
ProteinBERT: A universal deep-learning model of
protein sequence and function

Nadav Brandes1*†, Dan Ofer2*, Yam Peleg3, Nadav Rappoport4, Michal Linial5

1School of Computer Science and Engineering, The Hebrew University of Jerusalem, Jerusalem, Israel;
2Medtronic Inc; 3Deep Trading ltd; 4Department of Software and Information Systems Engineering,

Faculty of Engineering Sciences, Ben-Gurion University of the Negev, Beer Sheva, Israel; 5Department

of Biological Chemistry, The Alexander Silberman Institute of Life Sciences, The Hebrew University of

Jerusalem, Jerusalem, Israel

*Equal contribution; †Corresponding author

nadav.brandes@mail.huji.ac.il; dan.ofer@mail.huji.ac.il; michall@mail.huji.ac.il

Abstract

Self-supervised deep language modeling has shown unprecedented success across natural
language tasks, and has recently been repurposed to biological sequences. However, existing
models and pretraining methods are designed and optimized for text analysis. We introduce
ProteinBERT, a deep language model specifically designed for proteins. Our pretraining
scheme consists of masked language modeling combined with a novel task of Gene Ontology
(GO) annotation prediction. We introduce novel architectural elements that make the model
highly efficient and flexible to very large sequence lengths. The architecture of ProteinBERT
consists of both local and global representations, allowing end-to-end processing of these
types of inputs and outputs. ProteinBERT obtains state-of-the-art performance on multiple
benchmarks covering diverse protein properties (including protein structure, post translational
modifications and biophysical attributes), despite using a far smaller model than competing
deep-learning methods. Overall, ProteinBERT provides an efficient framework for rapidly
training protein predictors, even with limited labeled data. Code and pretrained model weights
are available at https://github.com/nadavbra/protein_bert.

Keywords: transformer; attention; neural language model; protein language model; TAPE;
NLP; self-supervised learning.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

Background

Proteins are nature’s ultimate machines, found across the entire tree of life. While knowledge
of protein sequences is accumulating exponentially, understanding their functions remains
one of the greatest scientific challenges of our time, with numerous implications to human
health. Protein sequences can be viewed as strings of amino-acid letters. As such, machine-
learning methods developed for natural language and other sequences are a natural fit to
predictive protein tasks [1].

Modern deep neural network architectures specifically designed for sequences (such as BERT
[2, 3]), combined with pretraining on massive datasets, have led to a revolution in automated
text analysis [4]. The attention-based Transformer architecture in particular has shown
astounding performance over a wide range of benchmarks across many domains [5, 6].

At the heart of these successes are self-supervised and transfer learning. According to the
transfer-learning paradigm, a model is first pre-trained on one task, and then fine-tuned on
other downstream tasks of interest [7–9]. Assuming that the pretraining and downstream tasks
are somehow related (e.g. both require understanding texts in the same language), pretraining
can help the model learn useful representations for the downstream tasks. In self-supervised
pretraining, labels are automatically generated, allowing models to learn from enormous,
unlabeled datasets [10]. A common example of self-supervised learning is language modeling,
where a model (typically a deep neural network) learns language structure by filling missing
parts in a text (which have been hidden with a special mask token) or reconstructing corrupted
text [11, 12]. Fine-tuning, on the other hand, is typically supervised and requires labeled data.
The transfer-learning paradigm has allowed predictive models to achieve substantial
performance gains across numerous benchmarks, especially in tasks where labeled data is
scarce [13, 14].

Most sequence-based language models (e.g. BERT [2], ULMFiT [11], XLNet [15], ELECTRA
[16]) have been designed for processing natural languages (with a bias towards English).
Thus, their architectures and pretraining tasks may not be optimal for proteins, which, despite
many structural similarities, have different properties from human language [1, 17]. Most
notably, proteins do not have clear-cut multi-letter building blocks (such as words and
sentences). Moreover, proteins are more variable in length than sentences, and show many
interactions between distant positions (due to their 3D structure). To this day, protein research
is still dominated by classical sequence-similarity methods (such as BLAST [18] and hidden
Markov models [19]), in contrast to domains such as computer vision which have become
dominated by deep learning. A few recent studies have pretrained deep neural language
models on protein sequences (e.g. ESM [20], TAPE-Transformer [21], UDSMProt [22],
UniRep [23]) [24–26]. Such works usually import existing architectures and tasks from the
natural language domain, without taking advantage of the unique characteristics of proteins.

