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Abstract: 17 

Breeding for grain yield, biotic and abiotic stress resistance, and end-use quality are important 18 
goals of wheat breeding programs. Screening for end-use quality traits is usually secondary to 19 
grain yield due to high labor needs, cost of testing, and large seed requirements for phenotyping. 20 
Hence, testing is delayed until later stages in the breeding program. Delayed phenotyping results 21 
in advancement of inferior end-use quality lines into the program. Genomic selection provides an 22 
alternative to predict performance using genome-wide markers. Due to large datasets in breeding 23 
programs, we explored the potential of the machine and deep learning models to predict fourteen 24 
end-use quality traits in a winter wheat breeding program. The population used consisted of 666 25 
wheat genotypes screened for five years (2015-19) at two locations (Pullman and Lind, WA, 26 
USA). Nine different models, including two machine learning (random forest and support vector 27 
machine) and two deep learning models (convolutional neural network and multilayer 28 
perceptron), were explored for cross-validation, forward, and across locations predictions. The 29 
prediction accuracies for different traits varied from 0.45-0.81, 0.29-0.55, and 0.27-0.50 under 30 
cross-validation, forward, and across location predictions. In general, forward prediction 31 
accuracies kept increasing over time due to increments in training data size and was more 32 
evident for machine and deep learning models. Deep learning models performed superior over 33 
the traditional ridge regression best linear unbiased prediction (RRBLUP) and Bayesian models 34 
under all prediction scenarios. The high accuracy observed for end-use quality traits in this study 35 
support predicting them in early generations, leading to the advancement of superior genotypes 36 
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to more extensive grain yield trailing. Furthermore, the superior performance of machine and 37 
deep learning models strengthen the idea to include them in large scale breeding programs for 38 
predicting complex traits.  39 

 40 

Introduction 41 

Wheat (Triticum aestivum L.) breeding programs mainly focus on improving grain yield, biotic 42 
and abiotic stress tolerance, and end-use quality traits. Hexaploid wheat is classified into hard 43 
and soft wheat classes based on kernel texture, milling quality, protein strength, and water 44 
absorption (Souza et al. 2002). Soft wheat flour has lower damaged starch, gluten strengthen, and 45 
non-starch polysaccharides leading to less water absorption. In contrast, hard wheat has higher 46 
damaged starch, gluten strengthen, and non-starch polysaccharides causing higher water 47 
absorption (Kiszonas et al. 2013). Hard wheat dough is mainly used for pan type, leavened 48 
bread, flatbread, and noodles, whereas soft wheat dough is primarily used for cookies, cakes, and 49 
confectionery products (Bhave and Morris 2008; Kiszonas et al. 2013). Washington state was 50 
ranked fourth in the nation’s wheat production in 2020. About 80% of wheat grown in eastern 51 
Washington is soft white wheat (SWW), one of the six class grown in the USA. SWW is the 52 
smallest wheat class and is consistently in demand from overseas markets owing to its end-use 53 
quality attributes. More than 85% of the SWW produced in the Pacific Northwest (PNW) region 54 
is exported to markets in countries like Japan, Korea, the Philippines, and Indonesia.  55 

End-use quality and processing traits are the combinations of various predefined 56 
parameters. Multiple attributes are measured from milling traits, baking parameters, grain 57 
characteristics, and flour parameters to assess product quality (Guzman et al. 2016). Milling 58 
traits are measured to extract flour and break flour percentage as flour yield and break flour yield 59 
(Morris et al. 2009). In general, soft wheat has a higher break flour yield than hard wheat. 60 
Thermogravimetric ovens are used for calculating the flour ash. Lower flour ash is recommended 61 
as higher amounts of minerals in ash reduces the functionality of most dough and batters (Morris 62 
et al. 2009). The milling score is estimated using flour yield, break flour yield, and flour ash 63 
content and is described in the Material and Methods section. The sugar snap cookie test is a 64 
must for SWW testing to me expectations of product performance from overseas markets. 65 
Baking of cooking is performed for lines within the breeding program, and SWW lines having 66 
cookie diameter above 9.3 cm is preferred (Kiszonas et al. 2015).  67 

Grain characteristics commonly measured in SWW include kernel hardness, kernel size, 68 
kernel weight, test weight, and grain protein content. Kernel weight, kernel size, and kernel 69 
texture (hardness) are measured with a single kernel characterization system (SKCS). Lower 70 
values from the SKCS demonstrate softness; thus, SKCS values are negatively correlated with 71 
break flour yield. However, the two measures of kernel texture are not entirely correlated 72 
because SKCS includes only kernel resistance while break flour yield includes particle size and 73 
grain structure (Campbell et al. 2007). Grain and flour protein content plays a critical role in 74 
confectionery products from SWW. High gluten strength or viscoelastic strength is required for 75 
bread baking, whereas confectionary products require less gluten and water absorption. Gluten 76 
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strength, and water absorption capacity, is measured using sodium dodecyl sulfate sedimentation 77 
and water solvent retention capacity tests. Lower water absorption in SWW aid in better cookie 78 
spread. Moreover, a flour swelling volume test is conducted to determine the amount of amylose 79 
and amylopectin components in the grain starch. Larger amylopectin content leads to higher 80 
flour swelling volume value, resulting in waxy starches required for certain Asian-style noodles 81 
(Kiszonas et al. 2013; Guzman et al. 2016).  82 

Major genes influencing end-use quality traits are typically already fixed in most 83 
breeding programs, especially in different market classes. Until now, marker-assisted selection 84 
has been used for major genes controlling end-use quality, namely, low molecular weight 85 
glutenins, high molecular weight glutenins, granule bound starch synthase 1 (amylose 86 
composition) and puroindolines (kernel hardness) (Gale 2005; Kiszonas et al. 2013). Usage of 87 
these molecular markers only aid in differentiating different wheat classes earlier in the breeding 88 
program; however, they do not provide the complete profile of different end-use quality traits. 89 
Previous linkage mapping and genome-wide association studies in SWW have shown that a large 90 
number of small effect QTLs control most end-use quality traits in addition to the already fixed 91 
genes (Carter et al. 2012; Jernigan et al. 2018). Similarly, 299 small effects QTLs were identified 92 
using multi-locus genome-wide association studies for nine end-use quality traits in hard wheat 93 
(Yang et al. 2020). Kristensen et al. (2018) were unable to identify significant QTLs for Zeleny 94 
sedimentation, grain protein content, test weight, thousand kernel weight, and falling number in 95 
wheat and suggested genomic selection as the best alternative for predicting quantitative traits.  96 

