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Abstract. Models of collective behaviour have been proved helpful in revealing what

mechanism may underlie characteristics of a flock of birds, a school of fish, and a swarm

of herds. Recently, the metric-free model gradually occupies a dominant position in

the research field of collective intelligence. Most of these models endow every single

individual with the ability of a global visual field, which can offer each particle sufficient

external information. In this paper, we mainly focus on whether the global visual

field is necessary to form a consistent and cohesive group or not. Inspired by the

biological characteristic of starlings, we develop a three-dimensional restricted visual

field metric-free(RVFMF) model based on Pearce and Turner’s previous work. We

further investigate several vital factors governing the convergent consistency of the

RVFMF model with the assistance of extensive numerical simulations. According to

the simulation results, we conclude that the best view angle of each particle in a

swarm increases with the expansion of the population size. Besides, the best view

angle gradually becomes stable around 155 degrees when the population size is larger

than 1000. We also offer quantitative analysis data to prove that a flock of birds could

obtain better consistency under optimal restricted visual field than under global visual

field.

1. Introduction

Collective intelligence offers an effective solution for groups of organisms during

migration, foraging, or predator avoidance, especially for these individuals who cannot

survive alone. Scientists are unlocking the secrets behind animals’ collective behaviour

using high-speed video and software to figure out how they do it. Generally speaking,

models of collective behaviour have proved helpful in revealing what mechanism may

underlie characteristics of a flock of birds, a school of fish, and a swarm of herds.
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In 1986, Reynolds firstly introduced the Boid model to depict the emersion of

actual collective behaviour of birds in a computer animation simulation, which has been

regarded as the starting point of scientific research on the collective model [1]. Since

then, a variety of collective models and their inherent properties are discussed in details,

such as Vicsek model [2, 3], Cucker-Smale(CS) model [4, 5], hierarchical flocking model

[6, 7, 8], metric-free model[9, 10, 11, 12], et al.

The Vicsek model, known as the simplest and the most classic model, displays

a transition from random state to collective motion [2]. Subsequent numerical studies

greatly helped clarify its properties on this transition [13, 14, 15, 16, 17, 18, 19, 20]. The

basic principle of collective behaviour is how to form the swarm cohesion configuration

for groups of individuals. Most studies either confined the whole swarm to a periodic

boundary condition(PBC) [2], or introduced attraction and repulsion terms [21, 22], or

some potential field [23]. Nevertheless, Pearce and Turner found that these approaches

can generate swarm cohesion, but they also introduce a metric to the system [12]. These

methods usually produce feature densities that are virtually constant and independent

of the number of individuals in a group, which are not visible in data [24].

Most collective models like the Boid model and Vicsek model have shown that

simple rules of local interaction between individuals can produce the collective behaviour

of animals. Nevertheless, people know little about the nature of this interaction, so

most research results rely on prior assumptions [25, 14, 26]. Ballerini and co-workers

believed that the interaction does not depend on the metric distance but instead on

the topological interaction mode by reconstructing the three-dimensional positions of

thousands of individual birds in an airborne flock [27]. According to the experimental

data, another critical topological feature of bird interactions is that each individual

interacts with up to six or seven neighbours, no matter how far they are. Numerical

simulations show that the topological interaction enables the swarming to achieve a

better consistency state. Moreover, this interaction mode is more consistent with the

actual situation of birds in nature.

