


 
 

22

 

Supplementary Figure 5 | Response suppression is aligned with the retinotopic location of the task stimulus. a. Retinotopic 
mapping of visual cortex, for an example mouse. Left two pseudocolor plots show preferred azimuth and elevation for each pixel in the field 
of view, assessed by analyzing responses to sparse noise stimuli. White line demarcates the border of V1. Right panel shows distance in 
degrees of visual angle from each pixel’s preferred retinotopic location to the retinotopic position of the task stimulus, in pseudocolor 
(grayscale), and with contour representation (dashed colored lines). b. Mean df/f of two-photon imaging frames during presentation of full-
field gratings of the marked orientations in the same mouse prior to (top) and after training (bottom).  White lines and colored contours 
mark V1 boundary and retinotopic distance to stimulus location, as in a. c. Zoom into boxed regions in b. Note that after training, neuropil is 
suppressed in the region retinotopically matching the stimulus, although individual cells continue to respond strongly there. d. V1 neuropil 
responses as a function of stimulus orientation and retinotopic distance from the task stimulus position (colors), for naïve and proficient 
mice (dashed and solid lines). Shading: SEM (n = 5 mice). Note specific suppression of responses to task orientations in pixels 
retinotopically close to the stimulus location. e. Histogram of modal orientation preferences of V1 cells in naïve and proficient mice, for cells 
close to (left) and distant from (right) the retinotopic position of the task stimulus, plotted as in Figure 1g. The proportion of cells preferring 
45° and 90° but not 68° changes significantly amongst cells within 10 v° of the task stimulus location (p = 0.020, p = 0.045, p = 0.121, 
paired samples �W-test). For cells further than 20 v° from the task stimulus location, all three changes are insignificant (p = 0.206, p = 0.132, 
p = 0.762, paired samples �W-test). Error bars: SEM (n = 5 mice). *, p < 0.05. 
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Supplementary Figure 6 | Orthogonalization of responses to all orientation pairs. Pseudocolor matrix showing change in cosine similarity 
between mean population responses to each pair of orientations following task training. White dashed lines demarcate task stimuli. Black circles 
and triangles indicate the orientation pairs shown in Fig. 5c.   
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Appendix 1 

 
Figure A1 | Deeper analysis of coding fidelity for motor-associated stimuli in naïve and trained mice. a, Histogram of mean 
response of each neuron to whichever of the two motor associated orientations (45° and 90°) drove it most strongly. b, Histogram of 
coefficients of variation (standard deviation divided by mean) of each neuron’s responses to its preferred stimulus. c, Histogram of 
response index comparing activity evoked by the two stimuli, for all cells. d, Histogram of d’ discriminability for all cells (difference between 
means, divided by RMS standard deviation).  For a-d, significance was assessed by a linear mixed effects model incorporating a random 
effect and slope for each mouse. e, Percentage of discriminant function accounted for by successive neurons, for an L2-regularized 
discriminant analysis classifier. Shading shows mean and SE over mice.  f, same plot on a log-log scale.  g, Analysis of cells contributing to 
discriminant function. Each circle represents a cell, in a position determined by its response index and coefficient of variation. Color 
represents percentage contribution to discriminant function. Arrows show locations of example neurons from Figs. 1e-h. h-k, Average over 
neurons contributing to the decoder of the same statistics shown in (a-d), weighted by the neurons’ contributions to the discriminant 
function. l, Performance of a decoder trained on a randomly-subselected pool of neurons, as a function of decoder size. No significant 
difference between naïve and proficient conditions was seen for any pool size. m, Similar plot measuring d’ of the discriminant function. 
Again no difference was seen for any pool size. n, Accuracy of decoding from an optimal cell subset of neurons, selected from the whole 
population by a greedy method, as a function of number of subset size. No significant difference between naïve and proficient conditions 
was found. o, Same analysis for optimal subsets greedily selected from random pools of the indicated size.  In no case was a significant 
difference between naïve and proficient conditions found.  
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To more deeply investigate our result that task training did not improve representational fidelity, we focused on coding 
of the motor-associated 45° and 90° stimuli, which require opposite behavioral contingencies in the task. We started by 
analyzing the coding properties of all recorded neurons individually. The mean response of a typical cell was lower 
after training, even when considering each neuron’s preferred motor-associated stimulus (Fig. A1a; linear mixed effects 
model with random intercept and slope; p = 1.3 x 10-16).  Neuronal variability, assessed by the coefficient of variation of 
the response to each cell’s preferred stimulus, typically increased after training (Fig. A1b; linear mixed effects model 
with random intercept and slope, p = 2 x 10-8) indicating that the decrease in mean response was not compensated by 
an equivalent decrease in standard deviation. Selectivity of neurons between the two motor-associated stimuli, assessed 
by a response index ௙వబି௙రఱ

