
1 

 Comprehensive Analysis of Spatial Architecture in 

Primary Liver Cancer 

 

Rui Wu1,2,#, Wenbo Guo3,#, Xinyao Qiu4,#, Shicheng Wang3, Chengjun Sui2, Qiuyu 

Lian3, Jianmin Wu5, Yiran Shan3, Zhao Yang2, Shuai Yang4, Tong Wu1, Kaiting Wang5, 

Yanjing Zhu1, Shan Wang4, Changyi Liu3, Yangqianwen Zhang1, Bo Zheng1, Zhixuan 

Li1, Yani Zhang5, Siyun Shen1, Yan Zhao5, Wenwen Wang4, Jinxia Bao1, Ji Hu1, Xuan 

Wu6, Xiaoqing Jiang2, Hongyang Wang1,5,7,*, Jin Gu3,*, Lei Chen1,4,7,8,* 

 

1The International Cooperation Laboratory on Signal Transduction, Eastern Hepatobiliary Surgery 

Hospital, Shanghai 200438, China. 

2Eastern Hepatobiliary Surgery Hospital, Shanghai 200438, China. 

3MOE Key Laboratory of Bioinformatics, BNRIST Bioinformatics Division, Department of 

Automation, Tsinghua University, Beijing 100084, China. 

4Fudan University Shanghai Cancer Center; Department of Oncology, Shanghai Medical College, 

Fudan University, Shanghai 200032, China  

5Institute of Metabolism and Integrative Biology and School of Life Sciences, Fudan University, 

Shanghai 200438, China 

6Department of Laboratory Medicine, The Tenth People’s Hospital of Shanghai, Tongji University, 

Shanghai 200072, China 

7National Center for Liver Cancer, Shanghai 200438, China 

8Lead Contact 

#Equal Contribution 

*Corresponding Authors 

 

Keywords: Primary liver cancer; tumor heterogeneity; spatial transcriptomics; cancer 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445446


2 

stem cell; tertiary lymphoid structure 

 

Corresponding authors:  

Lei Chen, Ph.D. International Cooperation Laboratory on Signal Transduction, 

Eastern Hepatobiliary Surgery Institute, 225 Changhai Road, Shanghai 200438, China. 

E-mail: chenlei@smmu.edu.cn. Tel: 86-21-81875361. Fax: 86-21-65566851.  

Jin Gu, Ph.D. MOE Key Laboratory for Bioinformatics, BNRIST Bioinformatics 

Division, Department of Automation, Tsinghua University, Beijing 100084, China. 

E-mail: jgu@tsinghua.edu.cn. Tel: 86-10-62794294. Fax: 86-10-62773552.  

Hongyang Wang, M.D. International Cooperation Laboratory on Signal 

Transduction, Eastern Hepatobiliary Surgery Institute, 225 Changhai Road, Shanghai 

200438, China. E-mail: hywangk@vip.sina.com. Tel: 86-21-81875361. Fax: 

86-21-65566851.  

 

 

 

  

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445446


3 

ABSTRACT  

Heterogeneity is the major challenge for cancer prevention and therapy. Here, we 

firstly constructed high-resolution spatial transcriptomes of primary liver cancers 

(PLCs) containing 84,823 spots within 21 tissues from 7 patients. The sequential 

comparison of spatial tumor microenvironment (TME) characteristics from non-tumor 

to leading-edge to tumor regions revealed that the tumor capsule potentially affects 

intratumor spatial cluster continuity, transcriptome diversity and immune cell 

infiltration. Locally, we found that the bidirectional ligand-receptor interactions at the 

100 μm wide cluster-cluster boundary contribute to maintaining intratumor 

architecture. Our study provides novel insights for diverse tumor ecosystem of PLCs 

and has potential benefits for cancer intervention. 
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INTRODUCTION 

Large-scale cancer genome projects have already revealed extensive intertumor and 

intratumor heterogeneities (1, 2). Recent single-cell omics studies, especially by 

single cell RNA-seq (scRNA-seq) technology, have greatly advanced our 

understandings of the tumor cell heterogeneities (3), tumor infiltrated immune cell 

sub-populations (4) and the features of tumor associated stromal cells (5-8) at single 

cell level. These studies provided many novel insights into tumor subtyping, tumor 

initiation and evolution, drug resistances and therapeutic targets. However, the 

scRNA-seq technology still has limitations. The most critical point is that the spatial 

and morphologic information is lost after the tissue dissociation into single cell 

suspension, making it hard to study the tumor spatial architecture. Although some in 

situ hybridization (ISH) based methods, such as MERFISH (9) and seqFISH (10) can 

obtain the spatial information, but they can only detect a few known target genes 

simultaneously.  

The recently developed spatial transcriptomics (ST) technology (11) could 

overcome the above limitations. By positioning histological cryosections on arrayed 

reverse transcription primers with unique positional barcodes, ST provides 

high-quality genome-wide transcriptome data with intact two-dimensional positional 

information (12). It has been applied to analyzing the spatial heterogeneity of human 

primary breast cancer (13) , melanoma (14), prostate cancer (15), pancreatic ductal 

adenocarcinomas (16) and human heart (17), etc. However, due to the relative lower 

resolution of former spatial transcriptomics method (maximal 1007 spots of 100 μm 

diameter and 200 μm interval) (16) and the lack of sequential comparison from 

adjacent normal to tumor inside region, the spatial architecture and heterogeneous 

tumor microenvironment (TME) have not been fully addressed. 
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Primary liver cancer (PLC) is the second most mortality tumors, of which 

hepatocellular carcinoma (HCC) and intrahepatic cholangiocarcinoma (ICC) are the 

two major histologic subtypes (18). Etiological and biological diversities, comprising 

chronic hepatitis virus infection, excess stress, drug-induced liver injury, aflatoxin B 

exposure, un-resolving inflammation and complicated TME, contribute to the high 

degree of intratumor heterogeneity of PLC (19). Till now, there are few effective 

non-surgical strategies for PLC, and lack of specific drug targets for effective 

therapeutic intervention (20). Only a limited proportion of HCC patients could benefit 

from existing tyrosine kinase inhibitor drugs (such as sorafenib and lenvatinib) and 

immune checkpoint inhibitors (21-23), largely resulting from both intertumor and 

intratumor heterogeneities (24). Till now, several efforts have been made to define the 

tumor heterogeneity and its clinical significance for liver cancer (25-27). For instance, 

scRNA-seq revealed that specific T cell subsets such as exhausted CD8+ T cells and 

regulatory T cells (Tregs) are preferentially enriched and clonally expanded in HCC 

(4); similarly, a VEGF/NOTCH-involved immunosuppressive onco-fetal TME was 

identified in HCC tumorigenesis (28). Moreover, our recent study also reported that 

the enrichment of CD4/CD8/PD1 triple-positive T cells in the tumor leading-edge 

region significantly indicates better prognosis (29), which reinforces that it is 

indispensable for comprehensive and accurate assessment of spatial heterogeneity for 

understanding the tumor cell community. 

Here, we for the first time determined the spatial transcriptome architecture of 7 

PLCs including total 84,823 tissue spots within 21 sections, and characterized the 

TME features including stromal and immune cell distribution, tumor cluster 

interaction. These findings provide novel insights for the complex ecosystem of liver 

cancer and have the potential to improve individualized cancer prevention and drug 
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discovery. 

 

RESULTS AND DISCUSSION 

Exploration of Primary Liver Cancer Architecture with Spatial 

Transcriptomics 

In order to comprehensively analyze the spatial heterogeneity of primary liver cancer 

(PLC), we collected 21 tissue specimens from 7 patients including five cases of 

hepatocellular carcinoma (HCC-1, 2, 3, 4, 5), one case of combined hepatocellular 

and cholangiocarcinoma (cHC-1), and one case of intrahepatic cholangiocarcinoma 

(ICC-1) and applied spatial transcriptomics (ST) sequencing via 10X Genomics 

Visium platform (Fig. 1A). For HCC-1/2/3/4 and cHC-1, we used three sequential 

sections (N: non-tumor section; L: leading-edge section; T: tumor section). For ICC-1, 

only L-section was collected due to massive necrosis inside the tumor. For HCC-2, an 

extra section from portal vein tumor thrombus (P-section) was collected. For HCC-5, 

the intact tumor nodule (diameter about 1 cm) was cut into four parts (designated as 

HCC-5A, B, C, D) to form a complete plane for ST analysis (Table S1). The bulk 

tissues for all the sections were also used for whole exome sequencing (WES) with 

peripheral blood mononuclear cell (PBMC) as control. 

For the ST technology in this study, the diameter of spot reached 55 μm that 

captured approximately 8-20 cells according to H&E images (fig. S1A), and each 

section contained up to 5,000 spots in its capture area (6.5*6.5 mm2). Data showed the 

median sequencing depth of single spot at approximately 30,000 Unique Molecular 

Identifiers (UMIs) and 3,000 genes in this study (Table S2). Generally, the numbers of 

UMIs in tumor regions were larger than that in normal regions, consistent with 
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previous studies (30, 31) (Fig. 1B and fig. S1B). 

To verify whether the transcriptomic features are consistent with the histological 

information, we compared the H&E staining images with their counterpart ST data 

regarding the expression of several marker genes. Results confirmed that the regions 

defined by cell type marker genes’ expressions were highly consistent with the 

pathological images. Specifically, ALB and CYP2E1 were highly expressed in normal 

regions; GPC3 and ARK1B10 in tumor regions; KRT19 in cholangiocarcinoma 

regions; COL1A1 in capsule and stromal regions (Fig. 1C). 

 

Different Patterns of PLC Spatial Heterogeneities 

To characterize the spatial diversity of the PLCs, we combined the spots from 

different sections for each patient and performed clustering analyses (30, 32, 33). The 

distribution of the clusters was presented in both the UMAP projection space and 

tissue physical space. As shown in Figure 2A, we found that the clusters in HCC-1T, 

HCC-3T and HCC-4T had the characteristics of regional distribution whereas the 

clusters in HCC-2T and cHC-1T were intertwined. Cluster-5 in HCC-3L was a unique 

cluster that not appeared either in HCC-3N or HCC-3T.  

To examine the subtypes at cluster level across different patients, we performed 

hierarchical clustering and diffusion map analysis (34), and found that the clusters 

from the same type of regions were more similar in general (Fig. 2B and fig. S2A, left 

panel). In the diffusion map, a three-branch structure was formed: the normal and 

tumor region clusters were projected into the branches and the stromal region clusters 

were on the junction (fig. S2A, right panel). 

Next, we tried to explore the spatial distribution of different cell types. Considering 

that each spot may contain more than one cell, we proposed a signature-based strategy 
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to score the enrichment of different cell types in each spot (35) (Table S3). Notably, 

the fibroblast and endothelial cell scores were significantly higher in stromal regions, 

and the immune cell scores in the different clusters of tumor regions exhibited high 

degree of diversity (fig. S2B). As a validation, we performed the multimodal 

intersection analysis (MIA) (16) by integrating our ST data with a liver cancer single 

cell data set (19), and got the similar results (fig. S2C and D). Then, to analyze the 

composition changes of cell types from the outside to the inside of tumor, we used 

diffusion map to project the spots into a one-dimensional pseudo order (the first 

diffusion component, DC1) (34), which can be seen as generally from normal to 

tumor regions by comparing the distribution of clusters in this order. By fitting the 

variation curves of cell type scores (including T, B, NK, myeloid, endothelial cells 

and fibroblasts), we found that the variation patterns of T, B, endothelial cells and 

fibroblasts were similar with each other in five cases except cHC-1, whereas that of 

NK and myeloid cells was highly variable (Fig. 2C). 

