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Abstract 23 

Replay can consolidate memories through offline neural reactivation related to past experiences. 24 

Category knowledge is learned across multiple experiences, and its subsequent generalisation is 25 

promoted by consolidation and replay during rest and sleep. However, aspects of replay are difficult 26 

to determine from neuroimaging studies alone. Here, we provided insights into category knowledge 27 

replay by simulating these processes in a neural network which assumed the roles of the human 28 

ventral visual stream and hippocampus. Generative replay, akin to imagining new instances of a 29 

category, facilitated generalisation to new experiences. Consolidation-related replay may therefore 30 

help to prepare us for the future as much as remember the past. Generative replay was more effective 31 

in later network layers equivalent to the lateral occipital cortex than layers corresponding to early 32 

visual cortex, drawing a distinction between neural replay and its relevance to consolidation. Category 33 

replay was most beneficial for newly acquired knowledge, suggesting replay helps us adapt to changes 34 

in our environment. Finally, we present a novel mechanism for the observation that the brain 35 

selectively consolidates weaker information; a reinforcement learning process in which categories 36 

were replayed according to their contribution to network performance. This reconceptualises 37 

consolidation-related replay as an active rather than passive process.  38 
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1. Introduction 49 

Memory replay refers to the reactivation of experience-dependent neural activity during resting 50 

periods. First observed in rodent hippocampal cells during sleep (Wilson & McNaughton, 1994), the 51 

phenomenon has since been detected in humans during rest (Hermans et al., 2017; Liu, Dolan, Kurth-52 

Nelson, & Behrens, 2019; Schapiro, McDevitt, Rogers, Mednick, & Norman, 2018; Tambini & Davachi, 53 

2013; Wittkuhn & Schuck, 2021), and sleep (Schönauer et al., 2017; Zhang, Fell, & Axmacher, 2018). 54 

These investigations have revealed replayed experiences are more likely to be subsequently 55 

remembered, therefore replay has been proposed to strengthen the associated neural connections 56 

and to protect memories from being forgotten. This memory consolidation-related replay can be 57 

viewed as distinct from task-related replay, the neural reactivation observed during task performance 58 

which supports cognitive processes such as memory recall (Jafarpour, Fuentemilla, Horner, Penny, & 59 

Duzel, 2014; Michelmann, Staresina, Bowman, & Hanslmayr, 2019; Wimmer, Liu, Vehar, Behrens, & 60 

Dolan, 2020), visual understanding (Schwartenbeck et al., 2021), decision making (Liu, Mattar, 61 

Behrens, Daw, & Dolan, 2021), planning (Momennejad, Otto, Daw, & Norman, 2018) and prediction 62 

(Ekman, Kok, & de Lange, 2017). In this paper we challenge the notion of offline consolidation-related 63 

replay as a passive, memory-preserving process, and propose it is much more dynamic in nature. Using 64 

a computational approach, we test hypotheses that offline replay may be a creative process to serve 65 

future goals, that it matters exactly where in the brain replay occurs, that it helps us at particular 66 

stages of learning, and that the brain might actively choose the optimal experiences to replay. 67 

Neural replay which supports memory consolidation during rest and sleep is generally 68 

assumed to be veridical, such that we commit the events of that day to long-term memory by replaying 69 

the episodes as they were originally experienced. However, there are circumstances in which this may 70 

be suboptimal or impractical. For example, a desirable outcome of category knowledge consolidation 71 

is to generalise to new experiences rather than recognise past instances, a phenomenon observed 72 

after sleep in infants (Friedrich, Wilhelm, Born, & Friederici, 2015; Horváth, Liu, & Plunkett, 2016). In 73 

addition, although sleep benefits category learning for a limited number of well-controlled 74 
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experimental stimuli (Schapiro et al., 2017), in the real world category learning takes place over many 75 

thousands of experiences, and storing each individual experience for replay is an impractical 76 

proposition. For these reasons, we propose the replay of novel, prototypical category instances would 77 

be a more efficient and effective solution. In fact, given the role of the hippocampus in both replay 78 

(Zhang et al., 2018) and the generation of prototypical concepts (Hassabis, Kumaran, Vann, & Maguire, 79 

2007), we consider this the most likely form of category replay. While evidence for such generative 80 

replay of category knowledge has yet to be discovered in the human brain, replay of sequences 81 

immediately following task performance in humans has been shown to be flexible, in that items can 82 

be re-ordered based on previously learned rules (Liu et al., 2019). This is reminiscent of “pre-play” 83 

observed during task performance in rodents, where hippocampal “place cells” observed to fire in 84 

specific locations reactivate in a different order to represent a route which has not been taken before 85 

(Gupta, van der Meer, Touretzky, & Redish, 2010).  86 

Drawing inspiration from these observations, here we test the idea that replay which 87 

facilitates memory consolidation, occurring over extended offline time periods including sleep, might 88 

also be generative in nature, and that it’s flexibility may not just apply to the reorganisation of learned 89 

sequences, but the creation of entirely new instances of a category. While decoding the re-ordering 90 

of stimuli or route knowledge from brain data during replay has been shown to be a tractable 91 

approach, detecting entirely new instances of complex categories from the brain represents a 92 

significant challenge, and has yet to be demonstrated.  93 

One approach to address this question is to simulate these processes in an artificial neural 94 

network. Prior research with artificial neural networks has modelled the replay of generated image 95 

stimuli (van de Ven, Siegelmann, & Tolias, 2020). While revealing a promising avenue of investigation, 96 

the results of this study cannot be easily extrapolated to the brain or human visual experience. For 97 

example, the structure of only five convolutional layers in the network employed represents just a 98 

fraction of the size of larger models which have been shown to extract visual representations similar 99 

in nature to those processed by the brain (Schrimpf et al., 2018), whose complex structure can be 100 
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mapped directly on to specific visual brain regions indicating a close correspondence in functional 101 

architecture (Devereux, Clarke, & Tyler, 2018; Güçlü & van Gerven, 2015; Khaligh-Razavi & 102 

Kriegeskorte, 2014), and whose object recognition performance compares favourably with humans 103 

