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Abstract 9 

Replay can consolidate memories by offline neural reactivation related to past experiences. Category 10 

knowledge is learned across multiple experiences and subsequently generalised to new situations. 11 

This ability to generalise is promoted by offline consolidation and replay during rest and sleep. 12 

However, aspects of replay are difficult to determine from neuroimaging studies alone. Here, we 13 

provide a comprehensive account of how category replay may work in the brain by simulating these 14 

processes in a neural network which assumed the functional roles of the human ventral visual stream 15 

and hippocampus. We showed that generative replay, akin to imagining entirely new instances of a 16 

category, facilitated generalisation to new experiences. This invites a reconsideration of the nature of 17 

replay more generally, and suggests that replay helps to prepare us for the future as much as 18 

remember the past. We simulated generative replay at different network locations finding it was most 19 

effective in later layers equivalent to the lateral occipital cortex, and less effective in layers 20 

corresponding to early visual cortex, thus drawing a distinction between the observation of replay in 21 

the brain and its relevance to consolidation. We modelled long-term memory consolidation in humans 22 

and found that category replay is most beneficial for newly acquired knowledge, at a time when 23 

generalisation is still poor, a finding which suggests replay helps us adapt to changes in our 24 

environment. Finally, we present a novel mechanism for the frequent observation that the brain 25 
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selectively consolidates weaker information, and showed that a reinforcement learning process in 26 

which categories were replayed according to their contribution to network performance explains this 27 

well-documented phenomenon, thus reconceptualising replay as an active rather than passive 28 

process.  29 

 30 

Author Summary 31 

The brain relives past experiences during rest. This process is called “replay” and helps strengthen our 32 

memories and promote generalisation. We learn over time to categorise objects, yet how category 33 

knowledge is replayed in the brain is not well understood. We used a neural network which behaves 34 

like the human visual brain to simulate category replay. We found that allowing the network to 35 

“dream” typical examples of a category during “night-time” consolidation was an effective form of 36 

replay that helped subsequent recognition of unseen objects, offering a solution for how the human 37 

brain consolidates category knowledge. We also found this to be more effective if it took place in 38 

advanced layers of the network, suggesting human replay might be most effective in high-level visual 39 

brain regions. We also tasked the network with learning to control its own replay, and found it focused 40 

on categories that were difficult to learn. This represents the first mechanistic account of why weakly-41 

learned memories in humans show the greatest improvement after rest and sleep. Our approach 42 

makes predictions about category replay in the human brain which can inform future experiments, 43 

and highlights the value of large-scale neural networks in addressing neuroscientific questions. 44 

 45 

1. Introduction 46 

Memory replay refers to the reactivation of experience-dependent neural activity during resting 47 

periods. First observed in rodent hippocampal cells during sleep [1], the phenomenon has since been 48 

detected in humans during rest [2-6], and sleep [7, 8], These investigations have revealed replayed 49 

experiences are more likely to be subsequently remembered, therefore replay has been proposed to 50 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/


3 
 

strengthen the associated neural connections and to protect memories from being forgotten. 51 

However, in this paper we challenge the notion of replay as a passive, memory-preserving process, 52 

and propose it is much more dynamic in nature. Using a computational approach, we test hypotheses 53 

that replay may be a creative process to serve future goals, that it matters exactly where in the brain 54 

replay occurs, that it helps us at particular stages of learning, and that the brain might actively choose 55 

the optimal experiences to replay. 56 

Replay is assumed to constitute the veridical reactivation of past experience. However, there 57 

are circumstances in which this may be suboptimal or impractical. For example, a desirable outcome 58 

of category replay is to generalise to new experiences rather than recognise past instances, a 59 

phenomenon observed after sleep in infants [9, 10]. In addition, although sleep benefits category 60 

learning for a limited number of well-controlled experimental stimuli [11], in the real world category 61 

learning takes place over many thousands of experiences, and storing each individual experience for 62 

replay is an impractical proposition. For these reasons, we propose the replay of novel, prototypical 63 

category instances would be a more efficient and effective solution. In fact, given the role of the 64 

hippocampus in both replay [8] and the generation of prototypical concepts [12], we consider this the 65 

most likely form of category replay. The replay of novel [13] and random [14] spatial trajectories have 66 

been decoded from hippocampal “place cells” in animals. However, due to the complex nature of 67 

category knowledge, detecting such novel replay events from human brain data would be challenging. 68 

 The occurrence of replay in humans is associated with subsequent memory [8]. However, 69 

establishing a causal relationship between observed neural reactivation and memory consolidation is 70 

problematic. Replay has been observed throughout the brain, early in the ventral visual stream [6, 15, 71 

16], in the ventral temporal cortex [17, 18], the medial temporal lobe [5, 19] the amygdala, [3, 20], 72 

motor cortex [21] and prefrontal cortex [22]. It is not known if replay in low-level brain regions actually 73 

contributes to the observed memory improvements or whether the key neural changes are made in 74 

more advanced areas, and this question cannot be answered using current neuroimaging approaches. 75 
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 Because it can take humans years to learn and consolidate semantic or conceptual knowledge 76 