 

Microenvironment Characteristics in Leading-edge Area 

As seen in Figure 2A, the tumor clusters’ spatial distribution presented two distinct 

patterns. One was block-like with clear boundary between clusters (e.g., HCC-1T, 

HCC-3T), while the other was discontinuous and mixed (e.g., HCC-2T). To measure 

this characteristic quantitatively, we introduced a metric named “spatial continuity 

degree”, which was calculated by comparing the consistency of cluster identity 

between each spot and its neighbors. Together with another metric, “transcriptome 

diversity degree”, which measured the global transcriptomic heterogeneity of tumor 

regions in each section, we quantitatively found that the tumor regions of 

L&T-sections in HCC-1, HCC-3 and HCC-4 patients had higher spatial continuity 
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and lower transcriptome diversity (Fig. 3A).  

To further explore the common features of those three samples with higher spatial 

continuity and lower transcriptome diversity (HCC-1L, HCC-3L, and HCC-4L), we 

investigated their clinicopathological features (Table S1) and found that all of them 

had complete capsules. Whereas the capsules of cHC-1L and HCC-2L were 

pathologically incomplete, and ICC-1L had no capsule at the border of the tumor 

nodule. It was observed that the expression of stromal and immune cell markers 

displayed sharply reduction across the capsule from the normal side to tumor side in 

HCC-4L, indicating the capsule may affect the stromal and immune cell distribution 

(Fig. 3B). We thus defined the capsules of HCC-1L, HCC-3L, and HCC-4L and 

stromal cell clusters of cHC-1L and HCC-2L as the “transition area” in L-sections, 

and investigated the spatial characteristics of the “normal region” and “tumor region” 

on the two sides of the transition area. Meanwhile, HCC-1L, HCC-3L and HCC-4L 

were named as “complete capsules (CC)” group, while HCC-2L, cHC-1L and ICC-1L 

as “non or discontinued capsules (NC)” group (Fig. 3C). As shown in Figure 3D, the 

scores of T, B and myeloid cells were much higher in normal area than in tumor area 

in CC group instead of NC group. The fibroblast and endothelial cell subtype scores 

were lower in both tumor and normal regions of CC group compared with NC group. 

CD8+ Tem (effective memory T cells), Tregs (regulatory T cells), CD4+ memory T 

cells, CD4+ Tem, cDC (conventional dendritic cell), monocytes, macrophages M1 and 

neutrophils were found significantly enriched in normal regions in CC group (Fig. 3E). 

By comparing the function of T cells in tumor region between two groups, we found 

that exhausted T cells were dramatically increased in NC group in coupled with the 

increased expression of PDCD1, CTLA4, LAG3 and TIM3 (Fig. 3F). In addition, the 

scores of T, B, NK and myeloid cells in the transition regions were significantly lower 
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in the CC group (Fig. 3G).  

Since swelling and invasive growth is the biological characteristic of tumor cells, 

we wondered whether the signaling pathway activities had gradient-like changes in 

the direction perpendicular to the boundary on both sides of the capsule. To address 

this question, we divided the normal and tumor regions of L-sections into continuous 

zones parallel to the shape of the dividing line at intervals of 5 spots (fig. S3A) and 

analyzed the activities of hallmark pathways by gene set variation analysis (GSVA) 

(36). Generally, the majority of hallmark pathways did not show gradient in either 

normal or tumor region and few consistent patterns were observed in different patients 

(fig. S3B). Individually, the ICC section ICC-1L showed several distinct changes: 

hypoxia-associated signals showed sudden decrease from N.g1 to T.g1 zone, whereas 

increased dramatically from T.g1 to T.g6 zone, and inflammatory response and 

interferon response (alpha and gamma) pathways were observed gradually reduced 

from T.g1 to T.g6 zone (fig. S3B). It should be noted that six classical 

tumor-associated pathways (including Phosphoinositide 3-kinase, MYC, mitotic 

spindle, unfolded protein response, E2F and DNA repair) exhibited sudden increase 

from N.g1 to T.g1 zone regardless of the width of the transition area or the presence 

of capsule (Fig. 3H). 

Taken together, our study here indicates that the integrity of the capsule is closely 

associated with the spatial heterogeneity of tumor cells and the distribution of their 

surrounding stromal and immune cells, but has few effects on the activities of 

hallmark pathways in either normal or tumor regions.  

 

Intratumor Heterogeneity in PLCs 

To investigate the interior heterogeneities of tumor regions in both L&T-sections, we 
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calculated hallmark pathways’ activities for the spots in tumor regions. By performing 

hierarchical clustering on the averaged pathway activities in each tumor cluster, two 

modules were identified (37)(Fig. 4A). Module-1 showed high activities of cell cycle 

and metabolism-related pathways (e.g., MYC targets v1, G2M checkpoint, E2F 

targets, cholesterol homeostasis, bile acid and fatty acid metabolism, etc.), while 

Module-2 had much higher activities in the inflammation, angiogenesis and 

epithelial-mesenchymal transition (EMT) pathways. 

The tumor clusters of HCC-1 belonged to two different modules, T.2 (represented 

cluster-2 in HCC-1T) to Module-2 and T.5&6 to Module-1, showing distinct gene 

expression patterns (Fig. 4B and Table S4). By comparing these three tumor clusters 

with the samples of two HCC bulk transcriptome datasets (The Cancer Genome Atlas 

[TCGA] cohort and the Liver Cancer Institute [LCI] cohort) (38, 39), we found that 

bulk samples more similar to T.2 had better prognosis than those similar to T.5&6 (Fig. 

4C and fig. S4A). Moreover, bulk samples more similar to T.5 showed even worse 

outcome than that similar to T.6 in TCGA cohort (fig. S4B), implying the up-regulated 

creatine, tyrosine, ethanol and retinol metabolism pathways in T.5 may enhance cell 

malignant behaviors, and new strategy targeting those metabolism pathways could be 

tested for HCC intervention. 

To investigate the communication and interaction between tumor clusters in 

HCC-1, the interface regions of clusters were selected with the range of 4 spots wide 

(2 spots wide for each cluster; the spots in stromal regions were excluded) (40, 41) 

(Fig. 4D). It was found that the enriched gene-pairs including NRP1-VEGFB (42, 43), 

FLT1-VEGFB (44), EFNB2-EPHB4 (45), MDK-SORL1 (46) and EFNA1-EPHA1 

(47) may contribute to T.5 induced cell angiogenesis/proliferation/migration in T.2. In 

turn, T.2 may help to maintain the metabolic activity in T.5 through LGALS9-LRP1, 
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PDGFB-LRP1 (48), et al. SORL1, sortilin-related receptor 1, has been reported 

involving endosomal trafficking and oncogenic fitness, which might help to induce 

drug resistance and tumor cell growth (46) in T.2. Meanwhile, LRP1, low-density 

lipoprotein receptor-related protein 1, is a multifunctional receptor involved in 

endocytosis and metabolism homeostasis (49), the potential role of which should be 

explored in future. Similar patterns also existed in HCC-1T.2 & HCC-1T.6 

(HCC-1T.2 represented cluster-2 in HCC-1T) and HCC-1T.5 & HCC-1T.6 

interactions (Fig. 4E). Together, our data here suggest that those molecules 

high-expressed in each cluster could mediate reciprocal communications and might be 

used as potential targets to disrupt tumor cell communities for clinical treatment. 

To study possible genomic drivers of different tumor clusters spatially, we inferred 

the copy number variations (CNVs) from ST data and WES data of matched bulk 

tissues (33, 50, 51). It can be seen that most CNVs inferred from ST data were 

consistent with WES bulk data, which suggests that the inferred CNVs from ST data 

were reliable. Further, ST data generated more subtle CNV heterogeneities across 

different tumor clusters. For example, in HCC-1: 1) HCC-1L.2 had exactly the same 

CNV pattern as in HCC-1T.2, verifying that the same clusters across different sections 

had identical CNV characteristics; 2) the observation that most CNV regions were 

shared across T.2/5/6 in HCC-1 suggested that those three clusters might be derived 

from the same clone; and 3) the gain of chromosome 11q13 was found in 

HCC-1T.5&6, but not in HCC-1L.2/HCC-1T.2, whereas chromosome 8q13 

amplifications were in HCC-1L.2/HCC-1T.2, but not in HCC-1T.5&6 (52, 53) (Fig. 

4F and figs. S5A and S5C). In contrast, for HCC-3, CNV regions in L.5 were 

obviously different from T.2/4/7, indicating the distinct origin of T.5 (figs. S5B and 

S5D).  
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Taken together, these results suggest that the spatial intratumor heterogeneities 

exist widely. The different clusters within certain tumor nodule have diversified 

pathway activities and distinct origins. The reciprocal communications across 

different clusters might be essential for tumor ecosystem and evolution. 

 

DISCUSSION 

In this study, genome-wide heterogeneity transcriptomes of seven primary liver 

cancers were measured with a 55 μm spatial resolution for the first time. By 

conducting sequential comparison from normal to leading-edge to tumor regions, we 

found that the tumor capsule potentially affects intratumor spatial cluster continuity, 

transcriptome diversity, immune cell infiltration and cancer hallmark pathway 

activities. Meanwhile, cell-cell interactions in the 100 μm wide tumor cluster-cluster 

boundary were comprehensively analyzed. 

The tumor microenvironment (TME) comprises tumor, stromal and immune cells, 

extracellular matrix, and signaling molecules (54, 55). The spatially and temporally 

dynamic variations in TME are considered as the key factors for tumor heterogeneity 

(56). To our knowledge, this is the first study to sequentially analyze the genome-wide 

TME characteristics from normal to leading-edge to tumor regions, which provide us 

the opportunity to investigate both the global and local variation tendency of 

difference cell populations. These results show that the capsules, mainly consisting of 

fibroblasts and endothelial cells, can act as a barrier preventing the infiltration 

immune cells, which is supported by a few previous studies (57). More importantly, 

we found that the absence of capsules in L-sections could lead to both lower spatial 

continuity and higher transcriptome diversity in tumor. Together with the observation 

that the relatively small TLS spots in L&T-sections in HCC-1/3/4, our data here 
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reinforce the key role of capsule for both TME architecture and intratumor 

heterogeneity.  

