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In principle, the brain should be best able to associate distinct behavioral responses to two sensory stimuli when 
these stimuli evoke sensory population response vectors that are close to orthogonal. To investigate whether task 
training orthogonalizes the population code in primary visual cortex (V1), we measured the orientation tuning of 
4,000-neuron populations in mouse V1 before and after training on a visuomotor association task. In the task, two 
orientations were associated with opposite behavioral responses, while a third was a distractor. The effect of task 
training on population activity could be captured by a simple mathematical transformation of firing rates, which 
suppressed responses to the motor-associated stimuli specifically in cells responding to them at intermediate levels. 
This orthogonalized the representations of the task orientations by sparsening the population responses to these 
stimuli. The degree of response transformation varied from trial to trial, suggesting a dynamic circuit mechanism 
rather than static synaptic plasticity. These results indicate a simple process by which visuomotor associations 
orthogonalize population codes as early as in primary visual cortex.

When an animal sees a stimulus, the stimulus triggers a 
pattern of activity across a multitude of neurons in the 
visual cortex. These neurons’ firing rates together 
define a representation of the stimulus in a high-
dimensional vector space, similar to the high-
dimensional representations constructed by machine 
learning algorithms1–3.  Substantial evidence suggests 
that task training can affect these visual cortical 
representations, and that these changes persist even 
when the stimuli are presented outside of the task 
context4–17.  Nevertheless, these previous results 
together paint a somewhat confusing picture, with 
some studies suggesting increases and others decreases 
in the numbers of neurons representing task stimuli, 
and some studies suggesting broadening and others 
sharpening of tuning curves. Representational 
plasticity has been analyzed primarily at the level of 
single cells rather than populations, making it 
potentially sensitive to the exact methods to select cells 
for analysis and to quantify their selectivity. If it were 
possible to mathematically summarize the effects of 
task training on full population responses, this could 
help summarize these diverse effects, and thus help 
reveal their biological function. 

One hypothesis for the function of cortical 
representational plasticity is to facilitate learning of 
appropriate sensory-motor associations by 
downstream motor systems.  All learning systems 
exhibit “inductive biases”, meaning that they learn 
some types of stimulus-response associations more 
readily than others18–21. An animal’s inductive biases 
presumably reflect its neural representations: the 
animal is likely to generalize responses between 
sensory stimuli evoking similar cortical activity 

patterns, and to differentiate stimuli evoking different 
patterns18,19, and experimental evidence suggests this is 
indeed the case22,23.  Thus, plasticity of sensory cortical 
representations may serve to change inductive bias: for 
an animal to make different associations to two stimuli, 
the cortical representations of the stimuli must become 
differentiated, such as if the firing vectors they evoke 
become more orthogonal24.  

A second, non-exclusive, hypothesis that is often tested 
in learning experiments is that task training increases 
the fidelity of cortical stimulus coding. Cortical 
responses vary between repeated presentations of an 
identical stimulus, and this variability could limit the 
ability of even an ideal observer to decode the stimulus 
from neuronal activity. Such failures of decoding are 
most noticeable when trying to decode stimulus 
identity from the activity a single neuron, but an ideal 
observer would be unable to accurately decode the 
stimulus from even a large population if trial-to-trial 
variability is correlated between neurons in an 
“information-limiting” manner25–27.  It has been 
suggested that task training changes the size and 
correlation structure of trial-to-trial variability, thereby 
improving the fidelity of the population code found in 
naïve cortex4,11,12,14,15,28. This hypothesis, of course, 
presupposes that the population code in naïve cortex 
does suffer from low fidelity, which has been 
questioned by recent recordings of large cortical 
populations29. 

We used two-photon calcium imaging to study how the 
tuning of V1 populations changes after mice learn to 
associate opposing actions to two oriented gratings. 
Training did not improve the fidelity of stimulus 
coding, which was already perfect in naïve animals 
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thanks to a subpopulation of neurons encoding the 
stimuli with high accuracy. Instead, training caused the 
mean responses to different visual stimuli to 
differentiate, becoming more orthogonal, an effect that 
was strongest for the stimuli with opposite behavioral 
associations. The effect of training on population 

activity could be fit by a simple mathematical function: 
a nonlinear transformation of firing rates, whose 
convexity is largest for motor-associated stimuli. This 
transformation sparsens the representations of these 
stimuli and makes them more orthogonal. The strength 
of transformation varies consistently across the 

  

Figure 1 | Stimuli are accurately encoded by V1 populations before and after training on a visuomotor association task. a, On 
each trial mice are presented with two stimuli and then turn a wheel to move them on the screens. Turning towards the 45⁰ stimulus or 
turning away from the 90⁰ stimulus yields a reward, but 68⁰ stimuli are distractors. b, Correct choices for all stimulus pairings (left) and 
the average proportion of left choices across mice taken from their ten highest performing sessions (right). c, Pipeline for imaging neural 
activity. Left: V1 was located using widefield imaging with sparse noise stimuli (red/blue: sign map; yellow outlined square: region selected 
for two-photon imaging). Middle: retinotopy map for the two-photon field of view. Right: colored outlines of detected cells. d, Timeline of 
experiments. Responses to drifting grating stimuli were recorded in naïve mice, and in the same mice after they had become proficient 
at the task. e, Raster representation of responses to repeated grating stimuli for an example cell in a Naïve mouse, and a second cell 
from the same mouse when proficient at the task. f, Orientation tuning curves of the same two cells superimposed in polar coordinates 
(radius represents mean response of the cell to each orientation). g,h, Same as e,f for two more cells of weaker orientation selectivity. 
i, 2d projection of population response vectors for each orientation from one mouse before (left) and after training (right). j, Cross-
validated classification accuracy for decoding stimulus orientation from naïve and proficient mice. Dashed line indicates perfect 
performance (n = 5 mice). 
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population on a trial-by-trial basis, suggesting it 
emerges from circuit dynamics, rather than static 
synaptic plasticity. 

Results 
We trained mice in a visuomotor association task (Fig. 
1a-b; Supplementary Fig. 1). Mice were shown pairs of 
stimuli and were trained to form motor associations 
with gratings of two orientations (45° and 90°) 
representing opposite behavioral contingencies (turn 
towards vs. turn away), while a third orientation was a 
distractor (68°) that was presented as often as the 
motor-associated stimuli. No other orientations were 
presented during task performance. 

To study how task training affected cortical 
representations of visual stimuli, we assessed the 
orientation tuning of excitatory cells in V1 using two-
photon calcium imaging (Fig. 1c-d). We obtained two 
recordings in passive conditions: one before task 
training began (naïve condition), and one after training 
was complete (proficient condition). In both cases, 
drifting gratings were presented to passive mice in the 
same apparatus as the task, but the wheel was not 
coupled to visual stimuli and no rewards were given. 
Presentation of gratings in this passive condition 
caused pupil constriction, which was more prominent 
following training but not specific to any orientation 
(Supplementary Fig. 2a-b). Stimulus presentation 
evoked minimal whisking that was not significantly 
affected by training or orientation (Supplementary Fig. 
2c-d). Thus, even though body movements modulate 
visual cortical activity30–33, analyzing passive stimulus 
responses avoided this potential confound. 

Visuomotor association does not improve 
decodability of task stimuli 

The population code for grating orientation had 
extremely high fidelity, in both naïve and trained mice. 
Individual cells showed a range of tuning 
characteristics. Some neurons in both naïve and 
proficient mice showed sharp orientation tuning and 
reliable responses (Fig. 1e-f). Other neurons showed 
broader tuning or less reliability, with multi-peaked 
tuning curves particularly noticeable in proficient mice 
(Fig. 1g-h). Applying dimensionality reduction to the 
population activity (Methods), we observed that 
population responses to different grating stimuli 
showed essentially no overlap (Figure 1i). As a first test 
of the fidelity with V1 encoded grating orientation, we 
decoded the stimulus orientation from population 
activity using linear regression. This yielded essentially 
100% cross-validated accuracy for all orientations, in 
both naïve and proficient mice (Fig. 1j).   

This result does not support the hypothesis that 
correlated neural noise presents a fundamental limit to 
the fidelity of stimulus coding in naïve animals, at least 
for the stimuli used here. Because this hypothesis has 
been influential, we examined our contradictory 
evidence in substantial further detail, to be sure it is 
valid. These analyses revealed that training-related 
changes in stimulus representations have no effect on 
the fidelity of stimulus encoding, due to the existence of 
a sparse subset of neurons which encode the stimuli 
with extremely high accuracy, in both naïve and 
proficient conditions (Appendix 1).  We therefore next 
investigated how the mean response to each stimulus 
changed, to see if this structure matched the predictions 
of the inductive bias hypothesis. 