Genomic selection (GS) opens up the potential for selecting improved end-use quality 97 
lines due to the small effect of these loci, limited seed availability earlier in the breeding pipeline 98 
for conducting tests, and time constraints in winter wheat for sowing the new cycle (Crossa et al. 99 
2017). GS uses the genotypic and phenotypic data from previous breeding lines or populations to 100 
train predictive statistical models. These trained models are subsequently used to predict the 101 
genomic estimated breeding estimated values (GEBVs) of genotyped lines (Meuwissen et al. 102 
2001). GS has shown the potential to enhance genetic gain by reducing the generation advance 103 
time and improving selection accuracy (Battenfield et al. 2016; Juliana et al. 2019; Sandhu et al. 104 
2021b). This is especially important for winter wheat end-use quality traits, as phenotyping 105 
requires more than three months and data from the quality lab is often not available between 106 
harvest and the time planting occurs. This ultimately results in either the increase of one year in 107 
the breeding cycle or passage of undesirable lines into the next growing season. Furthermore, 108 
phenotyping requires a large amount of seed and is costly, so large-scale testing is often not 109 
conducted until later generations. Currently, the cost of genotyping 10,000 lines with high 110 
density genotyping by sequencing is equivalent to phenotyping 200 lines for end-use quality and 111 
processing traits (Guzman et al. 2016). GS is the best technique for breeding end-use quality 112 
traits after considering time, cost, and seed amount.  113 

Genomic selection has been primarily explored in several hard wheat end-use quality trait 114 
studies using the traditional genomic best linear biased prediction (GBLUP), Bayes A, Bayes B, 115 
Bayes C, and Bayes Cpi, showing mixed results, where one model performed best for one trait 116 
and not for another (Heffner et al. 2011a, b). Machine and deep learning models have opened up 117 

.CC-BY 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 25, 2021. ; https://doi.org/10.1101/2021.05.24.445513doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.24.445513
http://creativecommons.org/licenses/by/4.0/


an entirely new platform for plant breeders and exploring them in the breeding program could 118 
accelerate the pace of genetic gain. Deep learning models have shown higher prediction 119 
accuracies for different complex traits in wheat (Sandhu et al. 2021a), rice (Oryzae sativa L.; 120 
Chu and Yu 2020), soybean (Glycine max L.; Liu et al. 2019), and maize (Zea mays L.; Khaki 121 
and Wang 2019). Sandhu et al. (2021a) have shown that two deep learning models, namely, 122 
convolutional neural network (CNN) and multilayer perceptron (MLP), gave 1-5% higher 123 
prediction accuracy compared to BLUP based models. Ma et al. (2018) and Montesinos-López et 124 
al. (2019) also obtained similar results to predict quantitative traits in wheat and suggested that 125 
deep learning models should be explored due to their better prediction accuracies. To the best of 126 
our literature search, this is the first study exploring the potential of the deep learning models for 127 
predicting the end-use quality traits in wheat.  128 

This study explored the potential of GS using multi-environment data from 2015-19 for 129 
end-use quality traits in a soft white winter wheat breeding program. We explored nine different 130 
BLUP based models, Bayesian models, and machine and deep learning models to predict the 131 
fourteen different end-use quality traits. The main objectives of this include, 1) Optimization of 132 
the machine and deep learning models for predicting end-use quality traits, 2) Comparison of 133 
prediction ability of nine different GS models to predict fourteen different end-use quality traits 134 
using cross-validation approaches, and 3) Assess the potential of GS for forward prediction and 135 
across location predictions using previous years training data in the breeding program.  136 

 137 

Materials and Methods 138 

Germplasm: A total of 666 soft white winter wheat lines were evaluated for five years at two 139 
locations, namely, Pullman and Lind, WA, USA, from 2015-19. These 666 genotypes consist of 140 
F4:5 derived lines, double haploid lines, lines in preliminary and advanced yield trials screened as 141 
a part of the Washington State University winter wheat breeding program. F4:5 derived lines and 142 
double haploid lines were screened for the agronomic and disease resistance traits, and the 143 
superior genotypes were tested for the end-use quality. Lines in preliminary and advanced yield 144 
trials were selected for superior yield, and those lines were later advanced for end-use quality 145 
traits phenotyping. Some genotypes were replicated at a single location per year, whereas others 146 
were un-replicated, creating an unbalanced dataset.  147 

 148 

Phenotyping: Fourteen different end-use quality and processing traits were measured, and data 149 
were obtained from the USDA-ARS Western Wheat Quality Laboratory, Pullman, WA. All 150 
these traits were measured following the guidelines of the American Association of Cereal 151 
Chemists International (AACCI 2008). These fourteen traits were divided into four categories: 152 
milling traits, baking parameters, grain characteristics, and flour parameters. The complete 153 
summary of each trait, number of observations, mean, standard error, and heritability is provided 154 
in Table 1 & Table 2.  155 
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Grain characteristics, namely kernel size (KSIZE), kernel weight (KWT), and kernel 156 
hardness (KHRD) were determined using 200 seeds/sample with a SKCS 4100 (Perten 157 
Instruments, Springfield, IL, USA) (AACC Approved Method 55-31.01). Grain protein content 158 
(GPC) was measured using a NIR analyzer (Perten Elmer, Sweden) (AACC Approved Method 159 
39-10.01). Test weight (TWT) was obtained as weight/volume following AACC Approved 160 
Method 55-10.01.  161 

Three milling traits, namely flour yield (FYELD), break flour yield (BKYELD), and 162 
milling score (MSCOR) were obtained using a Quadrumat senior experimental mill (Brabender, 163 
South Hackensack, NJ, USA). FYELD was determined as a ratio of total flour weight (mids + 164 
break flour) to the initial sample weight using a single pass through the Quadrumat break roll 165 
unit. BKYELD was estimated as the percent of milled product passing through a 94-mesh* 166 
screen per unit grain weight. Flour ash (FASH) was obtained using the AACC Approved Method 167 
08-01.01. MSCOR was calculated using the formula: MSCOR= (100−(0.5(16−13.0 + 168 
(80−FYELD) + 50 (FASH−0.30))) ×1.274) −21.602, showing that this trait is a function of 169 
FYELD and FASH content. To evaluate baking parameters, cookie diameter (CODI) was 170 
measured using AACC Approved Method 10-52.02. 171 