The tumor heterogeneity includes interpatient heterogeneity, intertumor 

heterogeneity (different tumor nodules within the same patient) and intratumor 

heterogeneity (different regions in the identical tumor nodule) (58). Globally, the 

spatial distribution of clusters within tumors has two distinct patterns: regional 

distribution and intertwined distribution. The regionally distributed clusters tend to 

have higher spatial continuity and lower transcriptome diversity. By comparing the 

inferred CNVs from ST data with the CNVs from matched bulk WES data, most 

CNVs were consistent, reinforcing that it is practical to infer CNV by ST data. It 

should be noted that in comparison with cluster-2/4/7 in HCC-3T, cluster-5 displayed 

distinct CNV pattern and significant lower level of genomic disorder. Together with 

the pathological stage that cluster-5 was focal nodular hyperplasia (FNH, the 

pre-malignant nodule) instead of neoplasia, these results suggest the distinct and 

initial evolution trajectory of cluster-5 instead of cluster-2/4/7 in HCC-3 (Fig. 4). By 

establishing a complete spatial transcriptome of an intact tumor nodule (diameter 

around 1 cm) collected from an early stage HCC patient, we found that the 

heterogeneous tumor clusters have already existed in such small tumor nodule, 

implying the formation of diverse populations during tumorigenesis. Regarding the 

changes of signal activities, we uncovered widely different trends of hallmark 

pathway activities in all directions from inside to outside of tumor, which might result 

from the interplay with other cluster cells and multiple stresses locally. This complex 

heterogeneity of HCC explains the reason why the current drug treatment for HCC is 

usually ineffective, and also suggests that a comprehensive detection of the genetic 

characteristics of different parts of the tumor may make a breakthrough in 
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immunotherapy. 

The emerging spatial transcriptomics technology could largely solve the 

shortcomings of missing cell spatial location information by single-cell sequencing, 

and play an important role in many research fields. However, the major limitations of 

ST are still its resolution: 1) although the diameter of each spot in ST section in our 

present study has reached 55 μm instead of 100 μm in former version (8-20 cells vs 

100-200 cells each spot) (16), it is still unable to provide the comparable accuracy at 

single-cell scale; 2) ST method can only provide the transcript information of cells 

within spots, whereas the information of interval spaces between two spots is missed. 

To deal with the first issue, we applied the cell type signature-based strategy to 

calculate the enrichment of TME cell types in each spot, which achieved similar result 

as previous developed multimodal intersection analysis (MIA) method did (figs. 

S2B-D). For the second issue, the improved technology with shorter interval distance 

and advanced analytical method need to be developed in future. 

Tumor heterogeneity is the major obstacle for liver cancer diagnosis and therapy. 

Our study presents the first genome-wide spatial transcriptome map of three major 

liver cancer subtypes. Extensive global and local intratumor heterogeneities of tumors 

and TMEs have been found. Also, the tumor clusters from different patients show 

distinct spatial patterns and transcriptomic diversities. These findings provide 

meaningful insights to find new drug targets and develop novel therapeutic strategies. 
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MATERIALS AND METHODS 

Human primary liver cancer (PLC) samples and blood 

The adjacent normal and tumor (PLC) tissues were collected under a protocol 

approved by the Ethics Committee of Eastern Hepatobiliary Surgery Hospital (EHBH) 

(EHBHKY2018-1-001). Individuals donating fresh surgical tissue provided informed 

consent. All diagnoses were verified by histological review by a board-certified 

pathologist. The samples were delivered within MACS Tissue Storage Solution 

(Miltenyi, Cat#: 130-100-008). For tumors of adequate size, small fragments of each 

tumor were snap frozen in optimum cutting temperature (OCT) compound (SAKURA, 

Cat#: 4583) and stored at −80 °C until use. Peripheral venous blood (5 ml) was 

collected in an anticoagulation tube (BD Vacutainer, Cat#: 367525). 

 

Collection and preparation of primary liver cancer (PLC) tissue 

The surgically resected PLC tissue was immediately submerged in MACS Tissue 

Storage Solution and sent to the laboratory for processing as soon as possible. Then, 

PLC tissue was gently washed with cold PBS (GIBCO, Cat#: 20012-043) and cut into 

about 6.5 mm3 pieces (bulks) according to the experimental design. Also, the same 

pieces immediately adjacent to them were directly frozen at -80°C forwhole exome 

sequencing (WES). The tissue bulks were placed in OCT-filled mold and snap frozen 

in isopentane and liquid nitrogen. Cryosections were stored at −80 °C until use. 

Peripheral blood mononuclear cell (PBMC) preparation  

Fresh anticoagulated blood was centrifuged (500 g, 5 min), and then the upper layer 

of plasma was removed. After adding 10 ml PBS and mixing thoroughly, the mixed 

solution was slowly added to the surface of Ficoll solution (GE Healthcare, Cat#: 

17544203). After centrifugation (800 g, 20 min, room temperature, brake off), the 
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white mononuclear cell layer in the middle of the solution was taken out and mixed 

with 10 ml PBS. After centrifugation again (500 g, 5 min), the solution was discarded. 

Finally, the sediment at the bottom was resuspended in 200 μl cell freezing medium 

(10% dimethyl sulphoxide + fetal bovine serum) and stored at -80°C. 

 

Spatial transcriptome sequencing  

This experiment is based on the Visium Technology Platform of 10X Genomics 

company. The reagents and consumables in the experiment are provided by this 

platform, and the specific product numbers can be found at 

https://www.10xgenomics.com/products/spatial-gene-expression. 

Slide preparation 

The Visium Spatial Gene Expression Slide (from Visium Spatial Gene Expression 

Slide Kit, 10X Genomics, PN-1000185) includes 4 capture areas (6.5*6.5 mm2), each 

defined by a fiducial frame (fiducial frame + capture area is 8*8 mm2). The capture 

area has ~5,000 gene expression spots, each spot with primers that include: Illumina 

TruSeq Read 1 (partial read 1 sequencing primer); 16 nt Spatial Barcode (all primers 

in a specific spot share the same Spatial Barcode); 12 nt unique molecular identifier 

(UMI); 30 nt poly (dT) sequence (captures poly-adenylated mRNA for cDNA 

synthesis). 

RNA integrity number (RIN) 

We use RNeasy Mini Kit (Qiagen, Cat#: 74104) to test the integrity of RNA. After 

taking 10 slices of 10 mm thickness cryosections, RNA was extracted and analyzed by 

RNeasy Mini Kit immediately. RIN≥7 is qualified. 

Optimization of the permeabilization time  

Prior to using a new tissue for generating Visium Spatial Gene Expression libraries, 
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the permeabilization time was optimized. Briefly, the Visium Spatial Tissue 

Optimization workflow included placing tissue sections on 7-capture areas on a 

Visium Tissue Optimization slide (from Visium Spatial Gene Expression Reagent Kit, 

10X Genomics, PN-1000186). The sections were fixed, stained, and then 

permeabilized for different times. The mRNA released during permeabilization binds 

to oligonucleotides on the capture areas. Fluorescent cDNA was synthesized on the 

slide and imaged. The permeabilization time that results in maximum fluorescence 

signal with the lowest signal diffusion was optimal. If the signal was the same at two 

time points, the longer permeabilization time was considered optimal. Once optimal 

conditions had been established, each cryosection was cut at 10 mm thickness onto 

Visium Slide (from Visium Slide Kit), and processed immediately. In this study, the 

permeabilization time ranges from 6 to 24 min depending on the samples. 

Tissue fixation, staining and imaging 

Tissue sections on the Visium Slide (from Visium Slide Kit) were fixed using 

methanol (Millipore Sigma) by incubating 30 min at -20°C. For tissue staining, 

sections were incubated in isopropanol (Millipore Sigma) for 1 min, in Hematoxylin 

(Agilent) for 7 min, in Bluing Buffer (Agilent) for 2 min and in Eosin Mix (Millipore 

Sigma) for 1 min at room temperature. Lastly, slides were incubated for 5 min at 37°C 

in the Thermocycler Adaptor (10X Genomics, PN-3000380). The slides were washed 

in ultrapure water after each staining steps. Then, the stained tissue sections are 

imaged.  

Tissue permeabilization and reverse transcription 

For tissue permeabilization, the slides were first placed in the Slide Cassette (from the 

Visium Slide kit) for the optimal permeabilization time. A Permeabilization Enzyme 

(from the Visium Reagent kit) was used for permeabilizing the tissue sections on the 
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slide for incubating for the pre-determined permeabilization time. The 

poly-adenylated mRNA released from the overlying cells was captured by the primers 

on the spots. After washing by 0.1*SSC (Millipore Sigma), RT Master Mix (provided 

in Visium Reagent kit) containing reverse transcription reagents was added to the 

permeabilized tissue sections in the Thermocycler Adaptor. Incubation with the 

reagents produces spatially barcoded full-length cDNA from polyadenylated mRNA 

on the slide. 

Second strand synthesis and denaturation  

After removing RT Master Mix (provided in Visium Reagent kit) from the wells, 

sections were incubated in 0.08 M KOH for 5 min and washed by Buffer EB (Qiagen). 

Then, Second Strand Mix (provided in Visium Reagent kit) was added to the tissue 

sections on the slide to initiate second strand synthesis on the Thermocycler Adaptor. 

This is followed by denaturation and transfer of the cDNA from each Capture Area to 

a corresponding tube for amplification and library construction. The slides were 

washed by Buffer EB and incubated in 0.08M KOH for 5 min. Then, samples from 

each well were transferred to a corresponding tube containing Tris-HCl (1 M, pH 7.0) 

in 8-tube strip for amplification and library construction. 

cDNA amplification and QC 

1 μl sample from Denaturation was transferred to the qPCR plate well containing the 

qPCR Mix (Nuclease-free water + KAPA SYBR FAST qPCR Master Mix (KAPA 

Biosystems) + cDNA Primers (from Visium Reagent kit)). The Cq Value for each 

sample was recorded after qPCR implemented. For cDNA amplification, cDNA 

Amplification Mix (from Visium Reagent kit) was added to the remaining sample 

from Denaturation. Then, the product was incubated in Thermocycler Adaptor for a 

cycle. For cDNA Cleanup–SPRIselect, 60 μl SPRIselect reagent (Beckman Coulter) 
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was added to each sample and incubated for 5 min at room temperature. The sample 

was repeatedly adsorbed by the magnet•High, washed with ethanol (Millipore Sigma) 

and Buffer EB, and transferred to a new tube strip. Then, run 1 μl of sample on an 

Agilent Bioanalyzer High Sensitivity chip (Agilent, Cat#: 50674626) for cDNA QC & 

Quantification. 

Visium spatial gene expression library construction 

Enzymatic fragmentation and size selection were used to optimize the cDNA 

amplicon size. P5, P7, i7 and i5 sample indexes, and TruSeq Read 2 (read 2 primer 

sequence) were added via End Repair, A-tailing, Adaptor Ligation, and PCR. The 

final libraries contain the P5 and P7 primers used in Illumina amplification. Library 

construction was performed with Library Construction Kit (10X Genomics, Cat#: 

PN-1000190). 

Fragmentation, end repair & A-tailing   

Only 10 µl purified cDNA sample from cDNA Cleanup was transferred to a tube strip. 