Training specifically suppresses responses to task 
stimuli in weakly-tuned cells 

To analyze how visuomotor association changes the V1 
population code, we examined the mean responses of 
individual neurons to gratings of all orientations, as 
summarized by their orientation tuning curves (Fig. 2a-
b). In naïve animals, tuning curves typically had a 
standard single-peaked profile (Fig. 2a).  In proficient 
animals, however, tuning curves often showed an 
irregular, multipeaked form (Fig. 2b). Closer 
examination suggested that these multipeaked 
orientation tuning curves had dips at the visuomotor 
associated orientations 45° and 90°, suggesting that 
mean responses to these stimuli are suppressed after 
training, in at least some cells. 

The suppression of responses to task orientations was 
strongest in weakly-tuned cells (Fig. 2c-f). We first 
computed each cell’s modal orientation preference, i.e. 
the orientation that drove it most strongly. We found 
that task training decreased the fraction of cells modally 
preferring the motor-associated orientations (45° and 
90°), but not the distractor orientation (68°) (Fig. 2c; 45°: 
p = 0.012; 68°: p = 0.228; 90°: p = 0.006, paired-sample t-
test, n = 5 mice), consistent with suppression of 
responses specifically to motor-associated stimuli. The 
decrease in cells modally preferring the motor-
associated orientations came specifically from cells of 
low orientation selectivity (assessed by the length of the 
circular mean response vector; arrows in Figs. 2a,b), 
with no decrease in the number of cells strongly tuned 
for motor-associated orientations (Fig. 2d; 45°: p = 0.005 
and 0.037 for orientation selectivity 0 - 0.2 and 0.2 - 0.4; 
68°: p = 0.130 and 0.390; 90°: p = 0.001 and 0.013, paired 
samples t-test, n = 5 mice). 

Tuning curves also changed shape after training, in a 
manner dependent on a cell’s preferred orientation and 
selectivity (Fig. 2e-f). We grouped the recorded cells by 
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their orientation selectivity and mean orientation 
preference and plotted the mean tuning curves of cells 
in each group before and after training, using held-out 
repeats. In naïve mice, tuning curves had a uniform 
structure (Fig. 2e). By construction, these curves peaked 
at the cells’ mean orientation preference, and the depth 
of modulation increased with the cells’ selectivity 
index. For trained mice, however, a different structure 
appeared (Fig. 2f). Weakly tuned neurons were 
suppressed by the motor-associated orientations 
regardless of their preference. Cells whose mean 
orientation preference was at or close to a motor-
associated orientation exhibited multimodal tuning 

curves after training, for 
which the mean and modal 
orientation preference 
differed (examples in Fig. 
2b). For more strongly tuned 
cells, suppression by motor-
associated orientations were 
still visible, primarily in 
neurons with a mean 
orientation preference 
adjacent to them.  This 
suppression led to an 
asymmetry in tuning curve 
slopes (Supplementary Fig. 
3), as previously reported in 
primate 16.  

A mathematical model for 
how training changes 
tuning curves 

Although the training-
related changes to tuning 
curves appeared complex 
when analyzed in terms of 
single-cell statistics, they 
could be accurately 
summarized by a simple 
mathematical model (Fig. 3). 
We will first describe and 
verify this model, before 
considering its 
computational implications 
for V1 population coding. 

In the model, visuomotor 
learning transforms V1 
population responses by 
applying a convex nonlinear 
transformation to the 
response of each cell (Fig. 
3a): if cell ܿ’s response to 
orientation ߠ was ௖݂,ఏ before 

training, then after training it is ݂′௖,ఏ = ݃ఏ൫ ௖݂,ఏ൯, where 
the function ݃ఏ depends on the stimulus ߠ, but not on 
the cell ܿ. If the function ݃ఏ is convex, then cells that 
responded modestly to orientation ߠ will have their 
responses to ߠ further suppressed after training, but 
cells that responded to ߠ either strongly or not at all will 
be unaffected.  The model accurately summarized the 
effects of task training: responses in naïve and 
proficient mice could be accurately related by piecewise 
linear functions whose shape varied between 
orientations but not between cells (Fig. 3b). The 
convexity of the function ݃ఏ relating naïve to proficient 
responses was larger for motor-associated orientations 

  
Figure 2 | a, Single-cell orientation tuning curves from naïve mice, for four cells with mean orientation 
preference 0°, 45°, 68°, and 90°. Colored polar curves: neural response to each orientation; dots: 
response to modal orientation; arrows: circular mean vectors representing mean orientation 
preference (angle) and orientation selectivity (magnitude). b, Similar plots for four other cells from 
mice proficient at the task. c, Proportion of cells with each modal orientation preference, in naïve and 
proficient mice. Error bars: SEM (n = 5 mice). d, Proportion of cell population that had modal 
orientation preference 45° (left), 68° (center), and 90° (right) and specified orientation selectivity. *, 
p < 0.05, **, p < 0.01. e, Average orientation tuning curves for cell groups defined by mean orientation 
preference (color) and selectivity (column) in naïve mice. Solid vertical lines indicate motor-
associated orientations, dashed the distractor (68°). f, Same plot for proficient mice. Solid arrows 
highlight suppression of cell responses to the motor-associated orientations 45° and 90°. Shading: 
SEM (n = 5 mice) 
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than for the distractor orientation or for nontask 
orientations (Fig. 3c; motor-associated vs 68°: p = 0.003; 
motor-associated vs non-task: p = 0.001; Independent 
samples t-test, n = 5 mice). Applying this transformation 
to the naïve tuning curves, we were able to predict 
neuronal responses in proficient subjects with 
remarkable accuracy (Fig. 3d; compare to Fig. 2f).  

The model provides a simple, quantitative explanation 
for the qualitative features of tuning curve changes seen 
earlier. It explains why training affects mostly the cells 
that are broadly tuned and gives them multipeaked 
tuning curves: these cells exhibit intermediate levels of 
response that are affected most by the convex 
nonlinearity, and thus suppressed specifically to the 
task orientations. In contrast, strongly tuned cells fire 
close to either the minimum or maximum possible for 
all stimuli, so are not affected by the nonlinearity.  

Tuning curve transformation 
varies dynamically from trial 
to trial 

Plasticity of cortical 
representations is often 
assumed to arise from long-
term plasticity of local 
excitatory synapses that 
changes the sensory drive 
received by cortical neurons34,35. 
Our observations, however, 
suggest an alternative 
hypothesis. Under this 
hypothesis, cortical neurons 
receive a sensory drive that is 
unaffected by training, but 
motor-associated stimuli 
engage a circuit process that 
suppresses the firing of cells 
receiving weak sensory drive 
while sparing strongly driven 
cells. Multiple physiological 
mechanisms could underlie this 
process, for example if motor-
associated stimuli caused 
increased activation of a 
particular inhibitory cell class 
or neuromodulatory pathway.  

The hypothesis makes an 
experimental prediction: if 
training-related changes in 
sensory tuning arise from a 
dynamic process, then 
engagement of this process 
should vary between repeats of 
an identical stimulus. Thus, the 
degree of transformation in 

sensory responses should fluctuate between stimulus 
repeats, and since the circuit process would affect all 
neurons similarly, trial-to-trial variations in response 
transformation should be consistent across the 
population. Finally, it is possible that the degree of 
transformation on each trial correlates with current 
behavioral state. Trial-to-trial variability in neuronal 
responses is well-documented and has been reported to 
take additive and multiplicative forms 36–38. The current 
hypothesis predicts a different type of trial-to-trial 
variability: it predicts that responses follow a nonlinear 
transformation whose convexity varies from one trial to 
the next (Fig. 4a).  