[23], we still do not know how long replay contributes to this process, as neuroimaging studies are 77 

limited to a time-span of a day or two. Humans are thought to “reconsolidate” information every time 78 

it is retrieved [24], suggesting replay might play a continual role in the lifespan of memory. However 79 

recordings in rodents have shown that replay diminishes with repeated exposure to an environment 80 

over multiple days [25], suggesting the brain only replays recently learned, vulnerable information. 81 

Answering this question in humans remains a challenge because of the practicalities of tracking replay 82 

events for extended periods. 83 

 It has been frequently observed that replay and consolidation selectively benefit weakly-84 

learned over well-learned information [5, 26-28], but a candidate mechanism for how this occurs in 85 

the brain has not been proposed to date. 86 

 Our understanding of replay in the human brain is therefore limited by the difficulty in 87 

measuring and perturbing this covert, spontaneous process. However, an alternative approach which 88 

can address these outstanding questions, is to harness the recent considerable advances in artificial 89 

neural networks. While replay has been previously simulated in smaller-scale networks [29-31], in 90 

order to make direct comparisons with the human brain, we simulated learning and replay in a deep 91 

convolutional neural network (DCNN) which mirrors the brain’s layered structure and representations 92 

[32, 33] and approaches human-level recognition performance [34]. To simulate new learning in 93 

humans, we took a network which has already been trained to successfully categorise 1000 categories 94 

of objects in photographs, akin to a fully functional visual system in humans, and tasked it with learning 95 

10 novel categories. This is equivalent to a human coming across 10 new categories and using their 96 

lifelong experience in processing visual information to extrapolate the relevant identifying features. 97 

After learning periods, we then simulated replay in the network, akin to human consolidation during 98 

sleep. We targeted replay at specific network layers functionally equivalent to different brain regions 99 

to make novel predictions about where in the brain replay is causally effective. We evaluated whether 100 

prior reports of replay in early visual areas are likely to be relevant to memory consolidation. Because 101 
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earlier brain regions are thought to extract equivalent basic features from all categories, we predicted 102 

replay of experience would be more effective in promoting learning at advanced stages of the 103 

network.  We also simulated “imagined” prototypical replay events and determine whether this was 104 

as effective as veridical replay in helping us to generalise to new, unseen experiences, thus supporting 105 

our conceptualization of replay as a creative process. We simulated the learning of categories across 106 

multiple experiences to make predictions about when in learning replay is likely to be effective in 107 

boosting subsequent generalisation performance. We hypothesised that the benefits of replay may 108 

be confined to early in the learning curve when novel category knowledge is being acquired. We also 109 

tested a mechanism through which the brain selects certain items for replay, adding an auxiliary model 110 

(akin to the hippocampus) to the neocortical model, which could autonomously learn the best 111 

consolidation strategy, determining what to replay and when. We predicted that this dynamic process 112 

would result in the prioritisation of weakly-learned items, in line with behavioural studies of memory 113 

consolidation. The overall aim of these experiments was to provide answer questions about memory 114 

replay in humans using a model of the human visual ventral stream, and this aim was successfully 115 

achieved. 116 

 117 

2. Results 118 

2.1 Localising where in the ventral visual stream generative replay is likely to enhance 119 

generalisation 120 

We first sought to establish where in the visual brain the replay of category knowledge might be most 121 

effective in helping to generalise to new experiences, as the functional relevance of replay observed 122 

in many different brain regions has yet to be established. To simulate the replay process, we used a 123 

DCNN called VGG-16, which is already experienced at recognising real-world objects as it has learned 124 

to categorise 1000 categories from over one million naturalistic photographs [35]. Like humans, it can 125 

generalise to new situations, and correctly identify the category of an exemplar it has never seen 126 
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before. It has achieved a high “Brain-Score” which is a benchmark for how closely a neural network 127 

reflects the brain’s neural representations and object recognition behaviour in primates [36]. It can 128 

therefore be viewed as approximating key aspects of a mature visual brain that can support the 129 

learning of new categories. Humans readily learn new categories all the time, using previous visual 130 

representations to extract useful features such as colour, texture and shape across multiple 131 

experiences with an object. VGG-16 emulates this process by using the equivalent building blocks of 132 

its own visual experience to extract the key features of objects contained in photographs. Therefore, 133 

to simulate new category learning in humans, we tasked this network with learning 10 new categories 134 

of objects it has never encountered before. To obtain a baseline measure of how the network would 135 

perform without replay, the network learned these 10 new categories in the absence of offline replay. 136 