Buffer BE and Fragmentation Mix (from Library Construction kit) were added to each 

sample, and Fragmentation was performed in thermal cycler. Post Fragmentation, 30 

µl SPRIselect reagent (0.6X) was added to each sample and incubated for 5 min at 

room temperature. The sample was repeatedly adsorbed by the magnet•High, washed 

with ethanol and Buffer EB, and transferred to a new tube strip. 

Adaptor ligation 

50 μl Adaptor Ligation Mix (from Library Construction kit) was added to each 50 μl 

sample and incubated in a thermal cycler. 

Post ligation cleanup–SPRIselect 

80 µl SPRIselect reagent (0.8X) was added to each sample and incubated for 5 min at 

room temperature. The sample was repeatedly adsorbed by the magnet•High, washed 
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with ethanol and Buffer EB, and transferred to a new tube strip. 

Sample index PCR 

50 µl Amp Mix (from Library Construction kit) and 20 µl of an individual Dual Index 

TT Set A (10X Genomics, Cat#: PN-1000215) was added to each 30 μl sample and 

incubated in a thermal cycler. 

Post sample index PCR double-sided size selection – SPRIselect 

60 µl SPRIselect reagent (0.6X) was added to each sample and incubated for 5 min at 

room temperature. After adsorbing by the magnet•High, 150 µl supernatant was 

transferred to a new tube strip. Then, 20 µl SPRIselect reagent (0.8X) was added to 

each sample and incubated for 5 min at room temperature. After adsorbing by the 

magnet•High and supernatant removed, samples were washed with ethanol and Buffer 

EB, and transferred to a new tube strip. 

Post library construction QC 

Run 1 µl of sample (1:10 dilution) on an Agilent Bioanalyzer High Sensitivity chip. 

Sequencing 

A Visium Spatial Gene Expression library comprises standard Illumina paired-end 

constructs which begin and end with P5 and P7. The 16 bp Spatial Barcode and 12 bp 

UMI are encoded in Read 1, while Read 2 is used to sequence the cDNA fragment. i7 

and i5 sample index sequences are incorporated. TruSeq Read 1 and TruSeq Read 2 

are standard Illumina sequencing primer sites used in paired-end sequencing. 

Space ranger 

The Visium spatial RNA-seq output and brightfield and fluorescence microscope 

images were analyzed by Space Ranger (version 1.1.0) in order to detect tissue, align 

reads, generate feature-spot matrices, perform clustering and gene expression analysis, 

and place spots in spatial context on the slide image. These pipelines combined 
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Visium-specific algorithms with the widely used RNA-seq aligner STAR.  

 

Whole exon sequencing (WES) 

Whole exome sequencing was performed per standard protocols using the 

Next-Generation Sequencing platform of TWIST bioscience company whose details 

can be found at https://www.twistbioscience.com/products/ngs. Briefly, for DNA 

extraction, snap frozen fresh biopsy and matched whole blood samples were 

processed using QIAamp DNA Mini Kit (Qiagen, Cat#: 51304), QIAamp DNA Blood 

Maxi Kit (Qiagen, Cat#: 51194) according to the manufacturer’s instructions, and 

quantified using the Qubit dsDNA BR Assay Kit (Thermo Fisher, Cat#: Q32853). 

Libraries were generated with Twist Library Preparation EF Kit 1 (TWIST, Cat#: 

100572), Twist CD Index Adapter Set (TWIST, Cat#: 100577) and Twist Library 

Preparation Kit 2 (TWIST, Cat#: 100573). Subsequently, hybridization and capture 

were performed using the Twist Fast Hybridization and Wash Kit (TWIST, Cat#: 

101175) and Twist Binding and Purification Bead (TWIST, Cat#: 100983), 

respectively. After capture, Libraries were amplified by PCR. Then, purified libraries 

were validated and quantified using an Agilent Bioanalyzer High Sensitivity DNA Kit 

(Agilent, Cat#: 50674626) and a Qubit dsDNA High Sensitivity Quantitation Assay 

(Thermo Fisher Scientific, Cat#: Q32854). Finally, the enriched libraries were 

sequenced on the Nova6000 instrument of Illumina platform (Illumina).  

 

Statistical analysis 

Spatial transcriptomics data processing 

For the gene-spot matrixes generated by Space Ranger, some routine statistical 

analyses were performed firstly, including calculating the number of the detected 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445446


23 

UMIs (nUMI), and genes (nGene) in each spot. Based on them, the basic quality 

controls (QC) were applied on the data. In detail, the spots with extremely low nUMI 

or nGene (outliers), and the spots isolated from the main tissue sections were removed. 

The genes expressed in less than 3 spots, and mitochondrial, ribosomal genes were 

filtered. 

  After QC, we used the R package harmony (v1.0) (30) to integrate the expression 

data from different sections of each patient, and used the Seurat package (v3.1.5) (32) 

to perform the basic downstream analysis and visualization (33). In detail, we firstly 

combined the expression matrixes of each patient’s all sections, and performed 

normalization, log-transformation, centering and scaling on them. Next, we identified 

2,000 highly variable genes according to their expression means and variances. Based 

on them, principal components analysis (PCA) was performed to project the spots into 

a low-dimensional space, which was defined by the first 20 principal components 

(PCs). Then, by setting the section source as the batch factor and using the 

“RunHarmony” function, we iteratively corrected the spots’ low-dimensional PC 

representation to reduce the of impact of batch effect. After this step, the corrected PC 

matrixes were used to perform unsupervised shared-nearest-neighbor-based clustering 

and UMAP (uniform manifold approximation and projection) visualization analysis 

further. And to compare the clusters at gene level, we identified differentially 

expressed genes of the all or selected clusters by using fold-change analysis and 

Wilcoxon Rank Sum test with Bonferroni correction. 

 

Cluster similarity analysis 

For the clusters from different patients, we represented them by their spots’ average 

expression profiles (the log-transformed normalization values). To reduce the impact 
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of extreme values, we excluded some outlier spots in advance, whose first three PC 

values beyond the range of the mean±3*standard deviation of the cluster they 

belonged to. Moreover, only the genes with the mean above 0.1 and the variance 

above 0.05 across all the cluster expression vectors were retained for the downstream 

comparison analyses. 

  To measure the clusters’ similarities across patients, we preformed two types of 

analyses, hierarchical clustering and low-dimensional projection. In detail, we firstly 

applied PCA on the centered and scaled clusters’ average expression profiles, and 

used the first five PCs to perform hierarchical clustering (Fig. 2B). Besides, the 

diffusion map was used to project clusters of different patients into a two-dimension 

space (the first two diffusion components) based on the package destiny (34) with 

default parameter setting (fig. S2A). For convenience of comparison, we annotated 

each cluster with a region label (normal, stromal, or tumor), which was decided by 

integrating the information of the cluster’s marker genes and H&E staining images. 

 

Cell type scoring by a signature-based strategy 

At the current Visium ST resolution, each spot may contain approximately 8-20 cells, 

so that we couldn’t assign a certain cell type for each spot. Considering this, to 

compare the distribution of cell types across the tissue sections, we proposed a 

signature-based strategy to score the cell type enrichments in each spot. Firstly, we 

curated a set of gene signatures of common cell types in liver cancer based on the 

Xcell signatures (35) and biology prior knowledge (Table S3). Then, we defined the 

average log-transformed normalization expression values of the genes in the signature 

as the corresponding cell type scores. Taking advantage of these scores, the cell type 

relative enrichment degree across different tissue regions can be compared. By testing 
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on some single cell RNA-seq datasets of liver cancer, we proved that our curated gene 

signatures had high sensitivity and specificity. 

  Furthermore, we also verified the performance of our method by comparing with 

the multimodal intersection analysis (MIA) (16), which determined the cell type 

enrichment degrees by performing hypergeometric test on the overlap between the 

tissue region-specific genes of ST data and the cell type-specific genes of single cell 

data. Here, we took advantage of cell type annotation and differential expression gene 

results of a liver cancer single cell dataset (19) and performed MIA on the clusters of 

our ST data, so that we can use the p-values of hypergeometric test to measure the 

enrichment of different cell types in each cluster (fig. S2C). By comparing these 

enrichment degrees and the mean values of our signature-based cell type scores of the 

all ST clusters, we observed generally high correlation (fig. S2D), which proved the 

reliability of our signature-based cell type scoring method. At the same time, it had 

the advantage of not requiring single cell data, which was more flexible. 

 

Intratumor spatial heterogeneity measurement 

To measure the degree of intratumor heterogeneity from two aspects of transcriptome 

and tissue space, we proposed two metrics, transcriptome diversity degree and spatial 

continuity degree. 

For the transcriptome diversity degree, we firstly calculated the Pearson correlation 

coefficients between each pair of tumor region spots based on the highly variable 

genes. Then we defined the sample’s transcriptome diversity degree as the 1.4826 

times median absolute deviation (MAD) of these correlations, which was an 

approximation of standard deviation, but can avoid the impact of outliers. The larger 

this metric meant that the similarities among the sample’s tumors spots had larger 
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variance, so that the sample had higher intratumor heterogeneity. Formulaically, it can 

be calculated as  

������������� ��������� ������ = 1.4826 ∗ ��� ����������, ���� 

where �� indicated the expression vector of the tumor region spot �, and the MAD 

was defined as  

���(�) = ������(|�� − ������(�)|) 

For the spatial continuity degree, we first compared the cluster identities of each 

tumor region spot with its six neighbor spots. Then the total fraction of the neighbor 

spots with the same cluster identity was defined as the spatial continuity degree. This 

metric measured the tumor region’s spatial heterogeneity. The larger this metric meant 

the sample’s tumor region more tended to be block-like (higher spatial continuity 

degree and lower spatial mixed degree). Formulaically, it can be calculated as  

������� ���������� ������ =
∑ ∑ ���������� = ����������∈�����(�)�

∑ ∑ 1�∈�����(�)�
 

where � indicated a tumor region spot, and �() was the indicative function. 

 

Gene set variation analysis (GSVA) 

The pathway activities of tumor cluster spots were quantified by applying gene set 

variation analysis (GSVA), implemented in the GSVA package (36). In detail, the 

log-transformed normalization expression matrix of tumor spots was inputted into the 

“gsva” function with the default parameters setting. The set of 50 cancer hallmark 

signatures (MSigDB, H sets), 189 oncogenic signatures (MSigDB, C6 sets) (59), and 

96 metabolic pathways (37) were used to analyze. Besides, to compare the tumor 

clusters across patients at pathway level, we averaged the resulting GSVA score 

matrixes over each cluster and performed hierarchical clustering on them with Ward's 
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minimum variance method (Fig. 4A). 

 

Spatial gradient change analysis 

The spatial gradient distributions of hallmark pathway activities were analyzed on our 

leading-edge samples (L-sections) and the intact HCC nodule (HCC-5). 

  For the leading-edge samples, we focused on analyzing the gradient changes from 

capsules or tumor-normal boundary lines to the both tumor and normal sides. The 

capsule (HCC-1L, 3L, 4L) boundaries were determined based on the clustering results 

and fine-adjusted manually by using the software Loupe Browser. When the capsules 

didn’t exist (ICC-1L) or were incomplete (HCC-2L, cHC-1L), the tumor-normal 

boundaries were decided manually according to the interface of clusters and the H&E 

staining images in Loupe Browser. Then, we divided the normal and tumor regions 

into continuous zones parallel to the shape of the boundary lines at intervals of 5 spots 

(fig. S3A). And the gradient changes along these zones were analyzed. 

