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GraFT: Graph Filtered Temporal Dictionary
Learning for Functional Neural Imaging
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Abstract—Optical imaging of calcium signals in the brain
has enabled researchers to observe the activity of hundreds-to-
thousands of individual neurons simultaneously. Current methods
predominantly focus on matrix factorization and aim at detecting
neurons in the imaged field-of-view, and then inferring the
corresponding time-traces. The explicit locality constraints on
the cell shapes additionally limits the applicability to optical
imaging at different scales (i.e., dendritic or widefield data).
Here we present a new method that frames the problem of
isolating independent fluorescing components as a dictionary
learning problem. Specifically, we focus on the time-traces, which
are the main quantity used in scientific discovery, and learn
the dictionary of time traces with the spatial maps acting as
the presence coefficients encoding which pixels the time traces
are active in. Furthermore, we present a novel graph filtering
model which redefines connectivity between pixels in terms of
their shared temporal activity, rather than spatial proximity.
This model greatly eases the ability of our method to handle
data with complex non-local spatial structure, such as dendritic
imaging. We demonstrate important properties of our method,
such as robustness to initialization, implicitly inferring number
of neurons and simultaneously detecting different neuronal types,
on both synthetic data and real data examples. Specifically, we
demonstrate applications of our method to calcium imaging both
at the dendritic, somatic, and widefield scales.

Index Terms—dictionary learning, sparse coding, calcium
imaging, two-photon microscopy, re-weighted ¢,

I. INTRODUCTION

Functional optical imaging has become a vital technique
for simultaneously recording large neural populations at single
cell resolution hundreds of micrometers beneath the surface
of the brain in awake behaving animals [1]-[3]]. This class of
techniques has become quite extensive, including one- two-
and three- photon imaging [1f], [4], [5], imaging at dendritic,
somatic and widefield scales [1]], [[6]-[8]], and imaging of
various indicators of neural activity, including calcium, voltage
etc. [9]-[11]. Of these methods, calcium imaging (CI) via
two-photon microscopy has emerged as a dominant modality
providing a practical method to optically record the calcium
concentrations in neural tissue that is intrinsically representa-
tive of neural activity [[1]-[3].
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Given the large, and ever-growing, size of CI datasets, recent
advances in automated CI analysis have sought to remove
the need for traditional manual annotation of such data. To
date, automatic analysis of CI primarily focused on factoring
the recorded video into a two sets of variables: the spatial
proﬁle representing the area that a neuron occupies, and the
corresponding temporal fluorescence activity traces. Novel ex-
tensions, such as volumetric imaging [12], [13]] and widefield
imaging [8]], [[14], [[15]], promise to even further increase the
dimensionality of such data and the spatiotemporal statistics
that must be leveraged for accurate demixing.

As somatic imaging is the most prevalent, CI demixing algo-
rithms have largely incorporated spatio-temporal regularization
based on the statistics of somatic components to improve
cell-finding. Specifically, somatic components are often well
localized with sparse activity. Some methods, such as deep
learning based methods [16[]-[18]], active contours [19]], and
spectral embeddings [20]-[22]], include these statistics implic-
itly. Other methods, largely based on regularized non-negative
matrix factorization, explicitly include this information in
the optimization cost function [23]]-[28]]. These models are
often prone to overfitting noise and motion artifacts, so the
additional regularization terms capturing the spatial cohesion
and sparse firing are necessary for interpretable results [23],
[27]-[31].

More recently, variants of optical imaging have aimed to
expand the scope of accessible brain signals by imaging
both larger and smaller neural structures. At one end of
this spectrum, zooming in enables the imaging of dendritic
and spine structures, which captures how individual neurons
communicate [32]], [33]]. Dendritic imaging, while also having
sparse temporal statistics, can have long, thin spatial profiles
that span the entire field-of-view (FOV). At the other end,
cortex-wide (i.e., widefield) imaging can be achieved at res-
olutions too coarse to isolate activity signals of individual
neurons, but instead can capture brain-wide activity patterns
in freely moving animals [14]. At both scales, the spatial
statistics of the sought-after components differ significantly
from somatic imaging, and require new approaches that can
be seamlessly applied across modalities.

Here we propose two major changes to improve the accu-
racy and scope of inferring fluorescing components from CI
data. First, following our recent work [34]], we refocus the goal
of the problem onto finding the time-traces of each component.

'We prefer to use the terminology “spatial profiles” over the alternate term
“Regions of Interest” (ROIs), as we believe it more accurately captures the
physical nature of these shapes as 2D projections of 3D anatomical shape.
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Mathematically, we reorient the matrix factorization model
formulation from

YT = A®T + ET, (1)

where Y € RT*NaNy s the N, x N, pixel FOV sampled
at T time-points, A € RN+NyxM and & ¢ RT*M are the
M spatial profiles and corresponding time-traces for each
component, and E € RT*N«Ny i jj.d. Gaussian sensor
nois to the model’s transpose

Y =dAT + E. )

The goal for this step is not to change the model, as in
fact both formulations are trivially identical, however we
aim to change the philosophy with which calcium imaging
is viewed, putting the emphasis on the time-traces which
are the critical component to learning how neural activity is
linked to behavior, stimuli, learning, etc. This philosophical
shift strongly recommends an algorithmic shift to a dictionary
learning paradigm, where we treat the time-traces as the
dictionary. Furthermore, the spatial regularization becomes
a natural extension, correlating the dictionary decomposition
between pixels [35].

The second contribution is generalizing the rigid spatial grid
of the FOV to a more flexible graph model over the pixels.
Th additional graph modeling layer serves to remedy the fact
that in many imaging scales, the typical assumptions of co-
localized spatial profiles (i.e., neighboring pixels are likely
composed of similar components) no longer holds, e.g., in
dendritic imaging (Fig. [T]A). The graph essentially redefines
what “neighborhood” means, pulling together, or moving
apart, pixels based on their temporal correlation structure and
not their spatial adjacency. The graph-based regularization is
used for deciding how the sparse coefficients (i.e., the spatial
maps) are correlated as a function of the pixel-wise temporal
correlations.