This can be thought of as a human learning new categories in a lab experiment over the course of a 137 

single day, without any opportunity to sleep and consolidate this information in between training 138 

blocks. Next, we implemented memory replay. We considered it unrealistic that the human brain 139 

could store and replay every single category exemplar it has experienced. Alternatively, humans 140 

readily abstract, and are quick to recognise a prototype, or “typical” concept which is representative 141 

of category members they have seen [37], and this process is facilitated by an increased number of 142 

experiences [38]. Ultimately, this process is important because having a mental prototype helps us to 143 

differentiate between categories [39]. We therefore deemed it more feasible, efficient, and realistic 144 

that humans replay prototypical representations of a category which have been abstracted across 145 

learning. We assume, based on neuroimaging studies, that the category prototypes are inherited from 146 

higher level regions such as the hippocampus and prefrontal cortex [40], regions which facilitate the 147 

learning of concepts [41] and imagination [42, 43] of concepts. For the purposes of these experiments, 148 

we mimic the function of these higher brain regions in generating prototypical concepts by capturing 149 

the “typical” activation of the network for that category and sampling from this gist-like 150 

representation to create novel, abstracted representations for replay (Fig 1A). Most replay 151 
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representations were lower resolution than those during learning (see Methods and Models) for 152 

computational efficiency and to reflect the notional nature of mental imagery. 153 

 We simulated generative replay from different layers in the DCNN, equivalent to different 154 

brain regions along the ventral stream. Specifically, we trained the network over 10 epochs, 155 

corresponding to 10 days of learning, and replayed prototypical representations after each training 156 

epoch, simulating 10 nights of offline consolidation during sleep. In Fig 1B we show how replay affects 157 

the ability of the network to generalise to new exemplars of the categories over the course of learning, 158 

and Fig 1C shows the final best performing models in each replay condition. There is a differential 159 

benefit of replay throughout the network, where replay in the early layers yields is of limited benefit, 160 

whereas replay in the later layers boosts generalisation performance. This suggests that early visual 161 

areas in the brain do not contain sufficient category-specific information to form useful replay 162 

representations, whereas higher-level regions such as the lateral occipital cortex can support the 163 

generation of novel, prototypical concepts which accelerates learning in the absence of real 164 

experience and helps us to generalise to new situations. 165 

 166 
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 167 

Fig 1. The effects of generative replay from different layers of a model of the human ventral visual 168 
stream on generalisation to new exemplars. (A) The VGG-16 network simulates the brain’s visual 169 
system by looking at photographs and extracting relevant features to help categorise the objects 170 
within. We trained this network on 10 new categories of objects it had not seen before. In between 171 
learning episodes, akin to sleep-facilitated consolidation in humans, we implemented offline memory 172 
replay as a generative process. In other words, the network “imagined” new examples of a category 173 
based on the distribution of features it has learned so far for that object (activation space), and used 174 
these representations (novel representation) to consolidate its memory. The network did not create 175 
an actual visual stimulus to learn from, rather it recreated the neuronal pattern of activity that it would 176 
typically generate from viewing an object from that category. We display here an example of replaying 177 
from a mid-point in the network, but all five locations where replay was implemented are indicated 178 
by the coloured circles. The brain regions corresponding approximately to each network stage, derived 179 
from Güçlü and van Gerven (32), are listed beneath. (B) The effects of memory replay from different 180 
layers on the network’s ability to generalise to new examples of the 10 categories, throughout the 181 
course of 10 learning episodes. Plotted values represent the mean accuracies from 10 different models 182 
which each learned 10 new and different categories. (D) The final recognition accuracies (+/- S.E.M.), 183 
averaged across 10 models, on the new set of photographs after 10 epochs of learning. We reveal the 184 
location in a model of the ventral stream where replay maximally enhances generalisation 185 
performance is an advanced layer which bears a functional correspondence to the lateral occipital 186 
cortex (LOC) in humans. The benefits of replay from other locations were less pronounced, with the 187 
earliest layer showing the least benefit to generalisation.  188 
 189 
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2.2 Tracking the benefits of replay across learning 190 

Humans encounter new environments throughout their lives, and novel categories which they wish 191 

to learn. This knowledge is accumulated and refined across multiple experiences, forming a learning 192 

curve for each category. Experiments have focused on the replay of very recently learned information, 193 

therefore it is not clear at what point in this learning curve replay is most effective. One could consider 194 

replay of recently learned information to be more adaptive, for example, one might want to rapidly 195 

consolidate the memory of a plant from which one ate a poisonous berry as one does not want to 196 

repeat that experience. Alternatively, generative replay may be less effective for newly encountered 197 

categories because there are insufficient experiences from which to adequately extract the underlying 198 

prototype. This is a challenging question to address in human experiments, but simulation in an 199 

artificial neural network provides an alternate avenue of investigation. In the second experiment, we 200 

extended training to 30 days of experience, interleaved with nights of offline generative replay to 201 

simulate learning over longer timescales (Fig 2A). Guided by the results of experiment one, we 202 

implemented replay from an advanced layer corresponding to the lateral occipital cortex. In Figure 203 