To test this prediction, we examined population 
responses in proficient mice on single trials (Fig. 4b-d).  
We divided cells randomly into two groups, balanced 

  

Figure 3 | Mathematical model for transformation of population activity by task training. a, 
Model schematic. Following task training, the naive response ௖݂,ఏ of cell ܿ to stimulus ߠ is 
transformed by nonlinear function ݃ఏ, which depends on the stimulus ߠ but not the cell ܿ. Blue 
curves on the left illustrate tuning curves ௖݂,ఏ of two hypothetical cells in naïve condition. Middle 
box illustrates the function ݃ఏ, which is more convex for motor-associated stimuli (red curve) than 
for non-task stimuli (black curve). Orange curves to the right show the proficient responses 
݃ఏ൫ ௖݂,ఏ൯, superimposed on original naïve curves (blue).  This transformation specifically 
suppresses moderate responses to the motor-associated stimuli, but does not affect strong or 
zero responses to motor-associated stimuli, or any responses to non-task stimuli. Thus, a cell 
that was highly selective to 45° is unaffected (top right), while a cell that was weakly selective to 
45° develops a multi-peaked tuning curve. b, Empirical fits of the function ݃ఏ for ߠ =45°, 68°, and 
90°.  Each symbol shows the mean response of the same cell groups analyzed in Fig. 3e,f) to 
the orientation ߠ in Naïve vs Proficient conditions. Symbol color indicates orientation preference 
and glyph indicates selectivity following the code illustrated in polar coordinates on the right. Each 
point shows the average response of cells from all experiments. Black lines are stimulus-specific 
fits of piecewise linear functions ݃ ఏ relating naïve responses to proficient responses. c, Convexity 
of ݃ఏ, for motor associated orientations 45° and 90°, distractor orientation 68°, and all other 
orientations. Points indicate individual mice. Error bars: mean and SEM (n = 5 mice). d, Proficient 
orientation tuning curves predicted by the model, obtained by applying the functions fit in b to 
naïve tuning curves. Solid and dashed arrows highlight the same features seen in the actual 
proficient responses, as shown in Fig. 2b. Shading: SEM (n = 5 mice). 
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for orientation preference and 
selectivity, and within each cell 
group examined the 
transformation from trial-
averaged population responses in 
the naïve condition, to single-trial 
population activity in the 
proficient condition. The 
convexity of the transformation 
varied substantially between 
trials, even within repeats of a 
single stimulus orientation, but 
was consistent across cell groups 
(Fig. 4c-d; correlation coefficient 
significantly exceeds 0 at p < 0.05 
for each stimulus orientation, one 
sample t-test, n = 5 mice).  The 
strength of tuning curve 
transformation on a given trial did 
not reflect stimulus-evoked 
movements, which did not vary 
between different grating 
orientations (Supplementary Fig. 
2). However, the strength of 
tuning curve transformation to 
motor-associated stimuli on a 
given trial did vary with ongoing 
behavioral state, being strongest 
on trials where the mouse was 
whisking prior to stimulus onset, 
and this effect was only seen for 
motor-associated stimuli (Fig. 4e, 
Supplementary Fig. 4; linear 
mixed effects model: p = 6.4 x 10-5 
for effect of whisking on 
convexity for motor-associated 
stimuli; p = 1.4 x 10-2; for difference 
between effect of distractor vs. 
motor-associated stimuli on convexity; p = 1.2 x 10-3 for 
difference between effect of non-task vs. motor-
associated stimuli).  Furthermore, transformation of 
activity on trials of high convexity was largest in areas 
of V1 topographically representing the task stimulus 
location, and affected neuropil as well as cellular 
activity as would be expected if it were driven by local 
inhibitory neurons (Fig. 4f-g; Supplementary Fig. 5). 

Training sparsens and orthogonalizes responses to 
motor-associated orientations 

The training-related changes in sensory tuning we 
observed differentiated population responses to the 
motor-associated stimuli by sparsening them and 
making them more orthogonal (Fig. 5; Appendix 2).  To 
visualize changes in the population code, we developed 

a “bullseye plot” (Fig. 5a), which enables one to visually 
compare the responses of all recorded neurons to two 
stimuli. The response of each recorded cell is plotted as 
a circle in a location given in polar coordinates by the 
cell’s preferred orientation and orientation selectivity.  
The color of this circle represents the cell’s response to 
the two task stimuli using a two-dimensional colormap, 
with cells responding exclusively to 45° showing in 
green, cells responding exclusively to 90° in magenta, 
and cells responding to both in black.  This visualization 
suggested that the population code to the stimuli grew 
sparser after task training, and that the number of cells 
responding to both stimuli decreased, reflecting an 
orthogonalization of the codes for the two stimuli.  

To quantify changes in population sparseness we used 
the Treves-Rolls measure39,40, which increased for the 
motor-associated orientations 45° and 90°, to a 

 
Figure 4 | Trial-to-trial variability of response transformation and dependence on 
behavioral state. a, Dynamic sparsening model: activity undergo varying levels on different 
trials, depending on instantaneous brain state. b, Single-trial transformation functions for two 
example presentations of 45° gratings in the same recording session, plotted as Fig. 4b. For 
each trial, responses of separate halves of the cell population are shown. c, Similarity of single-
trial convexities between two different halves of the cell population, for the recording in b. Each 
point represents a single presentation of the 45° stimulus. d, Correlation of single-trial 
convexities between two halves of cells, with each point representing average over motor-
associated, distractor, or non-task stimuli in one experiment. Error bars: mean and SEM (n = 
5 mice). e, Correlation of trial convexity with pre-stimulus whisking. Each point represents a 
stimulus presentation, color coded by mouse identity. Colored lines are linear regression fits 
for individual mice, black line the mean over mice.  Left: motor-associated stimuli; right: 
distractor stimuli. f, Trial-to-trial variability of neuropil responses. Left and right plots show 
mean df/f of two-photon imaging frames to motor-associated orientations for low convexity (< 
0) and high convexity (> 0.3) trials. Colored contours correspond to retinotopic distances from 
task stimulus location (see legend). g, V1 neuropil responses to task-informative orientations, 
as a function of distance from retinotopic position of the task stimulus, for trials with low and 
high convexity. Dashed lines are least-squares fits. Shading: SEM (n = 5 mice). *, p < 0.05, **, 
p < 0.01. 
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significantly greater degree than for the distractor 
stimulus 68°, and for non-task stimuli (Fig. 5b; 45° vs 
68°: p = 0.008; 68° vs 90°: p = 0.023; 45° vs 90°: p = 0.340. 
Welch’s t-test, n = 5 mice).   To quantify the 
orthogonality of the population codes to the two stimuli 
we computed the cosine similarity between their mean 

response vectors (܎ସହ ⋅  ଽ଴|), which܎||ସହ܎|/ଽ଴܎
decreased after training, by a significantly larger 
amount than response vectors to control stimuli 
(Fig. 5c; p = 0.006. Independent samples t-test, n 
= 5 mice; see Supplementary Fig. 6 for all 
stimulus pairs). Thus, by increasing the number 
of zero components in the population response 
vectors (i.e. sparsening), training moved them 
closer to the coordinate axes of N-dimensional 
space, and thereby orthogonalized them (Fig. 
5d). 

We hypothesize that sparsening and 
orthogonalization of population codes could 
help produce correct motor outputs to stimuli, 
without requiring downstream synaptic 
plasticity (Fig. 6e). Consider a downstream 
motor structure, in which decision neurons 
receive excitatory input from V1 neurons tuned 
to the corresponding task stimuli, as well as 
feedforward inhibition reflecting the summed 
activity of the V1 population.  When V1 
population activity is dense, both decision cells 
receive excitatory input and strong feedforward 
inhibition, so both decision cells show weak 
activity, albeit slightly stronger for the one 
representing the correct choice (Fig. 5e, left).  If 
V1 activity is sparsened, two benefits occur. 
First, while the excitatory drive to both decision 
cells reduces, it reduces more strongly to the cell 
producing the wrong choice. Second, the 
strength of feedforward inhibition goes down, 
resulting in a net increase of activity of the 
correct decision neuron (Fig. 5e, right).  Thus, 
even though sparsening decreases total V1 
activity, it could still increase the activation of 
downstream decision circuits. 