(He, Zhang, Ren, & Sun, 2015). Further, the networks employed by van de Ven et al. (2020) had limited 104 

visual experience, having been pre-trained on just 10 categories of objects. In contrast, an adult 105 

human brain will harbour a lifetime of visual knowledge which facilitates the learning of novel 106 

concepts. Therefore, to simulate the learning and generative replay of new categories realistically in 107 

adults, using an experienced network which contains a pre-existing “lifetime” of knowledge about a 108 

vast range of other categories is an essential starting point. Another feature of the aforementioned 109 

study which limits the comparison to humans, is that the stimuli used were low-resolution 110 

photographs measuring 32 x 32 pixels, which do not reflect the complexity of human visual 111 

experience. To accurately simulate human learning and replay, much larger, high-resolution images 112 

which reflect the complexity and richness of everyday human visual experience are required as 113 

training stimuli. Finally, prior attempts at replay in neural networks, whether generative (Kemker & 114 

Kanan, 2017; van de Ven et al., 2020) or veridical (Hayes et al., 2021) have been deployed to address 115 

the “catastrophic forgetting” problem; the tendency of artificial networks to forget old categories 116 

when new ones are learned (French, 1999; Robins, 1995). As biological agents do not suffer from this 117 

issue, the findings of these studies offer little insight into human brain and behaviour.  118 

In this study, we investigated whether offline generative replay of novel concepts facilitated 119 

subsequent generalisation to new experiences using models which reflect the human brain and the 120 

visual environment in which it learns. To do this, we implemented generative replay in a well-studied 121 

deep convolutional neural network (DCNN), which consists of a complex architecture organised into 122 

five blocks of convolutional layers and boasts a high “brain-score” indicating it extracts 123 

representations in a similar manner to the brain and performs comparably to humans in a 124 

categorisation task (Schrimpf et al., 2018). The network had prior experience of learning 1000 diverse 125 

categories of objects from over a million high-resolution complex naturalistic images, a process which 126 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.05.25.445587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/


6 
 

rivals a lifetime of human visual experience and which yields within the model the equivalent of a 127 

mature fully-functioning visual system. We tasked the model with learning 10 novel categories it had 128 

not seen before, using similarly high-resolution naturalistic images with an average resolution of 129 

around 400 x 350 pixels (Deng et al., 2009), representing an approximate 140-fold increase in visual 130 

details from stimuli used in prior work. This is equivalent to a human coming across 10 new categories 131 

and using their lifelong experience in processing visual information to extrapolate the relevant 132 

identifying features. After learning periods, we then simulated generative replay in the network, akin 133 

to human consolidation during sleep, and monitored the network’s performance when it “woke up” 134 

the next day, to ascertain if such a process could explain the overnight improvements in generalisation 135 

observed in humans. 136 

 Another outstanding question regarding replay, is despite being associated with subsequent 137 

memory (Zhang et al., 2018), it is not clear where in the brain replay makes a demonstrable 138 

contribution towards generalisation. Replay has been observed throughout the brain, early in the 139 

ventral visual stream (Deuker et al., 2013; Ji & Wilson, 2007; Wittkuhn & Schuck, 2021), in the ventral 140 

temporal cortex (de Voogd, Fernández, & Hermans, 2016; Tambini, Ketz, & Davachi, 2010), the medial 141 

temporal lobe (Schapiro et al., 2018; Staresina, Alink, Kriegeskorte, & Henson, 2013) the amygdala, 142 

(Girardeau, Inema, & Buzsáki, 2017; Hermans et al., 2017), motor cortex (Eichenlaub et al., 2020) and 143 

prefrontal cortex (Peyrache, Khamassi, Benchenane, Wiener, & Battaglia, 2009). It is not known if 144 

replay in lower-level brain regions actually contributes to the observed memory improvements or 145 

whether the key neural changes are made in more advanced areas, and this question cannot be 146 

answered using current neuroimaging approaches. One prior study has implemented replay within an 147 

artificial neural network from a single location at the end of the network (van de Ven et al., 2020). 148 

However, because the compact architecture of this network did not have a specified functional 149 

correspondence with the human visual brain, and because replay from other locations within the 150 

network was not also implemented for comparison, it is difficult to draw conclusions from these 151 

results regarding effective replay locations in the human brain. In the current study, because we 152 
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simulated replay in a neural network which bears a close correspondence with the human ventral 153 

visual stream, we could compare the effectiveness of replay from different layers with a known 154 

representational correspondence to specific regions in the brain. In doing so, we aimed to find out the 155 

effective cortical targets of offline memory consolidation in humans. 156 

 Another open question regarding human replay is the duration of its involvement throughout 157 

the learning of novel concepts. It can take humans years to learn and consolidate semantic or 158 

conceptual knowledge (Manns, Hopkins, & Squire, 2003), but neuroimaging studies of replay are 159 

limited to a time-span of a day or two, therefore it is still not known how long replay contributes to 160 

this process. Humans are thought to “reconsolidate” information every time it is retrieved (Dudai, 161 

2012), suggesting replay might play a continual role in the lifespan of memory. However recordings in 162 

rodents have shown that replay diminishes with repeated exposure to an environment over multiple 163 

days (Giri, Miyawaki, Mizuseki, Cheng, & Diba, 2019), suggesting the brain may only replay recently 164 

learned, vulnerable information. Answering this question in humans remains a challenge because of 165 

the impracticalities of tracking replay events for extended periods. Simulation in a human-like neural 166 

network represents a feasible alternative to determine the relative contribution of replay to 167 

consolidation over long time-periods, an approach which has not been attempted to date. Here, we 168 

interleaved daily learning with nights of offline replay in a brain-like neural network to understand at 169 

what stage in learning replay may be most effective in humans.  170 

 An additional poorly understood principle of replay which we investigated in this study is why 171 

consolidation tends to selectively benefit weakly-learned over well-learned information (Drosopoulos, 172 

Windau, Wagner, & Born, 2007; Kuriyama, Stickgold, & Walker, 2004; McDevitt, Duggan, & Mednick, 173 