2D, we show that offline generative replay is most effective at improving generalisation to new 204 

exemplars at the earliest stages of learning. This suggests replay facilitates rapid generalisation, which 205 

maximises performance given a limited set of experiences with a category.  206 

 207 
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 208 

Fig 2. The facilitatory effects of memory replay across category learning. We simulate the long-209 
term consolidation of category memory by extending training to 30 days. (A) Schematic showing the 210 
different experimental conditions. “No replay” involves the model of the visual system learning the 211 
10 new categories without replay in between episodes. “Generative replay” simulates the brain 212 
imagining and replaying novel instances of a category during “night” periods of offline consolidation, 213 
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from a layer equivalent to the lateral occipital cortex. “Veridical replay” tests the hypothetical 214 
performance of a human who, each night, replays every single event which has been experienced 215 
the preceding day. “Continuous replay” simulates a single day of learning, followed by days and 216 
nights of replay, investigating the maximum benefit afforded by replay given only brief exposure to a 217 
category. (B) The ability of the network to generalise to new exemplars of a category during each 218 
day throughout the learning process. Generalisation performance is measured by the proportion (+/- 219 
S.E.M) of correctly recognised test images across 10 models. Generative replay maximally increases 220 
performance early in training, suggesting it is critical for new learning and recent memory 221 
consolidation. Despite being comprised of internally generated fictive experiences, generative replay 222 
was comparably effective to veridical replay throughout the learning process, rendering it an 223 
attractive, efficient and more realistic solution to memory consolidation which does not involve 224 
remembering all experiences. Continuous replay after just one day of learning substantially 225 
improved generalisation performance, but never reached the accuracy levels of networks which 226 
engaged in further learning. Replay can therefore compensate for sparse experience to a significant 227 
degree, however its limitations also reveal generative replay to be dynamic process, whereby replay 228 
representations are informed and improved in tandem with ongoing interleaved learning. 229 
 230 
While establishing that generative replay, or imagining new instances of a category during offline 231 

periods, was highly effective in helping to generalise to new category exemplars, we were interested 232 

to compare generative replay with the unlikely veridical, high-resolution scenario whereby humans 233 

could replay thousands of encounters with individual objects exactly as they were experienced. We 234 

termed this “veridical replay” (Fig 2A), which involved capturing the exact neural patterns associated 235 

with each experienced object during learning, and replaying this from the same point in the network. 236 

As can be seen in Fig 2B, generative replay was as effective as veridical replay of experience in 237 

consolidating memory, despite being entirely imagined from the networks prior experience. This is 238 

despite being a low-resolution gist-like representation, perhaps akin to dreaming about unusual 239 

blends of experiences during sleep. This provides compelling support for the hypothesis that 240 

generative replay is the most likely form of category replay in humans, as it is vastly more efficient to 241 

imagine new concepts from an extracted prototype. 242 

 While the aforementioned results show the benefits of replay under optimal conditions where 243 

humans encounter the same categories every day, there are instances where exposure will be limited. 244 

To what extent can offline replay compensate for this limited learning? We simulated this in our model 245 

of the ventral stream by limiting the learning of actual category photographs to one day, and 246 

substituted all subsequent learning experiences with offline replay, termed “continuous replay” (Fig 247 
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2A). This is equivalent to a human learning a new category in a one-time lab experiment, and replaying 248 

this experience during rest and sleep for the following month. Despite the absence of further exposure 249 

to the actual objects, we found the network could increase its generalisation accuracy from 32% to 250 

83% purely by replaying imagined instances of concepts it has partially learned. This may partly 251 

account for human’s ability to quickly learn from limited experience. However, it also reveals that 252 

replayed representations are dynamic in nature, as the prototypes generated from that first 253 

experience were not sufficient to train the network to its maximum performance, as is observed when 254 

learning and replay are interleaved. This suggests that replayed representations continue to improve 255 

as they are informed by ongoing learning, therefore generative replay in the human brain throughout 256 

learning can be thought of as a constantly evolving “snapshot” of what has been learned so far about 257 

that category. 258 

 259 

2.3 Determining how the brain might select experiences for replay 260 

Memory consolidation favours weakly-learned information, with a tendency to replay fragile 261 

memories more often [5]. How the brain targets these vulnerable representations remains a mystery. 262 

Memory replay throughout the brain is triggered by hippocampal activity [8], and given the role of the 263 

hippocampus in the generation of prototypes [40], it is likely the hippocampus selects categories for 264 

generative replay. We proposed that replay may be a learning process in itself, whereby the 265 

hippocampus selects replay items, and learns through feedback from the neocortex the optimal ones 266 

to replay. In our previous simulations we selected all categories for replay in equal number, however 267 

to simulate the autonomous nature of replay selection in the brain, we supplemented our model of 268 

the ventral visual stream with a small reinforcement learning network, assuming the theoretical role 269 

of the hippocampus in deciding what to replay (Fig 3A). The hippocampal model could choose one of 270 

the 10 categories to replay, and received a reward from the main network for that action, based on 271 

the improvement in network performance. Categories associated with a high reward were more likely 272 
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to be subsequently replayed, therefore the hippocampal side network could learn through trial and 273 

error which categories to replay more often in the cortical network. 274 

 We trained our model of the visual system on 10 novel categories, implementing replay during 275 

offline periods as before, and compared its generalisation performance with that of the dual 276 

interactive hippocampal-cortical model. In terms of overall accuracy, both approaches performed 277 

similarly throughout training (Fig 3B). However, the reinforcement learning network which simulated 278 

the hippocampal replay systematically selected categories which were originally relatively weakly 279 

learned more often (Fig 3C), which resulted in their selective improvement. However, this came at a 280 

cost, with originally well-learned categories being replayed less often and a drop in their generalisation 281 

accuracy. We propose therefore that such a reinforcement learning process may underlie the 282 