Taken together, these two complementary changes give
us a flexible new tool for automated CI analysis: Graph
Filtered Temporal (GraFT) dictionary learning. The graph
creates a data-driven space where the correlation of dictionary
coefficients over space during dictionary learning becomes a
natural regularizer no matter what the scale of imaging. While
we motivate and apply this method here to optical imaging
data, the method itself is very broad and falls into the general
class of graph-regularized dictionary learning (e.g., [36], [37]).
We thus first present the algorithm in its most general form,
followed by demonstrations both in simulated data, and in real
recordings of somatic and dendritic data.

II. BACKGROUND
A. Matrix factorization for CI data
The predominant form of automated calcium imaging anal-

ysis is regularized matrix factorization [23], [27]-[29]. Fol-

2While the noise in CI is actually not Gaussian, at higher photon counts
the noise is more Gaussian-like, and we, as many others, have found that
Gaussian noise assumptions a practical simplification.

lowing the model of Equation (I), these methods aim to solve
the cost function

{A, ) = argmin [V — AST|% + RA(A) + Ra(®),

where here R 4(A) and Ra(P) represent appropriate regu-
larizations that can vary between methods, and often include
terms such as the component norms, number of components,
spatial and temporal sparsity, and spatial cohesion, as well
as explicit modeling of the calcium dynamics [27]]. As di-
rect optimization is often difficult for problems of this size,
alternating descent type algorithms are often employed, i.e.,
iteratively solving

A|® = arg mjn YT — A®T % + Ra(A),
DA = argmin | Y7 - ADT |3 + Re (D).

These methods can often be susceptible to noise and are, for
example, particularly sensitive to initialization procedures and
pre-processing (e.g., motion correction, baseline subtraction,
variance normalization etc.). We instead propose to leverage
a dictionary learning (DL) framework.

B. Dictionary learning

DL is an unsupervised method aimed at finding opti-
mal, parsimonious representations given exemplar data [38]],
[39]. Consider the model in Equation and the equivalent
Gaussian likelihood model of the data given the coefficients
A, e, Y|®, A ~ N(®AT 5%I), and assume a sparsity-
inducing prior distribution p(A) over the coefficients A.
The invoked sparsity encourages learned representations that
parsimoniously represent the data, i.e. each data-point can
be reconstructed using only a small number of dictionary
elements. DL in its purest form seeks to infer only the
dictionary ® via maximum likelihood, marginalizing over the
coefficients

® =arg mgxp(Y|<I’) = arg mgx/p(Y|A, ®)p(A)dA.

This marginal maximum likelihood optimization involves an
often intractable integral. In particular, the prior p(A) is
often chosen to be a i.i.d. Laplacian distribution p(A;;) =
(\/2)e~ Al To bypass this difficulty, variational methods
are often employed to iteratively solve this optimization [40]-
[42]. For DL, this often takes the form of alternatively solving
for the sparse coefficients of a subset I' of the data, i.e.,

{a}r = arg min p({a}r|{y}r, 3), 3)

followed by the equivalent of a stochastic gradient descent
over ® using this subset of estimated coefficients

=&+ Vs [log(p(ar| {y}r. )] @

for some step size p. These steps are often termed the
“inference” and “learning” steps, respectively, and stem from
an interpretation as inference of the maximum marginal like-
lihood via an expectation-maximization procedure [40]-[42].
Traditional sparse coding assumes this model with Dirac-delta
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Basic concept of graph-based dictionary learning for calcium image analysis. A: Optical imaging of different neural components at different scales

requires having flexible spatio-temporal regularization. B: In calcium imaging videos, distant pixels might be highly correlated while neighboring pixels might
be very different. For example consider the depicted example of two crossing dendrites. Any technique based on local averaging to extract useful signals is
thus prone to corruption by competing signals. By reorganizing the pixel relationships into a data-drive graph, local averaging (now defined by the graph)
can make much more judicious use of temporal correlations between pixels and extract better signal estimates. C: The graphical model of GraFT dictionary
learning organizes variables into three layers: a set of variance parameters interconnected by the data-driven graph W, a set of sparse coefficients conditioned
on the parameters, and the observed fluorescence video which is linearly generated by the coefficients through the dictionary ®. D: As a matrix factorization,
our model emphasizes the role of time-traces within the graph-based framework. The model thus focuses on pixel-wise decomposition into a dictionary of

component time-traces.

posterior approximations and an exponential (Laplacian) prior
resulting in the more commonly known inference/learning
steps of

@y = argmind |llys — @ail + Aa

el

$+MZ[(y7

el

3 = - %ai)aﬂ . )

The capabilities of DL to learn generic features that effi-
ciently represent data have found use more generally in appli-
cations beyond the original image processing applications [38]],
[43]]. For example, in hyperspectral imagery (HSI) [44], [45],
DL has been used to identify material spectra directly from
image cubes in an unsupervised manner.

Previous work has also explored, to an extent, the applica-
tion of DL to CI data [29], [46], [47]. Current applications
focus on learning spatial dictionary elements [29]], [46], [47].
These applications include spatial generative models based on
convolutional sparse block coding [46], extensions of convo-
lutional sparse coding to video data with non-uniform and

temporally varying background components [47]], and the DL
of spatial components via iterative merging and clustering [29].

All these methods essentially isolate spatial dictionaries
to lean neuron shapes, then using those shapes to find cor-
responding time courses. In our proposed method, Graph-
Filtered Time-trace (GraFT) dictionary learning, we instead
define the critical features as temporal features. To still lever-
age the important spatial information in a flexible way, we
replace the spatial filter in spatial filtered sparse coding of [34]],
[48] with a graph-based diffusion filter.