Four different flour parameters, namely, flour protein (FPROT), water solvent retention capacity 172 
in water (FSRW), flour swelling volume (FSV) and flour sodium dodecyl sulfate sedimentation 173 
(FSDS) were measured from the extracted flour. FPROT was measured following the AACC 174 
Approved Method 39-11.01. FSRW measures the water retention capacity of gluten, gliadins, 175 
starch, and arabinoxylans using the AACC Approved Method 56-11.02. The FSDS test was used 176 
to measure strength of gluten by following the AACC Approved Method 56-60.01. The FSV test 177 
assesses starch composition following the AACC Approved Method 56-21.01. 178 

 179 

Statistical analysis: Due to the unbalanced nature of the dataset, adjusted means were calculated 180 
using residuals obtained using the lme4 R package for within environment analysis. The model 181 
equation is represented as 182 

Yij = Blocki + Checkj + eij 183 
Where Yij is the raw phenotype; Checkj is the effect of replicated check cultivar; Blocki 184 
corresponds to the fixed block effect; and eij is the residuals (Bates et al. 2015).  185 

Adjusted means across the environments were calculated following the method implemented in 186 
Sandhu et al. (2021c) and is as follows 187 

Yijk = µ+ Blocki + Checkj + Envk + Blocki � Envk + Checkj � Envk + eijk 188 

Where Yijk is the raw phenotype value; Blocki, Checkj, and Envk are the fixed effect of ith block, 189 
jth check, and kth environment; and eijk is the residuals. 190 

Best linear unbiased predictors (BLUPs) for individuals and across environments were used to 191 
obtain the variance components for estimating broad sense heritability. The equation for  192 
heritability used was 193 
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H�
� � 1 � v�∆..����

2σ	
^�

 

Where H�
� is the Cullis heritability; σ	

^� is genotypic variance; and v�∆..���� is the mean-variance of 194 
BLUPs (Cullis et al. 2006).  195 

 196 

Genotyping: The whole population was genotyped using GBS through the North Carolina State 197 
University (NCSU) Genomics Sciences Laboratory, Raleigh, NC, using the restriction enzymes 198 
PstI and MspI (Poland et al. 2012). LGC Biosearch Technologies OktopureTM robotic platform 199 
with sbeadexTM magnetic microparticle reagent kits were used to extract the DNA from the 200 
leaves of ten-day-old seedlings. Thermo Fisher (Waltham, MA) Quant-ItTM PicoGreenTM assays 201 
were used to quantify the DNA, and the samples were normalized to 20 ng/µL. Restriction 202 
enzymes PstI and MspI were used for sample fragmentation, and the digested samples were 203 
ligated with barcode adapters using T4 ligase. The pooled samples were amplified using PCR, 204 
following Poland et al. (2012), and sequencing was performed at NCSU Genomics Sciences 205 
Laboratory. Burrows-Wheeler Aligner (BWA) 0.7.17 was used to align the sequences to the 206 
Chinese Spring (IWGSC) RefSeq v1.0 reference genome (Appels et al. 2018). Tassel v5 and 207 
Beagle were used for SNP discovery, calling, and imputation (Bradbury et al. 2007). Quality 208 
filtering pipeline was implemented in R software to remove markers with minor allele frequency 209 
less than 5%, markers missing more than 20% data, and heterozygosity more than 15%. After the 210 
complete filtering pipeline, 40,518 SNPs remained and used for population structure and 211 
genomic prediction. 212 

 213 

Genomic selection models: We explored the performance of five parametric and four non-214 
parametric models for all fourteen traits evaluated in this study. Parametric models used were 215 
RRBLUP, Bayes B, Bayes A, Bayes Lasso, and Bayes C. Non-parametric models included two 216 
machine and two deep learning models. The complete information for all those models and 217 
optimization process is provided as follows: 218 

Ridge regression best linear unbiased prediction (RRBLUP): RRBLUP was included here as 219 
the benchmark for comparing its performance with other models due to frequent use in wheat 220 
breeding and ease of implementation. The model assumes that all markers contribute to the trait 221 
and has a constant effect variance. Marker effects and variance patterns are estimated using the 222 
restricted estimated maximum likelihood (REML) function based on phenotypic and marker data 223 
(Endelman 2011). The RRBLUP model was implemented with the R package rrBLUP using the 224 
mixed.solve function. The model can be represented as  225 

y � μ  Zu  e 
Where µ is the overall mean; y is the vector of adjusted means; u is a vector with normally 226 
distributed random marker effects with constant variance as u ~ N(0, I�2

u); Z is an N x M matrix 227 
of markers; and e is the residual error distributed as e ~ N(0, I�2

e). The solution for mixed 228 
equation can be written as  229 
u = ZT (ZZT + λI)-1  y 230 
Where u, Z and y are explained above; I is an identity matrix and λ is represented as λ = �2

e / �2
u 231 

and is the ridge regression parameter (Endelman 2011). 232 
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Bayesian models: We implemented four different Bayesian models, namely, Bayes Lasso, 233 
Bayes A, Bayes B, and Bayes C. All these models assume different prior distributions for 234 
estimating marker effects and variances. Bayes A applies the inverted chi-squared probability 235 
distribution for estimating marker variances. Bayes B provides a more realistic scenario for 236 
breeding, assuming that all markers do not contribute to total genetic variation. It applies a 237 
mixture of prior distribution with a high probability mass at zero, and others follow the Gaussian 238 
distribution. Bayes C and Bayes Lasso follow the mixture of the prior distribution (point mass at 239 
zero with scaled-t distribution) and long-tail student t distribution (Pérez and Campos 2014). All 240 
the Bayesian models were implemented using the BGLR R package using the model equation 241 