Here, we present ProteinBert, a new deep-learning model designed for protein sequences.
We improve upon the classic Transformer/BERT architecture, and introduce a novel
pretraining task of predicting protein functions. We pretrained ProteinBert on ~106M proteins
(representing the entire known protein space) on two simultaneous tasks. The first task is
bidirectional language modeling of protein sequences. The second task is Gene Ontology
(GO) annotation prediction, which captures diverse protein functions [27]. GO annotations are
a manually curated set of ~45K terms defined at the whole-protein level, covering the entire
protein space across all organisms. They cover molecular functions, biological processes and
subcellular locations. Unlike classic Transformers, ProteinBERT separates local (character
level) and global (whole protein level) representations, thereby supporting multitasking of both
local and global tasks in a principled way. While ProteinBERT is considerably smaller and
faster than existing models, it approaches or exceeds state-of-the-art performance on a
diverse set of benchmarks.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

Methods

Data

Protein dataset for pretraining

ProteinBERT was pretrained on ~106M proteins derived from UniProtKB/UniRef90, covering

the entire tree of life [28, 29]. UniRef90 provides a non-redundant set of protein clusters

sharing at least 90% sequence identity. Each cluster is represented by a single representative

protein, ensuring a relatively homogenous coverage of the protein space. For each protein,

we extracted its amino-acid sequence and associated GO annotations (according to

UniProtKB). We considered only the 8,943 most frequent GO annotations that occurred at

least 100 times in UniRef90. Of the ~106M UniRef90 proteins, ~46M had at least one of the

8,943 considered annotations (with ~2.3 annotations per protein, on average across the ~46M

proteins).

Protein benchmarks

To evaluate ProteinBERT, we tested it on nine benchmarks concerning all major facets of

protein research, covering protein structure, post-translational modifications and biophysical

properties (Table 1). Labels in these benchmarks are either local (e.g. post-translational

modifications) or global (e.g. remote homology), and they are either continuous (e.g. protein

stability), binary (e.g. signal peptide) or categorical (e.g. secondary structure). Notably, in local

benchmarks the number of training samples is much greater than the number of protein

sequences, as target labels are per residue.

Four out of nine benchmarks (secondary structure, remote homology, fluorescence and

stability) were taken from TAPE (Tasks Assessing Protein Embeddings), a standardized set

of benchmarks for evaluating protein sequence models [21]. In addition, we introduce five new

benchmarks (see Supplementary Methods).

Table 1: Protein benchmarks

Topic Benchmark Target
typea

Resolution # Training
sequences

Source

Protein
structure

Secondary
structure

Categorical
(3)

Local 8,678 [21, 30]

Disorder Binary Local 8,678 [30]

Remote
homology

Categorical
(1,195)

Global 12,312 [21, 31, 32]

Fold classes Categorical
(7)

Global 15,680 [31, 32]

Post- Signal peptide Binary Global 16,606 [33]

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

translational
modifications

Major PTMs Binary Local 43,356 [34]

Neuropeptide
cleavage

Binary Local 2,727 [35–37]

Biophysical
properties

Fluorescence Continuous Global 21,446 [21, 38]

Stability Continuous Global 53,679 [21, 39]

aFor categorical targets, the number of classes appears in parentheses.

Sequence and annotation encoding

Protein sequences were encoded as sequences of integer tokens. We used 26 unique tokens

representing the 20 standard amino acids, selenocysteine (U), an undefined amino-acid (X),

another amino acid (OTHER), and 3 additional tokens (START, END and PAD). For each

sequence, START and END tokens were added before the first amino acid and after the last

amino acid, respectively. The PAD token was added to pad sequences shorter than the

sequence length chosen for the minibatch.

The architecture of ProteinBERT (like all deep learning models) dictates that each minibatch

has a fixed sequence length. We included the START and END tokens to help the model

interpret proteins that are longer than the chosen sequence length. When encoding a protein

longer than the chosen sequence length, we selected a random subsequence of the protein,

leaving out at least one of its two ends. The absence of the START or END token allowed the

model to recognize that it only received part of a sequence.

GO annotations of every sequence were encoded as a binary vector of fixed size (8,943),

where all entries are zeros except those corresponding to GO annotation associated with the

protein.

Self-supervised pretraining on protein sequences and
annotations

To learn efficient protein representations, ProteinBERT was pretrained on protein sequences

and GO annotations extracted from UniRef90. The model received corrupted inputs (protein

sequences and GO annotations) and had to recover the uncorrupted data. The corruption of

protein sequences was performed by randomly replacing tokens with 5% probability (i.e.

keeping the original token with 95% probability, or replacing it with a uniformly-selected

random token with 5% probability). Input GO annotations were corrupted by randomly

removing existing annotations with 25% probability, and adding random false annotations with

probability of 0.01% for each annotation not associated with the protein. For 50% of the

processed proteins, we removed all input annotations altogether, to force the model to predict

GO annotations from sequence alone (as was the case in all tested benchmarks). In summary,

the described pretraining is a dual task, where the model has to recover both the protein

sequence and its known GO annotations. The latter task is relevant to numerous domains of

protein research, given the wide range of functions covered by GO terms.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

To avoid learning the GO annotations of proteins in the tested benchmarks (Table 1), we

ignored the GO annotations of proteins with at least 40% sequence similarity to any record in

the test-sets of the benchmarks. To this end, we used BLASTP [40] (with default settings),

identifying ~600K such sequences (out of the ~106M pretraining proteins).