C. Sparsity-based Stochastic Filtering

The subselection of points I' is often uniformly at ran-
dom and thus DL does not inherently take into account
relationships between exemplar data points. Recent models,
however, provide new tools to modify the inference stage
to take into account that some data-points may have similar
decompositions [35]], [48]-[S50]. One such method, termed Re-
weighted ¢; Spatial Filtering (RWL1-SF) uses an auxiliary set
of variables, A, to correlate the probability of coefficients in
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neighboring vectors being active [35]], when applying DL to
imaging / HSI data. Based on the reweighted-¢; extension
of basis pursuit denoising (BPDN) [51f], [52]], this method
alternates between updating A and a as

{a}r =

o~

argmin > [ly; — a3 + | ding(R)auls
Tier

{a
P S— (©)
B+ |aik| + |:|K>)<Ak|:|

>)

)
i
where K x ﬁk is the 2D convolution between a kernel K and
the coefficient image for the k*" dictionary coefficient Aj,.
This convolution defines the local influence of the neighboring
coefficients on the ‘" data vector’s decomposition weights.
While previous work naturally fits into this deconvolution
interpretation of a neighborhood [34], [35], in this work we
expand on this idea and redefine what it means for two pixels
to be “close”, using the formalism and tools of data-driven
graph constructions and manifold learning.

D. Graph Sparse Coding

A prevalent assumption in high-dimensional data analysis
is the manifold assumption, according to which in many
real applications the data, while being observed in a high-
dimensional feature space, actually lies on or near a low-
dimensional manifold embedded in the high-dimensional am-
bient space [53[]-[55]]. Under this assumption, when learning
a new representation for data, two datapoints should have a
similar representation if they are intrinsically similar, i.e. close
to one another on the manifold. The manifold assumption has
played an increasing role in dictionary learning via graph regu-
larized sparse coding (GRSC) [56[-[60], where the underlying
manifold is represented in the discrete setting as a graph on
the data-points. Formally the graph is denoted G = (V, £, W),
where V are the nodes in the graph, £ is the set of edges
connecting the nodes, and W is the undirected weighted
adjacency matrix for G, with W;; > 0 capturing the degree
of similarity between nodes ¢ and j. Let D be a diagonal
matrix whose diagonal elements D;; = d; = > j W, are the
node degrees of the graph. The symmetric graph-Laplacian is
defined as L = D — W, and is used in the sparse coding
inference step to ‘“encourage” datapoints who are close in
the graph to employ similar representations with respect to
the dictionary. For example, the coefficient inference objective
in [58] is given by

A =argmin||Y —®A|2+ AMla;|l1 +uTr(ATLA), (7)
g{A}II 12 z; @il + pTr( )

where Tr(ATLA) = %Z” Wii(a; —a;)%

In image processing applications, GRSC enables incorporat-
ing non-local structure [61] by considering similarities in the
high-dimensional feature domain as opposed to only relying
on local spatial information. In this paper, we propose a new
sparse coding solution, which adapts re-weighted ¢; spatial
filtering [35] to a graph-based filter. Instead of the symmetric
graph Laplacian, we use the normalized random-walk kernel
K = D 'W . This kernel allows us to replace the spatial

convolution kernel with diffusion along the data-driven graph
constructed on the pixels. This kernel can be interpreted as
a non-local averaging filter [62]. Next we describe the math-
ematical model and derive the algorithm that accomplishes
these tasks.

III. GRAFT DICTIONARY LEARNING FOR FUNCTIONAL
IMAGING

As DL was initially presented in the image processing
literature, early applications to CI focused on learning spatial
features indicative of fluorescing cells and processes [29],
[46], [47]. The benefit to learning a set of temporal dictionary
vectors instead is that we directly model the main objects of
interest to science: the neural activity traces. To infer these
traces we consider the hierarchical model in Figure [ID, which
describes the statistical relashonships between the time-traces
®, data Y, presence coefficients A, weights A, and data
graph K. Mathematically we can define this model via the
conditional probability distributions

vi|®,a; ~ N(@ai,azI) )
® ~ MN(0,1I,3,) 9
air) K, A~ Lap ([K(Ag)];) (10)
A~ Gamma(c, ). (11)

Starting at the top, Equation (8) places a isotropic mean-zero,
variance 05 Gaussian likelihood on the fluorescence trace at
each i*" pixel given the temporal dictionary and coefficients.
Next, in Equation , we place a mean-zero Matrix normal
prior over the dictionary. The between-dictionary covariance
matrix X both penalizes unused time-traces (similar to [63]])
and penalizes time-traces that are too similar. The prior over
the coefficients (Eqn. (I0)) takes the form of a sparsity-
inducing Laplacian distribution where the parameter for the
kth coefficient at pixel i is given by applying the i element
of the function K (Ay), [KK(Ag)];. This function applies the
data-driven graph information encoded in the K(-) to Ay,
the set of all weights for coefficient k& across the entire
image, to account for the correlations between data vectors at
different pixels. The weights themselves, A, follow a conjugate
Gamma hyper-prior with parameters « and 6, comparable
to previous work [34], [35]. Our model represents a GraFT
dictionary-based linear generative model where we can use
a DL approach to learn the time-traces and graph-correlated
sparse coefficients.