Discussion 
Training in a visuomotor task transformed 
population responses to oriented grating stimuli 
in a manner that sparsened and orthogonalized 
the population codes for motor-associated 
orientations. These changes could be explained 
to high quantitative accuracy by a simple 
mathematical principle: neuronal outputs on 
each trial reflect a nonlinear transformation of 
the mean naïve responses, whose convexity 
varies from trial to trial but is largest for motor-
associated orientations. This convex 

transformation sparsens population responses to 
motor-associated orientations by suppressing neurons 
responding at intermediate levels, and makes the 
resulting population vectors more orthogonal to each 
other.  This orthogonalization may help downstream 

 
Figure 5 | Task training sparsens and orthogonalizes cortical population 
codes. a, “Bullseye plots” showing mean population responses to the motor-
associated orientations 45° and 90° for naïve and proficient conditions. Each 
point represents a cell, at a polar location determined by the cell’s circular 
mean orientation preference (angle) and selectivity (radius). The point’s color 
represents the cell’s response to the 45° (green) and 90° (magenta) stimulus 
orientations on an additive scale so points responding to both stimuli appear 
grey; the point’s size and brightness (light to dark) represents the cell’s 
maximal response to these two stimuli. b, Change in population sparseness 
between naïve and proficient conditions, as a function of stimulus orientation. 
Each point represents one mouse. c, Change following training in cosine 
similarity between population responses to the two motor-associated stimuli, 
and two non-task stimuli (see Supplementary Fig. 6 for all stimulus pairs). d, 
Cartoon illustration of geometrical effect of task training on population 
response vectors. Green and magenta dots represent single-trial population 
vectors evoked by the two motor-associated stimuli, arrows represent trial 
averages. Convex transformation of firing rates suppresses cells firing weakly 
in the naïve condition, thereby sparsening population activity and moving the 
population vectors closer to the coordinate axes. This orthogonalizes 
responses, increasing the angle between the corresponding vectors. e, 
Hypothesized consequence of sparsening and orthogonalization. Cortical 
cells (triangles) project to a downstream motor structure containing decision 
neurons that promote two separate actions (rectangles), via fixed weights 
(blue arrows; thickness represents synaptic strength) and nonspecific 
feedforward inhibition (red circle; black and red arrows). Green shading level 
represents activity of each cell. In the naïve condition, a dense firing pattern 
overlaps with the input weight vectors of both downstream neurons and also 
drives strong feedforward inhibition. In proficient mice, a sparser cortical code 
still strongly drives the correct decision neuron but drives the incorrect 
decision neuron and inhibitory neuron weakly, leading to stronger firing of the 
correct decision neuron and weaker firing of the incorrect one. 
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circuits produce different behavioral responses to the 
two motor-associated orientations.  

The way task training transformed stimulus coding was 
simple when described at the population level, but 
appeared complex if analyzing each cell’s tuning 
individually.  Training transformed the activity of all 
cells by a single, stimulus-dependent nonlinear 
function: ௖݂,ఏ ↦ ݃ఏ൫ ௖݂,ఏ൯.  Despite its simplicity, this 
transformation resulted in apparently complex changes 
to single-cell tuning curves, such as the emergence of 
multipeaked tuning, and a dependence of tuning curve 
plasticity on a cell’s original tuning profile. Thus, even 
though population-level plasticity can be described by 
a simple formula, questions like “do tuning curves 
sharpen following training” need not have simple 
answers.  Our model can nevertheless explain several 
of the apparently complex effects of visuomotor task 
training observed in previous studies of V1: it predicts 
a reduction in the number of cells responding modally 
to the trained orientations7, an asymmetrical increase in 
tuning curve slope specifically at these orientations16, 
and the suppression neuronal activity following 
learning in particular for cells with preferred 
orientation close to task stimuli6,13.   

Despite this concordance with previous results in visual 
cortex, our findings do not appear fully congruent with 
results from auditory and somatosensory cortex. 
Indeed, training on multiple tasks, as well as 
stimulation of neuromodulatory systems under 
anesthesia, causes an increase in the number of 
electrophysiological recording sites responding 
modally to the task stimuli41–43. We suggest three, non-
exclusive, reasons for this apparent discrepancy. First, 
it would be surprising if there were only one 
mechanism by which cortical representations evolve 
with experience, and it is reasonable to expect that 
different mechanisms are employed to a different extent 
in different cortical regions and different tasks. In fact, 
one study of associative learning in somatosensory 
cortex did observe sparsening44, suggesting that this 
mechanism is at least sometimes also employed in non-
visual cortices.  Second, methodological differences 
may explain at least some of the difference. Our study 
(like Ref.44) used two-photon imaging to record 
excitatory cells in superficial layers. Auditory and 
somatosensory studies have typically used 
electrophysiological multi-unit recordings, which are 
biased toward fast-spiking interneurons, and increased 
activity of these cells is one possible mechanism by 
which sparsening of pyramidal cell activity could 
occur. Finally, expansion of sites responding to task 
stimuli is a transient phenomenon. After continued 
training or stimulus exposure, expanded maps can 

“renormalize” to their original state without 
compromising behavioral performance45; furthermore, 
induction of map expansion by means other than task 
training can actually worsen task performance46, in 
particular by increasing the rate of false responses to 
non-target stimuli47. Our task required a long training 
period, potentially allowing time for map expansion to 
reverse; it also requires differentially responding to the 
two stimuli while not responding to the similar 
distractor stimulus, for which map expansion might 
actually impair performance. 

We did not observe an increase in the fidelity of 
orientation coding following training, as we found that 
stimuli could be decoded from population activity with 
100% accuracy even in naïve mice. This result contrasts 
with some previous studies4,11,12,14,15, for which we offer 
three non-exclusive possible explanations.  The stimuli 
we were decoding – high-contrast full-screen drifting 
gratings, with orientations separated by 45° and no 
superimposed noise – were very distinct. The idea that 
cortical representations of such distinct stimuli would 
be of low enough fidelity that decoding them is 
difficult, is controversial. Indeed, a recent study found 
that gratings separated by just 1° could be decoded 
accurately29. The fact that some previous studies have 
failed to accurately decode such distinct stimuli does 
not prove it cannot be done, as there are several 
technical factors that can compromise stimulus 
decoding.  First, two-photon microscopy is subject to 
artifacts such as brain movement and neuropil 
contamination, which unless corrected with 
appropriate software will introduce noise with 
correlations of exactly the form that compromise 
decoding48–50.  Second, activity in V1 encodes not only 
visual stimuli, but also non-visual features such as 
ongoing movements32,33.  This non-visual information 
may compromise decoder performance, particularly for 
recordings performed during performance of the 
behavioral task. Finally, the performance obtained by 
any one decoder represents a lower bound on the 
performance of an ideal observer, as decoder 
performance is sensitive to parameters such as 
regularization methods, particularly when decoding 
from with large numbers of cells.   

It is often assumed that plasticity of cortical 
representations arises from plasticity of excitatory 
inputs onto the cells being recorded.  This form of 
plasticity does not seem most likely to explain our 
results, given that long-term changes to synaptic 
strengths are presumably static, while the amount of 
population code transformation we observed varies 
from trial to trial. Clearly, synaptic or cellular plasticity 
must occur somewhere to explain the change in mean 
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tuning, but we suggest that this plasticity occurs in a 
circuit carrying feedback to V1 pyramidal cells rather 
than in their feedforward sensory drive. Several 
possibilities for this feedback circuit are consistent with 
our results.  Local feedback inhibition contributes to V1 
orientation tuning51. Furthermore, stimulation of 
parvalbumin-positive interneurons narrows tuning 
curves in a manner consistent with convex 
transformation of firing rates, and improves behavioral 
orientation discrimination52. Our results could thus 
arise from strengthening of inputs onto these 
interneurons from local pyramidal cells tuned to motor-
associated stimuli53,54.  Alternatively, the feedback could 
arise from more distal cortical regions or 
neuromodulators, which also modulate local inhibitory 
classes55–57. The fact that cortical representations were 
most strongly transformed at times of higher alertness 
(as indicated by pre-stimulus whisking), suggests that 
the operation of this hypothesized feedback circuit may 
also be modulated by cognitive state.  

Regardless of the underlying mechanism, the fact that 
training-related sparsening leads to orthogonalization 
of the representations of the motor-associated stimuli 
suggests a function for this process. Orthogonalizing 
the representations of these stimuli may allow the brain 
to reduce behavioral generalization between them, 
allowing the mouse to respond to them differently24.  
Gratings are not natural stimuli, and if a mouse ever did 
encounter one in the wild, it is unlikely that the 
grating’s orientation would be of any behavioral 
significance. Thus, one might expect mice by default to 
generalize their behavioral responses from one 
orientation of grating to another; only after extensive 
training should behavioral responses to gratings of 
different orientations diverge. Orthogonalization of 
cortical representations may override this default 
generalization, and so allow different orientations to 
evoke different behavioral responses.  Applications of 
similar techniques to artificial learning systems might 
provide a new mechanism to boost their learning 
capacity.
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Methods 

Experimental procedures 
All experimental procedures were conducted according to the UK Animals Scientific Procedures Act (1986). Experiments were 
performed at University College London under personal and project licenses released by the Home Office following appropriate 
ethics review. 