“rebalancing” of experience in the brain, and that replay helps to compensate for the fact that some 283 

categories are more difficult to learn than others. 284 

 285 
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 286 

Fig 3. Replay as a reinforcement learning process simulates the brain’s tendency to consolidate 287 
weaker knowledge. (A) Replay in a model of the visual system is controlled by a reinforcement 288 
learning (RL) network akin to the hippocampus. The RL network selects one of 10 categories to replay 289 
through the visual system and receives a reward based on the improved performance, learning 290 
through trial and error which categories to replay. (B) Overall generalisation performance on new 291 
category exemplars was similar for both generative replay and generative replay controlled by a 292 
reinforcement learning network. Generalisation performance represents mean accuracy (+/- S.E.M) 293 
on test images across 10 models which each learned 10 new categories. (C) The RL network learns to 294 
replay categories which were originally more difficult for the visual system, and improves their 295 
accuracy. This effectively “rebalances” memory such that category knowledge is more evenly 296 
distributed, and offers a candidate mechanism as to how the brain chooses weakly learned 297 
information for replay. Plotted values represent the 100 categories across 10 models. A proportion of 298 
the generalisation performance values are overlapping. 299 
 300 

3. Discussion 301 

We simulated the consolidation of category knowledge in a large-scale neural network model which 302 

closely mirrors the form and function of the human ventral visual system, by replaying prototypical 303 

representations thought to be formed and initiated by the hippocampus. The notion that replay might 304 
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be generative in nature has been suggested by smaller simulations [30, 31], however our results using 305 

a realistic model of the visual brain represent the most compelling evidence to date that humans are 306 

unlikely to replay experiences verbatim during rest and sleep to improve category knowledge, and are 307 

more likely to replay novel, imagined instances instead. In addition, the large number (117,000) of 308 

high-resolution complex naturalistic images we used for training in this experiment reflected real-309 

world learning and facilitated the extraction of gist-like features. While empirical evidence exists that 310 

humans replay novel sequences of stimuli [4], our work suggests that the brain goes further and uses 311 

learned features of objects to construct entirely fictive experiences to replay. We speculate that this 312 

creative process is particularly important for the consolidation of category knowledge as opposed to 313 

the replay of episodic memory [5, 8, 15], because of the requirement to abstract prototypical features 314 

and use these to generalise to new examples of a category. We propose that generative replay confers 315 

additional advantages such as constituting less of a burden on memory resources, as not all 316 

experiences need to be remembered. Further, our replay representations were highly effective in 317 

consolidating category knowledge despite being down-sampled, and these compressed, low-318 

resolution samples would reduce storage requirements further. Perhaps the most convincing 319 

demonstration in our simulations that category replay in the brain likely adopts this compressed, 320 

prototypical format is that it was as effective as the exact veridical replay of experience in boosting 321 

generalisation performance. Our findings therefore prompt a reconceptualization of the nature of 322 

replay in humans, that it is not only generative, but also low resolution or “blurry”, as is the case with 323 

internally generated imagery in humans [44, 45]. In fact, the kind of replay we propose here may be 324 

the driving force behind the transformation of memory into a more schematic, generalised form which 325 

preserves regularities across experiences while allowing unique elements of experience to fade [46-326 

48]. The challenge for future empirical studies in humans to confirm our hypothesis, will be to decode 327 

prototypical replay representations during rest and sleep. 328 

 Simulating replay in a human-like network also allowed us to answer a question not currently 329 

tractable in neuroimaging studies: where in the visual stream is replay functionally relevant to 330 
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consolidation? In keeping with our observation that low-resolution, coarse, schematic replay was 331 

effective in helping the network to generalise, we found the most effective location for replay to be 332 

in the most advanced layers of the network, layers which are less granular in their representations. 333 

This approximately corresponds to the lateral occipital cortex in humans, a region which represents 334 

more complex, high-level features [32]. In contrast, generative replay from the earliest layers 335 

corresponding to early visual cortex was ineffective, suggesting more precise, fine-grained replay 336 

might not be optimal in preparing the brain to recognise novel instances of a category. In addition, 337 

these layers are sensitive to low-level visual features such as contrast and edges, which are likely 338 

shared across all categories, and therefore do not contain enough distinctive information to be useful 339 

for replay or generalisation. High-level representations on the other hand, may contain more unique 340 

combinations and abstractions of these lower-level features. This prompts a re-evaluation of the 341 

functional relevance of replay in early visual cortices in both animals and humans, and generates 342 

specific hypotheses for potential perturbation studies to investigate the effects of disruptive 343 

stimulation at different stages of the ventral stream during offline consolidation.  344 

 Our simulations also revealed a phenomenon never before tested in humans, that the 345 

effectiveness of replay depends on the stage of learning. We acquire factual information about the 346 

world sporadically over time across contexts, for example we may encounter a new species at a zoo 347 

one day, and subsequently see the same animal on a wildlife documentary, and so on. Ultimately the 348 

consolidation of semantic information in the neocortex can take up to years to complete [23]. 349 