�� � μ  � �����
��

��

 ��  
Where μ, �� , ��� , and ��  are defined above; and �� is the jth marker effect. Each Bayesian model 242 
used in this study has separate conditional prior distribution. Analysis was performed with 243 
30,000 Monte Carlo Markov chain iterations with 10,000 burn-in iterations (Pérez and Campos 244 
2014).  245 

Random forests (RF): RF involves building a large collection of identical distributed trees and 246 
averages from the trees for final prediction. Different bootstrap samples are performed over the 247 
training set to identify the best feature subsets for splitting the tree nodes. The main criteria for 248 
splitting at the node include lowering the loss function during each bootstrapped sample (Shah et 249 
al. 2019). Model equation is represented as  250 

��� � 1
� � ������

�

��

 

Where ��� is the predicted value of the individual with genotype ��; T is the total number of trees; 251 
and B is the number of bootstrap samples. The main steps involved in model functioning 252 
includes 253 

1. Bootstrap sampling (b = (1, …, B)) to select plants with replacement from the training 254 
set, and an individual plant can appear once or several time during the sampling 255 

2. Best set of features (SNPj, j = (1, …, J) were selected to minimize the mean square error 256 
(MSE) using the max feature function in the random forest regression library.  257 

3. Splitting is performed at each node of the tree using the SNPj genotype to lower the MSE. 258 
4. The above steps are repeated until a maximum depth is reached or a minimum node. The 259 

final predicted value of an individual of genotype ��  is the average of the values from the 260 
set of trees in the forest.  261 

The important hyperparameter model training include the depth of the trees, the importance of 262 
each feature, the number of features sampled for each iteration, and the number of trees. 263 
Randomized grid search cross-validation was used for hyperparameter optimization. The 264 
combination of hyperparameters that were tried included max depth (40, 60, 80, 100), max 265 
features (auto, sqrt), and number of trees (200, 300, 500, 1000) (Hastie et al. 2009). The Scikit 266 
learn, and random forest regression libraries in Python 3.7 were used for analysis (Gulli and Pal 267 
2017).  268 
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Support vector machine (SVM): SVM uses the non-linear kernel for mapping the predictor 269 
space to high dimensional feature space for studying the relationship between marker genotype 270 
and phenotypes. The model equation is represented as 271 

���� � ��  � 
Where ���� is learning function; b is the constant, reflecting the maximum allowed bias; w is the 272 
unknown weight; and x is the marker set. The learning function is mapped by minimizing the 273 
loss function as  274 

� �  �!��
�

��

 1
2 "�"� 

Where C is a positive regularization parameter; "�"� represents model complexity, !�  = y - ���� 275 
is the associated error with the ith training data point, and   is the loss function (Smola and 276 
Scholkopf 2004).  277 
Multilayer perceptron (MLP): MLP is the feed-forward deep learning model that uses three 278 
layers, namely, input, hidden, and output, for mapping the relationship. These layers are 279 
connected by a dense network of neurons, where each neuron has its characteristic weight. MLP 280 
uses the combination of neurons, activation function, learning rate, hidden layers, and 281 
regularization for predicting the phenotypes. Input layer corresponds to SNP genotypes while 282 
neurons connect multiple hidden layer with associated strength (weight). The output of the ith 283 
hidden layer is represented as 284 

Zi = b(i-1) + Wi �(i-1) (x) 285 
Where Zi is the output from the ith hidden layer; b0 is the bias for estimating neurons weight; �(i-1) 286 
represents the activation function; and Wi is the weight associated with the neurons, and this 287 
process is repeated until the output layer. 288 

Keras function’s grid search cross-validation and internal capabilities were used for optimizing 289 
the hyperparameters. Hyperparameters giving the lowest MSE were identified and used for 290 
output prediction (Cho and Hegde 2019). Regularization, dropout, and early stopping were 291 
applied to control overfitting. Furthermore, information about hyperparameter optimization and 292 
deep learning models is referred to in Sandhu et al. (2021a, c).  293 

Convolutional neural network (CNN): CNN is a special case of deep learning model that 294 
accounts for the specific pattern present between the input features. Information about the CNN 295 
model, its implementation, and hyperparameter optimization are referred to in previous 296 
publications (Sandhu et al. 2021a, d). A combination of input, convolutional, pooling, dense, 297 
flatten, dropout, and output layers were applied for the prediction. Like MLP, hyperparameter 298 
was optimized using grid search cross-validation to select filters, activation function, solver, 299 
batch size, and learning rate. Regularization, dropout, and early stopping were applied to control 300 
overfitting. All the deep learning algorithms were implemented using Scikit learn and Keras 301 
libraries (Pedregosa et al. 2011; Srivastava et al. 2014).  302 

 303 

Prediction accuracy and cross-validation scheme: Prediction accuracy was evaluated using 304 
five-fold cross-validation where 20% of the data was used for testing and the remaining 80% for 305 
training within each environment. One hundred replications were performed for assessing each 306 
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model’s performance. One replicate consisted of five iterations where data is split into five 307 
different groups. Prediction accuracy was reported as the Pearson correlation coefficient between 308 
the true (observed phenotype) and GEBVs. Separate analysis was performed for both locations 309 
using a cross-validation approach to assess the model’s performance.  310 

Independent predictions or forward predictions were performed by training the model on 311 
previous year data and predicting future environments (i.e., 2015 data from Lind was used to 312 
predict 2016; 2015 and 2016 data predicts 2017, and so on for both locations). In the end, we 313 
tried to predict the 2019 environment of both locations by using the whole data set from the other 314 
location (i.e., 2015-19 data from Lind was used to predict 2019 in Pullman). Forward prediction 315 
represents real prediction scenarios in breeding programs where previous data are used to predict 316 
future environments. Due to computational burden, all the GS models were analyzed over the 317 
Kamiak high-performance cluster (https://hpc.wsu.edu/).  318 

 319 

Results 320 

Phenotypic data summary: Table 1 provides the information about different lines screened for 321 
end-use quality traits across years at two locations. One thousand three hundred thirty-five lines 322 
were phenotypically screened for end-use quality traits across five years (2015-19) at two 323 
locations (Table 1). Overall, Pullman had more lines compared to Lind for each year. Summary 324 
statistics, including mean, minimum, maximum, standard error, and heritability are provided for 325 
all the fourteen end-use quality traits (Table 2). Broad sense heritability ranged from 0.56 to 0.93 326 
for different traits. All the traits were highly heritable except GPC and FPROT (Table 2).  327 