Furthermore, Francesco and his co-workers found that the aggregation characteristic

of self-propelled particles aligning with their topological neighbours is different from

traditional metric models. In this experiment, particles only select the neighbours on

the first layer of the Voronoi as the interaction objects [10]. Andrea Cavagna and his

co-workers measured the correlation degree of velocity fluctuation of different birds by

reconstructing each bird’s three-dimensional position and velocity in a large number of

starlings, and measurement results also verified that this behaviour correlation is scale-

free [9]. Rylan Wolfe et al. proposed a scale-free Vicsek model by quoting a new Enskog-

type theory, and their simulation results indicated that the transition is continuous in

contrast to the traditional metric Vicsek model [11]. Camperi et al. compared the

stability of topological models with metric ones, and they concluded that the number

of neighbours interacting with particles is constant and topological interaction mode

has better anti-interference performance [28]. Nevertheless, the swarming density of

most models involves topological interactions approaches zero under spatial expansion.
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In response to this problem, Pearce and Turner proposed a Strictly Metric-Free(SMF)

swarming model that involves a metric-free motional bias on individuals topologically

identified as being at the edge of swarm [12]. This model can change the density of the

particle system in the unbounded region, and the motorial bias enables the system to

achieve an aggregation state in the unbounded three-dimensional space. In later studies,

Turner further developed this model and endowed birds at the edge of the swarm had

an inward movement bias, while birds within the group must have an outward bias [29].

He extended the motional bias to act on all birds with strength prescribed by a function

of the topological depth of individuals within the swarm. Experimental results show

that the particles in the boundary area have a denser swarm than those in the centre

area.

Couzin et al. believed that each individual in a group uses visual information as

the predominant modality to interact with each other when making collective decisions

[30, 31]. Most existing collective models suppose that every particle can obtain global

vision information, such as the Vicsek model, Turner’s model. However, in nature,

particles in a flock usually have a restricted visual field. For example, the visual field

of starlings is 286o, the visual field of pigeons is 316o, while the visual field of owls is

201o [21, 32, 33]. Although it is not easy to infer how they become such a limited visual

field during natural selection evolution, we can quantitatively analyze the advantage of

restricted visual field compared with the global visual field.

Therefore, subsequent studies mainly focus on understanding the biological

mechanism model of collective motion in nature [34, 35, 36, 37], as well as improving

the convergence properties of this collective behaviour further [38, 39, 40, 41, 42, 43, 44].

Most of the existing literature mainly concentrated on reducing the convergence time

of the collective evolution process of a Vicsek-like model from the point of view of

interaction rules or restricted view angle. For example, Wang et al. focused on

minimizing convergence time of direction consensus of a two-dimensional Vicsek model

by exponential neighbour weight and restricted visual field [40]. Nguyen et al. studied

the effect of visual angle on the phase transition in the two-dimensional Vicsek model,

and they found that the phase transition exists when the view angle of each particle is

more than π/2 [41]. Durve et al. believed that both the directionality and radial range

of the interaction plays an essential role in determining the nature of the phase transition

[42]. Li et al. optimized the three-dimensional Vicsek model with the purpose of the

quickest direction consensus, and they found that the optimal view angle is concerned

with the absolute velocity and the particle density [43].

Because of the above problems, this paper proposes a fully three-dimensional

restricted visual field metric-free(RVFMF) model. Compared with most previous

models, the RVFMF model is strictly metric-free and has a restricted visual field. Each

particle chooses these particles located in the first shell of Voronoi tessellation and within

its restricted visual field as its topological neighbours. This mechanism ensures that the

RVFMF model is strictly scale-free. Besides, we define the individuals lying on the

convex hull of the swarm as being on edge, while others are in bulk. A scale-free edge
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eigenvalue is introduced, which only acts on edge particles. This eigenvalue introduces

a scale-free inward motorial bias for edge particles. “Inward” refers to a vector average

pointing from an edge particle to its topological neighbours located on edge. Under the

influence of motorial bias, edge particles can control the density of the swarm. From

the predation point of view, the individual at the outermost part of the animal group

is the most vulnerable to predation and will spontaneously try to move closer to the

group. Meanwhile, the internal individual is relatively safe and will not move to the

more dangerous cluster edge but keep the current state as much as possible.

RVFMF model can be used to simulate the evolutionary process of large-scale

birds, such as starlings. We vividly restored the process of the European starlings’

flight reaching consistency through the RVFMF model and explored the influence of

visual field on swarm consistency. We also try to characterize the optimal field vision

of each individual under different group sizes and prove whether a global visual field is

necessary for a flock.