The loss function minimized by ProteinBERT during pretraining was a sum of the categorical

cross-entropy over the protein sequences and the binary cross-entropy over the GO

annotations, namely ℒ = −∑ 𝑙𝑜𝑔(𝑆̂𝑖,𝑆𝑖)
𝑙
𝑖=1 − ∑ (𝐴𝑗 ⋅ 𝑙𝑜𝑔(𝐴̂𝑗) + (1 − 𝐴𝑗) ⋅ 𝑙𝑜𝑔(1 − 𝐴̂𝑗))

8943
𝑗=1 ,

where 𝑙 is the sequence length, 𝑆𝑖 ∈ {1,… ,26} is the sequence’s true token at position 𝑖, 𝑆̂𝑖,𝑘 ∈

[0,1] is the predicted probability that position 𝑖 has the token 𝑘 (for any 𝑘 ∈ {1,… ,26}), 𝐴𝑗 ∈

{0,1} is the true indicator for annotation 𝑗 (for any 𝑗 ∈ {1,…8943}), and 𝐴̂𝑗 ∈ [0,1] is the

predicted probability for the protein to have annotation 𝑗.

An important feature of ProteinBERT is sequence length flexibility. To avoid the risk of

overfitting the model to a specific constant length, we periodically (every 15 minutes of training)

switched the encoding length of protein sequences, using lengths of 128, 512 or 1,024 tokens.

Pretraining speed on a single GPU (Nvidia Quadro RTX 5000) was 280 protein records per

second. We trained the model for 28 days over ~670M records (i.e. ~6.4 iterations over the

entire training dataset of ~106M records). The trained model weights are publicly available

along with our code (see below).

Supervised fine-tuning on protein benchmarks

Following pretraining, we fine-tuned and evaluated the model on a diverse set of benchmarks

(Table 1). For all benchmarks, ProteinBERT was initialized from the same pretrained state

and fine-tuned through the same protocol. Initially, all layers of the pretrained model were

frozen, and only a newly added fully-connected layer was allowed to train for up to 40 epochs.

Next, we unfroze all the layers and trained the model for up to 40 additional epochs. Finally,

we trained the model for 1 final epoch of a larger sequence length (see Supplementary

Methods). Throughout all epochs, we reduced the learning rate on plateau and applied early

stopping based on an independent validation set. Model evaluation was then performed over

a held-out test set. The entire fine-tuning procedure took ~14 minutes on a single GPU (on

average across the nine benchmarks).

Deep-learning architecture

While inspired by BERT [2], the architecture of ProteinBERT is different and includes several

innovations. ProteinBERT is a type of a denoising autoencoder, with corresponding inputs and

outputs (Fig. 1). The two inputs (and outputs) of ProteinBERT are i) protein sequences

(encoded as token sequences) and ii) protein GO annotations (encoded as fixed-size binary

vectors).

The architecture of the model consists of two almost parallel paths: one for local

representations and the other for global representations (Fig. 1). The local representations are

3D tensors of shape 𝐵 × 𝐿 × 𝑑𝑙𝑜𝑐𝑎𝑙 where 𝐵 is the batch size, 𝐿 is the minibatch sequence

length, and 𝑑𝑙𝑜𝑐𝑎𝑙 is the number of channels for the local representations (we used 𝑑𝑙𝑜𝑐𝑎𝑙 =

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

128). The global representations are 2D tensors of shape 𝐵 × 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 (using 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 = 512). In

the first layers of the model, the input sequences are transformed into the local-representation

3D tensor by an embedding layer with 𝑑𝑙𝑜𝑐𝑎𝑙 output features (which is applied independently

and identically position-wise), and the input binary annotations are transformed into the global-

representation 2D tensor by a fully-connected layer with 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 output features.

The local and global representations are processed by a series of 6 transformer blocks with

skip connections and layer normalizations between their hidden layers. Within each block, the

local representation is transformed first by 1D convolutional layers, and then by a (location-

wise) fully-connected layer. To allow the local representations at each position to be based on

other positions at both short and remote proximity, we used both a narrow (without dilation)

and a wide (with dilation rate of 5) convolutional layer. Both types of convolution layers have

a kernel size of 9 and stride size of 1. Accordingly, each narrow layer has a receptive field of

9 and each wide layer has a receptive field of 41 over the previous layer, meaning that the 6th

transformer block has a receptive field of 241 over the input sequence. The global

representations, on the other hand, are transformed by two simple fully-connected layers per

block (with normalizations between them). All the hidden fully-connected and convolutional

layers of the model use GELU (Gaussian Error Linear Unit) activations [41].

The only information flow between the local and global representations occurs through

broadcast fully-connected layers (from the global to the local representations) and global

attention layers (from the local to the global representations). The broadcast layers are fully-

connected layers that transform the 𝑑𝑔𝑙𝑜𝑏𝑎𝑙 features of the global representation into 𝑑𝑙𝑜𝑐𝑎𝑙

features of the local representations, and then replicate that representation across each of the

𝐿 sequence positions.