Significant positive and negative correlations were observed among different traits (Figure 1). 328 
Moderately high positive correlations were observed between FYELD and BKFYELD, KSIZE 329 
and KWT, GPC and FPROT, FSDS and FPROT, GPC and FSDS, and FSRW and KHRD 330 
(Figure 1). Similarly, moderately high negative correlations were seen between FASH and 331 
MSCOR, CODI and KHRD, GPC and FSV, FSDS and CODI, and CODI and FSRW (Figure 1). 332 
Most of the traits were not strongly correlated with each other, suggesting that a single quality 333 
trait cannot substitute others; hence, measurements from all of them are required for selection 334 
decisions.  335 

 336 

Cross-validation genomic selection accuracy and model comparison: Complete datasets 337 
across the years from Pullman and Lind were used to predict the fourteen end-use quality traits 338 
using nine different models (Table 3, Figure 2). Five-fold cross-validation was performed to 339 
compare the results from the models at both locations. Prediction accuracy at Pullman varied 340 
from 0.52-0.81 for all traits with nine different GS models. The highest prediction accuracy was 341 
0.81 for KWT and KSIZE with the RF and MLP model at Pullman (Figure 2). The lowest 342 
prediction accuracies were for GPC, FASH, FPROT, and FSRW at Pullman using different GS 343 
models (Table 3). The highest prediction accuracy for each trait is bolded for comparison with 344 
other models (Table 3).  For the fourteen end-use quality traits evaluated in this study at 345 
Pullman, deep learning models, namely MLP and CNN, performed best for eight of the traits, 346 
demonstrating the potential to incorporate them into breeding programs (Table 3) for prediction. 347 
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RF and SVM performed best for three and four traits out of the fourteen, while RRBLUP 348 
performed superior for only one trait (Table 3 and Figure 2).  349 

Prediction accuracies (0.454-0.70) within the Lind dataset were lower than Pullman for all traits 350 
(Table 2). Similar to Pullman, the highest cross-validation prediction accuracy (i.e. 0.70) was 351 
obtained for KWT at Lind. The lowest prediction accuracies were obtained for GPC, FPROT, 352 
and FSRW using the Bayesian models (Table 3). Machine and deep learning models performed 353 
superior for twelve out of the fourteen end-use quality traits (Figure 2). Table 3 provides the 354 
average performance for all models, and we observed that machine and deep learning models 355 
performed superior to RRBLUP and all the Bayesian models. On average, machine and deep 356 
learning models performed 10% and 5%, superior to Bayesian and RRBLUP. Due to Bayesian 357 
model’s inferior performances and computational burden, they were not included for across 358 
location predictions (Figure 5).  359 

 360 

Forward predictions: GS model predictions were assessed to reflect the power of training size 361 
to predict the phenotypes in future years. Figures 3 and 4 show the results for forward 362 
predictions at Pullman and Lind when combined data from the previous years were used to 363 
predict the phenotypes. The X-axis represents the year for which predictions were made while 364 
training the models on all the previous year’s phenotypic data (Figure 3 & 4). We saw a gradual 365 
increase in prediction accuracy for all the traits as we kept increasing the training data size, and 366 
the same trend was observed for both locations (Figure 3 & 4). The highest improvement in 367 
prediction accuracy was observed for GPC, FPROT,  FASH, and FSDS, owing to the complex 368 
nature of these traits and demonstrating the importance of training size. Similar to cross-369 
validation prediction accuracy (Table 3), the highest forward prediction accuracy was obtained 370 
with machine and deep learning models, especially when the training data size kept increasing 371 
(Figure 3 & 4).  Bayesian models performed worst for all of the traits and at both locations, even 372 
when training data size was increased.  373 

Forward predictions in 2019 were, on average, 32% and 29% greater than the forward 374 
predictions in 2016 for Pullman and Lind (Figure 3 & 4). The highest improvement in forward 375 
predictions from 2016 to 2019 was 0.35 to 0.55 for CODI, while the lowest was 0.26 to 0.29 for 376 
KWT (Figure 3). The highest improvement was seen for MLP and CNN, demonstrating as the 377 
size of training data increases, deep learning models result in the highest improvement in 378 
prediction accuracy. Furthermore, cross-validation prediction accuracies were, on average, 34% 379 
and 32% more than forward prediction in 2019 for Pullman and Lind (Table 3, Figure 3 & 4), 380 
suggesting that cross-validation scenarios over-inflate prediction accuracies.  381 

 382 

Across location predictions: Across location predictions were performed where data from Lind 383 
was used to train the model for predicting performances in Pullman and vice versa. Owing to all 384 
the Bayesian model’s worst performance and computational burden in cross-validation and 385 
forward predictions, these models were eliminated for the across location predictions. Figure 5  386 
and Table 4 showed the prediction accuracy for all fourteen end-use quality traits when 387 
predictions were made for 2019_Pullman by models training on the whole Lind dataset and vice 388 
versa. The across location prediction accuracies were, on average, 16% and 47% less than 389 
forward and cross-validation prediction accuracies, demonstrating the importance of inclusion of 390 
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genotype by environment interaction components into the GS models for across location and 391 
environment predictions.  392 

Deep learning models performed best for across location prediction compared to RRBLUP and 393 
machine learning models (Table 4 & Figure 5). The highest prediction accuracy was 0.50 for 394 
FYELD with a MLP model for predicting 2019_Pullman (Table 4). The lowest prediction 395 
accuracies were for MSCOR, GPC, and FSV with the RRBLUP model for predicting 396 
2019_Pullman (Table 4). Out of the four models used, twelve end-use quality traits were best 397 
predicted by deep learning models under the 2019_Pullman scenario, while RF performed best 398 
for the remaining two traits (Table 4). In 2019_Lind predictions, the highest accuracy again 0.50 399 
for FYELD with the MLP model, and lowest was for GPC and MSCOR with the RRBLUP 400 
model. Similar to 2019_Pullman, deep learning models performed best for eleven out of the 401 
fourteen traits evaluated in 2019_Lind.  402 