Inference under the above model can be complex and
computationally intensive. We thus break down inference into
three main stages: graph construction, coefficient inference and
dictionary update. These stages are performed sequentially,
as outlined in Algorithm [I| in an alternating minimization
procedure. At a high level we are iterating over Equations (3)
and (@). The main differences are a) we infer the coefficients
for all data-points simultaneously, b) we replace the i.i.d.
model with the graph-correlated model above, and c) we
optimize the dictionaries completely at each iteration, rather
than taking a single gradient step.
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A. Re-weighted {1 Graph Filtering (RWLI-GF)

The first sub-step needed is to infer A under the model of
Equations (8)-(TT) given a fixed dictionary ®. This involves
expanding the idea of spatially filtered sparse inference (6)) be-
yond the previous definition of neighborhood. Mathematically,
we are moving from a convolutional kernel-based function
K % A to the more general function K (Aj) that defines
the influence of the neighboring coefficients on the i*" data
vector’s decomposition weights for each dictionary index k.
This optimization requires a definition of neighborhood, which
previous convolution-based weights define using the spatial
distance between pixel locations [34]], [35]]. In general appli-
cations, beyond imaging, it is difficult to define a universal pre-
set sense of neighborhood, prompting the use of data-driven
graph constructions. Under this formulation, K (Ak) KA,
which is the result of multiplying the graph matrix K with a
vectorized coefficient map / spatial map of the k" component.
This can be interpreted as applying a single graph diffusion
step to the coefficients.

There are multiple ways to construct a data-driven graph.
Here we construct a graph on the pixels using k-nearest
neighbors graph with the Euclidean distance between the time-
traces y;. We calculate the weighted graph affinity matrix W
using a Gaussian kernel for similarity, and set

Wiy = exp { —|ly — /0% |

if y; is among the k nearest-neighbors of y;; or vice-versa.
The bandwidth ¢;; = o,0; is set to be the self-tuning
bandwidth [64], which is a local adaptive bandwidth. Then
the diffusion graph filter is calculated by normalizing the rows
of W as K = D™'W, where D is a diagonal matrix and
Dji =%, W;

Given the filter, we can solve the maximum likelihood
inverse problem defined by Equations (8), for A
via minimizing the negative log-likelihood

(12)

A = arg min : log (p(Y'|A, i’))}
= arg mf’{n —log </p(Y|A, P, A)p(A) d)\>
= arg mf’{n —log (p(Y|A, ®))

~log ( / P(AN)PA) d)\> ]

While exact integration of the above integral (marginalizing
over A) can be very well approximated by the closed form

a(|[KAi| +8)""
/p(a1k|>‘)p(>‘) dA 2(‘azk| + HKAk]z| ¥ B)OH_l’
this prior results in a non-convex optimization negative log-
likelihood cost function.

The sparse coding solution thus iteratively solves a weighted
LASSO that can be interpreted as an approximation to a
variational expectation-maximization (EM) optimization of the
true ML problem [48]], [52]]. In this EM scheme, which we
term Re-weighted ¢; Graph Filtering, the weights are updated

at each algorithmic iteration based on smoothing with the
graph-based kernel:

a; = argmln ||yz ‘I‘a|\2—|—z}\zk|azk| (13)
k
5

T S el + KA

(14)

The weights A in RWL1-GF incorporate spatial information
into per-pixel solutions by sharing second-order statistics. Note
that this spatial information is non-local, thus handling both
components with compact spatial support such as cell-bodies,
in addition to far ranging spatial components such as dendrites.

B. Updating the temporal dictionary

The second step in the dictionary learning procedure is to
update the time-traces themselves with respect to a learning
rule. We use the above probabilistic model to specify an
appropriate cost function. In particular, the matrix normal
prior induces two regularizing terms to the cost. The first
penalty involves the Frobenious norm over ®, essentially
penalizing excess activity. This term should, and we show
in later experiments that it does, remove unneeded time-
traces from the dictionary by setting them to zero. Thus the
exact number of components need not be known a prior and
can be modified automatically The second penalty, ||®7® —
diag(®T®)||sq0 = > itk &7 ®,, is a function of the intra-
dictionary correlanon’ ThlS penalty ensures that time-traces
are not learned with multiple times with minute differences
stemming from subtle nonlinearities or noise. These terms
come together in the cost function

= in||y —®A|> ®|2
arg min | e +nll®lr as)
+ rYQH'I’T@ - diag(@Tq,)Hsava

where the parameters ~y; and . trade-off these penalties.
These parameters have a direct link to the covariance matrix
34 in Equation (O) when X4 is the sum of the identity plus
a rank-one matrix.

We note that in our formulation we are optimizing the entire
dictionary completely at each iteration. This is because we
are inferring all pixels mixing coefficients at each iteration
in order to maximally utilize the complex graph connec-
tivity. We thus lose some of the robustness imbued by a
stochastic gradient descent procedure, and therefore modify
Equation to ensure stable convergence. Specifically, we
include a continuation term that penalizes the change in the
estimate ® between updates. This term prevents too large a
deviation in the dictionary between iterations, smoothing out
the cost landscape and allowing for more robust solutions.

3In this definition we use the sav or sum-absolute-value which is the direct
analog of the ¢ norm for vectors, ie., ||A|sav = Zij |A;j|. This is
necessary as the ||A||1 has an alternate technical definition as the maximum
£1 norm of all the columns max; », |A;j|
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Mathematically, the update for the estimate at the t* iteration
®? is given by
@' —argmin|[Y - @A|% + 7|2/
20 (16)

+ 72| 8T ® — diag(®T @) sun + 3] ® — B2,

where 73 is the parameter determining the rate of change in
the dictionary over iterations.

C. GraFT Dictionary Learning

The full algorithm incorporating all these elements — Data-
driven graph correlations, re-weighted ¢; coefficient estima-
tion, and robust, regularized time-trace learning — comes
together in Algorithm[I] Specifically, we initialize with a graph
constructed from the raw data temporal correlations and a
randomly generated dictionary. The algorithm then iterates be-
tween using the new RWLI1-GF algorithm to find approximate
presence values, and the dictionary learning optimization of
Equation (T6). The final output is the learned dictionary ®.

Algorithm 1 GraFT DL
Input: data Y, parameters {B:&,a,6}
Initialize ®° randomly
Learn the graph W via Equation (12)
Normalize K = D~'W
while not converged do
for all voxels do
Initialize X\;j, = 1V{i, j, k}
for [ < 3 do
Update a;; via Equation (I3)
Update \;;; via Equation (14)
end for
end for
Update @ via Equation (T6)
end while

IV. RESULTS

To test GraFT we assess its performance both on simulated
benchmark data, as well as apply GraFT to multiple datasets
across all scales of optical imaging. Specifically, we assess the
utility of GraFT for somatic, dendritic and widefield data.