 

Tumor cluster malignancy comparison analysis 

To evaluate the relative malignancy degree of different ST tumor clusters, we used 

two liver cancer bulk datasets (TCGA-LIHC and LCI cohorts) (39) for comparison, 

which were downloaded from the HCCDB website (i.e. HCCDB15 and HCCDB6 

datasets) (38). To reduce the impact of disease-irrelevant deaths, we truncated the 

patients’ survival times to five years and set their statuses as “alive” when they had 

longer survival times. Then, for each sample’s ST tumor cluster, we excluded its 

outliers and represented them by their average expression values of the remaining 

spots (the details were the same as the method “Cluster similarity analysis”). This step 

can be regarded as transforming each tumor cluster into a pseudo-bulk sample. Next, 
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to compare the malignancy of any pair of two ST tumor clusters, we calculated the 

Spearman correlation coefficients between each cluster and the bulk samples 

(TCGA-LIHC or LCI cohorts) across a list of about 1,000 survival-related genes from 

HCCDB. According to the correlations, we determined which ST tumor cluster the 

bulk samples were more similar to, so that these bulk samples can be classified into 

two groups. By plotting Kaplan-Meier survival curves and performing log-rank test 

on these two groups, we decided the relative malignancy degrees between these two 

ST tumor clusters (Fig. 4C and fig. S4). 

 

Cluster interaction analysis 

We used HCC-1T to explore the interaction between two neighbor tumor clusters, 

because the three tumor clusters (2, 5, and 6) in HCC-1T had clear interfaces between 

each other and were highly heterogeneous. For each pair of neighbor tumor clusters, 

we selected their interface regions with 4 spots wide (2 spots wide for each cluster) 

and excluded the spots identified as stromal clusters (Fig. 4D). Then, we used the 

CellPhoneDB (40, 41) to analyze the interaction strengths, which were defined as the 

means of the average expression level of ligand and receptor in the corresponding 

cluster interface spots. For each ligand-receptor pair in each interaction analysis, we 

performed 1,000 randomized permutations for spots’ cluster labels and recalculated 

the mean values, which can be seen as a null distribution. By calculating the 

proportion of these mean values which exceed the actual interaction strength, we 

obtained a p-value to measure the statistical significance of the interaction on the 

interface of two tumor clusters (Fig. 4E). 

 

Copy number variation (CNV) comparison analysis 
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The CNVs of each tumor spot were estimated based on their transcriptome profiles by 

using the method of infercnv (50). Firstly, for each patient, we defined the normal 

hepatocyte spots in their N-section as normal references. Then, all the analyzed genes 

were sorted by their location in the chromosomes and a sliding window of 100 genes 

were applied on them to calculate their moving average expression values, so that the 

initial copy numbers were estimated. By subtracting the normal reference copy 

number profiles from that of the tumor cluster spots, we got the CNV estimation of 

tumor spots. To reduce the impact of dropout, we took advantage of the spots’ 

shared-nearest-neighbor (SNN) relationships and smoothed each spot’s CNVs further 

by calculating the weighted average of it and its SNNs (33). 

To confirm the CNV results inferred from ST data, we also performed the bulk 

WES on the PBMCs, normal sections, tumor sections, and normal/tumor regions of 

the leading-edge sections of the corresponding patients. Then, the copy number 

variations of the tumor bulk samples were called from the paired tumor-normal WES 

data using CNVkit software (stable version) (51). The normal reference adopting the 

PBMC or the normal section data can generate similar results. Besides, for the derived 

log2 copy-ratio results, the outliers were detected and filtered. 
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Figure 1. Exploration of primary liver cancer architecture with spatial 

transcriptomics. (A) Workflow of primary liver cancer samples collection, 

processing for ST and WES, and data analysis. N: Non-tumor area; L: Leading-edge 

area; T: Tumor area; P: Portal vein tumor thrombus area. (B) UMAP (Uniform 

manifold approximation and projection) plot of spots from all sections, colored by 

their sample source, the number of expressed UMIs (nUMI) and genes (nGene), 

respectively. HCC-1N represented the N-section of HCC-1. (C) H&E staining and the 

spatial feature plots of six marker genes of each L-section. 
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Figure 2. Different patterns of PLC spatial heterogeneities. (A) For each patient: 

left, UMAP of the spots colored by their section sources and cluster identities, 

respectively; middle, H&E staining and the spatial cluster distribution of each section; 

right, the fraction of clusters in each section. (B) Similarity comparison of the clusters 

across different patients. The clusters’ tissue regions, histopathological types, and 

patient information were annotated on the left. HCC-1.1 represented the cluster-1 of 

HCC-1. (C) Distribution of the clusters and the main stromal and immune cell scores 

along the direction from normal (N) to tumor (T). This direction was estimated by the 

first components of the spots’ diffusion map (DC1), which were generally ordered 

from normal to tumor. 
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Figure 3. Microenvironment characteristics in leading-edge area. (A) The 

transcriptome diversity degree and spatial continuity degree of tumor regions in 

L/T/P-sections. (B) The spatial feature plots of six marker genes of stromal and 

immune cell types in HCC-4L. (C) The distribution of normal, tumor and transition 

regions in the L-sections, and the grouping results of the CC (complete capsules) 

group and NC (non or discontinued capsules) group. (D) Comparison of the median of 

stromal and immune cell type scores between the normal (x-axis) and the tumor 

(y-axis) regions in each L-section. (E) Comparison of the relative intensity (each row 

shared a color scale, while different rows didn’t) of stromal and immune cell subtype 

scores between the normal and tumor regions in each L-section. (F) Comparison of 

the expression levels of exhausted T cell signature, CTLA4, PDCD1, LAG3 and TIM3 

between the CC and NC groups. Two-sides Wilcoxon rank-sum tests on the CC and 

NC groups were used to analyzed the significance of their differences. **** p<0.0001. 

(G) Comparison of the immune cell scores in the “transition regions” between the CC 

and NC groups. One-sided Wilcoxon rank-sum tests (the CC group was less than NC 

group) were used to calculated the statistical significance. ****, p<0.0001.  (H) The 

changes of hallmark pathways’ activities along the gradient divisions on the both sides 

of transition region. Each dot indicated the median of the pathway activity in the 

corresponding area. 
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Figure 4. Intratumor heterogeneity in PLCs. (A) Clustered heatmap of tumor 

clusters’ hallmark pathway average activities. The tumor clusters were grouped into 

two functional modules. HCC-1.2 represented the cluster-2 of HCC-1. (B) Expression 

profiles of some differential expression genes of the clusters-2/5/6 in HCC-1T. T.2 

represented the cluster-2 in HCC-1T. (C) The survival curves of two groups of 

patients in TCGA and LCI cohorts to compare the relative malignancy of ST tumor 

cluster pairs (cluster-2 vs 5 in HCC-1T). These two groups were divided according to 

which ST tumor cluster the bulk samples were more similar to at expression level. 

Log rank test was used to measure the statistical significance of their relative 

malignancy degrees. (D) The definition of the boundary areas to study the interaction 

between two neighbor tumor clusters in HCC-1T. The regions with 4 spots wide along 

the boundary lines in each cluster were selected and the spots of stromal clusters were 

excluded. (E) Bubble heatmap showing the mean interaction strength between the 

neighbor clusters at the boundaries for ligand-receptor pairs. Dot size indicated the 

statistical significances by permutation test. Dot color indicated the mean interaction 

strength levels. HCC-1T.2 represented the cluster-2 in HCC-1T. (F) The averaged 

CNV profiles for each tumor cluster in HCC-1, inferred from spatial transcriptomes. 

The color of the lines indicated the amplifications (red) and deletions (green). The 

differences between clusters were highlighted by background colors (red, green, and 

grey) and their detailed chromosome band labels were also presented. HCC-1L.2 

represented the cluster-2 in HCC-1L. 
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Figure. S1. Sampling process and ST sequencing. (A) Spatial transcriptomics 

technology can detect ~5,000 spatially barcoded spots of 55 μm diameter and 100 μm 

center-to-center distance in a capture area (6.5*6.5 mm2). (B) Spatial feature plots of 

the number of expressed transcripts (nUMIs) and genes (nGene). 
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Figure. S2. Cluster comparison and the cell type scoring. (A) Diffusion map of the 

clusters across different patient, showing the first two diffusion components. The 

clusters (dots) were colored by patient sources (left) and tissue regions (right) 

information. HCC-1.1 represented the cluster-1 of HCC-1. (B) Violin plots of the six 

stromal and immune cell type scores in each cluster. (C) The MIA maps of the ST 

defined clusters and the single cell identified cell types from a published HCC 

scRNA-seq dataset. Each element in the heatmap indicated the enrichment degree 

(-log10(p-value) of hypergeometric test) of cell types in the ST clusters, which were 

measured by testing on the overlap of their differential expression genes. (D) 

Comparison between the mean of ST signature-based cell type scores and the 

enrichment degrees by MIA. Each dot indicated one ST cluster. 
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Figure S3. Mapping the changes of hallmark pathway activities on both sides of 

the transition region. (A) Gradient area division results on both sides of the 

transition region with the interval of 5 spots in L-sections. (B) The changes of 

hallmark pathways’ activities along the gradient divisions on both of the tumor and 

normal sides. Each dot indicated the median of the pathway activities in the 

corresponding area. 
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Figure. S4. Comparison between tumor clusters. (A-B) The survival curves of two 

groups of patients in TCGA and LCI cohorts to compare the relative malignancy of 

ST tumor cluster pairs (cluster-2 vs 6, and cluster-5 vs 6 in HCC-1T). These two 

groups were divided according to which ST tumor cluster the bulk samples were more 

similar to at expression level. Log rank test was used to measure the statistical 

significance of their relative malignancy degrees. 
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Figure. S5. CNV Profiles of HCC-1 and HCC-3. (A-B) CNV profiles of the bulk 

samples of HCC-1 and HCC-3 patients. The three columns indicated the samples 

from different tissue region: the normal region of the leading-edge sections (left), the 

tumor region of the leading-edge sections (middle), and the tumor sections (right). (C) 

Heatmap of the inferred CNV profiles for tumor cluster spots (row). Red: 

amplifications; blue: deletions. The CNVs of normal references from N-sections were 

also presented at the top. (D) The averaged CNV profiles for each tumor cluster in 

HCC-3, inferred from spatial transcriptomes. 
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Patient ID HCC-1 HCC-2 HCC-3 HCC-4 HCC-5 cHC-1 ICC-1