2. Restricted Visual Field Metric-Free (RVFMF) Model

The RVFMF model is defined as follows. We consider N particles moving at the same

speed in a three-dimensional borderless region. The main contribution of this model is

to consider the visual angle of each particle during the evolution process of collective

behaviour from initial disorder state to final order state. At the initial time t = 0, the

position of N independent particles are randomly distributed in a cube with side length

L, and the velocity direction of each particle is a random value generated from [0, 2π).

At discrete time t, the position of a particle i is denoted as r
¯
t
i, the velocity direction is

v̂
¯
t
i, and r̂

¯
t
i,j represents the unit vector pointing from particle i to particle j at time t.

As shown in Fig. 1, we define the visual field of each particle as the cone-like

scattering column area formed by the particle. Suppose that every particle in the same

group owns the same visual angle. Let θ ∈ (0, π] denote the visual angle of each particle.

When θ = π, meaning that every particle has a global vision, it becomes an SMF model.

According to equations (1)− (4), all particles positions and velocity directions are

updated once every time step. The topological neighbours in the field of view of particle

i belong to set Biv, which will be updated constantly according to the position of particle

i at time t. All particles in the convex hull consist of set C. If particle i belongs to set C,

then set Siv is equal to all topological neighbors of particle i located on the cluster convex

hull, that is, Siv = Biv

⋂
C. This model has two control variables, the first parameter φe

is the edge strength, which is the relative weight of the inward movement deviation of

edge particles, the second parameter φn is the intensity of noise. See equations (1)−(4).

r
¯
t+1
i = r

¯
t
i + v0v̂

¯
t
i (1)

v
¯
t+1
i = (1− φn)û

¯
t
i + φnη̂

¯

t

i
(2)
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Figure 1: Schematic diagram of the view field θ of particle i.

u
¯
t
i = (1− fi)

〈v̂
¯
t
j〉j∈Biv

|〈v̂
¯
t
j〉j∈Biv

|
+ fi〈r̂

¯
t
ij〉j∈Siv

(3)

fi =

{
φe, r

¯
t
i ∈ C

0, otherwise
(4)

η̂ti represents a random unit vector at time t for particle i, v0 represents the speed

at which particles move, ˆ represents the normalized unit vector, angle brackets < · · · >
indicate average subsets. Because the above four equations are completely scale-free,

there is no need to select specific units. The RVFMF model does not require the velocity

v0 of particles to simply the cluster model. The only length unit is the distance v0 of

particle movement at each moment, and the time unit is the duration of each step. In our

model, the position of each particle at the next moment is equal to the current position

plus the velocity of the particle multiplied by the velocity direction, that is, equation

(1). Every particle suffers the same weighted noise, controlled by η̂ti in equation (2).

According to equation (3), each individual has a definite direction before introducing

any noise. When particle i locates in bulk, fi = 0 means that it is not affected by

edge strength φe, and its direction are equal to the average direction of its topological

neighbours. When particle i is on edge, fi = φe means that particle is direction is

equal to the linear superposition of the direction average of its topological neighbours

multiplied (1− φe) and the scale-free motorial bias multiplied by φe.

The model involved here is in three-dimensional space. For better explanation and

clearer exhibition, Fig. 2 gives a schematic diagram of the topological constructions in

equation (2) − (3). The purple dots denote the particle r
¯
t
i located on the convex hull,

while the red dots denote the particle r
¯
t
i located in bulk. In order to build Voronoi

tessellation, Delaunay triangulation must come first, which is represented by a red line.

The meaning of point set Biv is the topological neighbours within the visual field of the

target particle, which is composed of all particles linked by a red line and purple line from

the target particle. The purple line connects the particles on the convex hull, and in the

point set Siv = Biv

⋂
C, pink arrows indicate the scale-free inward motorial bias of these
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Figure 2: A schematic diagram on the topological constructions of particles.

