1-FOSB fusion detected by RT-PCR--report of a case. *Pathol Res Pract* 2015;
- 260 **211**: 415-20.
- 261 10. Pradhan D, Schoedel K, McGough RL, Ranganathan S, Rao UNM. Pseudomyogenic
- 262 hemangioendothelioma of skin, bone and soft tissue-a clinicopathological,

263	immunohistochemical,	and fluorescence in sit	I hybridization study	. <i>Hum Pathol</i> 2018; 71 :
	,		, , , , , , , , , , , , , , , , , , , ,	,

264 126-34.

- 265 11. Trombetta D, Magnusson L, von Steyern FV, Hornick JL, Fletcher CD, et al. Translocation
- t(7;19)(q22;q13)-a recurrent chromosome aberration in pseudomyogenic
- hemangioendothelioma? *Cancer Genet* 2011; 204: 211-5.
- 268 12. Joseph J, Wang WL, Patnana M, Ramesh N, Benjamin R, et al. Cytotoxic and targeted
- therapy for treatment of pseudomyogenic hemangioendothelioma. *Clin Sarcoma Res* 2015; 5:
- 270 22.
- 271 13. Danforth OM, Tamulonis K, Vavra K, Oh C, Brickman A, et al. Effective Use of Sirolimus
- and Zoledronic Acid for Multiosteotic Pseudomyogenic Hemangioendothelioma of the Bone in
- a Child: Case Report and Review of Literature. J Pediatr Hematol Oncol 2019; 41: 382-7.
- 274 14. Gabor KM, Sapi Z, Tiszlavicz LG, Fige A, Bereczki C, et al. Sirolimus therapy in the
- treatment of pseudomyogenic hemangioendothelioma. *Pediatr Blood Cancer* 2018; 65.
- 276 15. Ozeki M, Nozawa A, Kanda K, Hori T, Nagano A, et al. Everolimus for Treatment of
- 277 Pseudomyogenic Hemangioendothelioma. J Pediatr Hematol Oncol 2017; 39: e328-e31.
- 278 16. van IDGP, Sleijfer S, Gelderblom H, Eskens F, van Leenders G, et al. Telatinib Is an
- 279 Effective Targeted Therapy for Pseudomyogenic Hemangioendothelioma. *Clin Cancer Res*
- 280 2018; **24**: 2678-87.
- 281 17. Janku F, Yap TA, Meric-Bernstam F. Targeting the PI3K pathway in cancer: are we
- 282 making headway? Nat Rev Clin Oncol 2018; 15: 273-91.
- 283 18. Polivka J, Jr., Janku F. Molecular targets for cancer therapy in the PI3K/AKT/mTOR
- 284 pathway. *Pharmacol Ther* 2014; **142**: 164-75.

- 285 19. Kataoka F, Tsuda H, Arao T, Nishimura S, Tanaka H, et al. EGRI and FOSB gene
- 286 expressions in cancer stroma are independent prognostic indicators for epithelial ovarian
- 287 cancer receiving standard therapy. *Genes Chromosomes Cancer* 2012; **51**: 300-12.
- 288 20. Antonescu CR, Chen HW, Zhang L, Sung YS, Panicek D, et al. ZFP36-FOSB fusion
- 289 defines a subset of epithelioid hemangioma with atypical features. Genes Chromosomes
- 290 *Cancer* 2014; **53**: 951-9.
- 291 21. Durchdewald M, Angel P, Hess J. The transcription factor Fos: a Janus-type regulator in
- health and disease. *Histol Histopathol* 2009; **24**: 1451-61.
- 293 22. Catar R, Witowski J, Wagner P, Annett Schramm I, Kawka E, et al. The proto-oncogene
- 294 c-Fos transcriptionally regulates VEGF production during peritoneal inflammation. Kidney Int
- 295 2013; **84**: 1119-28.
- 296 23. Janku F, Hong DS, Fu S, Piha-Paul SA, Naing A, et al. Assessing PIK3CA and PTEN in
- early-phase trials with PI3K/AKT/mTOR inhibitors. *Cell Rep* 2014; 6: 377-87.
- 298 24. Janku F, Wheler JJ, Naing A, Falchook GS, Hong DS, et al. PIK3CA mutation H1047R is
- 299 associated with response to PI3K/AKT/mTOR signaling pathway inhibitors in early-phase
- 300 clinical trials. *Cancer Res* 2013; **73**: 276-84.
- 301
- 302
- 303

Figure 1. Skin lesions and magnetic resonance imaging of the case. (A) Multiple

- 305 nodules were present at diagnosis. (B) Remission of the lesions was evident after
- 306 sirolimus therapy for 2 months. Lesions with high signal intensity in the ilium at
- 307 diagnosis (C), after chemotherapy (D), after radiotherapy (E), and after sirolimus
- 308 therapy for 5 (F) and 20 months (G), respectively. Lesions with high signal intensity
- 309 in the gluteus medius, gluteus mininus, and subcutaneous region of the left hip at
- 310 diagnosis (H), after chemotherapy (I), after radiotherapy (J), and after sirolimus
- 311 therapy for 5 (K) and 20 months (L), respectively. The size of the largest lesion was
- 312 indicated.
- 313
- 314

315 Figure 2. Histopathological examination of a biopsy sample from the left hip.

317 Figure 3. Positive immunohistochemical staining of a biopsy sample from the left

318 hip (400×).

320 Figure 4. Identification of a *SERPINE1-FOSB* fusion gene. (A) Amplification of

- 321 the fusion gene with a specific primer pair. (B) Sanger sequencing of the amplicon
- 322 showing the structure of the fusion gene. NTC: no template control.

А

J

available under aCC-BY-NC-ND 4.0 International license. C

Е

Н

mTOR