Sex Male Female Male Male Female Female Male

Age 54 55 61 60 52 69 53

Etiology of liver

disease
HBV HBV non-HBV HBV HBV HBV non-HBV

Cirrhosis Yes No No No Yes Yes No

Preoperative ALT

level(U/L)
47 49 31 17 29 206 27

Preoperative AST

level(U/L)
53 40 23 23 19 250 20

Preoperative serum

bilirubin(umol/L)
12.7 11.6 15.9 10.7 13.7 25.3 7.4

Preoperative serum

ALB(g/L)
40.7 46.5 43 47.6 48.9 41.1 41.7

Hepatic

encephalopathy
0 0 0 0 0 0 0

Ascites 0 0 0 0 0 0 0

Prothrombin time

（s）
12.8 11.8 11.7 11.1 12.3 14.4 12

Child-Pugh grade A A A A A A A

BCLC stage B C B A 0 B B

Tumor size 6.5*6 cm 4.3*4 cm 8*7 cm 3.8*3.5 cm 1.5*1 cm 5.0*4.2 cm 7.6*6 cm

Resection margin > 1 cm >1 cm > 1 cm > 1 cm > 1 cm > 1 cm > 1 cm

MVI M1 M2 M2 M0 M0 M0 M0

Histology Type
Macrotrabecular,

grade III

Macrotrabecular,

grade III

Macrotrabecular,

grade III

Macrotrabecular,

grade III

Macrotrabecula

r, grade III

Small bile duct

type -

Capsule Complete Incomplete Complete Complete No Incomplete No

Type of Resection R0 R0 R0 R0 R0 R0 R0

TNM Groups T2N0M0 T4N0M0 T2N0M0 T1bN0M0 T1aN0M0 T1bN0M0 T1bN1M0

Tumor Stage II IIIb II Ib Ia Ib IIIb

Table S1. Clinical and Pathological Data of Each Patient

Abbreviations: ALT，Alanine transaminase; AST, Aspartate aminotransferase; ALB, Albumin; BCLC stage,

Barcelona clinic liver cancer stage; MVI, Microscopic vascular invasion; TNM stage, Tumor node metastasis

stage
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Sample

Number

of Spots

Under

Tissue

Median

Genes

per Spot

Number

of Reads

Valid

Barcodes

Valid

UMIs

Mean

Reads

per Spot

Reads

Mapped

to

Genome

Fraction

Reads in

Spots

Under

Tissue

Total

Genes

Detected

Median

UMI

Counts

per Spot

Fraction

of Spots

Under

Tissue

HCC-1N 2956 2651 3.9E+08 0.97 1.00 132095.87 0.82 0.91 20597 9822.5 0.59

HCC-1L 2791 4017 2.9E+08 0.97 1.00 103838.70 0.91 0.85 22450 16407 0.56

HCC-1T 3184 4790 3.03E+08 0.97 1.00 95135.53 0.89 0.81 22489 19423.5 0.64

cHC-1N 2207 2732 2.72E+08 0.96 0.99 123233.01 0.75 0.88 20344 10753 0.44

cHC-1L 4516 4193 4.29E+08 0.96 0.99 94983.82 0.74 0.97 23101 12683.5 0.90

cHC-1T 4779 5019 3.88E+08 0.96 1.00 81139.84 0.84 0.99 24111 15239 0.96

HCC-2N 4628 1405 2.36E+08 0.97 1.00 51066.87 0.89 0.95 19712 4476.5 0.93

HCC-2L 4672 2876 3.18E+08 0.95 0.99 68158.69 0.74 0.96 22130 6604 0.94

HCC-2T 4733 3366 1.86E+08 0.96 0.99 39215.32 0.85 0.97 22534 8433 0.95

HCC-2P 4666 3059 1.28E+08 0.95 0.99 27443.02 0.80 0.97 21898 6774.5 0.93

HCC-3N 4289 2905 4.3E+08 0.96 0.99 100330.50 0.82 0.96 21513 11340 0.86

HCC-3L 4758 3043.5 4.32E+08 0.96 0.99 90739.48 0.85 0.98 22487 9348.5 0.95

HCC-3T 4456 4058 3.82E+08 0.96 1.00 85674.06 0.82 0.98 21259 20238.5 0.89

HCC-4N 4397 622 80540768 0.97 1.00 18317.21 0.71 0.94 19123 1223 0.88

HCC-4L 4113 3861 3.39E+08 0.96 0.99 82302.94 0.86 0.94 21928 12919 0.82

HCC-4T 4162 4276.5 3.05E+08 0.96 0.99 73264.38 0.87 0.94 21815 16382 0.83

ICC-1L 4654 4647.5 3.83E+08 0.96 0.99 82342.43 0.83 0.97 23303 14791 0.93

HCC-5A 3460 2024.5 1.2E+08 0.95 1.00 34576.08 0.84 0.88 20137 4954.5 0.69

HCC-5B 3958 1406 1.06E+08 0.95 1.00 26796.10 0.79 0.89 20075 2775 0.79

HCC-5C 3777 1501 92917728 0.96 1.00 24600.93 0.74 0.84 19984 3651 0.76

HCC-5D 4352 1473.5 1.09E+08 0.96 1.00 24956.50 0.89 0.96 20282 3716 0.87

Table S2. Sample Spatial Transcriptomics Sequencing Data

Summary

Abbreviations: UMI, Unique Molecular Identifier.
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Cell type Genes

T cells CD3D, CD3E, CD3G

B cells CD19, MS4A1, CD79A

NK cells NCAM1, KLRF1, NCR1, KLRC1

Myeloid cells ITGAX, CD33, CEACAM8, CD68, CD163

Fibroblasts COL1A2, FAP, PDPN, DCN, COL3A1, COL6A1, COL1A1

Endothelial cells CLDN5, PECAM1, CD34, FLT1, VWF, ENG, CDH5

CD8+ T-cells CD8A, CD8B

CD8+ Tcm CD8A, CD8B, CTSW, GZMK, IL2RB, SH2D1A, GPR171, CRTAM, USP36, TMEM30B

CD8+ Tem DHX8, GZMH, GZMK, LAG3, ZAP70, COLQ, RGS9, CXCR6, PVRIG, PYHIN1

CD4+ T-cells
CD2, CD3D, CD3E, CD3G, CD5, CD7, CD27, CD40LG, CTLA4, GOLGA4, TRAF1,

CD96, ICOS, GPR171, TRAT1, FOXP3, SIRPG, RIC3

Tregs CCR4, CCR8, CTLA4, GPR25, IL2RA, KCNA2, LAIR2, HS3ST3B1, MCF2L2, FOXP3

CD4+ naive T-cells CD27, CLC, CTSW, DNAJB1, RBL2, HAUS3, ANKRD55, ZNF394, CHMP7

CD4+ memory T-cells
CD28, CD40LG, CCR4, CTLA4, GPR15, GZMA, GZMK, HMGB2, PDCD1, RBL2,

CD226, GPR171, TRAT1, UBASH3A, ARHGAP15

CD4+ Tcm
CD40LG, CCR4, CCR8, CTLA4, DAB1, ERN1, GPR15, DNAJB1, KRT1, POU6F1,

TPO, CDC14A, TRADD, DLEC1, ICOS, TRAT1, FXYD7, FBXL8, SIRPG, SLC4A5,

ANKRD55, OBSCN

CD4+ Tem CD40LG, CCR6, KLRB1, LTK, MCF2L2, GALNT8, TRAT1

cDC
CD1A, CD1B, CD1C, CD1E, CD80, CD86, FCER1A, GFRA2, CCL13, CCL17,

CLEC10A, CD209, KCNK13

iDC ALOX15, F13A1, CCL13, CCL17, CCL18, CCL23, CCL24, CD209

aDC C1QA, C1QB, CD80, FPR3, HLA-DQA1, IL12B, CCL13, CCL17, CCL19, CCL22

Monocytes
AIF1, CYBB, FCAR, FCN1, MNDA, CFP, S100A12, CD163, CLEC5A, TREM1, RETN,

FOLR2, MS4A6A, LILRA5

Macrophages CHIT1, CYP19A1, HK3, MSR1, VSIG4, CLEC5A, ADAMDEC1, DNASE2B

Macrophages M1
ITGAM, CD68, FCGR3A, FCGR2A, FCGR1A, CD80, CD86, HLA-DRB5, TLR4, TNF,

IL1A, IL1B, IL12, IL12A, IL12B, IL6, NOS2

Macrophages M2 ITGAM, CD68, CD163, MRC1, IL10, TGFB1, IDO1, IL8, CCL2

Neutrophils CLC, CSF3R, FCGR3B, FPR2, HBB, CXCR2, S100A12, P2RY13, TREM1

MSC HTR7, MMP17, PLA2G5, CDKL5, PKD2L1, ADAMTS12, ZNRF4, CTRB2

ly Endothelial cells FLT4, HYAL2, CLEC1A, SOX18, ROBO4, CXorf36, MYCT1, KANK3

mv Endothelial cells
ACVRL1, CETP, RANGAP1, SELE, TIE1, CLDN5, VWF, HYAL2, EIF2B2, TNFSF18,

LYVE1, ARHGEF15, CLEC1A, ROBO4, CXorf36, MMRN2, KANK3

Table S3. Signature Genes of Indicated Cell Types

Abbreviations： Tcm, Central memory T cell; Tem, Effective memory T Cell, Treg, Regulatory T cell; cDC,

conventional dendritic cell; iDC, interdigitating dendritic cell; aDC, active dendritic cell; MSC, Mesenchymal stem cell;

ly Endothelial cells, lymphatic endothelial cell; mv Endothelial cells, Microvascular endothelial cell.  
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Table S4. Differentially Expressed Genes of cluster-2, 5 and 6 of 