௙వబା௙రఱ
, however typically grew stronger, reflecting an increase in the percentage of neurons 

responding almost exclusively to one stimulus (Fig. A1c; linear mixed effects model with random intercept and slope 
on absolute value of the response index, p = 0.01). Finally, the d’ statistic, which measures how well a single neuron can 
distinguish between the two stimuli in the face of trial-to-trial variability, did not differ significantly between naïve and 
trained mice (Fig. A1d, note the log x-axis; linear mixed effects model with random intercept and slope, p = 0.1), with 
small fraction of cells of very high d’ values (~10) present in both cases. Thus, the effect of training on the average neuron 
was mixed: an increase in the difference between the task stimuli but also an increase in coefficient of variation, leading 
no systematic change in d’. 

These changes had no effect on decodability of the stimuli, which was perfect for both naïve and trained populations. 
To understand why, we analyzed the solution found by L2-regularized discriminant analysis, which computes a 
weighted sum of population activity (the “discriminant function”) with weights that maximize the reliable difference 
between the 45° and 90° stimuli. The decoder had 100% accuracy in all naïve and trained experiments when given access 
to the full ~4000-cell population.  To understand why changes in individual neuronal tuning did not affect performance, 
we investigated which neurons the decoder selected to base its decision on.  

The decoder based its output on a sparse subset of neurons (Fig. A1e-g), in both naïve and trained conditions.  To show 
this, we measured the percentage of the discriminant function accounted for by each neuron’s activity. The contribution 
of the recorded neurons to the discriminant function followed a power-law over the first ~100 neurons (Fig. 2e, f): the 
proportion of the discriminant function accounted by the ݊௧௛ neuron was approximately proportional to ݊ିఈ, where the 
scaling exponent ߙ was -0.760 ± 0.040 in naïve subjects and -0.913 ± 0.071 in proficient subjects, reflecting a small but 
significant increase in slope with training  (p = 0.04, paired t-test).  The single best neuron accounted for 8.4 ± 1.6% 
(naïve) or 8.6 ± 0.65% (proficient) of the discriminant function, and the top 20 neurons (~0.5% of the recorded population) 
together accounted for 36.9 ± 3.1% and 46.7 ± 3.9% of the discriminant function (naïve and trained; p < 0.05, paired t-
test). The decoder thus based its decision on a highly sparse set of neurons, which became slightly but significantly 
sparser after training.  Importantly, the L2-regularization approach that we used (unlike L1-based methods62) does not 
preferentially seek sparse weights; the fact that it nevertheless found them indicates that a sparse subset of neurons 
encoded the stimulus in a particularly advantageous manner.  

The neurons selected by the decoder were strongly selective between the two task stimuli and had low variability (Fig. 
A1g), and in both naïve and proficient subjects there were enough such neurons to produce perfect decoding. The cells 
picked by the decoders again responded less in proficient than in naïve mice (p=0.05, paired t-test), and showed higher 
selectivity (p=0.002, paired t-test), but with no significant change in variability or d’ (p>0.05; Fig. A1h-k). The increased 
sparsity of the ensembles selected by the decoder in proficient mice likely results from an increase in the fraction of 
extremely selective cells, allowing the decoder to focus on a smaller subset of highly selective cells than in the naïve 
case. To further demonstrate how accurately this sparse set of neurons encoded the stimulus, we sequentially added 
neurons to our model based on their cross-validated performance (i.e., sequential feature selection), limiting the number 
of total neurons in our model to 10. Remarkably, decoding from just one optimally-selected neuron yielded cross-
validated performance of 99.5 ± 0.5% in naïve mice, 99.6 ± 0.4% in proficient (Fig. A1n, left; p > 0.05, paired t-test).   

The 100% accuracy of stimulus decoding in naïve and trained conditions therefore arises because in both conditions 
there exists a sparse subpopulation of cells that encoded the stimulus extremely accurately.  It remains possible however 
that a decoder denied access to these rare but exceptionally accurate neurons might work better in the trained condition. 
If so, this could constrain decoding both for downstream neurons in the brain, which might only have access to a subset 
of V1 axons, as well as to previous experiments which recorded from smaller populations.  