A. Implementation considerations

A number of practical considerations arise in our method,
specifically initialization, selecting the number of neurons, set-
ting the graph connectivity W, and parameter selection. First,
we initialize ® with random values, demonstrating a reduced
sensitivity to initialization than other approaches [27]]. Second,
the number of dictionary components should be set to more
than the expected number of neurons and background compo-
nents. The sparsity and Frobenius norms serve to decay unused
components (implicitly estimating the number of neurons), but
cannot add new elements. To construct the graph pairwise
affinity matrix W, we use a k-nearest neighbor construction.
Each pixel is connected to k£ = 48 nearest neighbors and the
affinity matrix is symmetrized. For parameter selection, we

manually adjusted parameters using intuition build from prior
work in RWL1-based algorithms [34], [35], [48]. The full set
of parameters to set are Ag, A1, A2, A3, &, and 3. We find
that for appropriately normalized data (normalized to the the
median pixel value across the entire dataset), Ao = A3 = 0.1
provide accurate results across all datasets. Similarly we find
that \; = 0.2 appropriately penalizes extra components. For
the RWL1 parameters, we set £ = 2 and 8 = 0.01 for all
experiments. This choice sets a maximum cap of 200 for
the per-element sparsity parameter modulator, and enables the
weights to meaningfully vary as =~ ¢~ for small values ~ 1.
Ao is the main parameter we find necessary to vary and in
our experiments we manually tune this parameter in the range
0.001 < Ao < 0.1.

Operating on the entire dataset simultaneously can often be
time-consuming. Thus, for somatic datasets we follow similar
procedures in other pipelines whereby the full field-of-view is
partitioned into smaller, overlapping spatial partitions [27]], of
size ~ 50 x 50 pixels with 5 pixels overlap between partitions.
The number of dictionary atoms in each partition is set to be
on the order of 5-10. Each partition can be analyzed in parallel,
and the results are merged together to ensure that components
present across partitions are appropriately combined. Merging
is accomplished by weighted averaging of highly correlated
dictionary components (> 0.85), and then recalculating the
spatial maps over all pixels.

A final consideration is the pre-processing that most al-
gorithms use to denoise data before analysis. Often spatial
and temporal low-pass filtering is performed. To maintain
high-frequency temporal content, we instead denoise each
pixel’s time-trace independent of all other pixels with a simple
wavelet-based Block James-Stein (BJS) [65] denoising in a 2-
level, ‘sym4’ wavelet decomposition. With these aspects in
mind, we implemented our code in MATLABH

B. NAOMi Simulated two-photon calcium imaging

To test our framework, we use recent advances in highly-
detailed biophysical simulations that produce realistic two-
photon imaging data based on computational models of
anatomy and optics, i.e., the NAOMi simulator [31]. As the
anatomy and time-traces are all simulated, the full spatio-
temporal ground truth is known, including voxel/pixel occu-
pancy of neurons (the spatial profiles of every fluorescing
component), and the changes in fluorescence over time (each
component’s time-trace). Rather than being “drawn from the
generative model”, this data is generated by sampling 3D vol-
umes of neural tissue and calcium activity, and then simulating
the optical propagation and sampling that generates the CI
data.

We applied GraFT to a 500 gm x500 pm simulated field-of-
view with 20,000 simulated frames. The simulation framerate
was 30 Hz, and the spatial resolution was 1 pm/pixel. The
resulting found components were compared to results using the
three most popular algorithms for ROI extraction, CNMF [27]],

4Code implementation is available at https:/github.com/adamshch/GraFT-
analysis
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Suite2p [26]], and PCA/ICA [23]]. As a further point of com-
parison, we compute the profile-assisted least-squares (PALS)
time-traces based on oracle knowledge of the spatial maps.
PALS uses the ground-truth spatial maps given by the NAOMi
simulation, AT and computes the least-squares time traces as

D= argmqi’n Y — AT®|%

While PALS is not ground truth (the ground truth traces are
independently provided by the NAOMi simulation), the traces
PALS provides are an approximate baseline of per-neuron
SNR and the general visibility of neurons in the dataset sans
any regularization. We note, however, that they are not oracle
traces, as PALS leverages no regularization or significant pre-
processing (e.g., the denoising present in all other algorithms).
When comparing the found components to the ground-truth
traces, we find that GraFT identifies 434 unique neural com-
ponents (i.e., including somatic and dendritic components),
37.76% more true positives than the next best performing
algorithm, CNMF, that found 303 unique neurons, and even
19 (4.58%) more than the PALS time-traces.

C. Two-photon population calcium imaging

In addition to assessing GraFT on simulated data, we
furthermore test GraFT on data from the NeuroFinder [66]
dataset. NeuroFinder data includes two-photon calcium imag-
ing at the somatic scale, along with manually annotated spatial
maps for neurons. We note that while these labeled spatial
maps are provided, they are limited in their use as ground
truth. Some neurons are visible but do not fire and are thus
functionally unidentifiable, while others active neurons are
not labeled. In addition, other clearly fluorescing components
might not be labeled as they may represent dendritic (apical or
otherwise) components. We ran GraFT on a 445 pm x 445 ym
field of view in area vS1 of mouse visual cortex, recorded at
8 Hz. For comparison we ran Suite2p, optimizing parameters
of both algorithms manually.

In total, GraFT and Suite2p identified 150 and 103 com-
ponents respectively. GraFT and Suite2p found 46 and 48 out
of 56 labeled components respectively (Fig. BJA-C). GraFT,
however, did identify a number of extra neuronal components,
including somas, dendritic segments and apical dendrites.
Further inspection revealed that movie frames during active
bursts in the learned dictionary time-traces matched the spatial
profiles, verifying that these components do represent real
fluorescing components in the data (Fig. 3D). Identifying these
additional components individually removes their localized
activity from the soma-adjacent areas, improving neuropil
estimation and subtraction.