2015; Schapiro et al., 2018). Here, we modelled a candidate mechanism for how this occurs in the 174 

brain, by adding an auxiliary model (akin to the hippocampus) to the neocortical model, which could 175 

autonomously learn the best consolidation strategy, determining what to replay and when. 176 

 In addressing these outstanding questions regarding replay in the brain, we made a number 177 

of predictions. Because earlier brain regions are thought to extract equivalent basic features from all 178 
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categories, we predicted replay of experience would be more effective in promoting learning at 179 

advanced stages of the network.  We hypothesised the replay of “imagined” prototypical replay events 180 

would be as effective as veridical replay in helping us to generalise to new, unseen experiences, thus 181 

supporting our conceptualization of replay as a creative process. We predicted that the benefits of 182 

replay may be confined to early in the learning curve when novel category knowledge is being 183 

acquired. Finally, we hypothesised that a dynamic interaction between a hippocampal and neocortical 184 

model would result in the prioritisation of weakly-learned items, in line with behavioural studies of 185 

memory consolidation. 186 

 187 

2. Materials and Methods 188 

2.1 Neural network 189 

To simulate the learning of novel concepts in the brain, and test a number of hypotheses regarding 190 

replay, we trained a DCNN on 10 new categories of images. The neural network was VGG-16 191 

(Simonyan & Zisserman, 2014). Emulating the extent of real-world learning in humans, this network is 192 

trained on a vast dataset of 1.3 million high-resolution complex naturalistic photographs known as the 193 

ImageNet database (Deng et al., 2009), which contains recognisable objects from 1000 categories in 194 

different contexts much like what humans encounter on a daily basis. The network learns to associate 195 

the visual features of an object with its category label, until it can recognise examples of that object 196 

which it has never seen before, reflecting the human ability to generalise prior knowledge to new 197 

situations. The network takes a photograph’s pixels as input, and sequentially transforms this input 198 

into more abstract features, similar to the operation of the human ventral visual stream (Güçlü & van 199 

Gerven, 2015). It learns to perform these transformations by adjusting 138,357,544 connection 200 

weights across many layers. Its convolutional architecture reduces the number of possible training 201 

weights by searching for informative features in any area of the photographs.  202 

 This network which has been previously trained on 1000 categories can be thought of as 203 

equivalent to a fully functional visual system. This visual system allows humans to rapidly learn new 204 
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categories because it facilitates the extraction of useful features to support learning. Similarly, the 205 

VGG-16 network can learn novel categories which it has not learned before, based on its prior 206 

experience in interpreting visual input. In these experiments, we task the VGG-16 network with 207 

learning 10 new categories of images. To do this, we retained take the pre-trained “base” of this 208 

network, which consisted of 19 layers, organised into five convolutional blocks. Within each block 209 

there were convolutional layers and a pooling layer, with nonlinear activation functions. To this base, 210 

we attached two fully connected layers, each followed by a “dropout” layer, which randomly zeroed 211 

out 50% of units to prevent overfitting to the training set (Srivastava, Hinton, Krizhevsky, Sutskever, & 212 

Salakhutdinov, 2014). At the end of the network a SoftMax layer was attached, which predicted which 213 

of 10 classes an image belonged to. To facilitate the learning of 10 new classes, the weights of layers 214 

attached to the pre-trained base were randomly initialised. All model parameters were free to be 215 

trained. In total, 10 new models were trained, each learning 10 new and different classes.  216 

 217 

2.2 Stimuli 218 

Photographic stimuli for new classes were drawn randomly from the larger ImageNet 2011 fall 219 

database (Russakovsky et al., 2015), and were screened manually by the experimenter to exclude 220 

classes which bore a close resemblance to classes which VGG-16 was originally trained on. In total, 221 

100 new classes were selected, and randomly assigned to the 10 different models to be trained. Within 222 

each class, a set of 1,170 training images, 130 validation images, and 50 test images were selected. 223 

The list of the selected classes is available in Supplementary Table 1. 224 

 225 

2.3 Baseline training 226 

We first trained a model without implementing replay, to serve as a baseline measure of network 227 

performance, and compare with other conditions which implemented replay. Ten models were 228 

trained on 10 new and different classes. To further prevent overfitting to the training set, images were 229 

augmented before each training epoch. This is equivalent to a human viewing an object at different 230 
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locations, or from different angles, and facilitates the extraction of useful features rather than rote 231 

memorisation of experience. Augmentation could include up to 20-degree rotation, 20% vertical or 232 

horizontal shifting, 20% zoom, and horizontal flipping. Any blank portions of the image following 233 

augmentation were filled with a reflection of the existing image. Images were then pre-processed in 234 

accordance with Simonyan and Zisserman (2014). Depending on the experiment, the network was 235 

trained for 10 or 30 epochs. We used the Adam optimiser (Kingma & Ba, 2014) with a learning rate of 236 

0.0003. A small learning rate was chosen to reflect the fact that learning new categories in an adult 237 

human reflects a “fine-tuning” of an already highly-trained visual system. The training batch size was 238 

set to 36. The training objective was to minimise the categorical cross-entropy loss over the 10 classes. 239 

Training parameters were optimised based on validation set performance. We report the model’s 240 

performance metrics from the test set only. This is a collection of novel images from each category 241 

which the network does not learn nor is it tuned on, therefore reflecting the model’s ability to 242 

generalise to new stimuli after training, and is thus termed “generalisation performance” in the 243 

figures. Training was performed using TensorFlow version 2.2. 244 

 245 

2.4 Replay  246 

Replay was conducted between training epochs, to simulate “days” of learning and “nights” of offline 247 

consolidation. We conceptualised replay representations as generative, in other words they 248 

represented a prototype of that category never seen before, from a particular point in the network. 249 