The global attention layer is a novel architectural innovation inspired by self-attention [3]. While

self-attention takes an input sequence and outputs another sequence by allowing each

position to attend to each other position, global attention takes as input both a sequence and

a global fixed-size vector and outputs a global fixed-size vector created by attending to each

of the local input positions according to the global input vector. Formally, a single-head global

attention layer takes as inputs a global representation vector 𝑥 ∈ ℝ𝑑𝑔𝑙𝑜𝑏𝑎𝑙 and local

representation vectors across 𝐿 positions, 𝑠1, … , 𝑠𝐿 ∈ ℝ𝑑𝑙𝑜𝑐𝑎𝑙, and outputs a global output 𝑦 ∈

ℝ𝑑𝑣𝑎𝑙𝑢𝑒. Similar to self-attention, the output is calculated by 𝑦 = ∑ 𝑧𝑖𝑣𝑖
𝐿
𝑖=1 where 𝑣𝑖 ∈ ℝ𝑑𝑣𝑎𝑙𝑢𝑒 is

the value associated with each position 𝑖 ∈ {1,…𝐿} and 𝑧𝑖 ∈ [0,1] is the amount of attention

allocated to that position (satisfying 𝑧1 +⋯+ 𝑧𝐿 = 1). Like in self-attention, the value

associated with each position is calculated by 𝑣𝑖 = 𝜎(𝑊𝑣𝑠𝑖), using a parameter matrix 𝑊𝑣 ∈

ℝ𝑑𝑣𝑎𝑙𝑢𝑒×𝑑𝑙𝑜𝑐𝑎𝑙 and an activation function 𝜎 (we chose GELU). Attention values are calculated

by 𝑧1, … , 𝑧𝐿 = 𝑠𝑜𝑓𝑡𝑚𝑎𝑥 {
〈𝑞,𝑘𝑖〉

√𝑑𝑘𝑒𝑦
}
𝑖=1

𝐿

, based on query and key vectors 𝑞, 𝑘𝑖 ∈ ℝ𝑑𝑘𝑒𝑦. Notice that

while the key vectors 𝑘1, … , 𝑘𝐿 are specific to each position, the query vector 𝑞 is global. Like

in self-attention, the key vectors are calculated by 𝑘𝑖 = 𝑡𝑎𝑛ℎ(𝑊𝑘𝑠𝑖), using a second parameter

matrix 𝑊𝑘 ∈ ℝ𝑑𝑘𝑒𝑦×𝑑𝑙𝑜𝑐𝑎𝑙. The global query vector is calculated by 𝑞 = 𝑡𝑎𝑛ℎ(𝑊𝑞𝑥), using a third

parameter matrix 𝑊𝑞 ∈ ℝ𝑑𝑘𝑒𝑦×𝑑𝑔𝑙𝑜𝑏𝑎𝑙. Overall, a single-head global attention layer uses three

parameter matrices fit during training, 𝑊𝑞, 𝑊𝑘 and 𝑊𝑣. It is also parameterized by the key

dimension 𝑑𝑘𝑒𝑦 (we used 𝑑𝑘𝑒𝑦 = 64). A multi-head global attention layer is obtained by

applying 𝑛ℎ𝑒𝑎𝑑𝑠 independent single-head global attention layers (each with its own

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

parameters) and concatenating their outputs, obtaining an output of dimension 𝑛ℎ𝑒𝑎𝑑𝑠 ⋅ 𝑑𝑣𝑎𝑙𝑢𝑒

(we used 𝑛ℎ𝑒𝑎𝑑𝑠 = 4 across all 6 transformer blocks of ProteinBERT). To satisfy dimensionality

constraints, ProteinBERT uses 𝑑𝑣𝑎𝑙𝑢𝑒 =
𝑑𝑔𝑙𝑜𝑏𝑎𝑙

𝑛ℎ𝑒𝑎𝑑𝑠
= 128.

Overall, the ProteinBERT model includes 6 transformer blocks with 4 global attention heads

in each block. Altogether, it includes ~16M trainable parameters, making it substantially

smaller than other protein language models. For comparison, there are ~38M parameters in

the TAPE Transformer [21], ~110M in BERT-base [2], and ~650M in the ESM-1b model [20].

The ProteinBERT architecture has several appealing properties. Most importantly, the entire

architecture is agnostic to the length of the processed sequences, and it can be applied over

sequences of any given length without changing its learned parameters (our experiments

prove that the model indeed generalizes very well across different lengths). This good

generality across sequence lengths is also achieved by avoiding positional embeddings used

in the standard version of BERT which, in accordance with previous reports [42] and our

experimentation, do not always generalize well to sequence lengths longer than those present

in the training data. Instead, the convolutional layers and special tokens used at the beginning

and end of each sequence provide the model with information on the relative locations of

positions. Due to the use of global attention rather than self-attention, the amount of

computation performed by the model grows only linearly with sequence length (as opposed to

quadratic growth in models with standard self-attention). This linear growth also applies to the

model’s memory consumption, allowing ProteinBERT to process extremely long protein

sequences (of tens of thousands of amino-acids) intact. Despite this simplification, each

position in the local representations and sequence outputs can still depend on the content of

each other position, thanks to the alternating information flow between the local and global

representations. On top of that, the wide and narrow convolutional layers allow the

representation of each position to depend on a large context. By relying on convolutional and

attention layers, but avoiding recurrent layers, the computation performed by the network is

more efficient and stable with respect to sequence length (as there are no long-term

dependencies). Notably, we did not use dropout or any other form of regularization (except for

the final fully-connected layer added when fine-tuning the model, which included dropout).

