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Analysis of high-resolution time series data from the human and mouse gut mi-

crobiomes revealed that the gut microbial dynamics can be characterized by several

robust and simple scaling laws. It is still unknown if those scaling laws are univer-

sal across di↵erent body sites, host species, or even free-living microbial communi-

ties. Moreover, the underlying mechanisms responsible for those scaling laws remain

poorly understood. Here, we demonstrate that those scaling laws are not unique to

gut microbiome, but universal across di↵erent habitats, from human skin and oral

microbiome to marine plankton bacteria and eukarya communities. Since completely

shu✏ed time series yield very similar scaling laws, we conjecture that the universal

scaling laws in various microbiomes are largely driven by temporal stochasticity of

the host or environmental factors. We leverage a simple population dynamics model

with both deterministic inter-species interactions and stochastic noise to confirm

our conjecture. In particular, we find that those scaling laws are jointly determined

by inter-species interactions and linear multiplicative noises. The presented results

deepen our understanding of the nature of scaling laws in microbial dynamics.

I. INTRODUCTION

Microorganisms grow and thrive in all habitats throughout the biosphere [1–7]. Those

microorganisms play a critical role in maintaining the well-being of their hosts [8–12] or the

integrity of their environment [13–15]. Microbiome dysbiosis can markedly a↵ect the host’s

health status [16–18] and is associated with many diseases [19–22]. Numerous studies have

demonstrated that microbiomes are considerably dynamic and can be regulated by many

⇤ Corresponding author: yyl@channing.harvard.edu

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445465doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445465


2

host and environmental factors, i.e., diet, medication and host lifestyle [23–27]. Interestingly,

it has been found through comprehensive analyses of high-resolution time series data that,

despite inherent complexity, the dynamics of the human and mouse gut microbiomes display

several simple and robust scaling laws [28]. This finding raises two fundamental questions.

First of all, are those scaling laws unique for human and mouse gut microbiomes or universal

across di↵erent body sites and host species, or even free-living microbiomes? Second, what

are the underlying mechanisms responsible for those scaling laws? Recently, we found that

those scaling laws can still be observed from the shu✏ed time series of the human and mouse

gut microbiomes, where the temporal structure in the original time series has been largely

destroyed [29]. This finding prompts us to hypothesize that temporal fluctuations might

be the key to explain those scaling laws. But this hypothesis has not been quantitatively

validated yet.

To address those questions, we first analyzed high-resolution time series microbiome data

from di↵erent habitats, finding that those scaling laws previously observed in the human

and mouse gut microbiomes actually are universal across di↵erent habitats, regardless of

being host-associated or free-living microbiome. Then, we leveraged a population dynamic

model with both deterministic inter-species interactions and stochastic noise, finding that

the emergence of those scaling laws is jointly determined by inter-species interactions and

linear multiplicative noises.

II. RESULT

A. High-resolution microbiome time series data analysis.

Let us consider a time series of microbial compositions Xk(t) of a particular habitat.

Here, Xk(t) represents the relative abundance of taxon-k, k = 1, ..., N , and t = 1, ..., T .

Several scaling laws have been proposed to describe the dynamics of human and mouse

gut microbiomes, based on longitudinal 16S rRNA gene sequencing data analysis [28] (see

Table.I): (1) Distribution of short-term abundance change; (2) Variability of short-term

abundance change; (3) Long-term drift; (4) Residence (return) time distribution; and (5)

Taylor’s law that relates the variances of species’ abundances to their means.

Here we introduce a completely new scaling law: the degree distribution of the visibility
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graph associated with the time series of microbiome data follows an exponential distribution:

P (k) / exp(�↵k), or logP (k) / �↵k, where k is the degree of a taxon in the visibility

graph. Transformed from time series, visibility graphs allow us to study dynamical systems

through the characterization of their associated networks [30]. For example, a periodic time

series can be mapped into a regular graph, a random time series can be mapped into an

Erdős–Rényi random graph with a Poisson degree distribution, and a fractal time series can

be mapped into a scale-free graph with a power-law degree distribution.

To check the universality of those scaling laws, we analyzed high-resolution time series

data of various microbiomes, from human gut [23], skin [25], oral [25], to mouse gut micro-

biome [31], and marine plankton bacteria and eukarya communities [32] (see Fig.1 for the

stream plots of the various time series and SI Table S1 for details of those datasets). As

expected, the compositions of those microbiomes are highly dynamic over time. Then, we

confirmed that the five previously reported scaling laws (Table I: laws (1)-(5)) in the human

and mouse gut microbiomes can also be observed in human skin and oral microbiome, as

well as the marine bacteria and eukarya communities (Fig.2, columns 1-5, red solid dots).