HCC-1T 

Cluster Gene P value Avg logFC pct.1 pct.2 P value adj 

T.2 SAA2 2.3E-263 1.01888086 0.999 0.986 3.94E-259 

T.2 SAA1 2.5E-251 0.82002743 1 1 4.32E-247 

T.2 EGR1 6E-241 0.71833189 0.991 0.87 1.02E-236 

T.2 FOS 6.8E-195 0.70748844 0.969 0.745 1.17E-190 

T.2 CFHR3 1.3E-260 0.69566565 0.999 0.976 2.19E-256 

T.2 TIMP1 8.6E-185 0.62669321 0.997 0.993 1.48E-180 

T.2 CEBPD 2.4E-175 0.56341084 0.994 0.942 4.1E-171 

T.2 HP 4.1E-238 0.56266277 1 1 7.12E-234 

T.2 UGT2B17 2.1E-166 0.55386433 0.82 0.344 3.65E-162 

T.2 HRG 2.4E-181 0.54524459 1 0.994 4.17E-177 

T.2 CRP 3.1E-178 0.5328431 1 1 5.27E-174 

T.2 DUSP1 1.1E-138 0.5255131 0.997 0.952 1.84E-134 

T.2 RARRES2 3.1E-272 0.51749464 1 1 5.25E-268 

T.2 FTCD 1.8E-236 0.51309024 1 0.999 3.03E-232 

T.2 IFITM2 2E-150 0.49182167 0.993 0.923 3.39E-146 

T.2 FGGY 2.2E-145 0.47812803 0.968 0.826 3.72E-141 

T.2 TFR2 1.4E-187 0.46503629 0.999 0.984 2.44E-183 

T.2 C4BPA 2.3E-195 0.46358007 1 0.998 3.98E-191 

T.2 CXCL2 2.4E-107 0.44921756 0.876 0.622 4.12E-103 

T.2 C9 3.9E-135 0.44778354 0.996 0.984 6.72E-131 

T.2 APCS 9.7E-146 0.43070937 1 0.997 1.66E-141 

T.2 PCK1 1.03E-81 0.42434034 0.994 0.956 1.768E-77 

T.2 HLA-B 1.2E-173 0.41463211 0.999 1 2.04E-169 

T.2 IER3 8.72E-84 0.39272311 0.869 0.628 1.495E-79 

T.2 CCL21 2.5E-64 0.39121891 0.862 0.603 4.28E-60 

T.2 TM4SF20 5.2E-113 0.38923232 0.636 0.195 8.86E-109 

T.2 HPX 7.3E-247 0.36729283 1 1 1.26E-242 

T.2 A2M 1.9E-145 0.36039496 1 1 3.21E-141 

T.2 IGFBP7 1.29E-79 0.35995463 0.999 0.987 2.214E-75 

T.2 C3 0 0.35217341 1 1 0 

T.2 PDIA4 1.7E-127 0.35019883 1 0.994 2.95E-123 

T.2 PLA2G2A 2.68E-42 0.33962872 0.878 0.781 4.598E-38 

T.2 SERPINA6 2.1E-89 0.33828798 0.99 0.938 3.603E-85 

T.2 JUNB 3.92E-76 0.33344956 0.867 0.634 6.726E-72 

T.2 C8G 4.3E-133 0.32895111 1 0.997 7.29E-129 

T.2 LRG1 9.6E-96 0.32630905 0.999 0.993 1.646E-91 

T.2 C8A 3.1E-101 0.32559527 0.997 0.977 5.259E-97 

T.2 MUC13 6.34E-69 0.32026123 0.673 0.363 1.087E-64 

(which was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445446doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445446


56 

T.2 GADD45B 2.77E-57 0.31960467 0.887 0.766 4.745E-53 

T.2 C7 2.37E-59 0.31756921 0.749 0.476 4.059E-55 

T.2 PTGDS 2.57E-47 0.31657856 0.657 0.421 4.412E-43 

T.2 SERPINA1 8.4E-166 0.3150849 1 1 1.45E-161 

T.2 S100A6 3.2E-46 0.31421206 0.948 0.865 5.487E-42 

T.2 OGDHL 8.54E-78 0.3137067 0.84 0.57 1.464E-73 

T.2 CD14 2.2E-101 0.31159192 0.997 0.993 3.725E-97 

T.2 DIO1 4.9E-72 0.30384165 0.988 0.935 8.412E-68 

T.2 S100A13 1.14E-65 0.30120558 0.919 0.744 1.956E-61 

T.2 IER2 2.49E-65 0.29978275 0.914 0.775 4.271E-61 

T.2 C6 3.13E-73 0.29924327 0.972 0.918 5.37E-69 

T.2 NAMPT 1.36E-59 0.29839697 0.891 0.708 2.339E-55 

T.2 CFH 6.3E-152 0.29762305 1 1 1.08E-147 

T.2 ADGRV1 1.93E-66 0.29510326 0.814 0.53 3.313E-62 

T.2 FGF21 1.04E-62 0.2912909 0.803 0.517 1.791E-58 

T.2 ACSM2A 1.24E-63 0.28739899 0.863 0.674 2.127E-59 

T.2 MASP2 1.67E-89 0.28556175 0.999 0.984 2.873E-85 

T.2 RORC 1.35E-56 0.28070776 0.863 0.649 2.309E-52 

T.2 COL6A1 8.94E-46 0.28064097 0.801 0.602 1.534E-41 

T.2 GADD45G 6.79E-49 0.27447394 0.888 0.74 1.165E-44 

T.2 G6PC 1.06E-53 0.2692287 0.831 0.633 1.826E-49 

T.2 RAMP1 1.42E-63 0.26629666 0.98 0.919 2.436E-59 

T.2 B2M 1.1E-128 0.26530676 1 1 1.8E-124 

T.2 NNMT 1.53E-44 0.26308966 0.972 0.908 2.62E-40 

T.2 DCN 1.3E-43 0.2627206 0.751 0.547 2.236E-39 

T.2 LUM 8.55E-51 0.26246217 0.607 0.342 1.467E-46 

T.2 EFEMP1 7.31E-51 0.26014368 0.669 0.388 1.253E-46 

T.2 ANG 9.64E-66 0.25914651 0.999 0.995 1.653E-61 

T.2 CYP3A5 1.44E-50 0.25666 0.93 0.828 2.474E-46 

T.2 TMPRSS6 1.14E-53 0.25642504 0.965 0.874 1.962E-49 

T.2 ZFP36 1.2E-49 0.25636176 0.961 0.864 2.055E-45 

T.2 AEBP1 2.67E-44 0.2554548 0.768 0.554 4.583E-40 

T.2 CYP2A7 1.18E-36 0.2548313 0.962 0.895 2.017E-32 

T.2 SPP2 1.23E-49 0.25460641 0.977 0.93 2.112E-45 

T.2 GGH 3.01E-62 0.25362659 0.997 0.982 5.161E-58 

T.2 C8B 1.79E-90 0.2530151 1 1 3.066E-86 

T.5 CYP2E1 2.5E-293 1.7695724 1 0.995 4.36E-289 

T.5 LYZ 5.4E-130 1.06807477 0.952 0.851 9.24E-126 

T.5 ADH4 1.4E-106 0.68455014 0.969 0.96 2.43E-102 

T.5 GNAS 1.5E-244 0.66761214 0.998 0.997 2.51E-240 

T.5 MSMO1 3.4E-130 0.61079859 0.973 0.902 5.88E-126 

T.5 GLUD1 5.5E-140 0.55710371 0.994 0.972 9.5E-136 

T.5 AHSG 5.9E-187 0.53922467 1 1 1.01E-182 
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T.5 SELENOW 1.8E-128 0.53028308 0.904 0.644 3.01E-124 

T.5 UGT2B10 1.1E-113 0.52928018 0.929 0.817 1.85E-109 

T.5 TM7SF2 8.4E-123 0.52591705 0.973 0.93 1.44E-118 

T.5 FADS2 6.5E-122 0.51640088 0.986 0.942 1.11E-117 

T.5 ACAA2 4.4E-135 0.51050383 0.994 0.993 7.46E-131 

T.5 CD24 4.5E-105 0.50892091 0.974 0.895 7.78E-101 

T.5 ATF5 1.3E-102 0.49902569 0.982 0.902 2.189E-98 

T.5 ROMO1 7E-179 0.47918987 1 0.999 1.2E-174 

T.5 MDK 2.3E-106 0.46924516 0.772 0.447 3.9E-102 

T.5 GATM 1.1E-189 0.46864567 1 1 1.85E-185 

T.5 HPD 1.69E-88 0.46797086 0.82 0.564 2.895E-84 

T.5 STAU1 1.9E-112 0.46711288 0.969 0.902 3.29E-108 

T.5 SCD 1.7E-113 0.4640775 1 1 2.86E-109 

T.5 ATP5F1E 7.7E-229 0.46077471 1 1 1.32E-224 

T.5 CTSA 3E-146 0.449944 0.998 0.996 5.11E-142 

T.5 HMGCS1 3.13E-81 0.44675136 0.995 0.981 5.368E-77 

T.5 BHMT 7.9E-102 0.44182359 0.667 0.287 1.348E-97 

T.5 ACSS2 1.94E-70 0.43399401 0.889 0.81 3.334E-66 

T.5 ADH1B 1.6E-125 0.43246883 1 0.997 2.76E-121 

T.5 ABHD2 6.06E-91 0.42306296 0.961 0.92 1.04E-86 

T.5 ALDH2 3.3E-121 0.42238087 0.994 0.993 5.61E-117 

T.5 BPIFB2 1.6E-46 0.41272672 0.683 0.507 2.749E-42 

T.5 ACAA1 3.02E-98 0.40997982 0.994 0.991 5.184E-94 

T.5 FXYD1 1.3E-65 0.40913403 0.924 0.873 2.234E-61 

T.5 AFP 2.12E-46 0.40521539 0.524 0.28 3.631E-42 

T.5 EIF6 4.4E-114 0.40161116 0.995 0.989 7.59E-110 

T.5 RBM39 6.03E-85 0.39741778 0.99 0.978 1.033E-80 

T.5 DHCR7 1.91E-74 0.3965233 0.961 0.912 3.274E-70 

T.5 FDFT1 1.13E-75 0.39564036 0.936 0.834 1.936E-71 

T.5 RPN2 7.2E-120 0.39330049 0.998 0.998 1.23E-115 

T.5 ZFAS1 5.16E-70 0.37904319 0.842 0.687 8.851E-66 

T.5 APOC3 4.4E-177 0.37629834 1 1 7.6E-173 

T.5 ACAT2 5.7E-65 0.36851299 0.886 0.791 9.77E-61 

T.5 CPS1 1.93E-38 0.36286695 0.645 0.472 3.312E-34 

T.5 PEG10 2.64E-56 0.35952329 0.961 0.968 4.536E-52 

T.5 IDI1 4.64E-65 0.35638236 0.947 0.914 7.95E-61 

T.5 STMN1 1.39E-47 0.35347908 0.847 0.757 2.391E-43 

T.5 NACA 2.7E-104 0.34810834 1 0.998 4.66E-100 

T.5 ECH1 5.6E-100 0.34251894 1 0.999 9.547E-96 

T.5 PRODH2 2.88E-69 0.34023055 0.969 0.971 4.945E-65 

T.5 HMGN2 1.32E-72 0.3394665 0.997 0.985 2.267E-68 

T.5 SLC27A5 1.33E-57 0.33831406 0.994 0.996 2.289E-53 

T.5 NORAD 7.23E-74 0.33650159 0.992 0.99 1.24E-69 
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T.5 CPNE1 1.56E-60 0.33501827 0.932 0.854 2.68E-56 