Finally, we noted that some somatic components appeared to
be found in duplicate. We explored these cases and discovered
that GraFT was, in fact, separating the cytoplasmic and nuclear
portions of these cells (Fig. BE). When plotted together, the
time-traces for each pair follow closely together, with a muted
and delayed response for the nuclear component relative to the
cytoplasmic. Thus, GraFT is able to partition even very similar
activity patterns, revealing potentially interesting differences
within individual cells.

D. Sparsely labeled dendritic imaging

One of the principle benefits of GraFT is to enable the
extraction of non-compact components in the data. While
somatic-scale imaging contains some dendritic components,
dendritic-specific imaging at high zoom levels drastically
changes the spatial statistics of the data. We thus next apply
GraFT to dendritic imaging of both sparsely and densely
labeled tissue. First we use the sparsely labeled data to
assess the accuracy of GraFT via comparisons to anatomical
measurements.

We imaged dendritic calcium signals in an awake sparsely-
labeled mouse using a Bruker 2P-Plus microscope with an
dual-beam Insight X3 laser (Spectra Physics), equipped with
an 8 kHz bidirectional resonant galvo scanner and a Nikon
16X CFI Plan Fluorite objective (NA 0.8). Fluorescence
was split by a 565LP dichroic and filtered with 525/70 and
595/50 bandpass filters before collection on two GaAsP photo-
multiplier tubes (Hamamatsu H10770PB-40 and H11706-40,
respectively). We imaged a square region 375 pm per side,
768 x 768 pixels. Frames were acquired at 20 Hz and 13-bit
resolution. Illumination was centered at a wavelength of 940
nm, and laser power exiting the objective was in the range of
30-40 mW. PMT gains were set to minimize saturated pixels
during calcium transients.

We supplemented the functional imaging with anatomical
imaging to provide ground truth for assessing the GraFT
decompositions. Immediately following calcium imaging ex-
periments, we anaesthetized the mouse with 1-2% isoflurane
and placed a heating pad underneath the mouse. We then
recorded large field-of-view volumetric z-stacks (750 pm
square, 15361536 pixels, 5 micron axial spacing) of mRuby?2
fluorescence by illuminating at 1045nm using the galvo
scanners at a 10 microsecond dwell time. This z-stack was
manually traced, to recover a depth tracing of the dendrites
of each of the individual neurons in the FOV, which serves as
spatial ground-truth for assessment. The depth tracing reveals
6 neurons, 3 of which were active in the functional imaging
data and identified by GraFT.

As a preprocessing step, we apply a structural mask to
the imaging video which yields 91,737 pixels in the FOV.
The mask was constructed by thresholding a mean projection
of the mRuby2 fluorescence channel from the functional
imaging session. For sparsely labeled data, GraFT identified
10 distinct components in the data (Fig. E]A,B). Seven of these
components are well localized with distinct firing patterns, and
three are baseline/background components. Comparisons to
the anatomical image stack show that all found components
match well to at least one of the identified neurons in the
volume (Fig. @C). Interestingly, some components appeared
to capture different spatial portions of the same dendritic
branch. We further examined this effect and noted that these
components are capturing the same anatomical object but at
depth difference of approximately 10-15 pm (Fig. @D). Thus
GraFT is identifying the same anatomical component, but
modulated due to the slow axial drift in the plane of imaging.

Since GraFT does not impose that the spatial maps need to
be contiguous or spatially connected, we are able to extract
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Fig. 2. Assessment of GraFT on anatomically-based calcium imaging simulations and comparison to current methods. A: The number of unique neurons
in the dataset found with each method including PALS, which represents the SNR of each time-trace. B: Histogram of temporal correlations between the
time-traces of found neurons and the ground truth traces demonstrates that the GraFT dictionary better matches the ground-truth, compared to other methods.
C: GraFT finds more complete spatial profiles for neurons also identified by other methods. In particular dendrites are better identified. D: Time-traces for
neurons not found via other methods still correlate well with ground truth traces, but have low SNR. E: Neurons found only with GraFT tend to have less

localized spatial profiles.

disconnected segments of the same dendrite within a single
spatial map. In comparison, Suite2p extracts 1,457 ROIs (note
that we removed all ROIs Suite2p found that did not overlap
with the structural mask used for GraFT). Of the extracted
ROIs approximately 650 correspond to the 3 active neurons in
the FOV, with about 200 ROIs matching each neuron (Fig. fF-
F). GraFT thus easily enables studying the dynamics of the
dendrite as a whole, whereas Suite2p requires post-processing
by which ROIs need to be clustered together based on temporal
correlations in order to study the dendrite as whole.

E. Dense dendritic imaging

While sparse imagine provides the possibility of compar-
isons to anatomical imaging and tracing, we are also interested
in the ability of GraFT to disentangle components in images
of tissue with a higher density of labeled dendrites. We thus
run GraFT on a dataset of densely labeled dendrites using
the same imaging parameters as the sparse dataset. Overall
GraFT extracted 60 individual components from the dataset,
including many with spatial maps stretching across the entire
field-of-view (Fig. PJA). In comparison, Suite2p extracted
approximately 800 ROIs (results not shown). The time-traces
for the GraFT components are more uniformly firing over the
span of the imaging session, indicating a lack of axial drift that
was noticed in the sparse imaging data (Fig.[5B). Furthermore,

these components are significantly diverse in their time-traces,
as can be seen in the correlation matrix between time traces
(Fig. [6C). One interesting finding in this decomposition is
the presence of multiple time-traces identified in the same
dendritic branch (Fig. [(D-E). Specifically, for one pair of
components we find that one of the components is much
more localized around one small branch, specifically about
one spine (Profile 2 in Fig. BD). The time-traces for these
two components, while correlated, do have different activity
levels as can be verified by tracking the components in the
raw fluorescence video (Fig. BE).