The same is true for the new scaling law on the visibility graph degree distribution (Fig.2,

column-6, red solid dots). Moreover, the exponents of most scaling laws are quite close to

what have been discovered in the human and mouse gut microbiomes (see SI Table S2 for

exponent values obtained from the time series of various microbiomes).

To understand the nature of those scaling laws, we introduced a null model by randomly

shu✏ing the time series to destroy the temporal structure in the original time series [29]. We

found that most of the scaling laws can still be observed up to the change of the exponent

values (Fig.2, blue hollow dots). For certain scaling laws (e.g., the power-law distributions

of tres and tret, and the exponential degree distribution of the visibility graph), the shu✏ing

will even keep the exponents almost unchanged (Fig.2, column-4, column-6). As for Taylor’s

law, it will not be a↵ected by the shu✏ing at all (Fig.2, column-5). In the original time-series

data, the compositions of any two closely collected samples tend to be more similar to each

other than samples collected with long intervals. The shu✏ing will significantly eliminate

this impact, rendering the exponents in the scaling law of the long-term drift (Fig.2, column-

3) much lower in the null model than in the original time series (see SI Table S3 for exponent

values obtained from shu✏ed time series). Since completely shu✏ed time series yield similar

scaling laws (up to the change of some exponent values), we conjecture that the universal

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 24, 2021. ; https://doi.org/10.1101/2021.05.24.445465doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445465


4

scaling laws in various microbiomes are largely driven by temporal stochasticity of the host

or environmental factors.

B. Simulations based on a simple population dynamic model.

To reveal the origins of those scaling laws and check if they are largely driven by temporal

stochasticity of the host or environmental factors, we added a stochastic term to the clas-

sical Generalized Lotka-Volterra (GLV) population dynamic model to incorporate external

fluctuations, yielding a set of stochastic di↵erential equations [33]:

dxi(t) = �i dt+ rixi(t) dt+
NX

j=1

aijxi(t)xj(t) dt+ xi(t)⌘i dW (t). (1)

Here, xi, �i and ri represent the abundance, immigration rate and the intrinsic growth rate

of species-i, respectively. N is the total number of species. The inter-species interaction

strengths are encoded in the matrix A = (aij) 2 RN⇥N , where aij (i 6= j) is the per capita

e↵ect of species-j on the per capita growth rate of species-i, and aii represents the intra-

species interactions. dW ⇠
p

dtN (0, 1) is an infinitesimal element of Brownian motion

defined by a variance of dt. ⌘ is the noise strength. Here we consider that the stochastic term

represents fluctuations of host or environmental factors, which translates into fluctuations

of the intrinsic growth rate ri. Therefore, this term is proportional to xi. In other words,

the stochastic term represents linear multiplicative noise.

We drew the growth rate ri from a normal distribution N (m, 1) and the immigration rate

was set to � = 0 (see SI Fig.S1 for the scaling laws generated with � > 0). The diagonal

elements of the interaction matrix A was set to be �1, while the o↵-diagonal elements

aij’s were drawn from a normal distribution N (0, �2) with probability C and set to be zero

with probability (1� C). Hence, C represents the connectivity of the underlying ecological

network, and � represents the characteristic inter-species interaction strength.

In all our simulations, we let the system evolve from a random initial state (with species

abundances drawn from a uniform distribution U(0, N)) into the basin of a steady-state

attractor. Here we assume that the temporal variations of species abundances are just

reflecting fluctuations around a particular fixed point (steady state) of the dynamical system.

This assumption is consistent with previous finding that the human gut microbiome can be

considered as a dynamically stable ecosystem, continually bu↵eted by internal and external
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forces and recovering back toward a conserved steady-state [23]. We assume this is a general

picture of various microbiomes, regardless of being host-associated or free-living.

In our modeling framework, there are four key parameters: (1) the network connectivity

C; (2) the characteristic inter-species interaction strength �; (3) the noise level ⌘; and (4)

the mean intrinsic growth rate m.