Figure 3: Details on the topological structure of edge particles on convex hull.

edge particles. Fig. 3 shows more details on the composition of the metric-free surface

term appearing in equation (2)− (3) for edge particle i. Metric-free surface term of edge

particles are equal to the average value of unit vectors (〈r̂
¯
t
ij〉j∈Siv

) of topological neighbors

which are also located on convex hull, that is, the average of the unit vectors r̂
¯
t
ia, r̂¯

t
ib of

adjacent particles a and b. This value has a magnitude in [0, 1] when the angle between

particles i and j is small. The longer the arrow is, the larger the value is. Therefore,

the larger the surface term of the outermost particles in the convex hull is, the stronger

the trend of re-entering the swarm is. Moreover, to show the convex hull structure and

topological neighbour structure of population more clearly, the structure of the swarm

convex hull and the composition of topological neighbours in three-dimensional space

are shown in Fig. 4. Therein, neighbours located within the field of view of the selected

particle are represented by different colours, highlighting the restricted visual field of

our model.

In order to describe the consistency degree of swarm, this paper introduces the

concept of order degree

P = | 1
N

N∑
i=1

vi| (5)

Order degree P represents the consistency degree of all individuals in the swarm, equal
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(a)

(b) (c)

Figure 4: Convex hull and topological neighbor structure. (a) Red particles are located

on the convex hull of the swarm, while blue ones are located in the bulk. (c) The red

particle is randomly selected, blue particles are its ordinary neighbors, and topological

neighbors inside the field of view is yellow. (b) If the selected particle is located on the

convex hull, its topological neighbors on the convex hull is green, other neighbor colors

are the same as in (c).
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to the average centre of the mass speed of the swarm. The value of P falls on [0, 1].

The larger the P are, the better the consistency of these particles is. When P = 1,

the movement direction of all particles is consistent, similarly, at the initial moment of

random distribution of particles, P = 0.

3. Simulations Analysis and Results

European staring is a ground-eating bird of the order Passeriformes that moves in the

daytime [45]. Inspired by their flocking behaviour, a three-dimensional collective model

called RVFMF is developed here to investigate the influence of the field vision on the

whole systems stability when approaching a flock. In order to exhibit the evolutionary

process of the system from disorder state to order state, a human-computer interaction

interface shows the simulation process of the RVFMF model under different parameters,

such as population size N , noise intensity φn, and edge intensity φe. Fig. 5 provides an

example to present the main interface contents of the simulation platform, from which

we can observe the changing process of a cluster from an initial state (as shown in

Fig. 5(a)) to a stable state (as shown in Fig. 5(b)). The colour of each particle denotes

its velocity direction. The same colour means the same heading direction. Fig. 5(c)

shows the curve of the global order P of the system over time.

3.1. Two control parameters

Our purpose is to study the influence of the visual field of each particle on the swarming

system’s stability. In order to explore its influence, we need to control other variables to

remain unchanged. Our model has two control parameters, the weight of inward motion

bias of particles on the edge φe and the size of noise φn.

First, we change the two control parameters separately and keep the other variables

unchanged. The goal is to observe the influence of the two parameters in the global order

P . Suppose each particle owns a global vision, observe the changes of the global order

of swarm with different group sizes affected by noise strength φn, and Fig. 6 shows

the simulation results. The results show that swarm can achieve a higher degree of

consistency only when the noise interference is minor, and the higher the noise, the

lower the consistency of the swarm, and the change of population size will not change

this trend. These results are the same as those in the reference [12], which also verifies

the correctness of our model; that is, when each particle owns a global view, the RVFMF

model becomes an SMF model.