Surgical procedure 

Five transgenic adult mice (60 days or older) expressing GCaMP6s in excitatory neurons (CaMK2a-tTA;tetO-GCaMP6s) underwent 
a procedure to implant cortical windows over right primary visual cortex (V1). Mice were anesthetized with isoflurane, an 
ophthalmic ointment was applied to the eyes, and injections of carprofen and dexamethasone were administered.  The hair on the 
head at the planned incision site was shaved away, and the mouse was transferred to a stereotaxic apparatus where its skull was 
secured with ear bars. The scalp was cleaned with 70% ethanol to remove loose hairs and other detritus, after which a lidocaine 
ointment was applied. Following a final application of iodine and ethanol, the scalp over visual cortex was excised, and the edges of 
the incision were sealed to the skull with a cyanoacrylate adhesive. A sterilized metal head plate with a circular well was cemented 
onto the skull using dental acrylic resin. A 4 mm circular craniotomy was made over right V1 using a biopsy punch, and a glass 
window was sealed in place with a cyanoacrylate adhesive and dental acrylic resin. At the end of the procedure, mice were removed 
from anesthesia and placed on a heating pad to recover. Carprofen was added to the mice’s drinking water for three days following 
surgery to mitigate post-operative pain, and mice were checked daily for any adverse outcomes.   

Following recovery, mice were habituated for handling and head-fixation before carrying out recordings. 

Visuomotor association task 

The task is a modification of a two-alternative forced choice contrast discrimination task previously developed by our lab 58. Mice 
were head-fixed with their body and hindlimbs resting on a stage, leaving their front forepaws free to turn a small wheel left or right. 
Three computer screens surrounded the mouse, spanning -135 to +135 visual degrees (v°) along the azimuth axis and -35 to +35 v° 
along the elevation axis. Trials began after 1 - 2 s of continuous quiescence (no wheel movement), after which two full contrast Gabors 
with sigmas of 18 v° and spatial frequencies of 0.04 cycles/v° were presented simultaneously and centered at -80 and +80 v° azimuth. 
These Gabors were randomly oriented at either 45°, 68°, or 90°, though the pair were never identical. After an additional quiescence 
period of approximately 1 s, an auditory cue (12 kHz, 100 ms) would sound, signaling to the mouse that the horizontal position of 
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the Gabors could be manipulated via wheel movement. If the mouse moved the wheel before the auditory cue, the Gabors remained 
stationary while the quiescence requirement remained in force. When a Gabor was moved to the center screen, a choice was recorded 
for that trial, and a feedback period was initiated. Correct choices (driving a 45° stimulus to the center, or a 90° stimulus away) were 
rewarded with 1 - 5 µl of water and a short 0.25 s delay, while incorrect choices (driving a 90° stimulus to the center, or a 45° stimulus 
away) resulted in a 1 - 2 s burst of white noise. The Gabor was locked at the center position during the feedback, following which it 
would disappear, and the next pre-trial period of enforced quiescence would begin. During task training, mice were water restricted 
in line with the approved project license. Mice were considered proficient at the task when they consistently made the correct choice 
on over 70% of trials.  

Recording visual responses in V1  

Two sessions of two-photon calcium imaging were performed: one before task training (naïve) and one after mice had achieved high 
performance in the task (proficient). Imaging in the proficient condition was performed immediately after a behavioral session and 
in the same apparatus. 

Location of visual areas 

Prior to the first two-photon imaging session, we determined the location of V1 in each mouse’s cortical window by recording cortical 
responses to sparse noise under mesoscopic wide-field calcium imaging and then generating a visual sign map, as previously 
described 59. Mice were placed on a stage of the same type used in the task, and white squares of width 7.5° visual angle were shown 
on a black background at a frame rate of 6 Hz for 10 minutes. Squares appeared randomly at fixed positions in a 12 by 36 grid, 
spanning the retinotopic range of the computer screens. 12% of the squares shown at any one time.  

Two-photon calcium imaging  

Layer 2/3 in V1 was imaged using a commercial two-photon microscope (Bergamo II, Thorlabs Inc) controlled by ScanImage 60. A 
ti:sapphire laser (Chameleon Vision, Coherent) was set to a wavelength between 940 and 980 nm, and the beam was focused with a 
16X water-immersion objective (0.8 NA, Nikon). Images were acquired at a frequency of 30 Hz across six planes (5 Hz per plane), a 
resolution of 512 x 512 pixels, with a frame width between 730 and 810 µm. The fly-back plane was excluded from further analysis. 
During recordings, mice were head-fixed and placed on the same type of stage used for the task. Three computer screens surrounded 
the mouse, spanning -135 to +135 v° along the azimuth axis and -35 to +35 v° along the elevation axis.  

Sparse noise 

To map the retinotopy of V1 under two-photon imaging (Fig. 1C, middle), sparse noise stimuli were again presented. Black or white 
squares of width 4.5° visual angle were shown on a gray background at a frame rate of 5 Hz for 8 – 30 minutes. Squares appeared 
randomly at fixed positions in a 16 by 60 grid, spanning the retinotopic range of the computer screens. 1.5% of the squares were 
shown at any one time.  

Drifting gratings 

At least 16 blocks of drifting grating stimuli were presented in each recording. In each block, gratings spanning 16 directions (22.5° 
intervals) and a blank stimulus were each presented once in a randomized sequence. Each grating lasted 2 s, with an inter-trial 
interval sampled randomly from a uniform distribution with a range of 2 – 3 s. Drifting gratings were full contrast and sinusoidal, 
with a spatial frequency of 0.04 cycles/v° and a temporal frequency of 4 cycles/s, that either encompassed all three screens (full-field, 
three mice) or the entire left screen (two mice), contralateral to the recorded hemisphere. Data from the two directions for each of the 
eight orientations covering 180° were analyzed together.  

Face recording 

An infrared LED illuminated the mouse’s face, and a camera with an infrared filter was used to capture any changes in pupil area or 
whisking behavior.  

Data analysis 

Pixel map of retinotopy 

To obtain a retinotopic map of the two-photon imaging frame (Fig. 1C middle, Fig. S4A), we analyzed the two-photon recordings 
during sparse noise stimuli on a pixel-by-pixel basis, without cell detection. To accelerate the computation and denoise the data, 
analyses were performed after singular value decomposition (SVD), which produces valid results as these computations are linear. 
First, we z-scored each pixel’s time course independently. Next, we applied single-value decomposition (SVD) on the z-scored image 
frames, ܨ = ்ܷܸܵ, where ܨ was the full movie encoded as a matrix of size ௣ܰ௜௫௘௟௦ × ܶ, ܷ was size ௣ܰ௜௫௘௟௦ × ௌܰ௏஽௦, ܵ was a diagonal 
matrix of singular values, and V was size ܶ × ௌܰ௏஽௦ with ܶ being the number of two-photon imaging frames. A matrix ܻ was 
computed summarizing the mean response of each of the first 100 columns of ܸ to each noise frame, as the time-averaged activity in 
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a window 0.2 to 0.6 s after stimulus onset minus the time-averaged activity in a 1 s pre-stimulus window. This matrix was of size 
ܨ × 100, where ܨ is the number of noise stimulus frames. The dependence of these responses on individual noise pixels was estimated 
using ridge regression: ߚ =  (்ܺܺ + ܨ ଵ்ܻܺ, where ܺ was aି(ܫߣ  × ௡ܰ௢௜௦௘_௦௤௨௔௥௘௦ matrix containing 1 if a particular square was white 
or black on a particular frame (0 if it was grey), ߣ was a ridge parameter (ߣ = 100), and ܫ was the identity matrix. The stimulus 
dependence of each pixel was then obtained by matrix multiplication ܴ = resulting in a matrix ܴ of size ௣ܰ௜௫௘௟௦ ,ߚܷܵ  × ௡ܰ௢௜௦௘_௦௤௨௔௥௘௦, 
encoding the receptive field map of each 2p imaging pixel. To generate retinotopic maps of the imaging frame, each pixel’s receptive 
field map was smoothed with a Gaussian (sigma 12 v°) and a peak found, giving retinotopic positions along the elevation and 
azimuth axes for each pixel.  

Pixel retinotopy maps were used to ensure that the two-photon imaging frames were retinotopically aligned with the position of the 
left task stimulus (0 v° elevation, -80 v° azimuth) during drifting grating recordings. When the optimal imaging location in V1 was 
identified in naïve mice, an image of the cortical vasculature was saved for positioning subsequent imaging experiments. 