However, our simulations show that replay is most beneficial during the initial encounters with a novel 350 

category, when we are still working out its identifiable features and have not yet learned to generalise 351 

perfectly to unseen instances. It is therefore likely humans replay a category less and less with 352 

increasing familiarity, and there is some support for this idea in the animal literature [25]. We 353 

speculate that the enhanced effectiveness for recent memories may have an adaptive function, 354 

allowing us to generalise quickly with limited information. In fact, our simulations showed that after a 355 

single learning episode, replay can compensate substantially for an absence of subsequent 356 
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experience. Our results provide novel hypotheses for human experiments, testing for an interaction 357 

between the stage of category learning and the extent of replay. The fact that replay early in the 358 

learning process was more effective provides further support for our proposal that vague, imprecise 359 

replay events are useful for generalisation, as the networks imaginary representations at that stage 360 

would be an imperfect approximation of the category in question. 361 

 Our results also represent the first mechanistic account of how the brain selects weakly-362 

learned information for replay and consolidation [5, 26-28]. The hippocampus triggers replay events 363 

in the neocortex [8], with a loop of information back and forth between the two brain areas [49], 364 

although the content of this neural dialogue is not known. Our simulations suggest that the 365 

hippocampus could learn the optimal categories to replay based on feedback from the neocortex. Our 366 

results showed that such a process resulted in the “rebalancing” of experience, where generalisation 367 

performance was improved for weakly learned items, and attenuated for items which were strongly 368 

learned. This reorganisation of knowledge has been observed in electrophysiological investigations in 369 

rodents, where the neural representations of novel environments are strengthened through 370 

reactivation at the peak of the theta cycle, while those corresponding to familiar environments are 371 

weakened through replay during the trough [50]. This more even distribution of knowledge could be 372 

adaptive in both ensuring adequate recognition performance across all categories and forming a more 373 

general foundation on top of which future conceptual knowledge can be built. Future experiments 374 

could assess whether our interactive models choose the same categories for replay as humans when 375 

trained on the same stimuli. 376 

 In summary, our simulations provide strong evidence that category replay in humans is a 377 

generative process which is functionally relevant at advanced stages of the ventral stream. We make 378 

testable predictions about when during learning replay is likely to be effective and offer a novel 379 

account of replay as a learning process in and of itself between the hippocampus and neocortex. We 380 

hope these findings encourage a closer dialogue between theoretical models and empirical 381 

experiments. These findings also add credence to the emerging perspective that deep learning 382 
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networks are powerful tools which are becoming increasingly well-positioned to resolve challenging 383 

neuroscientific questions [51]. 384 

  385 

4. Methods and models 386 

4.1 Neural network 387 

To simulate the learning of novel concepts in the brain, and test a number of hypotheses regarding 388 

replay, we trained a DCNN on 10 new categories of images. The neural network was VGG-16 [35]. 389 

Emulating the extent of real-world learning in humans, this network is trained on a vast dataset of 1.3 390 

million naturalistic photographs known as the ImageNet database [52], which contains recognisable 391 

objects from 1000 categories in different contexts much like what humans encounter on a daily basis. 392 

The network learns to associate the visual features of an object with its category label, until it can 393 

recognise examples of that object which it has never seen before, reflecting the human ability to 394 

generalise prior knowledge to new situations. The network takes a photograph’s pixels as input, and 395 

sequentially transforms this input into more abstract features, similar to the operation of the human 396 

ventral visual stream [36]. It learns to perform these transformations by adjusting 138,357,544 397 

connection weights across many layers. Its convolutional architecture reduces the number of possible 398 

training weights by searching for informative features in any area of the photographs.  399 

 This network which has been previously trained on 1000 categories can be thought of as 400 

equivalent to a fully functional visual system. This visual system allows humans to rapidly learn new 401 

categories because it facilitates the extraction of useful features to support learning. Similarly, the 402 

VGG-16 can learn novel categories which it has not learned before, based on its prior experience in 403 

interpreting visual input. In these experiments, we task the VGG-16 network with learning 10 new 404 

categories of images. To do this, we retained take the pre-trained “base” of this network, which 405 

consisted of 19 layers, organised into five convolutional blocks. Within each block there were 406 

convolutional layers and a pooling layer, with nonlinear activation functions. To this base, we attached 407 

two fully connected layers, each followed by a “dropout” layer, which randomly zeroed out 50% of 408 
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units to prevent overfitting to the training set [53]. At the end of the network a SoftMax layer was 409 

attached, which predicted which of 10 classes an image belonged to. To facilitate the learning of 10 410 

new classes, the weights of layers attached to the pre-trained base were randomly initialised. All 411 

model parameters were free to be trained. In total, 10 new models were trained, each learning 10 412 

new and different classes.  413 

 414 

4.2 Stimuli 415 

Photographic stimuli for new classes were drawn randomly from the larger ImageNet 2011 fall 416 

database [54], and were screened manually by the experimenter to exclude classes which bore a close 417 

resemblance to classes which VGG-16 was originally trained on. In total, 100 new classes were 418 

selected, and randomly assigned to the 10 different models to be trained. Within each class, a set of 419 