We first considered the high network connectivity and strong characteristic interaction

strength: C = 1, � = 0.1. With this fixed pair of (C, �), we checked the impacts of ⌘ and

m on the various scaling laws (see Fig.S2 for the stream plots of the corresponding time

series). We found that for lower m, the short-term abundance changes tend to follow a

Gaussian rather than Laplacian distribution (Fig.3a1,b1). Also, both the distribution and

variability of short-term abundance changes (P (µ) and �µ) after time series shu✏ing look

quite di↵erent from those obtained from the original time series (Fig.3a1,b1; a2,b2). For

lower ⌘ (Fig.3a1,c1), P (µ) at µ = 0 is much higher than the case of higher ⌘ (Fig.3b1,d1).

This can be explained by the fact that in the presence of weak noises (i.e., low ⌘), species

abundance changes tend to be more deterministic than the case of strong noises (high ⌘).

Note that other scaling laws are not largely a↵ected by the noise level ⌘. Interestingly, with

higher m and ⌘, the stochastic GLV model can generate time series that display all the six

scaling laws (Fig.3d) as observed in the real microbiome time series (Fig.2).

Among all the six scaling laws, P (µ) is the one that is most sensitive to model parameters.

Therefore, we next systematically checked the impacts of all the four parameters (C, �, ⌘,

and m) on P (µ). In particular, we tried nine pairs of (C, �), covering low, intermediate

and high levels of network connectivity and characteristic interaction strength. For each

pair of (C, �), we systematically tune ⌘ and m values. For each parameter combination,

we calculated 20 time series from independent stochastic GLV model instances. We then

calculated P (µ) from the time series and fitted the data using both Laplacian and Gaussian

distributions. We quantified the goodness of fit by the Akaike Information Criterion (AIC),

calculated based on the maximum likelihood estimate (MLE). As shown in each panel (cor-

responding to a particular (C, �) pair) of Fig.4, the color represents the probability that

the AIC of the fitting with Laplacian distribution is lower than that using Gaussian distri-

bution over the 20 independent time series data. The higher this probability the better the

Laplacian distribution fits the data.

In a sense, each panel of Fig.4 can be regarded as a (⌘, m)-phase diagram, where P (µ)
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tends to behave like either a Laplacian (in the yellow region) or a Gaussian distribution (in

the cyan region). We found that the shape of this (⌘, m)-phase diagram depends on the

values of the (C, �). When either � or C is low, the (⌘,m)-phase diagram is dominated by

the “Gaussian phase”. In this case, only when the noise level if very low, P (µ) will behave

like a Laplacian distribution. Interestingly, when both C and � are high, the (⌘, m)-phase

diagram will be dominated by the “Laplacian phase”. In this case, only for very low mean

intrinsic growth rate m, P (µ) will behave like a Gaussian distribution.

Note that the emergence of a Gaussian distribution of P (µ) for certain parameter settings

is not a big surprise. After all, the growth of microorganisms is a↵ected by random multi-

plicative processes [34, 35]. If we generalize the definition of short-term abundance change

as: µk(t) = log(Xk(t+ ⌧)/Xk(t)), where ⌧ is the length of the “short term”(and when ⌧ = 1

this reduces to the original definition of µk(t)), the (⌘, m)-phase diagram will be dominated

by the “Laplacian phase” with increasing ⌧ (see SI Fig.S3).

It has been reported before that inter-species interactions can explain Taylor’s law for

ecological time series [36]. As the variance of species abundance is largely determined by

inter-species interactions, we confirmed that Taylor’s law can be reproduced regardless of

the detailed values of ⌘ and m for any C > 0 and � > 0 (see Fig.3, column-5, for results with

C = 1 and � = 0.1). But in the absence of inter-species interactions (i.e., C = 0, � = 0), we

cannot reproduce Taylor’s law as observed from real data. In particular, the di↵erence of

di↵erent species’ mean abundance is very small, yielding a very concentrated scatter plot of

�
2
X

vs. hXi (see SI Fig.S4, column-5). Note that in this case, the Laplacian distribution of

short-term abundance change P (µ) cannot be reproduced either. Also, the distributions of

residence and return times, P (tres) and P (tret), look quite di↵erent from what we observed

from real data.

We also found that other types of noise terms, e.g., square-root multiplicative noise

(
p
xi⌘i dW (t)) cannot reproduce the shape of Taylor’s law as observed in real data. For

linear multiplicative noise, the variations of dominating species can be much higher than that

of low-abundance species. By contrast, for square-root multiplicative noise, the variation

di↵erence between dominating and low-abundance species will be much smaller, yielding a

very concentrated scatter plot of �2
X

vs. hXi (see SI Fig.S5, column-5).
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III. DISCUSSION

The presented results revealed the origins of universal scaling laws in the dynamics of

various microbiomes. Those scaling laws reflect the species abundance fluctuations around

a stable equilibrium of the ecological system, and the fluctuations are largely driven by

temporal stochasticity of the host or environmental factors. Furthermore, he presence of

those scaling laws is jointly determined by inter-species interactions and linear multiplicative

noise. The presented results help us better understand the nature of those universal scaling

laws in the dynamics of various microbiomes.