This represents an alternative to storing every experience in our heads, in that we could replay 250 

important knowledge about the world without remembering everything. To generate these 251 

representations, the network activations induced by the training images from the preceding epoch 252 

were extracted from a particular layer in the network using the Keract toolbox (Remy, 2020). For each 253 

class separately, a multivariate distribution of activity was created from these activations, 254 

representing the unique relationship between units of the layer which were observed for that specific 255 

class. We then sampled randomly from this distribution, creating novel activation patterns for that 256 
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class at that point in the network (Figure 1). The end result was a representation that was a rough 257 

approximation of the layer’s representations of that category if a real image was processed, but novel 258 

in nature. This would be equivalent in the brain to an approximate pattern of neural activity which is 259 

representative of that category at a particular stage in the ventral visual stream.  These prototypical 260 

concepts would be likely generated from more high-level regions such as the hippocampus and 261 

prefrontal cortex (Bowman, Iwashita, & Zeithamova, 2020; Hassabis, Kumaran, Vann, et al., 2007).  262 

  The number of novel representations created for replay was equivalent to the number of 263 

original training images (1,170). To test where in the network replay is most effective, this process was 264 

performed at one of five different network locations, namely the max pooling layers at the end of each 265 

block (Figure 1). For the first four pooling layers, creating a multivariate distribution from such a large 266 

number of units was computationally intractable, therefore activations for each filter in these layers 267 

were first down-sampled by a factor of eight for layer one, by four for layers two and three and two 268 

for layer four. The samples drawn from the resulting distribution were then up-sampled back to their 269 

original resolution. These lower-resolution samples are also theoretically relevant, in that they are 270 

more akin to the schematic nature of mental and dream imagery which takes place during rest and 271 

sleep. To replay these samples through the network, the VGG-16 network was temporarily 272 

disconnected at the layer where replay was implemented, and a new input layer was attached which 273 

matched the dimensions of the replay representations. This truncated network was trained on the 274 

replay samples using the same parameters as regular training. After each epoch of replay training, the 275 

replay section of the network was reattached to the original base, and training on real images through 276 

the whole network resumed. To simulate veridical replay, in other words the replay of each individual 277 

experience as it happened, rather than the generation of new samples, we used the activations for 278 

each object at that layer in the network during replay periods. These were not down-sampled during 279 

the process. Given how many examples of a concept we generally encounter, veridical replay of all 280 

experience is not a realistic prospect, which is why prior attempts to simulate replay in smaller-scale 281 
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networks have also avoided this scenario in their approaches (Kemker & Kanan, 2017; van de Ven et 282 

al., 2020). 283 

 284 

2.5 Replay within a reinforcement learning framework 285 

We tested a process through which items which are most beneficial for replay may be selected in the 286 

brain. We proposed that such selective replay may involve an interaction between the main concept 287 

learning network (VGG-16), and a smaller network which learned through reinforcement which 288 

concepts are most beneficial to replay through the main network during offline periods. The neural 289 

analogue of such a network could be thought of as the hippocampus, as the activity of this structure 290 

precedes the widespread reactivation of neural patterns observed during replay (Zhang et al., 2018). 291 

This approach is similar to the “teacher-student” meta-learning framework which has been shown to 292 

improve performance in deep neural networks  (Fan, Tian, Qin, Li, & Liu, 2018). The side network was 293 

a simple regression network with 10 inputs, one for each class, and one output, which was the 294 

predicted value for replaying that class through the main network. Classes were chosen and replayed 295 

one at a time, with a batch size of 36. To train the side network, a value of 1 was inputted for the 296 

chosen class, with zeros for the others. The predicted reward for the side network was the change in 297 

performance of the main network after each replay instance, which was quantified by a change in chi-298 

square; a contrast of the maximum number of possible correct predictions by the main network, 299 

versus its actual correct predictions. A positive reward was therefore a reduction in chi-square, which 300 

resulted in an increase in the side network’s weight for that class. This led to the class being more 301 

likely to be chosen in future, as the network’s weights were converted into a SoftMax layer, from 302 

which classes were selected probabilistically for replay. Through this iterative process, the side 303 

network learned which classes were more valuable to replay, and continually updated its preferences 304 

based on the performance of the main network. Reducing the chi-square in this dynamic manner 305 

improves the overall network accuracy as it progressively reduces the disparity between the network’s 306 

classifications and the actual class identities. To generate initial values for the side network, one batch 307 
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of each class was replayed through the main network. The Adam optimiser was used with a learning 308 

rate of 0.001 and the objective was to minimise the mean squared error loss. The side network was 309 

trained for 50 epochs with each replay batch. The assessment of network improvement was always 310 

performed on the validation set, and the reported values are accuracy on the test set, reflecting the 311 

ability of the network to generalise to new situations. 312 

 313 

3. Results 314 

3.1 Localising where in the ventral visual stream generative replay is likely to enhance 315 

generalisation 316 

We first sought to establish where in the visual brain the replay of category knowledge might be most 317 

effective in helping to generalise to new experiences, as the functional relevance of replay observed 318 

in many different brain regions has yet to be established. To simulate the replay process, we used a 319 

DCNN called VGG-16, which is already experienced at recognising real-world objects as it has learned 320 

to categorise 1000 categories from over one million naturalistic photographs (Simonyan & Zisserman, 321 

2014). Like humans, it can generalise to new situations, and correctly identify the category of an 322 

exemplar it has never seen before. It can therefore be viewed as approximating key aspects of a 323 

mature visual brain that can support the learning of new categories. Humans readily learn new 324 

categories all the time, using previous visual representations to extract useful features such as colour, 325 

texture and shape across multiple experiences with an object. VGG-16 emulates this process by using 326 

the equivalent building blocks of its own visual experience to extract the key features of objects 327 

contained in photographs. Therefore, to simulate new category learning in humans, we tasked this 328 

network with learning 10 new categories of objects it has never encountered before. To obtain a 329 

baseline measure of how the network would perform without replay, the network learned these 10 330 

new categories in the absence of offline replay. This can be thought of as a human learning new 331 

categories in a lab experiment over the course of a single day, without any opportunity to sleep and 332 
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consolidate this information in between training blocks. Next, we implemented memory replay. We 333 

considered it unrealistic that the human brain could store and replay every single category exemplar 334 

it has experienced. Alternatively, humans readily abstract, and are quick to recognise a prototype, or 335 

“typical” concept which is representative of category members they have seen (Posner & Keele, 1968), 336 

and this process is facilitated by an increased number of experiences (Donald, Joseph, Don, David, & 337 