1,170 training images, 130 validation images, and 50 test images were selected. The list of the selected 420 

classes is available in Supplementary Table S1. 421 

 422 

4.3 Baseline training 423 

We first trained a model without implementing replay, to serve as a baseline measure of network 424 

performance, and compare with other conditions which implemented replay. Ten models were 425 

trained on 10 new and different classes. To further prevent overfitting to the training set, images were 426 

augmented before each training epoch. This is equivalent to a human viewing an object at different 427 

locations, or from different angles, and facilitates the extraction of useful features rather than rote 428 

memorisation of experience. Augmentation could include up to 20-degree rotation, 20% vertical or 429 

horizontal shifting, 20% zoom, and horizontal flipping. Any blank portions of the image following 430 

augmentation were filled with a reflection of the existing image. Images were then pre-processed in 431 

accordance with Simonyan and Zisserman (35). Depending on the experiment, the network was 432 

trained for 10 or 30 epochs. We used the Adam optimiser [55] with a learning rate of 0.0003. The 433 

training batch size was set to 36. The training objective was to minimise the categorical cross-entropy 434 
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loss over the 10 classes. Training parameters were optimised based on validation set performance. 435 

We report the model’s performance metrics from the test set only, which reflects the model’s ability 436 

to generalise to new stimuli during and after training. Training was performed using TensorFlow 437 

version 2.2. 438 

 439 

4.4 Replay  440 

Replay was conducted between training epochs, to simulate “days” of learning and “nights” of offline 441 

consolidation. We conceptualised replay representations as generative, in other words they 442 

represented a prototype of that category never seen before, from a particular point in the network. 443 

This represents an alternative to storing every experience in our heads, in that we could replay 444 

important knowledge about the world without remembering everything. To generate these 445 

representations, the network activations induced by the training images from the preceding epoch 446 

were extracted from a particular layer in the network using the Keract toolbox [56]. For each class 447 

separately, a multivariate distribution of activity was created from these activations, representing the 448 

unique relationship between units of the layer which were observed for that specific class. We then 449 

sampled randomly from this distribution, creating novel activation patterns for that class at that point 450 

in the network (Figure 1). The end result was a representation that was a rough approximation of the 451 

layer’s representations of that category if a real image was processed, but novel in nature. This would 452 

be equivalent in the brain to an approximate pattern of neural activity which is representative of that 453 

category at a particular stage in the ventral visual stream.  These prototypical concepts would be likely 454 

generated from more high-level regions such as the hippocampus and prefrontal cortex [12, 40].  455 

  The number of novel representations created for replay was equivalent to the number of 456 

original training images (1,170). To test where in the network replay is most effective, this process was 457 

performed at one of five different network locations, namely the max pooling layers at the end of each 458 

block (Figure 1). For the first four pooling layers, creating a multivariate distribution from such a large 459 

number of units was computationally intractable, therefore activations for each filter in these layers 460 
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were first down-sampled by a factor of four for blocks one and two, and by two for blocks three and 461 

four. The samples drawn from the resulting distribution were then up-sampled back to their original 462 

resolution. These lower-resolution samples are also theoretically relevant, in that they are more akin 463 

to the schematic nature of mental and dream imagery which takes place during rest and sleep. To 464 

replay these samples through the network, the VGG-16 network was temporarily disconnected at the 465 

layer where replay was implemented, and a new input layer was attached which matched the 466 

dimensions of the replay representations. This truncated network was trained on the replay samples 467 

using the same parameters as regular training. After each epoch of replay training, the replay section 468 

of the network was reattached to the original base, and training on real images through the whole 469 

network resumed. To simulate veridical replay, in other words the replay of each individual experience 470 

as it happened, rather than the generation of new samples, we used the activations for each item at 471 

that layer in the network during replay periods. These were not down-sampled during the process. 472 

Given how many examples of a concept we generally encounter, veridical replay of all experience is 473 

not a realistic prospect, which is why prior attempts to simulate replay in smaller-scale networks have 474 

also avoided this scenario in their approaches [30, 31]. 475 

 476 

4.5 Replay within a reinforcement learning framework 477 

We tested a process through which items which are most beneficial for replay may be selected in the 478 

brain. We proposed that such selective replay may involve an interaction between the main concept 479 

learning network (VGG-16), and a smaller network which learned through reinforcement which 480 

concepts are most beneficial to replay through the main network during offline periods. The neural 481 

analogue of such a network could be thought of as the hippocampus, as the activity of this structure 482 

precedes the widespread reactivation of neural patterns observed during replay [8]. This approach is 483 

similar to the “teacher-student” meta-learning framework which has been shown to improve 484 

performance in deep neural networks  [57]. The side network was a simple regression network with 485 

10 inputs, one for each class, and one output, which was the predicted value for replaying that class 486 
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through the main network. Classes were chosen and replayed one at a time, with a batch size of 36. 487 

To train the side network, a value of 1 was inputted for the chosen class, with zeros for the others. 488 