Visual sign maps 

Due to the retinotopic eccentricity of the imaging location in V1 and the large field of view used, it was occasionally the case that 
areas outside V1 were also recorded. To differentiate V1 from adjacent visual areas, visual sign maps were obtained using the above 
pixel retinotopy maps averaged across planes (Fig. S4). First, elevation and azimuth maps were smoothed with a median (width 10 
pixels) and a Gaussian (sigma 60 pixels) filter. Similar to the process described in Ref. 61, the sine of the difference in angle between 
the gradients of the elevation and azimuth maps was calculated. This sign map was then thresholded to values above 0.31, and pixels 
that were members of the largest patch were considered to be in V1. This process was consistent in isolating V1, as verified by visual 
inspection of the elevation and azimuth retinotopic maps.  

Pixel map of orientation responses 

To obtain a pixel map of orientation preference (Fig. S4), the average df/f of each pixel was calculated in response to each stimulus 
orientation. For each trial, df was defined as the average fluorescence in a post-stimulus window spanning 0 – 2 s, minus the baseline 
defined as the average fluorescence in a pre-stimulus window spanning -1 to 0 s relative to stimulus onset. This value was divided 
by f0, the baseline measurement. To isolate neuropil responses (Fig. S4D), only pixels that did not belong to a cell, as determined by 
Suite2P and subsequent manual curation, were included in the analysis.  

Cell detection 

Registration, cell detection, neuropil correction, and deconvolution of the two-photon imaging data were carried out using Suite2P 
50. Imaged planes were aligned with non-rigid registration (four blocks, 128 x 128), and spiking activity was deconvolved from 
calcium fluorescence using a kernel with a timescale of 2 s.  

Characterizing single-cell orientation tuning 

All cells identified by Suite2P were analyzed for orientation responses. First, each cell’s trial responses were computed by time-
averaging its deconvolved activity on each trial over a window of width 0 - 2 s from drifting grating onset. Next, the mean response 
of each cell to each orientation and to the blank stimulus was computed by averaging over the respective stimulus trials. Each cell’s 
trial responses were then normalized by dividing by its mean response to its preferred stimulus condition.  

A cell’s orientation preference was defined in two ways: the orientation it responded maximally to (preferred modal orientation; Fig. 

1E-F) or its preferred mean orientation, the argument of the complex number ݖ = ∑ ௥ഇ௘మ೔ഇ
ഇ
∑ ௥ഇഇ

, where ݎఏ is the cell’s mean response to 

orientation ߠ. The orientation selectivity of a cell was defined as the modulus of ݖ. To determine the tuning curve of each cell as a 
function of its orientation preference and selectivity (Fig. 2A-B), a cross-validated approach was used to avoid erroneously detecting 
tuning due to random fluctuations in responses. The preferred mean orientation and selectivity of each cell were calculated using 
odd-numbered trials, while the tuning curves were generated using the mean response to each orientation on even-numbered trials.  

Tuning curve slope (Fig. S2A) was quantified as the absolute difference between the cell’s response at a stimulus orientation, and the 
orientation 22.5° closer to the cell’s preferred mean orientation, divided by 22.5. The cell’s tuning curve slope at its preferred mean 
orientation was defined as the absolute difference between orientations -22.5° or +22.5° from preferred, divided by 45. Thus, in cases 
where these responses were equal, the tuning curve slope at the preferred orientation was zero.  

Discriminability index 

The discriminability index (d’) of a cell, its ability to discriminate between two orientations (ߠ௔ and ߠ௕), was defined as 
ఓഇೌି ఓഇ್

ඨ഑ഇೌ
మ శ഑ഇ್

మ

మ

 where 

 ଶ are the mean and variance of the respective orientation responses. The mean and variance for each stimulus orientation wasߪ and ߤ
the average of the mean and variance of the two corresponding stimulus directions.  
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Population sparseness 

Population sparseness was summarized as the kurtosis of the mean population response to each orientation, i.e., ݇ =  ఓర

ఙర, where ߤସ is 
the fourth central moment and ߪ is the standard deviation of mean orientation cell responses 39. 

Orthogonalization of population responses 

To calculate the orthogonalization of population responses between different stimulus orientations (Fig. 3), we split the trials into 
odd and even halves, and computed the ௖ܰ௘௟௟௦-dimensional population response vectors ࡼ௜(ߠ) to orientation ߠ for the trial set ݅ (݅ =
1: odd trials; ݅ = 2: even trials).  We computed the cosine similarity between orientations ߠଵ and ߠଶ as ࡼభ(ఏభ)⋅ࡼమ(ఏమ)

 మ(ఏమ)‖. This processࡼ‖‖భ(ఏభ)ࡼ‖

resulted in an eight-by-eight matrix of similarity values for each mouse and training condition. Computing this similarity between 
two separate halves ensured that the diagonal was not 1 by definition.  

Dimensionality reduction 

To display population responses in a 2-dimensional plot (Fig. 2C), we trained a linear regression model to predict a 2-dimensional 
vector (cos ߠ , sin  is the stimulus orientation, from the ௖ܰ௘௟௟௦-dimensional population response vector on that ߠ for each trial, where (ߠ
trial. The model was trained on odd trials, and then applied to population responses on even trials to obtain a two-dimensional 
projection of population activity that separates points by stimulus orientation.  

Stimulus prediction 

Orientation was also decoded from population activity using linear discriminant analysis (LDA; Fig. 2D). An LDA model was fit 
using the population responses in odd trials, and its performance was assessed on even trials. To build the model, we used the class 
LinearDiscriminantAnalysis from the Python library scikit-learn, with solver set to “eigen” and the shrinkage coefficient automatically 
calculated.  

Modeling visuomotor association-evoked changes to orientation responses 

For each mouse, cells in the naïve and proficient recordings were divided into classes by binning mean orientation preference (eight 
bins, 0°: 168.75 – 11.25°, 23°: 11.25 – 33.75°, 45°: 33.75 – 56.25°, 68°: 56.25 – 78.75°, 90°: 78.75 – 101.25°, 113°: 101.25 – 123.75°, 135°: 
123.75 – 146.25°, 158°: 146.25 – 168.75°) and selectivity (five bins, 0 – 0.16, 0.16 – 0.32, 0.32 – 0.48, 0.48 – 0.64, 0.64 – 1). The mean 
response of each cell class to each stimulus was determined by cross-validation, using odd trials to determine the cell’s tuning class, 
and using even trials to compute its tuning, as described above. Responses in the proficient mice were fit by piecewise linear functions 
of responses in naïve mice, ݎ௣ = ௔݂,௕(ݎ௡), where 

௔݂,௕(ݔ) = ൝
,ܽ/ܾݔ ௡ݎ ≤ ܽ

ݔ) − 1)
ܾ − 1
ܽ − 1

+ 1, ௡ݎ > ܽ
 

The function ௔݂,௕ is the piecewise linear function constrained to pass through (0,0), (ܽ, ܾ), and (1,1). The parameters ܽ and ܾ were fit 
for each mouse and stimulus by nonlinear least squares (Python library SciPy, optimize.curve_fit), constrained to values between 0 
and 1.  

The convexity of the transformation from naïve to proficient population responses to a stimulus was quantified as ܥ =  ௠೛ೝ೐೑

௠೙೚೙ష೛೐ೝ೑
− 1, 

where ݉௣௥௘௙ was the slope of a line from the origin to the point representing the cell class with the strongest selectivity to this 
stimulus, and ݉௡௢௡ି௣௥௘௙ was the slope of a linear regression on the points corresponding to cell classes whose mean orientation 
preference was not the stimulus shown. This approach was used to measure convexity on mean responses, relating the trial-averaged 
population response in the same mouse prior and after training (Fig. 4D), and on single trials (Fig. 5), where the population responses 
in single trial in a proficient mouse was compared to the trial-averaged population response in that mouse prior to training (Fig. 5).  

To assess the consistency of trial-to-trial fluctuations in sparsening across the population (Fig. 5C-D), we randomly divided the 
proficient cells into two populations balanced for orientation preference and selectivity. Trial-by-trial convexity was measured, as 
described above, for each cell population, and the correlation coefficient of these convexities was computed. This process was 
repeated 2000 times, and the average correlation in convexity over orientations was found for each mouse.  