Steven, 1973). Ultimately, this process is important because having a mental prototype helps us to 338 

differentiate between categories (Reed, 1972). We therefore deemed it more feasible, efficient, and 339 

realistic that humans replay prototypical representations of a category which have been abstracted 340 

across learning. We assume, based on neuroimaging studies, that the category prototypes are 341 

inherited from higher level regions such as the hippocampus and prefrontal cortex (Bowman et al., 342 

2020), regions which facilitate the learning of concepts (Mack, Love, & Preston, 2018) and imagination 343 

(Hassabis, Kumaran, & Maguire, 2007; Mack, Preston, & Love, 2020) of concepts. For the purposes of 344 

these experiments, we mimic the function of these higher brain regions in generating prototypical 345 

concepts by capturing the “typical” activation of the network for that category and sampling from this 346 

gist-like representation to create novel, abstracted representations for replay (Fig 1A). Most replay 347 

representations were lower resolution than those during learning (see Materials and Methods) for 348 

computational efficiency and to reflect the notional nature of mental imagery. 349 

We simulated generative replay from different layers in the DCNN, equivalent to different 350 

brain regions along the ventral stream. Specifically, we trained the network over 10 epochs, 351 

corresponding to 10 days of learning, and replayed prototypical representations after each training 352 

epoch, simulating 10 nights of offline consolidation during sleep. In Fig 1B we show how replay affects 353 

the ability of the network to generalise to new exemplars of the categories over the course of learning, 354 

and Fig 1C shows the final best performing models in each replay condition. There is a differential 355 

benefit of replay throughout the network, where replay in the early layers yields is of limited benefit, 356 

whereas replay in the later layers boosts generalisation performance to a greater degree. This suggests 357 

that early visual areas in the brain do not store sufficiently complex category-specific representations, 358 
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curtailing the effectiveness of generated replay representations, whereas higher-level regions such as 359 

the lateral occipital cortex are better positioned to support the generation of novel, prototypical 360 

concepts which accelerates learning in the absence of real experience and helps us to generalise to 361 

new situations. 362 

 363 

 364 

Fig 1. The effects of generative replay from different layers of a model of the human ventral visual 365 

stream on generalisation to new exemplars. (A) The VGG-16 network simulates the brain’s visual 366 

system by looking at photographs and extracting relevant features to help categorise the objects 367 

within. We trained this network on 10 new categories of objects it had not seen before. In between 368 

learning episodes, akin to sleep-facilitated consolidation in humans, we implemented offline memory 369 

replay as a generative process. In other words, the network “imagined” new examples of a category 370 

based on the distribution of features it has learned so far for that object (activation space), and used 371 
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these representations (novel representation) to consolidate its memory. The network did not create 372 

an actual visual stimulus to learn from, rather it recreated the neuronal pattern of activity that it would 373 

typically generate from viewing an object from that category. We display here an example of replaying 374 

from a mid-point in the network, but all five locations where replay was implemented are indicated 375 

by the coloured circles. The brain regions corresponding approximately to each network stage, derived 376 

from Güçlü and van Gerven (2015), are listed beneath. (B) The effects of memory replay from different 377 

layers on the network’s ability to generalise to new examples of the 10 categories, throughout the 378 

course of 10 learning episodes. Plotted values represent the mean accuracies from 10 different models 379 

which each learned 10 new and different categories. (D) The final recognition accuracies (+/- S.E.M.), 380 

averaged across 10 models, on the new set of photographs after 10 epochs of learning. We reveal the 381 

location in a model of the ventral stream where replay maximally enhances generalisation 382 

performance is an advanced layer which bears a functional correspondence to the lateral occipital 383 

cortex (LOC) in humans. The benefits of replay from other locations were less pronounced, with the 384 

earliest layer showing the least benefit to generalisation.  385 

 386 

3.2 Tracking the benefits of replay across learning 387 

Humans encounter new environments throughout their lives, and novel categories which they wish 388 

to learn. This knowledge is accumulated and refined across multiple experiences, forming a learning 389 

curve for each category. Experiments have focused on the replay of very recently learned information, 390 

therefore it is not clear at what point in this learning curve replay is most effective. One could consider 391 

replay of recently learned information to be more adaptive, for example, one might want to rapidly 392 

consolidate the memory of a plant from which one ate a poisonous berry as one does not want to 393 

repeat that experience. Alternatively, generative replay may be less effective for newly encountered 394 

categories because there are insufficient experiences from which to adequately extract the underlying 395 

prototype. This is a challenging question to address in human experiments, but simulation in an 396 

artificial neural network provides an alternate avenue of investigation. In the second experiment, we 397 
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extended training to 30 days of experience, interleaved with nights of offline generative replay to 398 

simulate learning over longer timescales (Fig 2A). Guided by the results of experiment one, we 399 

implemented replay from an advanced layer corresponding to the lateral occipital cortex. In Figure 400 

2D, we show that offline generative replay is most effective at improving generalisation to new 401 

exemplars at the earliest stages of learning. This suggests replay facilitates rapid generalisation, which 402 

maximises performance given a limited set of experiences with a category.  403 

While establishing that generative replay, or imagining new instances of a category during 404 

offline periods, was highly effective in helping to generalise to new category exemplars, we were 405 

interested to compare generative replay with the unlikely veridical, high-resolution scenario whereby 406 

humans could replay thousands of encounters with individual objects exactly as they were 407 

experienced. We termed this “veridical replay” (Fig 2A), which involved capturing the exact neural 408 

patterns associated with each experienced object during learning, and replaying these from the same 409 

point in the network. As can be seen in Fig 2B, generative replay was comparably effective to veridical 410 

replay of experience in consolidating memory, despite being entirely imagined from the networks 411 

prior experience. This is despite being a low-resolution gist-like representation, perhaps akin to 412 

dreaming about unusual blends of experiences during sleep. This provides compelling support for the 413 

hypothesis that generative replay is the most likely form of category replay in humans, as it is vastly 414 

more efficient to imagine new concepts from an extracted prototype. 415 

 While the aforementioned results show the benefits of replay under optimal conditions where 416 

humans encounter the same categories every day, there are instances where exposure will be limited. 417 