When fine-tuning ProteinBERT on a labeled dataset, another layer is added to its output. The

final layer is fed with a concatenation of either the local or global hidden states of the model,

depending on whether the output labels are local or global. The activation used for the final

layer depends on the output type (i.e. softmax activation for categorical labels, sigmoid

activation for binary labels, or no activation for continuous labels).

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

Fig. 1: The ProteinBERT architecture

ProteinBERT’s architecture is inspired by BERT. Unlike standard Transformers, ProteinBERT supports
both local (sequential) and global data. The model consists of 6 transformer blocks manipulating local
(left side) and global (right side) representations. Each such block manipulates these representations
by fully-connected and convolutional layers (in the case of local representations), with skip connections
and normalization layers between them. The local representations affect the global representations
through a global attention layer, and the global representations affect the local representations through
a broadcast fully-connected layer.

Availability

Python code for ProteinBERT’s architecture, pretraining and fine-tuning is open source and
available at https://github.com/nadavbra/protein_bert. The repository also includes pretrained
model weights and code for downloading and generating the datasets and benchmarks.
ProteinBERT is implemented in TensorFlow’s Keras [43, 44].

Results

Pretraining improves protein modeling

ProteinBERT was pretrained on ~106M UniRef90 records for ~6.4 epochs. We see that the
language modeling loss continues to improve on the training set (i.e does not saturate), even
after multiple epochs (Fig. 2), in accordance with other studies [20]. The GO annotations task,

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://github.com/nadavbra/protein_bert
https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

on the other hand, does show saturation. During pretraining, we periodically changed the
sequence length used to encode the input and output protein sequences (128, 512 or 1024
tokens). We observe somewhat lower performance for the 128-token encoding, but similar for
512 and 1024.

Fig. 2: Pretraining loss

Training-set loss over the two pretraining tasks: i) protein sequence language modeling, and ii) GO
annotation recovery. Losses were evaluated with input sequence length of 128, 512 or 1,024 tokens on
the first 100 batches of the dataset.

ProteinBERT achieves state-of-the-art results on diverse protein
benchmarks

To evaluate ProteinBERT, we used nine benchmarks covering a variety of tasks in protein

research (see definitions of the benchmarks in Table 1; full results for all benchmarks are

available in Supplementary Table S1). For the four benchmarks taken from TAPE (secondary

structure, remote homology, fluorescence and stability prediction), we compared our

performance to other state-of-the-art sequence models which had been evaluated on the

same benchmarks. Specifically, we compared against a BERT Transformer and LSTM models

evaluated in TAPE [21, 23, 45] (Table 2). Notably, the compared deep learning models have

~38M parameters, in contrast to ~16M parameters in ProteinBERT. We evaluated

ProteinBERT with and without pretraining, observing that pretraining has a major, positive

effect on performance in all tasks. Across these benchmarks, ProteinBERT shows

performance comparable, or that exceeds similar, larger models, such as the Transformer

used in TAPE.

To further discern the impact of pretraining on downstream benchmark performance, we

evaluated ProteinBERT following different pretraining durations. Specifically, we initiated the

model from different snapshots along its pretraining and evaluated its down-stream

performance after fine-tuning from these states (Fig. 3). While some tasks do not benefit from

pretraining, other tasks (e.g. secondary structure and remote homology) show clear gains from

ever more pretraining, and do not show saturation in that improvement. This is notable given

that these are among the more challenging tasks.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

Table 2: TAPE benchmark results

Method

Structure Evolutionary Engineering

Secondary
structure

Remote
homology

Fluorescence Stability

Without
Pretraining

TAPE
Transformer

0.70 0.09 0.22 -0.06

LSTM 0.71 0.12 0.21 0.28

ProteinBERT 0.70 0.06 0.65 0.63

With
Pretraining

TAPE
Transformer

0.73 0.21 0.68 0.73

LSTM 0.75 0.26 0.67 0.69

UniRep
mLSTM

0.73 0.23 0.67 0.73

ProteinBERT 0.74 0.22 0.66 0.76

Fig. 3: The impact of pretraining on downstream tasks

Performance of fine-tuned ProteinBERT models over the 4 TAPE benchmarks as a function of
pretraining amount (measured by the number of processed proteins). Similar plots for all nine
benchmarks are shown in Supplementary Fig. S1.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

ProteinBERT generalizes across protein lengths

The architecture of ProteinBERT is efficient and flexible towards different sequence lengths

(i.e. the number of tokens encoding the input and output sequences). To test the model’s

capacity to generalize across sequence lengths, we measured the test-set performance of

ProteinBERT on the 4 of 9 benchmarks that had a non-negligible number of test-set records

in proteins longer than 512 tokens (Fig. 4). Specifically, we required at least 25 such records,

where a record comprises either an entire protein (in the case of global tasks) or a residue (in

the case of local tasks). We observe that in most cases ProteinBERT performs slightly worse

for longer sequences, but only modestly, showing that it indeed generalizes across a very

wide range of protein lengths. Moreover, the fact that in some cases longer sequences achieve

better performance (e.g. 16,384-token sequences in the “Major PTMs” benchmark, or 1,024-

token sequences in the “Neuropeptide cleavage” benchmark) suggests that the changes in

performance might be due to other factors (e.g. predicting the secondary structure of longer

sequences might be an inherently more difficult task).