 403 

Discussion 404 

Selection for end-use quality traits is often more difficult to conduct compared to grain yield, 405 
disease resistance, and agronomic performance, due to the cost, labor, and seed quantity 406 
requirements (Chhabra et al. 2021). Phenotyping for quality traits is usually delayed until later 407 
generations, resulting in creating small population sizes with unbalanced datasets (Battenfield et 408 
al. 2016). This study explored the potential of GS, especially machine and deep learning models, 409 
for predicting fourteen different end-use quality traits using five years (2015-19) of phenotyping 410 
data from a winter wheat breeding program. The prediction accuracy in this study varied from 411 
0.27-0.81, demonstrating the potential of its implementation in the breeding program. We 412 
observed that forward and across location prediction accuracies could be increased using deep 413 
and machine learning models without accounting for genotype by environment interaction, 414 
environment covariates, and kernel matrices in traditional GS models. Furthermore, QTLs or 415 
major genes controlling quality traits are typically already fixed in the particular market class or 416 
breeding programs; hence, GS is the best substitute for marker-assisted selection by exploring 417 
different combinations of QTL to achieve the best variety (Lorenz 2013). 418 

The broad-sense heritability of end-use quality traits evaluated varied from 0.56 to 0.93, 419 
with the majority of them having a value above 0.80. Similar heritability values were obtained by 420 
Michel et al. (2018), Jernigan et al. (2017), and Kristensen et al. (2019) for different baking and 421 
flour yield parameters of winter wheat. These intermediate to high heritability estimates 422 
suggested that most of the variation in these traits is genetic and less affected by environment 423 
and genotype by environment interactions (Tsai et al. 2020). Therefore, GS is the best option for 424 
predicting these traits due to capturing most of the additive genetic variation by the models, as 425 
observed in this study, due to intermediate to high prediction accuracy for different quality traits. 426 
We observed that only a few grain and flour assessments traits were correlated. These low 427 
correlations among most end-use quality traits strengthen the fact that no single quality 428 
parameter can assist in final variety selection, but that many are needed (Souza et al. 2002). Only 429 
three end-use quality traits, namely, GPC, FPROT and FSV, had intermediate heritability values, 430 
which were also reported in previous studies due to their complex and polygenic inheritance 431 
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nature (Hayes et al. 2017; Sandhu et al. 2021c). Similarly, comparatively low prediction 432 
accuracies obtained from these traits validated the fact for inclusion of genotype by environment 433 
interaction or environmental covariates for their prediction (Monteverde et al. 2019).  434 

Cross-validation prediction accuracies were, on average, 34% and 32% higher than 435 
forward prediction in 2019 for Pullman and Lind. The higher cross-validation prediction 436 
accuracies compared to forward and across location prediction suggests the importance of 437 
including bigger training sets, genotype by environment interactions, and environment covariates 438 
for exploiting the maximum variation to make predictions (Gouy et al. 2013). Higher accuracies 439 
obtained in cross-validation showed that most of those values are over-inflated, and attention is 440 
required before making any final decision about those large values to adopt GS in the breeding 441 
program (Crossa et al. 2014). Cross-validation approaches included training and testing sets from 442 
the same environment, thus accounting for environmental variation in prediction. Moreover, 443 
most of the lines evaluated in breeding programs are usually closely related or full sibs and 444 
confound cross-validation approaches, where full sibs might be in the same training or testing 445 
group, causing  inflation in prediction accuracies (Rutkoski et al. 2015). The relationship 446 
between individuals in the training and testing set profoundly affects model performance, with a 447 
closer relationship resulting in higher accuracy. Forward and across location prediction are the 448 
best method for studying the importance of GS implementation in the breeding program (Habier 449 
et al. 2013; Fiedler et al. 2017).  450 

Continuous increments in forward prediction accuracy with all nine models demonstrated 451 
the importance of a large training population and more environments for training the GS model 452 
(Yao et al. 2018). He et al. (2016) and Battenfield et al. (2016) observed an increase in forward 453 
prediction in spring wheat end-use quality traits. Similarly, Meuwissen et al. (2016) suggested 454 
updating the GS model with a large training population every cycle to increase prediction 455 
accuracy. They observed a rise in genetic gain for fertility, longevity, milk production, and other 456 
traits in cows by following this. Deep learning models saw the greatest improvement in forward 457 
prediction accuracy by including more training data and new environments, supporting the 458 
importance of big data for their best performance (Cuevas et al. 2019). Furthermore, across 459 
location predictions were superior by using deep learning models. This could be attributed to 460 
capturing genetic, environmental, and genotype by environment interaction components by these 461 
models without explicit programming (Montesinos-López et al. 2019c). Across location 462 
prediction can be further improved by including genotype by environment interactions or 463 
environment covariates like weather or soil parameters into the GS models to make across 464 
location and environment selections (Jarquín et al. 2014; Monteverde et al. 2019).  465 

We observed differences in model prediction accuracies under all scenarios evaluated in 466 
this study, where machine and deep learning models performed superior to Bayesian and 467 
RRBLUP models. This difference in model performance is attributed to the different genetic 468 
architecture of each trait, dependent upon the heritability and number of QTLs controlling that 469 
trait (Plavšin et al. 2021). Similar results were obtained by various other studies showing the 470 
superiority of machine learning models over conventional Bayesian models in wheat (Gianola et 471 
al. 2006; Montesinos-López et al. 2019a; Merrick and Carter 2021). Hu et al. (2019) showed that 472 
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random forest performed superior to the Bayesian and RRBLUP for predicting thousand kernel 473 
weight, grain protein content, and sedimentation volume in wheat under forward prediction 474 
scenario, further strengthening our findings that machine and deep learning models should be 475 
explored for such conditions. Furthermore, we observed that highly heritable traits in this study 476 
have higher prediction accuracy than moderately heritable traits, suggesting that in addition to 477 
genetic architecture, the heritability of a trait also plays an important role in final prediction 478 
accuracy (Huang et al. 2016; Hayes et al. 2017).  479 