Next, under the global vision, observe the change of the global order of swarm

with different group sizes affected by edge strength φe, and Fig. 7 shows the simulation

results. From the results, we observed that when the population size did not reach

1000, the change of φe had an evident impact on P , as the population size continued

to increase, the change of φe value had little effect on P . When the population size is

small, the impact is that the higher the φe, the lower the order degree that the swarm
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(a) (b)

(c)

Figure 5: Swarm from disordered state to ordered state, in which we set the system as a

global vision, i.e. θi = π, i = 1, · · · , N . Other parameters are population size N = 400,

noise φn = 0.2, φe = 0.5. (a) Initial state of random distribution. (b) Stable state of

overall speed consistency. (c) Global order P of swarm tends to be stable from 0 to

0.968. (The color of the particles in the picture represents the speed direction of the

particles, the closer the color is, the higher the global order P of the swarm is.)

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445404doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445404
http://creativecommons.org/licenses/by/4.0/


10

Figure 6: Under the global view, the swarm is disturbed by different degrees of

noise, legend of trend of global order changing with population size. We keep

φe = 0.5.(Providing the same weight of synergy and inward bias for individuals on

the boundary.)

Figure 7: Under the global view, the swarm is disturbed by different degrees of φe,

legend of trend of global order changing with population size. We keep φn = 0.2.
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can achieve. According to equation (3), the trend of co-aligning with neighbours and

re-entering the swarm being weighted by factors (1−φe) and φe respectively. The larger

the φe value is, the smaller the weight of cooperation is, so the smaller global order P is.

Furthermore, under the same population size and the same noise strength, the stronger

the edge is, the worse the systems stability. When the edge strength is no more than 0.5,

the systems stability is almost the same with different population size. On the contrary,

when the edge strength is more significant than 0.5, under the same edge strength, the

larger the group size is, the better the system’s stability is. Therefore, we will mainly

discuss how to optimize the visual field angle according to the systems stability when

the edge strength is more significant than 0.5.

3.2. Influence of visual field angle

In general, people think that the global angle can provide individuals with the largest

field of vision and sufficient information, so the system can achieve the highest degree of

cooperation when θ = π. At last, however, the related research on European starlings

in biology have pointed out that the eyeball of European starlings is in a specific limited

field of vision rather than a global visual field during flight, and when the starlings are

at rest, the visual field is between 130o and 160o in the vertical direction[45]. Why they

act in this way may be determined by complex biological mechanisms. In this paper,

we would like to investigate whether the restricted visual field angle will benefit the

stability of a flock or not according to quantitative simulation analysis.

Considering that the starling’s eyeball can rotate during flight, which will lead to

a 20o margin in the vertical direction, we assume that the starling’s visual field angle

ranges from 110o − 180o. In order to observe the influence of visual field angle on the

order degree of a swarm, we control other parameters to be constant and set the visual

field angle from 110o to 180o at intervals of 10o.

Based on the previous analysis, we would like to discuss how to choose the edge

strength φe and noise strength φn firstly. Let the population size N = 500 and the noise

strength φn = 0.3. Fig. 8 shows the curve of global order P under different edge strength

φe and different visual field angle. As shown in Fig. 8, when φe = 0.25, 0.35, 0.4, that

is, when φe ≤ 0.5, the global order P increases with the increasing field of view angle θ,

which shows that when the proportion of co-alignment is high, the influence of the field

of view angle is not apparent to the starling swarm. On the contrary, when φe > 0.5,

we can see that with the increase of visual field angle, P owns its maximum value.

Without loss of generality, we finally choose φe = 0.75, φn = 0.3 as experimental

parameter. Population size N takes different values, the change of global order P of the

system with visual field angle is shown in Fig. 9. As shown in Fig. 9, under different

population sizes, we can observe a visual angle in the starling swarm system, making

the swarm finally achieve the highest global order. We define this angle as the best view

angle and mark it with θopt. This angle is less than 180o, which is not a global view.

In order to further explore the relationship between the best view angle θopt and the
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Figure 8: φe takes different values, and global order P changes with visual field angle.