Pupil area and whisking 

Facial recordings were processed with the toolkit FaceMap (www.github.com/MouseLand/FaceMap) to obtain traces of pupil area 
and whisking intensity. The pupil area was defined as the area of a Gaussian fit on thresholded pupil frames, where pixels outside 
the pupil were set to zero. Whisking intensity was defined as the average change in individual pixels between frames for a region of 
interest limited to the whisker pad. From these resulting traces, trial-evoked changes in pupil area and whisking were calculated. 
First, for each trial pupil area and whisking were averaged in a post-stimulus time windows spanning 0.5 to 3 s for pupil and 0 to 3 
s for whisking. Next, to compare across sessions, pupil and whisking trials were normalized by the blank stimulus trial average. 
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Lastly, stimulus-evoked changes in pupil area and whisking were calculated by subtracting from the normalized trials a pre-stimulus 
baseline, defined as the average normalized pupil area and whisking in a -1 to 0 s window. 
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Supplementary Figure 1 | Task details. a. Temporal structure of the task. b. Behavioral performance for all mice. Matrices show the 
proportion of left choices for all cue pairings averaged over ten highest performing sessions. Cue pairings that were not presented are shown 
in white.  
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Supplementary Figure 2 | Measures of behavioral responses during passive viewing of grating stimuli. a. Stimulus-triggered pupil 
area time course, averaged over all trials of each stimulus orientation and training condition. Stimulus presentation causes pupil constriction, 
but pupil responses to motor-associated orientations do not appear substantially different to those to other stimuli. Shaded regions: SEM (n 
= 5 mice). b. Average change in pupil area within gray shaded time windows shown in (a). ANOVA indicated a marginal effect of training (p 
= 0.053), and no effect of stimulus orientation (p = 0.279) or their interaction (p = 0.951). Error bars: mean and SEM (n = 5 mice). (c. and d.) 
Same as in (a and b) but for whisking, assessed by video motion energy over the whisker pad. ANOVA indicated no significant effect of 
training (p = 0.547), stimulus orientation (p = 0.061), or their interaction (p = 0.372).  
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Supplementary Figure 3 | Additional metrics of single-cell tuning. a. Tuning curve slope as a function of mean orientation preference 
relative to the informative task orientations (45° and 90°; left), uninformative distractor orientation (68°, center), and non-task orientation 
controls (135° and 0°; right). Shading: SEM (n = 5 mice). Note that the slope increases with training specifically for stimuli adjacent to task-
informative stimuli (13). b. Change in tuning curve slope at the informative, distractor, and control orientations for cells with adjacent 
orientation preferences. Comparisons: 45° and 90° vs 68°, p = 0.036; 45° and 90° vs 135° and 0°, p = 0.0006. Independent samples t-test. 
Error bars: mean and SEM (n = 5 mice). 
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Supplementary Figure 4 | Correlation of trial convexity with multiple measures of behavioral state. a, Correlation of single trial 
convexity pre-stimulus pupil area, plotted as in Fig. 5e, for motor-associated stimuli (left), distractor stimuli (center), and non-task stimuli 
(right).  b-d, similar plots for post-stimulus pupil area, pre- and post-stimulus whisking.  Convexity correlated positively with pre-stimulus 
whisking for the motor-associated stimuli (linear mixed effects model; p = 6.4 x 10-5) and the effect was significantly larger than for 
distractor (p = 0.014) and non-task stimuli (p = 0.001). Convexity was not significantly correlated with post-stimulus whisking for the motor-
associated stimuli (p = 0.065), but the distractor (p = 0.006) and non-task stimuli (p = 0.028) showed significant lower levels of correlation. 
The correlation of the distractor stimulus with post-stimulus whisking was significantly negative (linear mixed effects model; p = 0.009). 
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Supplementary Figure 5 | Response suppression is aligned with the retinotopic location of the task stimulus. a. Retinotopic 
mapping of visual cortex, for an example mouse. Left two pseudocolor plots show preferred azimuth and elevation for each pixel in the field 
of view, assessed by analyzing responses to sparse noise stimuli. White line demarcates the border of V1. Right panel shows distance in 
degrees of visual angle from each pixel’s preferred retinotopic location to the retinotopic position of the task stimulus, in pseudocolor 
(grayscale), and with contour representation (dashed colored lines). b. Mean df/f of two-photon imaging frames during presentation of full-
field gratings of the marked orientations in the same mouse prior to (top) and after training (bottom).  White lines and colored contours 
mark V1 boundary and retinotopic distance to stimulus location, as in a. c. Zoom into boxed regions in b. Note that after training, neuropil is 
suppressed in the region retinotopically matching the stimulus, although individual cells continue to respond strongly there. d. V1 neuropil 
responses as a function of stimulus orientation and retinotopic distance from the task stimulus position (colors), for naïve and proficient 
mice (dashed and solid lines). Shading: SEM (n = 5 mice). Note specific suppression of responses to task orientations in pixels 
retinotopically close to the stimulus location. e. Histogram of modal orientation preferences of V1 cells in naïve and proficient mice, for cells 
close to (left) and distant from (right) the retinotopic position of the task stimulus, plotted as in Figure 1g. The proportion of cells preferring 
45° and 90° but not 68° changes significantly amongst cells within 10 v° of the task stimulus location (p = 0.020, p = 0.045, p = 0.121, 
paired samples t-test). For cells further than 20 v° from the task stimulus location, all three changes are insignificant (p = 0.206, p = 0.132, 
p = 0.762, paired samples t-test). Error bars: SEM (n = 5 mice). *, p < 0.05. 
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Supplementary Figure 6 | Orthogonalization of responses to all orientation pairs. Pseudocolor matrix showing change in cosine similarity 
between mean population responses to each pair of orientations following task training. White dashed lines demarcate task stimuli. Black circles 
and triangles indicate the orientation pairs shown in Fig. 5c.   
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Appendix 1 

 
Figure A1 | Deeper analysis of coding fidelity for motor-associated stimuli in naïve and trained mice. a, Histogram of mean 
response of each neuron to whichever of the two motor associated orientations (45° and 90°) drove it most strongly. b, Histogram of 
coefficients of variation (standard deviation divided by mean) of each neuron’s responses to its preferred stimulus. c, Histogram of 
response index comparing activity evoked by the two stimuli, for all cells. d, Histogram of d’ discriminability for all cells (difference between 
means, divided by RMS standard deviation).  For a-d, significance was assessed by a linear mixed effects model incorporating a random 
effect and slope for each mouse. e, Percentage of discriminant function accounted for by successive neurons, for an L2-regularized 
discriminant analysis classifier. Shading shows mean and SE over mice.  f, same plot on a log-log scale.  g, Analysis of cells contributing to 
discriminant function. Each circle represents a cell, in a position determined by its response index and coefficient of variation. Color 
represents percentage contribution to discriminant function. Arrows show locations of example neurons from Figs. 1e-h. h-k, Average over 
neurons contributing to the decoder of the same statistics shown in (a-d), weighted by the neurons’ contributions to the discriminant 
function. l, Performance of a decoder trained on a randomly-subselected pool of neurons, as a function of decoder size. No significant 
difference between naïve and proficient conditions was seen for any pool size. m, Similar plot measuring d’ of the discriminant function. 
Again no difference was seen for any pool size. n, Accuracy of decoding from an optimal cell subset of neurons, selected from the whole 
population by a greedy method, as a function of number of subset size. No significant difference between naïve and proficient conditions 
was found. o, Same analysis for optimal subsets greedily selected from random pools of the indicated size.  In no case was a significant 
difference between naïve and proficient conditions found.  
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To more deeply investigate our result that task training did not improve representational fidelity, we focused on coding 
of the motor-associated 45° and 90° stimuli, which require opposite behavioral contingencies in the task. We started by 
analyzing the coding properties of all recorded neurons individually. The mean response of a typical cell was lower 
after training, even when considering each neuron’s preferred motor-associated stimulus (Fig. A1a; linear mixed effects 
model with random intercept and slope; p = 1.3 x 10-16).  Neuronal variability, assessed by the coefficient of variation of 
the response to each cell’s preferred stimulus, typically increased after training (Fig. A1b; linear mixed effects model 
with random intercept and slope, p = 2 x 10-8) indicating that the decrease in mean response was not compensated by 
an equivalent decrease in standard deviation. Selectivity of neurons between the two motor-associated stimuli, assessed 
by a response index ௙వబି௙రఱ

௙వబା௙రఱ
, however typically grew stronger, reflecting an increase in the percentage of neurons 

responding almost exclusively to one stimulus (Fig. A1c; linear mixed effects model with random intercept and slope 
on absolute value of the response index, p = 0.01). Finally, the d’ statistic, which measures how well a single neuron can 
distinguish between the two stimuli in the face of trial-to-trial variability, did not differ significantly between naïve and 
trained mice (Fig. A1d, note the log x-axis; linear mixed effects model with random intercept and slope, p = 0.1), with 
small fraction of cells of very high d’ values (~10) present in both cases. Thus, the effect of training on the average neuron 
was mixed: an increase in the difference between the task stimuli but also an increase in coefficient of variation, leading 
no systematic change in d’. 