F. One-photon widefield imaging

Similar to dendritic imaging, widefield imaging captures
activity patters that can stretch across the entire field-of-
view. Widefield imaging systems can be designed to capture
dynamics across large areas of the surface of cortex at a
resolution coarser than single neurons. Thus widefield captures
global activity patterns across the brain’s surface, similar to
very high density EEG, giving us a second imaging modality
to test GraFT’s ability to capture complex neural activity
patterns. We applied GraFT to a 20-minute long video of
calcium dynamics within an 8 mm x 4 mm FOV of the
dorsal cortex of a GCaMP6f expressing transgenic rat. The
recording was performed using a head-mounted widefield
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Fig. 3. Assessment of GraFT on somatic imaging from the NeuroFinder dataset. A: Imaged field-of-view with all manually identified cells circled and overlaid
on the mean projection of the data (green). White circles indicate profiles that both GraFT and Suite2p identified, red indicates profiles that no algorithm
identified (i.e., due to inactivity), and yellow indicates cells that Suite2p found that GraFT did not. Note that even in the mean projection there are obvious
bright cells and dendritic components not labeled as ground-truth. B: Image of all non-background (well-isolated) profiles found by GraFT that were not in
the manually labeled set of data. Included are many apical dendrites, several somatic components and other small components. C: Examples comparing the
time-traces found via GraFT and Suite2p with the average trace over the manually identified spatial profile. We note that the GraFT time-traces tend to have
less noise, despite not explicitly regularizing for smoothness. Suite2p traces tend to exhibit negative “dips” indicating poor neuropil correction. D: Additional
components beyond the manually identified profiles exhibited smaller, dendritic structure, even when these are in proximity to brighter somatic components
(right column, middle). Examination of local averages of the calcium imaging movie demonstrate that these components do, in fact, exist in the data and
were simply not identified manually. E: The sensitivity of GraFT enables for the cytoplasmic and nuclear portions of individual neurons to be identified. Two
examples show the cytoplasmic (green) and nuclear (blue) components. As expected, the nuclear signal is lower amplitude and has slower dynamics.

microscope [14] as the rat freely moved around its homecage
(Fig. [6]A). With 28 components, GraFT extracted a diverse
set of dynamics from the widefield data (Fig. [6B-C). Most
of the learned components featured spatial profiles that are
either localized or widely distributed across the cortical surface
(n = 20/28). Pixels belonging to observable vasculature were
assigned low weights among these spatial profiles. In contrast,
four other components showed spatial profiles with vasculature
structures. The remaining components have spatial profiles
with vertical stripes in the peripherals of the FOV suggesting
they represent artifacts related to the imaging procedure. The
28 components exhibit unique spatial profiles but have time-
traces that correlate to varying degrees (Fig. [6D). To test the
reliability of GraFT in extracting relevant dynamics in wide-
field calcium imaging data, we trained GraFT on odd and even
frames of the widefield video separately (Fig.[6E). The learned
components exhibit spatial profiles that overlapped between
the odd and even frames (average Pearson’s r = 0.6324),
indicating that GraFT can reliably recover dynamics in the
data only from a portion of the total frames. We then trained
GraFT on the first and second halves of the widefield video
(Fig. [FF). The average coefficient along the diagonal of the

spatial correlation matrix between the first and second half
of the video is equal to 0.5376, suggesting that GraFT was
able to extract sufficiently stable components in the video.
We further assessed the performance of GraFT in extracting
components in the widefield data, by measuring the R-squared
between the original video and reconstructions based on the
learned components. GraFT was able to capture a significant
proportion of variance in the original data with only one
component (R? = 0.812) and achieved maximum performance
with 44 components (R? = 0.858). While the performance of
GraFT increases with additional components, the change in
performance seems to greatly decrease with ~ 20 components
(Fig.[6[G). Together, these results indicated that GraFT reliably
captures the spatial and temporal calcium dynamics recorded
via widefield imaging in freely moving rodents.

V. CONCLUSIONS

We propose a new algorithmic framework for dictionary
learning based on data-driven graphs. These graphs permit
the learning process to explicitly take advantage of correlated
occurrences of features in the data. Specifically, we combined
ideas from spatially correlated re-weighted-¢; filtering with
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Fig. 4. Assessment of GraFT on sparse dendrite data. A-B: 10 temporal dictionary elements along with the 10 corresponding spatial maps recovered after
running GraFT with 10 components. Dendritic components can be seen extending throughout the entire image, as is expected. C: Correlation matrices show
2 types of components were found: those serving as background components with approximately equal overlap across all dendrites, in contrast to those with
very high overlap with only one anatomically traced neural dendrite structure. Interestingly, two-three components were found for each of the ground truth
components. Note that two neurons that were not active at all and were not identified in any of the learned components. D: Analysis of the two components
found per ground truth structure reveals that slightly different portions of the neuron (dilated for effect in blue) are captured by each of the two components
matched (colored in red and green channels). Closer inspection reveals that each component corresponds to a slightly different axial portion of the neuron,
indicating that the difference is due to axial motion. This effect is shown here for two of the three neurons in the volume, with the full ground truth projected
onto one image on the right column, and the middle and right plots showing the ground truth at slices shifted by 2 um. E: Comparable methods, for example
Suite2p run in “dendrite” mode tends to use many more components to describe a single dendrite. For example, for Neuron 3, approximately 200 ROIs
(different colors in the lower-left plot) comprise this single neuron. GraFT picks up the same neuron with two components: each corresponding to a different
depth during the axial motion discovered in panel D. F: The effect of Suite2p using many components to cover a single dendrite was observed for all neural
components, as well as the background component. Overall over 1400 components were extracted (with 200 ROIs per active neuron) versus the 10 spatial
maps GraFT extracted.