Other parameters are N = 500, φn = 0.3.

population size of the system N , plenty of simulation experiments are carried out under

the condition that φe = 0.75, φn = 0.3, and keep the visual field angle from 110o to 180o

at intervals of 5o. Fig. 10 shows the best view angle of the swarm under population size.

The above simulation results conclude that the best view angle of the starling swarms

increases almost linearly with the increase of population size, and θopt tends to be stable

when the population size is more significant than 1000. It seems that the size scale 1000

is a critical inflection point, which is worthy of being developed further by scientists.

3.3. Discussion and conclusion

In Fig. 6, we observe that swarms of different group size can achieve the same degree of

order parameter under different degrees of noise interference. In nature, there is often

such a phenomenon that a large European starling swarm suddenly divides into two

swarms during flight and keeps the same order to continue flying. The results in Fig. 6

explain this phenomenon. Under the same degree of noise interference, individuals in the

swarm can keep the aggregation state unchanged without being affected by population

size.

Fig. 7 shows that the order degree of the system is concerned with the inward bias

degree of individuals who are on the edge when the population size is small enough (such

as no more than 1000). It is also easy to understand that with the increase of inward

bias weight, cooperation is lower, and it is more difficult for swarms to achieve overall

speed consistency. At the same time, we find that with the increase of the population
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Figure 9: N takes different values, and global order P changes with visual field

angle(When the value of φe is large, it is difficult for the system to reach a stable

state when the number of iteration steps is small. Therefore, after 10000 pre-balancing

steps, the average value of the global order P of 1000 steps is selected as experimental

data, and the experiment is repeated 100 times to take the average value.)

Figure 10: The best view angle changes with the population size.(The system conducted

100 experiments under different field of view of each population size, and global order P

of each experiment corresponds to an average over 1000 simulation time steps following

a 10000 time step pre-equilibration period.)
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size, the influence of φe becomes smaller and smaller. That is to say, the larger the

population size is, the more stable it is, and the less it depends on the edge strength.

That is why European starlings tend to form a larger whole for activities, which is very

safe and stable.

Existing literature has referred that the eyeball of European starlings is in a specific

limited field of vision rather than a global visual field during flight [45]. As shown in

Fig. 8, the experimental results when φe > 0.5 are quite consistent with this conclusion.

To some extent, experimental data in Fig. 8 also validate that in the actual starlings,

the individuals on edge are more inclined to return to the swarm instead of cooperating

with the neighbours. This tendency effectively guarantees that these individuals do not

break away from the swarm.

According to the experimental results in Fig. 9, we concluded that the starlings

have an optimal field of view. The experimental results in Fig. 10 show that the best

view angle of the swarm will increase with the expansion of the population size, and

the best view angle tends to converge and stabilize around 155o as the population size

reaches around 1000. When the swarm does not reach a specific scale(such as 1000),

individuals need to appropriately increase and adjust their visual field to maintain a

more efficient interaction with the expansion of the population size.

Suppose each particle adopts the optimal vision as shown in Fig. 10, observe the

changes of the global order of swarm with different group sizes affected by noise strength

φn, and the results are shown in Fig. 11. Furthermore, we compared the global order

Figure 11: Consider each particle owns the optimal vision angle. The relationship

between global order P , noise strength φn, and population size N . Here, φe = 0.75.
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P under global vision with that under optimal vision. Fig. 12 shows the experimental

results. It is clear to see that when the noise strength φn is smaller than 0.5, then the

system with optimal vision approaches to a higher consistency finally. Nevertheless,

when the noise strength φn is more significant than 0.5, then global vision works better.

Consider that noise strength is usually no more than 0.5. Therefore, during the swarm

(a) (b)

(c) (d)

(e) (f)

Figure 12: Quantitative comparison on the optimal vision and global vision according

to the stability of the swarm system under different noise strength.
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flight, individuals tend to evolve into such an optimal visual field to maintain overall

stability, involving a more complicated biological mechanism. Moreover, optimal vision

seems to be a better solution in directional flocking or swarming behaviours.
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