These changes had no effect on decodability of the stimuli, which was perfect for both naïve and trained populations. 
To understand why, we analyzed the solution found by L2-regularized discriminant analysis, which computes a 
weighted sum of population activity (the “discriminant function”) with weights that maximize the reliable difference 
between the 45° and 90° stimuli. The decoder had 100% accuracy in all naïve and trained experiments when given access 
to the full ~4000-cell population.  To understand why changes in individual neuronal tuning did not affect performance, 
we investigated which neurons the decoder selected to base its decision on.  

The decoder based its output on a sparse subset of neurons (Fig. A1e-g), in both naïve and trained conditions.  To show 
this, we measured the percentage of the discriminant function accounted for by each neuron’s activity. The contribution 
of the recorded neurons to the discriminant function followed a power-law over the first ~100 neurons (Fig. 2e, f): the 
proportion of the discriminant function accounted by the ݊௧௛ neuron was approximately proportional to ݊ିఈ, where the 
scaling exponent ߙ was -0.760 ± 0.040 in naïve subjects and -0.913 ± 0.071 in proficient subjects, reflecting a small but 
significant increase in slope with training  (p = 0.04, paired t-test).  The single best neuron accounted for 8.4 ± 1.6% 
(naïve) or 8.6 ± 0.65% (proficient) of the discriminant function, and the top 20 neurons (~0.5% of the recorded population) 
together accounted for 36.9 ± 3.1% and 46.7 ± 3.9% of the discriminant function (naïve and trained; p < 0.05, paired t-
test). The decoder thus based its decision on a highly sparse set of neurons, which became slightly but significantly 
sparser after training.  Importantly, the L2-regularization approach that we used (unlike L1-based methods62) does not 
preferentially seek sparse weights; the fact that it nevertheless found them indicates that a sparse subset of neurons 
encoded the stimulus in a particularly advantageous manner.  

The neurons selected by the decoder were strongly selective between the two task stimuli and had low variability (Fig. 
A1g), and in both naïve and proficient subjects there were enough such neurons to produce perfect decoding. The cells 
picked by the decoders again responded less in proficient than in naïve mice (p=0.05, paired t-test), and showed higher 
selectivity (p=0.002, paired t-test), but with no significant change in variability or d’ (p>0.05; Fig. A1h-k). The increased 
sparsity of the ensembles selected by the decoder in proficient mice likely results from an increase in the fraction of 
extremely selective cells, allowing the decoder to focus on a smaller subset of highly selective cells than in the naïve 
case. To further demonstrate how accurately this sparse set of neurons encoded the stimulus, we sequentially added 
neurons to our model based on their cross-validated performance (i.e., sequential feature selection), limiting the number 
of total neurons in our model to 10. Remarkably, decoding from just one optimally-selected neuron yielded cross-
validated performance of 99.5 ± 0.5% in naïve mice, 99.6 ± 0.4% in proficient (Fig. A1n, left; p > 0.05, paired t-test).   

The 100% accuracy of stimulus decoding in naïve and trained conditions therefore arises because in both conditions 
there exists a sparse subpopulation of cells that encoded the stimulus extremely accurately.  It remains possible however 
that a decoder denied access to these rare but exceptionally accurate neurons might work better in the trained condition. 
If so, this could constrain decoding both for downstream neurons in the brain, which might only have access to a subset 
of V1 axons, as well as to previous experiments which recorded from smaller populations.  

We therefore asked if a difference between naïve and trained decodability might appear for randomly-selected cell 
pools, which will usually exclude the very best cells (Figure A1l). When decoding from one randomly chosen neuron 
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performance was 59.4 ± 0.6% in naïve mice, 57.8 ± 0.9% in proficient (p = 0.076, paired t-test), and increased in both cases 
to reach an asymptote of 100% at around 400 random neurons. For no pool size did we see a significant difference 
between naïve and proficient conditions. We also assesses decoder performance by using the d’ of the discriminant 
function, but again found no significant difference (Fig. A1m). We conclude that even for a decoder without access to 
the best neurons in the recorded population, decoding fidelity does not increase following task training.  

In a final attempt to find a decoder whose performance is better for proficient than naïve mice, we again picked an 
optimal sparse subset of each random cell pool in a sequential manner (Fig. A1o).  In each case, decoding reach 
asymptotic performance using just a few neurons, and once again no significant difference was found between the naïve 
and trained conditions (p>.05 in all cases).  

We conclude that while the structure of the V1 population code for orientation changes following task training, coding 
fidelity does not significantly improve in proficient mice, even after considering multiple methods aimed at revealing 
such a difference.   
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Appendix 2 
Here we prove that applying a convex transformation to a neural population response vector increases its sparseness. 
Intuitively, the argument works as follows. Sparseness measures the degree to which a small number of neurons fire 
more than the mean firing rate. Applying a convex transformation causes a disproportionate boost in the firing rate of 
these few highly active neurons, increasing the sparseness of the population response. 

Formally, we will prove that this holds for a wide family of sparseness metrics, which includes those described by 
Treves and Rolls and Willmore and Tolhurst39,40 as a special case corresponding to ݇(ݔ) =    .ଶݔ

Theorem. Let ݇(ݔ) be a convex function. Let {ݔ௜: ݅ = 1 … ܰ} be a finite set of non-negative real numbers. We define the sparseness 
measure  

ܵ௞[ݔ௜] = ෍ ݇ ቀ
௜ݔ

ݔ̅ ቁ
ே

௜ୀଵ

, 

where ̅ݔ = ଵ
ே

∑ ௜ݔ
ே
௜ୀଵ . Let ݃ be a convex non-decreasing function with ݃(0) = 0, and write ݕ௜ =   Then .(௜ݔ)݃

ܵ௞[ݕ௜] ≥ ܵ௞[ݔ௜]. 

Proof. For any scalar ߙ, ܵ௞[ݔ௜] = ܵ௞[ݔߙ௜]. So, without loss of generality, we can rescale ݔ and ݃ so that ̅ݔ = 1 and ݕത = 1. 
After this rescaling,  

ܵ௞[ݕ௜] − ܵ௞[ݔ௜] = ෍ (௜ݕ)݇ − (௜ݔ)݇
ே

௜ୀଵ

 

Now because ∑ ௜௜ݔ = ∑ ௜(௜ݔ)݃ , and ݃ is continuous, there must exist an ݔ଴  with ݃(ݔ଴) =  ଴. Because ݃ is convex andݔ
݃(0) = ௜ݔ ,0 ≥ ௜ݕ ଴ impliesݔ ≥ ௜ݔ ௜, andݔ ≤ ௜ݕ ଴ impliesݔ ≤ ܽ ଴, so if eitherݔ ௜. Let ݀ be a subgradient of ݇ atݔ ≥ ܾ ≥  ଴ orݔ
ܽ ≤ ܾ ≤ (ܽ)݇  ଴, thenݔ − ݇(ܾ) ≥ ݀(ܽ − ܾ).  If ݔ௜ ≥ ௜ݕ ଴ thenݔ ≥ ௜ݔ ≥ ௜ݔ ଴ and ifݔ ≤ ௜ݕ ଴ thenݔ ≤ ௜ݔ ≤  ଴. For all ݅ one ofݔ
these two conditions is true so  ݇(ݕ௜) − (௜ݔ)݇ ≥ ௜ݕ)݀ − ܵ ௜). Thusݔ ௞[ݕ௜] − ܵ௞[ݔ௜] = ∑ (௜ݕ)݇ − ே(௜ݔ)݇

௜ୀଵ ≥ ݀ ∑ ௜ݕ − ௜௜ݔ = 0, as 
we have rescaled so that ∑ ௜ݔ = ∑ ௜௜௜ݕ . Thus, ܵ௞[ݕ௜] ≥ ܵ௞[ݔ௜] and the theorem is proved. 
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