Fig. 4: Performance across sequence lengths

Test-set performance of fine-tuned ProteinBERT models with different input sequence lengths.

Sequence lengths (e.g. 512, 1,024, etc.) always encode proteins of shorter lengths (e.g. a protein of

700 residues will be encoded as a 1,024-long sequence). Boxplot distributions are over the 371

pretraining snapshots used in Fig. 3.

Understanding global attention

To demonstrate the inner workings of the global attention mechanism, we extracted the values

of the 24 attention heads in ProteinBERT for two proteins selected from the test-set of the

signal peptide benchmark, before and after fine-tuning the model on that task (Fig. 5). The

patterns of global attention are clearly distinct across different proteins, but some shared

patterns exist. For example, attention head #3 in the 3rd transformer block tends to

concentrate on the beginning of protein sequences, while attention head #2 in the same layer

tends to concentrate on the other parts (i.e. the middle and end of sequences). Fine-tuning

the model on signal peptide prediction appears to have mostly altered the last (6th) global

attention layer. For example, attention head #1 in that layer changed to emphasize more the

beginning of sequences. It is worth stressing that the exact attention values are dependent on

the model weights obtained from training, which can change between runs. From our

experience, fine-tuning tends to produce rather consistent results, but small differences are

sometimes observed.

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

Fig. 5: Global attention before and after fine-tuning on signal peptide prediction

Global attention values obtained for two selected proteins: Heme-binding protein 1 (Hebp1) in mouse
(top), and Gamma carbonic anhydrase-like 2, mitochondrial protein (GAMMACAL2) in arabidopsis
(bottom). The left panels (red colors) show the attention values obtained by the generic ProteinBERT
model, after pretraining it as a language model on UniRef90 (but before fine-tuning it on any specific
task). The heatmap shows the global attention values at each residue of the protein by each of the 24
attention heads of the model. The bar plot shows the total attention at each residue by summing the
attention values across all attention heads. The right panels show the difference in attention values after
fine-tuning ProteinBERT on the signal peptide prediction benchmark. The heatmap shows the increase
(green) or decrease (purple) of attention across all positions and attention heads. The bar plot shows
the total difference in attention at each residue by summing the differences across all attention heads.
Notice that each attention head necessarily sums up to 100%. Accordingly, differences sum up to 0%.

Discussion

We have presented ProteinBERT, a new deep language model for protein sequences

designed to capture local and global representations of proteins in a natural way (Fig. 1). We

have demonstrated the universality of the model, showing that it can be fine-tuned on a wide

range of protein tasks in a matter of minutes and achieve state-of-the-art results (Table 2).

To pretrain ProteinBERT, we introduce a novel pretraining task of protein annotation prediction

which is highly suited to proteins (unlike sentence order prediction and other natural language

centric tasks [46]). We argue that GO annotations [27] are a sensible extension to language

modeling in proteins. They are ubiquitous and available for a large portion of curated proteins

(~46M of the ~106M proteins in the UniRef90 dataset). Additionally, they can teach the model

about a wide range of protein functions (from subcellular localizations to pathways to

biochemical roles).

Unlike previous works which included ~250M putative, redundant sequences [20], we

constrained the pretraining of ProteinBERT to ~106M representative proteins taken from

UniRef90 [29], out of the entire known protein space of ~215M proteins in UniProt [28]. We

argue that using a non-redundant set of proteins is more sensible and eliminates a lot of

unnecessary bias caused by uneven sampling of the protein space, which is prevalent in the

non-filtered version of UniProt. For example, there are >1M proteins in UniProt from the

proteome of human immunodeficiency virus 1 (HIV-1), even though the real virus contains

only 9 proteins. Such redundancy reflects the abundance of sequence variations along HIV-1

evolution, and the great interest that researchers have had in this variation (compared to most

other, far less studied organisms). Using a non-redundant set of proteins is also more efficient,

especially when pretraining the model for less than an entire epoch (such as when searching

for optimal hyper-parameter combinations).

ProteinBERT’s architecture is efficient and highly scalable, allowing it to process protein

sequences of any length. The same model weights conform to any sequence length, allowing

it to be trained on a specific range of lengths and then generalize to other, unseen sequence

lengths (Fig. 4). By supporting extremely long sequences (more than tens of thousands of

residues), ProteinBERT spares the complication of splitting long sequences into smaller

chunks, a common practice with self-attention-based models which grow quadratically (rather

than linearly) with sequence length [47, 48]. At the core of the model’s flexibility is its use of

global attention layers, a new architectural innovation. The compactness of global attention

(relative to self-attention) also allows easier inspection of the model’s attention, as all attention

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

values (across all positions and attention heads) can be displayed as a simple 2D map (Fig.