To what extent can offline replay compensate for this limited learning? We simulated this in our model 418 

of the ventral stream by limiting the learning of actual category photographs to one day, and 419 

substituted all subsequent learning experiences with offline replay, termed “continuous replay” (Fig 420 

2A). This is equivalent to a human learning a new category in a one-time lab experiment, and replaying 421 

this experience during rest and sleep for the following month. Despite the absence of further exposure 422 

to the actual objects, we found the network could increase its generalisation accuracy from 32% to 423 
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83% purely by replaying imagined instances of concepts it has partially learned. This may partly 424 

account for human’s ability to quickly learn from limited experience. However, it also reveals that 425 

replayed representations are dynamic in nature, as the prototypes generated from that first 426 

experience were not sufficient to train the network to its maximum performance, as is observed when 427 

learning and replay are interleaved. This suggests that replayed representations continue to improve 428 

as they are informed by ongoing learning, therefore generative replay in the human brain throughout 429 

learning can be thought of as a constantly evolving “snapshot” of what has been learned so far about 430 

that category. 431 
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 432 

Fig 2. The facilitatory effects of memory replay across category learning. We simulate the long-433 

term consolidation of category memory by extending training to 30 days. (A) Schematic showing the 434 

different experimental conditions. “No replay” involves the model of the visual system learning the 435 

10 new categories without replay in between episodes. “Generative replay” simulates the brain 436 
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imagining and replaying novel instances of a category during “night” periods of offline consolidation, 437 

from a layer equivalent to the lateral occipital cortex. “Veridical replay” tests the hypothetical 438 

performance of a human who, each night, replays every single event which has been experienced 439 

the preceding day. “Continuous replay” simulates a single day of learning, followed by days and 440 

nights of replay, investigating the maximum benefit afforded by replay given only brief exposure to a 441 

category. (B) The ability of the network to generalise to new exemplars of a category during each 442 

day throughout the learning process. Generalisation performance is measured by the proportion (+/- 443 

S.E.M) of correctly recognised test images across 10 models. Generative replay maximally increases 444 

performance early in training, suggesting it is critical for new learning and recent memory 445 

consolidation. Despite being comprised of internally generated fictive experiences, generative replay 446 

was comparably effective to veridical replay throughout the learning process, rendering it an 447 

attractive, efficient and more realistic solution to memory consolidation which does not involve 448 

remembering all experiences. Continuous replay after just one day of learning substantially 449 

improved generalisation performance, but never reached the accuracy levels of networks which 450 

engaged in further learning. Replay can therefore compensate for sparse experience to a significant 451 

degree, however its limitations also reveal generative replay to be dynamic process, whereby replay 452 

representations are informed and improved in tandem with ongoing interleaved learning. 453 

 454 

3.3 Determining how the brain might select experiences for replay 455 

Memory consolidation favours weakly-learned information, with a tendency to replay fragile 456 

memories more often (Schapiro et al., 2018). How the brain targets these vulnerable representations 457 

remains a mystery. Memory replay throughout the brain is triggered by hippocampal activity (Zhang 458 

et al., 2018), and given the role of the hippocampus in the generation of prototypes (Bowman et al., 459 

2020), it is likely the hippocampus selects categories for generative replay. We proposed that replay 460 

may be a learning process in itself, whereby the hippocampus selects replay items, and learns through 461 

feedback from the neocortex the optimal ones to replay. In our previous simulations we selected all 462 
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categories for replay in equal number, however to simulate the autonomous nature of replay selection 463 

in the brain, we supplemented our model of the ventral visual stream with a small reinforcement 464 

learning network, assuming the theoretical role of the hippocampus in deciding what to replay (Fig 465 

3A). The hippocampal model could choose one of the 10 categories to replay, and received a reward 466 

from the main network for that action, based on the improvement in network performance. 467 

Categories associated with a high reward were more likely to be subsequently replayed, therefore the 468 

hippocampal side network could learn through trial and error which categories to replay more often 469 

in the cortical network. 470 

We trained our model of the visual system on 10 novel categories, implementing replay during 471 

offline periods as before, and compared its generalisation performance with that of the dual 472 

interactive hippocampal-cortical model. In terms of overall accuracy, both approaches performed 473 

similarly throughout training (Fig 3B). However, the reinforcement learning network which simulated 474 

the hippocampal replay systematically selected categories which were originally relatively weakly 475 

learned more often (Fig 3C), which resulted in their selective improvement. However, this came at a 476 

cost, with originally well-learned categories being replayed less often and a drop in their generalisation 477 

accuracy. We propose therefore that such a reinforcement learning process may underlie the 478 

“rebalancing” of experience in the brain, and that replay helps to compensate for the fact that some 479 

categories are more difficult to learn than others. 480 

 481 
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 482 

Fig 3. Replay as a reinforcement learning process simulates the brain’s tendency to consolidate 483 

weaker knowledge. (A) Replay in a model of the visual system is controlled by a reinforcement 484 

learning (RL) network akin to the hippocampus. The RL network selects one of 10 categories to 485 

replay through the visual system and receives a reward based on the improved performance, 486 

learning through trial and error which categories to replay. (B) Overall generalisation performance 487 

on new category exemplars was similar for both generative replay and generative replay controlled 488 

by a reinforcement learning network. Generalisation performance represents mean accuracy (+/- 489 

S.E.M) on test images across 10 models which each learned 10 new categories. (C) The RL network 490 

learns to replay categories which were originally more difficult for the visual system, and improves 491 

their accuracy. This effectively “rebalances” memory such that category knowledge is more evenly 492 

distributed, and offers a candidate mechanism as to how the brain chooses weakly learned 493 
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information for replay. Plotted values represent the 100 categories across 10 models. A proportion 494 

of the generalisation performance values are overlapping. 495 

 496 

4. Discussion 497 

We simulated the consolidation of category knowledge in a large-scale neural network model which 498 

closely mirrors the form and function of the human ventral visual system, by replaying prototypical 499 

representations thought to be formed and initiated by the hippocampus. The notion that replay of 500 

visual experiences might be generative in nature has been suggested by limited-capacity models which 501 

have been trained on low-resolution photographic images (van de Ven et al., 2020). However, our 502 

results using a realistic model of the visual brain represent the most compelling evidence to date that 503 

humans are unlikely to replay experiences verbatim during rest and sleep to improve category 504 

knowledge, and are more likely to replay novel, imagined instances instead. In addition, the large 505 

number (117,000) of high-resolution complex naturalistic images we used for training in this 506 

experiment reflected real-world learning and facilitated the extraction of gist-like features. While 507 

empirical evidence exists that humans replay novel sequences of stimuli (Liu et al., 2019), our work 508 

suggests that the brain goes further and uses learned features of objects to construct entirely fictive 509 

experiences to replay. We speculate that this creative process is particularly important for the 510 

consolidation of category knowledge as opposed to the replay of episodic memory (Deuker et al., 511 