The predicted reward for the side network was the change in performance of the main network after 489 

each replay instance, which was quantified by a change in chi-square; a contrast of the maximum 490 

number of possible correct predictions by the main network, versus its actual correct predictions. A 491 

positive reward was therefore a reduction in chi-square, which resulted in an increase in the side 492 

network’s weight for that class. This led to the class being more likely to be chosen in future, as the 493 

network’s weights were converted into a SoftMax layer, from which classes were selected 494 

probabilistically for replay. Through this iterative process, the side network learned which classes were 495 

more valuable to replay, and continually updated its preferences based on the performance of the 496 

main network. Reducing the chi-square in this dynamic manner improves the overall network accuracy 497 

as it progressively reduces the disparity between the network’s classifications and the actual class 498 

identities. To generate initial values for the side network, one batch of each class was replayed through 499 

the main network. The Adam optimiser was used with a learning rate of 0.001 and the objective was 500 

to minimise the mean squared error loss. The side network was trained for 50 epochs with each replay 501 

batch. The assessment of network improvement was always performed on the validation set, and the 502 

reported values are accuracy on the test set, reflecting the ability of the network to generalise to new 503 

situations. 504 
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Supplementary table S1: List of ImageNet classes by model 684 
Model 1 n12360108 begonia 
  n02822579 bedstead bedframe 
  n02427724 waterbuck 
  n03098688 control room 
  n02944075 camisole 
  n01603600 waxwing 
  n03196598 digital display alphanumeric display 
  n02848216 blade 
  n07712856 tortilla chip 
  n03592669 jalousie 
Model 2 n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii 
  n04177820 settle settee 
  n03904183 pedestrian crossing zebra crossing 
  n04355511 sundress 
  n03487444 hand lotion 
  n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens 
  n12655869 raspberry raspberry bush 

  
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus 
sanguinea 

  n02869737 bongo bongo drum 
  n02415253 Dall sheep Dall's sheep white sheep Ovis montana dalli 
Model 3 n03375575 foil 
  n03082807 compressor 
  n03262932 easy chair lounge chair overstuffed chair 
  n02047614 puffin 
  n03317788 faience 
  n09475044 wasp's nest wasps' nest hornet's nest hornets' nest 

  
n11784497 jack-in-the-pulpit Indian turnip wake-robin Arisaema triphyllum Arisaema 
atrorubens 

  n03941231 pinata 
  n02813399 bay window bow window 
  n04544325 wainscoting wainscotting 
Model 4 n03993053 potty seat potty chair 
  n04082886 reticle reticule graticule 
  n03421324 garter belt suspender belt 
  n03766044 miller milling machine 
  n03505504 headscarf 
  n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida 
  n03619793 kitbag kit bag 
  n07600696 candied apple candy apple taffy apple caramel apple toffee apple 
  n02068974 dolphin 
  n03237992 dressing gown robe-de-chambre lounging robe 
Model 5 n02918964 bumper car Dodgem 
  n02392824 white rhinoceros Ceratotherium simum Diceros simus 
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  n01806364 blue peafowl Pavo cristatus 
  n02956699 capitol 
  n04290079 spun yarn 
  n08596076 littoral litoral littoral zone sands 
  n02887970 bracelet bangle 
  n10635788 sphinx 
  n07901457 muscat muscatel muscadel muscadelle 
  n07870167 lasagna lasagne 
Model 6 n04324387 stockroom stock room 
  n04591517 wind turbine 
  n02988486 CD-R compact disc recordable CD-WO compact disc write-once 
  n04568069 weathervane weather vane vane wind vane 
  n04514241 uplift 
  n03207835 dishtowel dish towel tea towel 
  n13206817 maidenhair maidenhair fern 
  n03307792 external drive 
  n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta 
  n12950126 valerian 
Model 7 n03986355 portfolio 
  n11848479 night-blooming cereus 
  n04439712 tinfoil tin foil 
  n03160740 damask 
  n01612122 sparrow hawk American kestrel kestrel Falco sparverius 
  n09206896 arroyo 
  n12392549 stinging nettle Urtica dioica 
  n02343772 gerbil gerbille 
  n07875436 risotto Italian rice 
  n02060133 fulmar fulmar petrel Fulmarus glacialis 
Model 8 n03655072 legging leging leg covering 
  n10738111 unicyclist 
  n09270735 dune sand dune 
  n03409393 gable gable end gable wall 
  n02331046 rat 
  n03452267 gramophone acoustic gramophone 
  n10105733 forward 
  n07911677 cocktail 
  n03797182 muffler 
  n01563128 warbler 
Model 9 n04197110 shipwreck 
  n10470779 priest 
  n02769290 backhoe 
  n03478756 hall 
  n04519153 valve 
  n04289027 sprinkler 
  n02782778 ballpark park 
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  n03558404 ice skate 
  n04138261 satin 
  n02700064 alternator 
Model 10 n03524150 hockey stick 
  n03716966 mandolin 
  n02962200 carburetor carburettor 
  n03237340 dresser 
  n04004210 printed circuit 
  n02917377 bullhorn loud hailer loud-hailer 
  n07879953 tempura 
  n04087826 ribbing 
  n02404432 longhorn Texas longhorn 
  n07830593 hot sauce 
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