Machine and deep learning models performed better than all Bayesian and RRBLUP 480 
models under cross-validation, forward, and across location predictions. The higher prediction 481 
accuracy observed due to deep and machine learning models is attributed to their flexibility in 482 
deciphering complex interactions between responses and predictors to capture different trends 483 
present in the datasets compared to only additive variation in conventional GS models 484 
(Montesinos-López et al. 2021). Deep and machine learning models explore the whole feature 485 
space during model training using different sets of neurons, activation function, and various 486 
other hyperparameters to identify the best pattern for giving the best prediction scenario 487 
compared to Bayesian models that include a pre-selected prior distribution for final predictions. 488 
Furthermore, most of the traits were predicted best by different deep and machine learning due to 489 
their respective genetic architecture of each trait. Some studies in wheat reported that all models 490 
give the same prediction accuracy irrespective of the model used while others strengthen the 491 
superiority of different models for different traits (Heslot et al. 2015; Schmidt et al. 2016). Ma et 492 
al. (2018) and Montesinos-López et al. (2019) also obtained similar results to predict quantitative 493 
traits in wheat and suggested that deep learning models should be explored due to their better 494 
prediction accuracies. 495 

It is believed that machine and deep learning models should be used on very large 496 
training datasets, which is often not possible for end-use quality traits which are evaluated at 497 
later stages of the breeding process. However, this and other studies have shown that even small 498 
dataset can give equivalent or superior performance to the traditional parametric GS models (Ma 499 
et al. 2018; Pook et al. 2020; Sandhu et al. 2021a). Moreover, Bellot et al. (2018) have used a 500 
training set of 100k individuals and showed no advantage of deep learning models over the 501 
conventional GS models. Pérez�Rodríguez et al. (2020) and Liu et al. (2019) showed the 502 
superiority of different deep learning algorithms over conventional GS models using population 503 
sizes of 268 wheat and 4294 soybean lines. These results provide evidence that training datasets 504 
play a minor role in prediction compared to the genetic architecture of the trait, but the 505 
importance of large population sizes in GS models still can’t be undermined. The main issue 506 
with using a small dataset for deep learning models is overfitting, resulting in the model’s failure 507 
to learn the exact pattern from the dataset (Montesinos-López et al. 2021). Herein, we used 508 
regularization and dropout functions to remove a certain number of neurons during model 509 
training to avoid the overfitting problem (Srivastava et al. 2014; Lecun et al. 2015).  510 

 511 

Conclusion: We assessed the potential of machine and deep learning genomic selection models 512 
for predicting fourteen different end-use quality traits at two locations in a soft white winter 513 
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wheat breeding program. Different cross-validation, forward, and across location prediction 514 
scenarios were tried for comparing different models and utilization of this approach in the 515 
breeding program. Owing to limited seed availability, time constraint, and associated cost, 516 
phenotyping for quality traits is delayed to later generations. However, the higher accuracy of 517 
prediction models observed in this study suggest that selections can be performed earlier in the 518 
breeding process. Machine and deep learning models performed better than Bayesian and 519 
RRBLUP genomic selection models and can be adopted for use in plant breeding programs, 520 
regardless of dataset sizes. Furthermore, the increase in forward prediction accuracy with the 521 
addition of more lines in the training set concluded that genomic selection models should be 522 
updated every year for the best prediciton accuracy. Overall, this and previous studies showed 523 
the benefit of implementing genomic selection with machine and deep learning models for 524 
different complex traits in large scale breeding programs using collected phenotypic data from 525 
previous years.  526 
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Table 1. Total number of lines screened across each year at two locations in Washington and phenotyped for end-
use quality traits. 
Location Year Lines screened for quality 
Lind 2015 122 

2016 114 
2017 115 
2018 71 
2019 106 

Pullman 2015 183 
2016 128 
2017 181 
2018 137 
2019 178 

Total  1335 
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Table 2. Summary of the fourteen end-use quality traits evaluated for genomic selection analysis using nine 
different prediction models. 
Trait Abbreviation Units Number 

of 
genotypes 

Mean Min Max S.E. H2 

Milling traits 
FYELD Flour yield percent 666 69.9 58.0 75.8 0.09 0.91 
BKYELD Break flour yield percent 666 48.1 33.9 56.6 0.14 0.93 
MSCOR Milling score unitless 646 85.6 69.1 98.8 0.10 0.81 
Grain characteristics 
TWT Test weight Kg/hL 666 61.8 54.6 65.9 0.06 0.92 
GPC Grain protein content percent 666 10.73 7.2 14.8 0.05 0.56 
KHRD Kernel hardness unitless 666 23.0 -10.2 52.4 0.4 0.93 
KWT Kernel weight mg 666 39.3 26.5 54.6 0.17 0.86 
KSIZE Kernel size mm 666 2.76 2.3 3.3 0.005 0.83 
Baking parameters 
CODI Cookie diameter cm 622 9.2 7.8 10.0 0.008 0.89 
Flour parameters 
FPROT Flour protein percent 666 8.93 6.3 13.0 0.04 0.57 
FASH Flour ash percent 646 0.39 0.21 0.54 0.001 0.88 
FSV Flour swelling 

volume 
mL/g 665 19.06 14.0 26.3 0.05 0.63 

FSDS Flour SDS 
sedimentation 

g/mL 666 10.1 3.5 18.3 0.09 0.92 

FSRW Water solvent 
retention capacity in 
water 

percent 666 54.18 43.4 72.6 0.09 0.85 

S.E. is standard error 
H2 is broad sense heritability 
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Table 3. Genomic selection cross-validation prediction accuracies for the fourteen end-use quality traits 
evaluated with nine different models at two locations in Washington. The highest accuracy for each trait is bolded 
under different model scenarios.  
Location Trait RRBLUP BayesA Bayes 