T.5 NADK2 1.49E-55 0.33096318 0.96 0.934 2.561E-51 

T.5 AFM 5.99E-67 0.33067785 0.977 0.962 1.027E-62 

T.5 FABP1 5.1E-124 0.32948684 1 1 8.83E-120 

T.5 MALAT1 2.07E-40 0.32637664 0.992 0.992 3.546E-36 

T.5 TRMT112 1.46E-63 0.32578139 0.953 0.933 2.51E-59 

T.5 AHCY 1.7E-53 0.32282527 0.963 0.958 2.923E-49 

T.5 SNRPF 4.83E-61 0.31995953 0.937 0.907 8.291E-57 

T.5 EIF2S2 1.76E-57 0.31953024 0.926 0.893 3.022E-53 

T.5 TUBA1B 5.94E-61 0.31610912 0.99 0.99 1.018E-56 

T.5 PNPLA2 6.73E-57 0.31530842 0.913 0.856 1.154E-52 

T.5 DBI 1.34E-88 0.3132009 0.998 0.999 2.294E-84 

T.5 NELFCD 1.13E-55 0.31300574 0.931 0.861 1.935E-51 

T.5 ERGIC3 3.93E-73 0.31160642 0.994 0.978 6.733E-69 

T.5 SULF2 3.25E-67 0.31091852 0.625 0.321 5.582E-63 

T.5 GPR88 6.73E-49 0.3103603 0.625 0.403 1.154E-44 

T.5 HSPD1 3.32E-73 0.31000979 0.998 0.993 5.703E-69 

T.5 SC5D 3.32E-44 0.30785048 0.916 0.866 5.695E-40 

T.5 ADH1A 1.66E-51 0.30595898 0.982 0.98 2.841E-47 

T.5 KRT18 4.18E-73 0.30587417 0.998 0.998 7.167E-69 

T.5 FAU 2.1E-125 0.30391758 1 0.999 3.62E-121 

T.5 S100P 3.22E-38 0.30131894 0.712 0.529 5.515E-34 

T.5 PAH 8.12E-50 0.30030271 0.957 0.97 1.393E-45 

T.5 GPC3 6.93E-98 0.29772874 1 1 1.188E-93 

T.5 FADS1 2.27E-45 0.29676016 0.876 0.758 3.893E-41 

T.5 TXN 4.82E-77 0.29653863 1 1 8.26E-73 

T.5 ALDH8A1 1.98E-48 0.29542865 0.863 0.792 3.393E-44 

T.5 SCARB1 3.08E-69 0.29492572 0.994 0.997 5.289E-65 

T.5 CRLS1 5.43E-61 0.29253576 0.987 0.987 9.308E-57 

T.5 SNORC 6.31E-40 0.29024224 0.72 0.561 1.082E-35 

T.5 HM13 1.01E-56 0.28992063 0.984 0.978 1.737E-52 

T.5 CTSZ 1.53E-39 0.28862484 0.895 0.833 2.621E-35 

T.5 PPDPF 2.22E-49 0.28542608 0.635 0.416 3.809E-45 

T.5 DPM1 5.97E-42 0.28341058 0.772 0.645 1.024E-37 

T.5 ACTG1 6.21E-62 0.28161239 1 0.998 1.066E-57 

T.5 PDRG1 1.13E-48 0.27951345 0.738 0.559 1.942E-44 

T.5 RNF114 3.48E-41 0.27917275 0.876 0.822 5.965E-37 

T.5 NEAT1 1.8E-45 0.2775958 0.99 0.99 3.086E-41 

T.5 PDCD5 3.26E-50 0.27731004 0.981 0.974 5.596E-46 

T.5 MVK 4.37E-39 0.27700022 0.791 0.67 7.498E-35 

T.5 IL17RB 1.36E-42 0.27693985 0.738 0.59 2.327E-38 

T.5 HSPE1 7.7E-78 0.27643752 0.998 1 1.321E-73 

T.5 AADAC 8.13E-54 0.2759673 0.99 0.985 1.395E-49 
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T.5 ARL6IP1 1.31E-36 0.27569439 0.884 0.87 2.241E-32 

T.5 YWHAB 4.88E-47 0.27520328 0.942 0.908 8.372E-43 

T.5 SNRPD2 2.36E-62 0.27503532 0.997 0.989 4.053E-58 

T.5 VNN1 6.71E-33 0.27471714 0.878 0.813 1.151E-28 

T.5 RTN3 9.73E-40 0.27391952 0.868 0.778 1.67E-35 

T.5 APLP2 4.67E-62 0.27377675 0.997 0.995 8.01E-58 

T.5 SQLE 5.64E-32 0.27365191 0.757 0.661 9.67E-28 

T.5 WFDC2 1.16E-31 0.27334932 0.596 0.432 1.983E-27 

T.5 MBNL3 1.22E-40 0.27004345 0.907 0.882 2.094E-36 

T.5 COX6A1 3.4E-102 0.26999789 1 0.999 5.85E-98 

T.5 NR1I3 4.51E-42 0.26873563 0.619 0.408 7.733E-38 

T.5 DTX4 1.98E-34 0.26801176 0.81 0.731 3.394E-30 

T.5 SERINC3 2.64E-41 0.2670048 0.934 0.923 4.524E-37 

T.5 TMEM123 6.3E-46 0.26680008 0.977 0.961 1.08E-41 

T.5 NDUFC2 5.03E-53 0.2656633 0.99 0.993 8.633E-49 

T.5 SELENOH 8.09E-46 0.26515264 0.969 0.97 1.388E-41 

T.5 AOX1 9.68E-50 0.26491749 0.995 0.998 1.661E-45 

T.5 GALK1 2.39E-36 0.26064189 0.955 0.943 4.096E-32 

T.5 NDUFA12 2.76E-36 0.26049074 0.92 0.899 4.74E-32 

T.5 CSE1L 1.68E-36 0.25876032 0.838 0.763 2.886E-32 

T.5 DYNLRB1 1.1E-38 0.25876004 0.887 0.823 1.894E-34 

T.5 IGF1 3.45E-33 0.25850643 0.77 0.721 5.925E-29 

T.5 UBE2S 1.17E-31 0.25826173 0.762 0.649 2.001E-27 

T.5 ALDOC 3.34E-40 0.25585373 0.616 0.407 5.721E-36 

T.5 PLA2G16 1.17E-32 0.25468076 0.67 0.517 2.005E-28 

T.5 CAPN5 1.35E-35 0.25416878 0.807 0.733 2.308E-31 

T.5 TIMM8B 1.11E-44 0.25350563 0.969 0.967 1.899E-40 

T.5 H2AFZ 2.4E-27 0.25208179 0.876 0.862 4.109E-23 

T.5 MTTP 2.95E-36 0.25168379 0.833 0.73 5.056E-32 

T.5 PEBP1 3.48E-84 0.25158987 1 1 5.971E-80 

T.5 RDH16 4.61E-36 0.25152985 0.987 0.991 7.915E-32 

T.5 COX7A2 1.4E-58 0.25011992 0.998 0.998 2.408E-54 

T.6 S100P 2.88E-91 1.02069959 0.98 0.531 4.944E-87 

T.6 ATF5 6.09E-91 0.71925625 1 0.913 1.044E-86 

T.6 MT1E 2.45E-97 0.71411701 1 1 4.204E-93 

T.6 CHI3L1 1.92E-50 0.69285867 1 0.899 3.287E-46 

T.6 FASN 1.02E-95 0.67557984 1 0.988 1.757E-91 

T.6 LGALS3 2.67E-64 0.66503041 1 0.916 4.578E-60 

T.6 MT1G 1.76E-45 0.63438773 1 1 3.025E-41 

T.6 AKR1B10 5.04E-96 0.63413778 1 1 8.64E-92 

T.6 SCD 7.28E-91 0.61736977 1 1 1.249E-86 

T.6 MT1X 1.6E-55 0.58245534 1 0.994 2.752E-51 

T.6 MT2A 9.89E-83 0.55803488 1 1 1.696E-78 
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T.6 AHSG 1.62E-92 0.54325527 1 1 2.786E-88 

T.6 FADS1 2.74E-78 0.52944478 1 0.764 4.692E-74 

T.6 FADS2 2.59E-67 0.49758512 1 0.948 4.445E-63 

T.6 SYT7 3E-66 0.46990248 1 0.892 5.144E-62 

T.6 DHCR7 7.3E-63 0.45781116 0.996 0.917 1.253E-58 

T.6 FGL1 6.98E-83 0.45716949 1 1 1.198E-78 

T.6 HSD11B1 1.62E-52 0.42138152 0.955 0.692 2.786E-48 

T.6 FDPS 4.17E-57 0.41007943 1 0.982 7.16E-53 

T.6 FTH1 2.4E-104 0.3926492 1 1 4.16E-100 

T.6 HPGD 6.28E-58 0.390496 1 0.972 1.076E-53 

T.6 UGT2B4 4.79E-68 0.38965098 1 0.993 8.217E-64 

T.6 SC5D 7.58E-51 0.38720229 0.996 0.866 1.3E-46 

T.6 FTL 2.8E-121 0.38000698 1 1 4.81E-117 

T.6 MGST1 1.38E-72 0.37901028 1 0.997 2.369E-68 

T.6 NAT8 2.83E-50 0.36895745 1 0.782 4.857E-46 

T.6 AKR1B1 1.27E-43 0.36893441 1 0.859 2.174E-39 

T.6 B3GNT5 4.26E-47 0.36882324 0.963 0.647 7.309E-43 

T.6 CD24 2.45E-44 0.36507405 1 0.905 4.201E-40 

T.6 ORM1 3.41E-52 0.35806907 1 1 5.849E-48 

T.6 APOA1 2.26E-93 0.35558119 1 1 3.876E-89 

T.6 MT1M 4.56E-28 0.34087866 0.918 0.61 7.826E-24 

T.6 FKBP1B 8.44E-47 0.33600605 0.955 0.59 1.448E-42 

T.6 ACSL4 1.15E-39 0.33448594 1 0.982 1.964E-35 

T.6 MT1F 1.71E-31 0.33341774 0.934 0.678 2.929E-27 

T.6 FABP1 4.81E-60 0.32315745 1 1 8.245E-56 

T.6 FETUB 8.98E-40 0.31866314 0.984 0.781 1.541E-35 

T.6 CYP3A7 1.01E-19 0.3169835 1 0.978 1.726E-15 

T.6 APMAP 2.84E-67 0.31262677 1 0.999 4.866E-63 

T.6 NPW 3.31E-28 0.30926834 0.975 0.825 5.678E-24 

T.6 TKFC 4.2E-31 0.30239761 0.98 0.821 7.203E-27 

T.6 ORM2 2.02E-52 0.29493299 1 1 3.462E-48 

T.6 SERPINA1 3.27E-30 0.29399981 0.996 0.96 5.615E-26 

T.6 EEF1A2 5.54E-97 0.2924269 0.656 0.117 9.509E-93 

T.6 DBI 1.18E-46 0.29056702 1 0.999 2.029E-42 

T.6 TSPAN13 9.29E-48 0.27584288 0.783 0.314 1.593E-43 

T.6 PPIA 2.54E-56 0.27577449 1 1 4.362E-52 

T.6 ME1 1.08E-33 0.2741365 0.869 0.509 1.859E-29 

T.6 TPT1 3.87E-58 0.26532325 1 1 6.632E-54 

T.6 AZGP1 4.49E-53 0.26489875 1 0.999 7.696E-49 

T.6 SLC22A18 4.76E-28 0.26275001 0.963 0.746 8.169E-24 

T.6 HSPA8 2.19E-39 0.26241091 1 0.999 3.763E-35 

T.6 TMEM176 7.89E-56 0.25791445 1 0.999 1.354E-51 

T.6 DHRS7 7.71E-33 0.25688666 1 0.992 1.322E-28 
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T.6 TRIB3 1.38E-22 0.25528138 0.91 0.606 2.361E-18 

Annotation: 

Avg_logFC: log fold change of the average expression between the two groups. Positive 

values indicate that the gene is more highly expressed in the first group. 

Pct.1: The percentage of cells where the gene in detected in the first group. 

Pct.2: The percentage of cells where the gene in detected in the second group. 

P_value_ adj: adjusted P values. 
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