We therefore asked if a difference between naïve and trained decodability might appear for randomly-selected cell 
pools, which will usually exclude the very best cells (Figure A1l). When decoding from one randomly chosen neuron 
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performance was 59.4 ± 0.6% in naïve mice, 57.8 ± 0.9% in proficient (p = 0.076, paired t-test), and increased in both cases 
to reach an asymptote of 100% at around 400 random neurons. For no pool size did we see a significant difference 
between naïve and proficient conditions. We also assesses decoder performance by using the d’ of the discriminant 
function, but again found no significant difference (Fig. A1m). We conclude that even for a decoder without access to 
the best neurons in the recorded population, decoding fidelity does not increase following task training.  

In a final attempt to find a decoder whose performance is better for proficient than naïve mice, we again picked an 
optimal sparse subset of each random cell pool in a sequential manner (Fig. A1o).  In each case, decoding reach 
asymptotic performance using just a few neurons, and once again no significant difference was found between the naïve 
and trained conditions (p>.05 in all cases).  

We conclude that while the structure of the V1 population code for orientation changes following task training, coding 
fidelity does not significantly improve in proficient mice, even after considering multiple methods aimed at revealing 
such a difference.   

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted November 12, 2022. ; https://doi.org/10.1101/2021.05.23.445338doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.23.445338
http://creativecommons.org/licenses/by/4.0/


 
 

27

Appendix 2 
Here we prove that applying a convex transformation to a neural population response vector increases its sparseness. 
Intuitively, the argument works as follows. Sparseness measures the degree to which a small number of neurons fire 
more than the mean firing rate. Applying a convex transformation causes a disproportionate boost in the firing rate of 
these few highly active neurons, increasing the sparseness of the population response. 

Formally, we will prove that this holds for a wide family of sparseness metrics, which includes those described by 
Treves and Rolls and Willmore and Tolhurst39,40 as a special case corresponding to ݇(ݔ) =    .ଶݔ

Theorem. Let ݇(ݔ) be a convex function. Let {ݔ௜: ݅ = 1 … ܰ} be a finite set of non-negative real numbers. We define the sparseness 
measure  

ܵ௞[ݔ௜] = ෍ ݇ ቀ
௜ݔ

ݔ̅ ቁ
ே

௜ୀଵ

, 

where ̅ݔ = ଵ
ே

∑ ௜ݔ
ே
௜ୀଵ . Let ݃ be a convex non-decreasing function with ݃(0) = 0, and write ݕ௜ =   Then .(௜ݔ)݃

ܵ௞[ݕ௜] ≥ ܵ௞[ݔ௜]. 

Proof. For any scalar ߙ, ܵ௞[ݔ௜] = ܵ௞[ݔߙ௜]. So, without loss of generality, we can rescale ݔ and ݃ so that ̅ݔ = 1 and ݕത = 1. 
After this rescaling,  

ܵ௞[ݕ௜] − ܵ௞[ݔ௜] = ෍ (௜ݕ)݇ − (௜ݔ)݇
ே

௜ୀଵ

 

Now because ∑ ௜௜ݔ = ∑ ௜(௜ݔ)݃ , and ݃ is continuous, there must exist an ݔ଴  with ݃(ݔ଴) =  ଴. Because ݃ is convex andݔ
݃(0) = ௜ݔ ,0 ≥ ௜ݕ ଴ impliesݔ ≥ ௜ݔ ௜, andݔ ≤ ௜ݕ ଴ impliesݔ ≤ ܽ ଴, so if eitherݔ ௜. Let ݀ be a subgradient of ݇ atݔ ≥ ܾ ≥  ଴ orݔ
ܽ ≤ ܾ ≤ (ܽ)݇  ଴, thenݔ − ݇(ܾ) ≥ ݀(ܽ − ܾ).  If ݔ௜ ≥ ௜ݕ ଴ thenݔ ≥ ௜ݔ ≥ ௜ݔ ଴ and ifݔ ≤ ௜ݕ ଴ thenݔ ≤ ௜ݔ ≤  ଴. For all ݅ one ofݔ
these two conditions is true so  ݇(ݕ௜) − (௜ݔ)݇ ≥ ௜ݕ)݀ − ܵ ௜). Thusݔ ௞[ݕ௜] − ܵ௞[ݔ௜] = ∑ (௜ݕ)݇ − ே(௜ݔ)݇

௜ୀଵ ≥ ݀ ∑ ௜ݕ − ௜௜ݔ = 0, as 
we have rescaled so that ∑ ௜ݔ = ∑ ௜௜௜ݕ . Thus, ܵ௞[ݕ௜] ≥ ܵ௞[ݔ௜] and the theorem is proved. 
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