2013; Schapiro et al., 2018; Zhang et al., 2018), because of the requirement to abstract prototypical 512 

features and use these to generalise to new examples of a category. We propose that generative 513 

replay confers additional advantages such as constituting less of a burden on memory resources, as 514 

not all experiences need to be remembered. Further, our replay representations were highly effective 515 

in consolidating category knowledge despite being down-sampled, and these compressed, low-516 

resolution samples would reduce storage requirements further. Perhaps the most convincing 517 

demonstration in our simulations that category replay in the brain likely adopts this compressed, 518 

prototypical format is that it aided generalisation to a similar degree as the exact veridical replay of 519 
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experience in boosting generalisation performance. Our findings therefore prompt a 520 

reconceptualization of the nature of consolidation-related replay in humans, that it is not only 521 

generative, but also low resolution or “blurry”, as is the case with internally generated imagery in 522 

humans (Giusberti, Cornoldi, De Beni, & Massironi, 1992; Lee, Kravitz, & Baker, 2012). In fact, the kind 523 

of replay we propose here may be the driving force behind the transformation of memory into a more 524 

schematic, generalised form which preserves regularities across experiences while allowing unique 525 

elements of experience to fade (Love & Medin, 1998; Sweegers & Talamini, 2014; Winocur & 526 

Moscovitch, 2011). The challenge for future empirical studies in humans to confirm our hypothesis, 527 

will be to decode prototypical replay representations during rest and sleep. 528 

 Simulating replay in a human-like network also allowed us to answer a question not currently 529 

tractable in neuroimaging studies: where in the visual stream is replay functionally relevant to 530 

consolidation? In a prior simulation of replay in a neural network, van de Ven et al. (2020) 531 

demonstrated generative replay could attenuate forgetting when performed after the final 532 

convolutional layer, but its effectiveness was not compared to earlier layers, and the network 533 

employed, consisting of five convolutional layers, did not reflect the structure of the human visual 534 

system. Deeper networks, such as the one used here, consisting of 23 layers in total, organised into 535 

five blocks of convolutional layers, not only extract useful category features from naturalistic images, 536 

but representations in network layers can be mapped directly on to specific brain regions along the 537 

ventral visual stream (Devereux et al., 2018; Güçlü & van Gerven, 2015; Khaligh-Razavi & Kriegeskorte, 538 

2014). In keeping with our observation that low-resolution, coarse, schematic replay was effective in 539 

helping the network to generalise, we found the most effective location for replay to be in the most 540 

advanced layers of the network, layers which are less granular in their representations. This 541 

approximately corresponds to the lateral occipital cortex in humans, a region which represents more 542 

complex, high-level features (Güçlü & van Gerven, 2015). In contrast, generative replay from the 543 

earliest layers corresponding to early visual cortex was less effective. These layers are sensitive to low-544 

level visual features such as contrast, edges and colour, therefore generating samples from these 545 
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layers will yield rudimentary-level category-specific information, which are of limited utility for replay 546 

and generalisation. High-level representations on the other hand, may contain more unique 547 

combinations and abstractions of these lower-level features. We also found replay from the 548 

penultimate layer was more effective than the final layer, suggesting the optimal replay location 549 

represents a balance between the presence of sufficiently complex category information and the 550 

number of downstream neuronal weights available to be updated based on replaying these features. 551 

These findings prompt a re-evaluation of the functional relevance of replay in early visual cortices in 552 

both animals and humans, and generate specific hypotheses for potential perturbation studies to 553 

investigate the effects of disruptive stimulation at different stages of the ventral stream during offline 554 

consolidation.  555 

 Our simulations also revealed a phenomenon never before tested in humans, that the 556 

effectiveness of replay depends on the stage of learning. We acquire factual information about the 557 

world sporadically over time across contexts, for example we may encounter a new species at a zoo 558 

one day, and subsequently see the same animal on a wildlife documentary, and so on. Ultimately the 559 

consolidation of semantic information in the neocortex can take up to years to complete (Manns et 560 

al., 2003). However, our simulations show that replay is most beneficial during the initial encounters 561 

with a novel category, when we are still working out its identifiable features and have not yet learned 562 

to generalise perfectly to unseen instances. It is therefore likely humans replay a category less and 563 

less with increasing familiarity, and there is some support for this idea in the animal literature (Giri et 564 

al., 2019). We speculate that the enhanced effectiveness for recent memories may have an adaptive 565 

function, allowing us to generalise quickly with limited information. In fact, our simulations showed 566 

that after a single learning episode, replay can compensate substantially for an absence of subsequent 567 

experience. Our results provide novel hypotheses for human experiments, testing for an interaction 568 

between the stage of category learning and the extent of replay. The fact that replay early in the 569 

learning process was more effective provides further support for our proposal that vague, imprecise 570 

replay events are useful for generalisation, as the networks imaginary representations at that stage 571 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted August 23, 2021. ; https://doi.org/10.1101/2021.05.25.445587doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445587
http://creativecommons.org/licenses/by-nc-nd/4.0/


26 
 

would be an imperfect approximation of the category in question. We acknowledge there may be a 572 

“ceiling effect”, whereby later in training there is no further room for improvement, however we 573 

would posit that over the human lifespan, we are operating in the non-converged portion of the 574 

learning curve that we display here. 575 

 Our results also represent the first mechanistic account of how the brain selects weakly-576 

learned information for replay and consolidation (Drosopoulos et al., 2007; Kuriyama et al., 2004; 577 