Many of the scaling laws described here for microbial communities have also been observed

previously in various macroecological systems, despite the di↵erence of more than six orders

of magnitude in the relevant spatial and interaction scales [28]. We anticipate that our

simple mechanisms based on inter-species interactions and linear multiplicative noise might

be universal to explain those scaling laws in both macroscopic and microbial communities.
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TABLE I: Scaling laws in microbial dynamics

Description Argument Function Scaling law

(1) Distribution of short-term abundance change µk(t) P (µ) P (µ) = 1
2bexp(�

|µ|
b
)

(2) Variability of short-term abundance change Xm(t) �µ �µ = rXm + c

(3) Long-term drift �t h�2(�t)i h�2(�t)i / �t
2H

(4) Residence (return) time distribution tres (tret) P (t) P (t) / t
�↵e��t

(5) Taylor’s law X �
2
X

�
2
X

/ X
�

(6) Degree distribution of the visibility graph k P (k) P (k) / e
�↵k

(1) µ is calculated by averaging µk(t) ⌘ log(Xk(t+ 1)/Xk(t)) across all taxa and all time points,

and b is a scale parameter. (2) Xm(t) ⌘ 1
2 [log((Xk(t + 1)) + log(Xk(t))], r is the slope, and c

is a constant. (3) h�2(�t)i is calculated by averaging �
2(�t) across all taxa and all time points,

�(�t) ⌘ log(Xk(t + 1)/Xk(t)) and H is the Hurst exponent. (4) Residence time tres (or return

time tret) is the time interval during which a taxon was continuously detected (or absent) from the

community, respectively. The exponential tail e��t results from the finite length of the analyzed

time series, and ↵ is the power-law exponent. (5) X and �
2
X

are the mean and variance of taxon

abundance, � is the power-law exponent. (6) k is the degree of a taxon in the visibility graph.
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13

FIG. 1: Time series of various microbiomes. (a) Human gut [23]; (b) Human palm [25];

(c) Human oral [25]; (d) Mouse gut [31]; (e) Marine plankton bacteria community and (f)

Marine plankton eukarya community [32]. Stream plots showing the relative abundances of

di↵erent taxa over time. Each stream represents a particular taxon and streams are grouped

by phylum. Stream widths reflect the relative abundances of those taxa. For human gut,

mouse gut, marine plankton bacterial and enkarya communities, the taxonomic profiles were

quantified at the OTU level. For human palm and oral microbiomes, the taxonomic profiles

were quantified at the genus level.
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FIG. 2: Scaling laws observed from the time series data of various microbiomes. Throughout

this figure, solid (or hollow) dots represent results obtained from the original (or shu✏ed)

time series, respectively. Lines represent maximum likelihood estimation (MLE) fits to

the data. To control for known technical factors such as sample preparation and sequencing

noise, here we adopted exactly the same taxa inclusion criteria as used by Refs [28, 33]. Rows:

(a) Human gut; (b) Human palm; (c) Human tongue; (d) Mouse gut; (e) Marine plankton

bacterial community and (f) Marine plankton eukarya community. Column: (1) Short-term

(daily) abundance change µ follows a Laplace distribution: P (µ) = 1
2bexp(�

|µ|
b
). (2) The

variability (i.e., standard deviation) of daily abundance change �µ decreases approximately

linearly with increasing the mean of successive log-abundance Xm(t). (3) The long-term

drift of gut microbiota abundance can be approximated by the equation of anomalous:

h�2(�t)i / �t
2H , where H is the so-called Hurst exponent. The maximum lag is set to be