5), as opposed to the 3D map that would be required to cover all-by-all self-attention.

Compatible with the general trends in the field of language modeling [5], we observe that

longer pretraining of ProteinBERT shows clear performance gains, both as a language model

(Fig. 2) and across many specific tasks (Fig. 3, Supplementary Fig. S1). Existing works show

that, other things being equal, larger models and additional pretraining computation time

correlates with improved model performance [2, 5, 20]. Thus, we expect larger versions of

ProteinBERT (e.g. with more, wider layers) to yield additional improvements. Yet, even with

the modest computing resources used in this work (a single GPU), ProteinBERT competes

with state-of-the-art models (Table 2), providing a simple and efficient out-of-the-box solution

for a wide range of protein tasks. The representations learned by the model through its

pretraining are universally applicable across a wide array of tasks, making it useful for few-

shot-learning tasks involving limited labelled data.

To facilitate easy usage of ProteinBERT, we provide the pretrained model as a Python

package (based on TensorFlow and Keras [43, 44]), which allows automatic downloading of

a pretrained model state, fine-tuning and evaluation on labeled datasets.

By providing an effective and accessible model of protein sequence and function, we hope to

expedite the adoption of deep language modeling by the protein research community and

allow this new powerful tool to further push the boundaries of protein research.

Author contribution

Conception and study design: Dan, Nadav B, Michal; data acquisition: Nadav B, Dan, Nadav

R; architecture design: Nadav B, Dan, Yam; analysis: Nadav B; interpretation of results: Dan,

Nadav B, Michal; open sourcing: Nadav B; drafting the manuscript: Nadav B, Dan, Michal.

Funding

This research was partially funded by ISF grant 2753/20 (M.L).

Conflict of interests

The authors declare no conflict of interest.

References

1. Ofer D, Brandes N, Linial M (2021) The language of proteins: NLP, machine learning
\& protein sequences. Comput Struct Biotechnol J

2. Devlin J, Chang M-W, Lee K, Toutanova K (2018) Bert: Pre-training of deep
bidirectional transformers for language understanding. arXiv Prepr arXiv181004805

3. Vaswani A, Shazeer N, Parmar N, et al (2017) Attention is all you need. arXiv Prepr
arXiv170603762

4. Radford A, Wu J, Child R, et al (2019) Language models are unsupervised multitask

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

learners. OpenAI blog 1:9
5. Brown TB, Mann B, Ryder N, et al (2020) Language models are few-shot learners.

arXiv Prepr arXiv200514165
6. Keskar NS, McCann B, Varshney LR, et al (2019) Ctrl: A conditional transformer

language model for controllable generation. arXiv Prepr arXiv190905858
7. Raffel C, Shazeer N, Roberts A, et al (2019) Exploring the limits of transfer learning

with a unified text-to-text transformer. arXiv Prepr arXiv191010683
8. Do CB, Ng AY (2005) Transfer learning for text classification. Adv Neural Inf Process

Syst 18:299–306
9. Pan SJ, Yang Q (2009) A survey on transfer learning. IEEE Trans Knowl Data Eng

22:1345–1359
10. Chen T, Kornblith S, Swersky K, et al (2020) Big self-supervised models are strong

semi-supervised learners. arXiv Prepr arXiv200610029
11. Howard J, Ruder S (2018) Universal language model fine-tuning for text classification.

arXiv Prepr arXiv180106146
12. Radford A, Narasimhan K, Salimans T, Sutskever I (2018) Improving language

understanding by generative pre-training
13. Thrun S (1996) Is learning the n-th thing any easier than learning the first? In:

Advances in neural information processing systems. pp 640–646
14. Wang A, Pruksachatkun Y, Nangia N, et al (2019) Superglue: A stickier benchmark

for general-purpose language understanding systems. arXiv Prepr arXiv190500537
15. Yang Z, Dai Z, Yang Y, et al (2019) Xlnet: Generalized autoregressive pretraining for

language understanding. arXiv Prepr arXiv190608237
16. Clark K, Luong M-T, Le Q V, Manning CD (2020) Electra: Pre-training text encoders

as discriminators rather than generators. arXiv Prepr arXiv200310555
17. Strait BJ, Dewey TG (1996) The Shannon information entropy of protein sequences.

Biophys J 71:148–155
18. Altschul SF, Gish W, Miller W, et al (1990) Basic local alignment search tool. J Mol

Biol 215:403–410
19. Finn RD, Bateman A, Clements J, et al (2014) Pfam: the protein families database.