B 
Bayes 
C 

Bayes 
Lasso 

RF SVM MLP CNN 

Pullman FYELD 0.71 0.61 0.64 0.64 0.63 0.76 0.76 0.75 0.74 
 BKYELD 0.70 0.62 0.64 0.64 0.64 0.75 0.75 0.76 0.75 
 MSCOR 0.58 0.52 0.52 0.53 0.52 0.60 0.60 0.63 0.61 
 TWT 0.67 0.67 0.66 0.66 0.66 0.68 0.67 0.70 0.70 
 GPC 0.55 0.54 0.54 0.53 0.53 0.59 0.60 0.60 0.60 
 KHRD 0.71 0.67 0.67 0.68 0.67 0.70 0.69 0.70 0.69 
 KWT 0.76 0.77 0.75 0.75 0.75 0.81 0.80 0.80 0.75 
 KSIZE 0.77 0.75 0.74 0.75 0.77 0.76 0.76 0.80 0.81 
 CODI 0.67 0.67 0.67 0.68 0.67 0.69 0.69 0.69 0.71 
 FPROT 0.58 0.58 0.58 0.55 0.55 0.61 0.58 0.62 0.60 
 FASH 0.55 0.56 0.59 0.58 0.59 0.58 0.59 0.59 0.59 
 FSV 0.55 0.54 0.53 0.53 0.53 0.59 0.60 0.60 0.60 
 FSDS 0.67 0.67 0.66 0.66 0.67 0.69 0.69 0.70 0.70 
 FSRW 0.58 0.52 0.52 0.52 0.52 0.60 0.60 0.61 0.62 
           
Lind FYELD 0.64 0.55 0.58 0.56 0.58 0.68 0.69 0.67 0.67 
 BKYELD 0.63 0.55 0.57 0.56 0.57 0.67 0.68 0.69 0.69 
 MSCOR 0.48 0.49 0.53 0.50 0.52 0.50 0.52 0.52 0.50 
 TWT 0.61 0.61 0.60 0.61 0.60 0.61 0.61 0.63 0.64 
 GPC 0.51 0.51 0.51 0.47 0.47 0.54 0.52 0.55 0.53 
 KHRD 0.58 0.56 0.56 0.57 0.54 0.56 0.57 0.57 0.57 
 KWT 0.65 0.65 0.63 0.63 0.63 0.70 0.66 0.69 0.63 
 KSIZE 0.66 0.64 0.62 0.63 0.66 0.64 0.64 0.69 0.68 
 CODI 0.56 0.54 0.54 0.56 0.55 0.57 0.58 0.58 0.58 
 FPROT 0.48 0.48 0.46 0.46 0.46 0.51 0.53 0.53 0.54 
 FASH 0.51 0.44 0.44 0.45 0.44 0.54 0.53 0.56 0.53 
 FSV 0.48 0.47 0.46 0.45 0.46 0.54 0.54 0.53 0.53 
 FSDS 0.59 0.60 0.59 0.60 0.59 0.62 0.63 0.63 0.62 
 FSRW 0.52 0.45 0.45 0.45 0.46 0.53 0.53 0.54 0.54 
Average  0.61 0.58 0.58 0.58 0.58 0.63 0.63 0.64 0.63 
All the abbreviation are previously abbreviated in the text and Table 2. 
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Table 4. Genomic selection across environment prediction accuracies for fourteen end-use quality traits evaluated 
with four different models. 2019_Pullan_Lind denotes the scenario where 2019_Pullman was predicted using 
datasets from Lind as the training set and vice versa for 2019_Lind_Pullan. The highest accuracy for each trait is 
bolded under different model scenarios. 
Location Trait RRBLUP RF MLP CNN 
2019_Pullman_Lind FYELD 0.41 0.48 0.50 0.46 
 BKYELD 0.31 0.38 0.38 0.40 
 MSCOR 0.27 0.30 0.30 0.30 
 TWT 0.32 0.37 0.38 0.38 
 GPC 0.25 0.30 0.31 0.33 
 KHRD 0.32 0.37 0.36 0.38 
 KWT 0.34 0.37 0.36 0.36 
 KSIZE 0.34 0.38 0.38 0.40 
 CODI 0.40 0.45 0.46 0.46 
 FPROT 0.35 0.40 0.40 0.41 
 FASH 0.40 0.41 0.41 0.42 
 FSV 0.27 0.36 0.39 0.36 
 FSDS 0.36 0.44 0.43 0.41 
 FSRW 0.36 0.39 0.41 0.42 
      
2019_Lind_Pullman FYELD 0.43 0.47 0.50 0.49 
 BKYELD 0.31 0.40 0.41 0.40 
 MSCOR 0.28 0.29 0.31 0.31 
 TWT 0.31 0.36 0.35 0.37 
 GPC 0.27 0.30 0.28 0.31 
 KHRD 0.33 0.33 0.38 0.37 
 KWT 0.34 0.37 0.38 0.37 
 KSIZE 0.35 0.39 0.40 0.40 
 CODI 0.42 0.44 0.46 0.46 
 FPROT 0.34 0.42 0.42 0.40 
 FASH 0.41 0.42 0.42 0.40 
 FSV 0.30 0.38 0.38 0.42 
 FSDS 0.38 0.41 0.40 0.40 
 FSRW 0.37 0.41 0.41 0.43 
Average  0.34 0.38 0.39 0.39 
All the abbreviation are previously abbreviated in the text and Table 2. 
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797 

Figure 1: Phenotypic correlation between different end-use quality traits evaluated across two locations in798 
Washington and five years using best linear unbiased predictors. All the abbreviation are previously abbreviated in799 
the text and Table 2.  800 
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803 
Figure 2. Genomic selection cross-validation prediction accuracies for fourteen end-use quality traits evaluated with804 
nine different models. Results are provided separately for both locations and each trait is separated with facets. 805 
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810 

Figure 3. Genomic selection forward prediction accuracies for Pullman, WA, when all datasets from previous years811 
were included to predict fourteen end-use quality traits using nine different models. The x-axis represents the year812 
for which predictions were made using previous years as training set. All abbreviations are previously abbreviated in813 
the text and Table 2.  814 
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821 
Figure 4. Genomic selection forward prediction accuracies for Lind, WA, when all datasets from previous years822 
were included to predict fourteen end-use quality traits using nine different models. The x-axis represents the year823 
for which predictions were made using previous years as the training set. All abbreviations are previously824 
abbreviated in the text and Table 2.  825 
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831 

Figure 2. Genomic selection across environment prediction accuracies for fourteen end-use quality traits evaluated832 
with four different models. 2019_Pullan_Lind denotes the scenario where 2019_Pullman was predicted using833 
datasets from Lind as training set and vice versa for 2019_Lind_Pullman. Results are provided separately for both834 
locations and each trait is separated with facets. 835 
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