100. (4) The distributions of residence (tres) and return times (tret) follow power laws with

exponential tails: P (t) / t
�↵e��t. (5) The temporal variability patterns of gut microbiota

closely follow Taylor’s law: �
2
X

/ X
�, where X and �

2
X

are the mean and variance of

species abundance. (6) Degree distribution of the visibility graph follows an exponential

distribution: P (k) / exp(�↵k).
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FIG. 3: Scaling laws observed from simulated time series generated by the stochastic GLV

model with various levels of noise magnitude (⌘) and mean intrinsic growth rate (m). Lines

represent maximum likelihood estimation (MLE) fits to the data. Rows: (1) ⌘ = 0.616,

m = 1.142; (2) ⌘ = 1.205, m = 1.142; (3) ⌘ = 0.616, m = 7.916 and (4) ⌘ = 1.205,

m = 7.916. The columns represent those scaling laws as shown in Fig.2. C = 1, � = 0.1

and N = 100.
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FIG. 4: The distribution of short-term abundance change, P (µ), depends on various of pa-

rameters: ⌘: the noise level, m: the mean of intrinsic growth rate, �: the characteristic

interaction strength, C: the connectivity of the ecological network. For each parameter

combination, we generated 20 independent time series data, then fit the data using both

Laplacian distribution and Gaussian distribution. The color represents the probability that

the Akaike Information Criterion (AIC) calculated based on the maximum likelihood es-

timate (MLE) fits to the data using the Laplacian distribution is lower than that using

Gaussian distribution over 20 independent time series data. Note that the higher this prob-

ability the better the Laplacian distribution fits the data. The time step is dt = 0.01, total

time T = 1000, and the number of species is N = 100. The purple dots shown in panel-c

correspond to the four (⌘,m) pairs (rows) demonstrated in Fig.3.
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Origins of scaling laws in microbial dynamics

Supplementary Information

(Dated: May 24, 2021)

I. MICROBIOME DATASETS

We analyzed high-resolution time series data of di↵erent microbial communities reported

in Refs. [1, 2]. To control for known technical factors such as sample preparation and

sequencing noise, here we adopted exactly the same taxon inclusion criteria as reported in

Ref. [1, 2]. Note that the time series data of stool microbiome samples from four human

subjects and six mice are available in Ref. [1]. To reduce the redundancy, we chose Human A

and the first mouse with low-fat, plant polysaccharid diet in Ref. [1]. The detailed description

of each dataset can be found in Table.S1.

II. VISIBILITY GRAPH

Visibility graph allows us to transform a time series into a network. Visibility means that

two data points in the time series can “see” each other without any obstacle. For any two

points (ta, ya) and (tb, yb), there is a link between two nodes (or they are mutually visible),

if and only if for any tc (ta < tc < tb) [7, 8]:

yc < ya + (yb � ya)
tc � ta
tb � ta

. (1)

We used the Matlab implementation of the fast natural visibility graph algorithm to get the

visibility graphs of the various microbiome time series [9, 10].
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FIG. S1. Scaling laws observed from simulated time series generated by the stochastic GLV model

with di↵erent immigration rates. In the main manuscript, we chose the immigration rate � = 0.

Here, we showed the scaling laws with di↵erent immigration rates: � = 0.1 (row 1); � = 1 (row 2)

and � = 10 (row 3). ⌘ = 1.205, m = 7.9158, C = 1, � = 0.1 and N = 100.
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FIG. S2. Time series generated from the stochastic GLV model with various parameter combi-

nations. (a) ⌘ = 0.616, m = 1.142; (b) ⌘ = 1.205, m = 1.142; (c) ⌘ = 0.616, m = 7.916 and (d)

⌘ = 1.205, m = 7.916. C = 1, � = 0.1, and N = 100. Stream widths reflect the relative abundances

of those species. The total simulation step is 1000, dt = 0.01 and we showed the abundances of

most abundant 10 species during the last 200 steps.
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FIG. S3. The distribution of short-term abundance change depends on the time span. The

population growth rate is defined as: µk(t) ⌘ log(Xk(t + ⌧)/Xk(t)), where ⌧ is the time span of

the “short term”. (a) ⌧ = 1; (b) ⌧ = 3; (c) ⌧ = 5; (d) ⌧ = 7; (e) ⌧ = 9 and (f) ⌧ = 11. C = 0.4,

� = 0.05. The color in the phase diagram has the same meaning as shown in Fig.3 in main text.

The time step is dt = 0.01, total time T = 1000, and the number of species is N = 100.
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FIG. S4. Scaling laws observed from simulated time series generated by the stochastic GLV model

without inter-species interactions. ⌘ = 1.205, m = 7.9158, C = 0, � = 0, and N = 100.
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FIG. S5. Scaling laws observed from simulated time series generated by the stochastic GLV model

with nonlinear multiplicative noise. ⌘ = 1.205, m = 7.9158, C = 1, � = 0.1, and N = 100.
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