random walk diffusion on graphs to create a re-weighted-/; model as in [67]). The lack of explicit temporal modeling
graph-filtering (RWL1-GF) inference algorithm. Learning of further endowed GraFT with a sensitivity to different signal
the linear generative model under the RWL1-GF model was time-scales. Specifically, in real data GraFT was able to
performed via a variationally-motivated dictionary learning al- identify and separate the cytoplasmic and nuclear signals
gorithm and was able to uncover the fundamental time-courses  within the same cell. These signals essentially have the same
in spatio-temporal data with complex spatial correlations. spike-train driving both signals, albeit with different temporal

This powerful framework could have many potential uses, signal dynamics.
however we design and demonstrate this algorithm on the In dendritic imaging we validated the ability of GraFT to
important and rapidly developing application of functional recover fluorescing dendrites via comparisons against manual
fluorescence microscopy. We applied GraFT to learn the time- anatomical tracing. Despite the highly non-localized nature
traces from these complex and high dimensional data that are of the components, GraFT found multiple true components.
vital to understanding the neural function. In particular we Current methods, i.e., Suite2p in “dendrite mode”, broke
showed benefits both in standard somatic imaging, as well as up each dendrite into many components (> 200/dendrite).
the more complex dendritic and widefield imaging. Moreover, GraFT also was able to demix much denser labeled

For somatic imaging we demonstrated via experiments on dendritic imaging data, including finding multiple modes of
biophysical simulations the ability to identify many more activation within the same neural structure. Similarly, in wide-
true components in a given dataset than competing methods. field imaging GraFT was able to identify highly non-localized
These gains primarily come from components with highly activity patterns in the data, including both hemodynamic and
non-somatic statistics. Despite the flexibility to capture such calcium related signals. Moreover, GraFT was able to isolate
components, GraFT can still capture somatic signals, as artifacts of the imaging procedure, effectively removing their
demonstrated on both simulation and annotated Neurofinder ~effects from the true signal components.
data. In both cases the time-traces obtained by GraFT were With regards to parameter setting we observed that the
less noisy despite having no temporal regularization or explicit same basic parameters, with the exception of the sparsity
modeling of the calcium dynamics (e.g., an autoregressive parameter A, produced good results across all imaging scales.
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Fig. 5. Assessment of GraFT on dense dendrite data. A: In the dense dendritic imaging, many fluorescing components are highly overlapping, as can be
seen in the movie’s mean image (top). GraFT identifies 70 components in this dataset (bottom image; color coded with each found component as a different
color), which span the entire field of view. B: Examples subset of spatial maps recovered after running GraFT with 60 components. C: Example time-traces
demonstrate a diversity of activity patters that overlap in time. D: The correlation matrix, combined with the diversity of time-traces in B, indicate that the
decomposition is capturing sufficiently different time-traces. E: The two highest correlated time-traces are shown, along with the corresponding spatial maps.
At first glance it appears that these two spatial maps overlap significantly, perhaps both representing pieces of one true dendritic component. F-G: Closer
inspection of the spatial profiles reveals that profile 2 actually represents a different process in the dendrite centered around a spine in the lower-left-hand
corner of the image. Two example bursts of activity (E and F) demonstrate that in fact these components do show up in different quantities at different times.
Frames from the starred time-points in E and F are shown in G and H respectively, with the raw data frame in the top row and the reconstruction in the
bottom row. In G Profile 1 appears brighter, as implied by E and in H Profile 2 appears brighter, as implied by F. Thus these profiles are truly independent

components and not an artifact of the method.

This observation reinforces the ability for the graph learning
step to incorporate the natural spatial correlations into the same
algorithmic core. With one parameter left, manual adjustments
or simple grid searches were sufficient to obtain good perfor-
mance. Further improvements can be obtained by leveraging,
for example, BayesOpt [68]], in optimizing parameters.

One aspect we note, that is not solved in any algorithm to
date, is the effect of axial motion artifacts on the identified
components. In the sparse imaging session we are able to
identify manually when the resulting components represent the
same neurons at different depths due to drift, however a full
solution would require significant additional post-processing
to the model that include 3D spatial information.

GraFT, as with other segmentation algorithms, identifies
multiple types of components. For example, in the Neurofinder
data GraFT identified somas, nuclei, dendritic segments and
rising apical dendrites. Currently, sub-selecting based on com-
ponent type is a per-analysis choice, however future work (e.g.,
the post-processing classifier in CalmAn [67]) can provide
additional algorithms that automatically classify the output
of GraFT and other algorithms. As fluorescence microscopy
continues to expand, for example in new volumetric imaging
techniques across scales [12], [[69]-[74], we expect GraFT
to become even more critical to the important fist step of

extracting single component activities.

Finally, our method is broader than fluorescence microscopy
data and is applicable to other imaging modalities, e.g., hyper-
spectral imaging, where spatial structure can be informative,
but features can interact in complex ways. In such cases,
the dictionary is in the feature space, and not necessarily
temporal, e.g., spectral bands in hyper-spectral imaging. Our
framework also falls under the general class of graph-based
dictionary learning in graph signal processing, an emerging
area focused on the analysis of high-dimensional signals that
lie on a graph, or for which a graph can be learned based on
correlated features. We leave the extension of our framework
to additional domains for future work.
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learned time-traces and spatial maps for GraFT run only on the odd and even frames separately. The Pearson’s correlation between best-matched spatial and
temporal maps are very high for all maps and dictionary elements for the case of n = 28. E. Breakdown of the diagonal elements of the correlation matrix in
D by class (cortical, vascular, and artifactual). The learned spatial maps and time-traces for cortical maps was the most consistent, with the highest correlation
values. F. A similar analysis of spatial maps learned separately across the first half and the second half of the imaging session for n = 28 demonstrates that
consistent cortical areas are observed during the same behavior even over different epochs. G. Variance explained as a function of the number of dictionary
elements shows a plateau at approximately 0.855 with ~ 20 components.
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