Nucleic Acids Res 42:D222-30. https://doi.org/10.1093/nar/gkt1223
20. Rives A, Meier J, Sercu T, et al (2021) Biological structure and function emerge from

scaling unsupervised learning to 250 million protein sequences. Proc Natl Acad Sci
118:

21. Rao R, Bhattacharya N, Thomas N, et al (2019) Evaluating protein transfer learning
with tape. Adv Neural Inf Process Syst 32:9689

22. Strodthoff N, Wagner P, Wenzel M, Samek W (2020) UDSMProt: universal deep
sequence models for protein classification. Bioinformatics 36:2401–2409

23. Alley EC, Khimulya G, Biswas S, et al (2019) Unified rational protein engineering with
sequence-based deep representation learning. Nat Methods 16:1315–1322

24. Heinzinger M, Elnaggar A, Wang Y, et al (2019) Modeling aspects of the language of
life through transfer-learning protein sequences. BMC Bioinformatics 20:1–17

25. Madani A, McCann B, Naik N, et al (2020) Progen: Language modeling for protein
generation. arXiv Prepr arXiv200403497

26. Nambiar A, Heflin M, Liu S, et al (2020) Transforming the language of life:
Transformer neural networks for protein prediction tasks. In: Proceedings of the 11th
ACM International Conference on Bioinformatics, Computational Biology and Health
Informatics. pp 1–8

27. Ashburner M, Ball CA, Blake JA, et al (2000) Gene ontology: tool for the unification of
biology. Nat Genet 25:25–29

28. Boutet E, Lieberherr D, Tognolli M, et al (2016) UniProtKB/Swiss-Prot, the manually
annotated section of the UniProt KnowledgeBase: how to use the entry view. In: Plant
Bioinformatics. Springer, pp 23–54

29. Suzek BE, Huang H, McGarvey P, et al (2007) UniRef: comprehensive and non-
redundant UniProt reference clusters. Bioinformatics 23:1282–1288

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

30. Moult J, Fidelis K, Kryshtafovych A, et al (2018) Critical assessment of methods of
protein structure prediction (CASP)—Round XII. Proteins Struct Funct Bioinforma
86:7–15

31. Andreeva A, Howorth D, Chothia C, et al (2014) SCOP2 prototype: a new approach to
protein structure mining. Nucleic Acids Res 42:D310-4.
https://doi.org/10.1093/nar/gkt1242

32. Andreeva A, Kulesha E, Gough J, Murzin AG (2020) The SCOP database in 2020:
expanded classification of representative family and superfamily domains of known
protein structures. Nucleic Acids Res 48:D376--D382

33. Armenteros JJA, Tsirigos KD, Sønderby CK, et al (2019) SignalP 5.0 improves signal
peptide predictions using deep neural networks. Nat Biotechnol 37:420–423

34. Hornbeck P V, Zhang B, Murray B, et al (2015) PhosphoSitePlus, 2014: mutations,
PTMs and recalibrations. Nucleic Acids Res 43:D512--D520

35. Ofer D, Linial M (2015) ProFET: Feature engineering captures high-level protein
functions. Bioinformatics 31:3429–3436

36. Brandes N, Ofer D, Linial M (2016) ASAP: A machine learning framework for local
protein properties. Database 2016:. https://doi.org/10.1093/database/baw133

37. Ofer D, Linial M (2014) NeuroPID: a predictor for identifying neuropeptide precursors
from metazoan proteomes. Bioinformatics 30:931–940

38. Sarkisyan KS, Bolotin DA, Meer M V, et al (2016) Local fitness landscape of the green
fluorescent protein. Nature 533:397–401

39. Rocklin GJ, Chidyausiku TM, Goreshnik I, et al (2017) Global analysis of protein
folding using massively parallel design, synthesis, and testing. Science (80-)
357:168–175

40. Altschul SF, Madden TL, Schäffer AA, et al (1997) Gapped BLAST and PSI-BLAST : a
new generation of protein database search programs. 25:3389–3402

41. Hendrycks D, Gimpel K (2016) Gaussian error linear units (gelus). arXiv Prepr
arXiv160608415

42. Neishi M, Yoshinaga N (2019) On the relation between position information and
sentence length in neural machine translation. In: Proceedings of the 23rd
Conference on Computational Natural Language Learning (CoNLL). pp 328–338

43. Abadi M, Barham P, Chen J, et al (2016) Tensorflow: A system for large-scale
machine learning. In: 12th $\{$USENIX$\}$ symposium on operating systems design
and implementation ($\{$OSDI$\}$ 16). pp 265–283

44. Chollet F, others (2015) keras
45. Bepler T, Berger B (2019) Learning protein sequence embeddings using information

from structure. arXiv Prepr arXiv190208661
46. Lan Z, Chen M, Goodman S, et al (2019) Albert: A lite bert for self-supervised learning

of language representations. arXiv Prepr arXiv190911942
47. Choromanski K, Likhosherstov V, Dohan D, et al (2020) Rethinking attention with

performers. arXiv Prepr arXiv200914794
48. Zaheer M, Guruganesh G, Dubey A, et al (2020) Big bird: Transformers for longer

sequences. arXiv Prepr arXiv200714062

Supplementary materials

Supplementary Table S1 - Full benchmark results: Test-set performance of ProteinBERT

(following fine-tuning) over all nine benchmarks across 371 snapshots along the pretraining

process.

Supplementary Figure S1

Supplementary Methods

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is

The copyright holder for this preprintthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445464doi: bioRxiv preprint

https://doi.org/10.1101/2021.05.24.445464
http://creativecommons.org/licenses/by/4.0/