McDevitt et al., 2015; Schapiro et al., 2018). The hippocampus triggers replay events in the neocortex 578 

(Zhang et al., 2018), with a loop of information back and forth between the two brain areas 579 

(Rothschild, Eban, & Frank, 2017), although the content of this neural dialogue is not known. Our 580 

simulations suggest that the hippocampus could learn the optimal categories to replay based on 581 

feedback from the neocortex. Our results showed that such a process resulted in the “rebalancing” of 582 

experience, where generalisation performance was improved for weakly learned items, and 583 

attenuated for items which were strongly learned. This reorganisation of knowledge has been 584 

observed in electrophysiological investigations in rodents, where the neural representations of novel 585 

environments are strengthened through reactivation at the peak of the theta cycle, while those 586 

corresponding to familiar environments are weakened through replay during the trough (Poe, Nitz, 587 

McNaughton, & Barnes, 2000). This more even distribution of knowledge could be adaptive in both 588 

ensuring adequate recognition performance across all categories and forming a more general 589 

foundation on top of which future conceptual knowledge can be built. There have been recent 590 

theoretical and empirical demonstrations of how items get selected for replay within a reinforcement 591 

learning framework, such as the “tagging” of items that elicit a large prediction error during the 592 

learning phase (Momennejad et al., 2018), and the replay of events that are more likely to be 593 

encountered in future and which lead to the highest reward (Liu et al., 2021; Mattar & Daw, 2018). 594 

However, these accounts do not explain why even in the absence of such prediction errors, or without 595 

knowing the likelihood of future events, knowledge which has been weakly-learned during waking 596 

periods is consistently targeted for replay and consolidation during sleep (Drosopoulos et al., 2007; 597 
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Kuriyama et al., 2004; McDevitt et al., 2015; Schapiro et al., 2018). Our interactive networks suggest 598 

that offline reinforcement learning could account for the selection of weakly-learned knowledge 599 

during the replay process itself, and future experiments could assess whether our models choose the 600 

same categories for replay as humans when trained on the same stimuli. 601 

 In summary, our simulations provide strong evidence that category replay in humans is a 602 

generative process which is functionally relevant at advanced stages of the ventral stream. We make 603 

testable predictions about when during learning replay is likely to be effective and offer a novel 604 

account of replay as a learning process in and of itself between the hippocampus and neocortex. We 605 

hope these findings encourage a closer dialogue between theoretical models and empirical 606 

experiments. These findings also add credence to the emerging perspective that deep learning 607 

networks are powerful tools which are becoming increasingly well-positioned to resolve challenging 608 

neuroscientific questions (Richards et al., 2019). 609 
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Supplementary table 1: List of ImageNet classes by model 808 

Model 1 n12360108 begonia 

  n02822579 bedstead bedframe 

  n02427724 waterbuck 

  n03098688 control room 

  n02944075 camisole 

  n01603600 waxwing 

  n03196598 digital display alphanumeric display 

  n02848216 blade 

  n07712856 tortilla chip 

  n03592669 jalousie 

Model 2 n11853356 Christmas cactus Schlumbergera buckleyi Schlumbergera baridgesii 

  n04177820 settle settee 

  n03904183 pedestrian crossing zebra crossing 

  n04355511 sundress 

  n03487444 hand lotion 

  n12899752 angel's trumpet Brugmansia suaveolens Datura suaveolens 

  n12655869 raspberry raspberry bush 

  
n12948053 common European dogwood red dogwood blood-twig pedwood Cornus 
sanguinea 

  n02869737 bongo bongo drum 

  n02415253 Dall sheep Dall's sheep white sheep Ovis montana dalli 

Model 3 n03375575 foil 

  n03082807 compressor 

  n03262932 easy chair lounge chair overstuffed chair 

  n02047614 puffin 

  n03317788 faience 

  n09475044 wasp's nest wasps' nest hornet's nest hornets' nest 

  
n11784497 jack-in-the-pulpit Indian turnip wake-robin Arisaema triphyllum Arisaema 
atrorubens 

  n03941231 pinata 

  n02813399 bay window bow window 

  n04544325 wainscoting wainscotting 

Model 4 n03993053 potty seat potty chair 

  n04082886 reticle reticule graticule 

  n03421324 garter belt suspender belt 

  n03766044 miller milling machine 

  n03505504 headscarf 

  n12384839 love-in-a-mist running pop wild water lemon Passiflora foetida 

  n03619793 kitbag kit bag 

  n07600696 candied apple candy apple taffy apple caramel apple toffee apple 

  n02068974 dolphin 

  n03237992 dressing gown robe-de-chambre lounging robe 

Model 5 n02918964 bumper car Dodgem 

  n02392824 white rhinoceros Ceratotherium simum Diceros simus 
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  n01806364 blue peafowl Pavo cristatus 

  n02956699 capitol 

  n04290079 spun yarn 

  n08596076 littoral litoral littoral zone sands 

  n02887970 bracelet bangle 

  n10635788 sphinx 

  n07901457 muscat muscatel muscadel muscadelle 

  n07870167 lasagna lasagne 

Model 6 n04324387 stockroom stock room 

  n04591517 wind turbine 

  n02988486 CD-R compact disc recordable CD-WO compact disc write-once 

  n04568069 weathervane weather vane vane wind vane 

  n04514241 uplift 

  n03207835 dishtowel dish towel tea towel 

  n13206817 maidenhair maidenhair fern 

  n03307792 external drive 

  n12666965 cape jasmine cape jessamine Gardenia jasminoides Gardenia augusta 

  n12950126 valerian 

Model 7 n03986355 portfolio 

  n11848479 night-blooming cereus 

  n04439712 tinfoil tin foil 

  n03160740 damask 

  n01612122 sparrow hawk American kestrel kestrel Falco sparverius 

  n09206896 arroyo 

  n12392549 stinging nettle Urtica dioica 

  n02343772 gerbil gerbille 

  n07875436 risotto Italian rice 

  n02060133 fulmar fulmar petrel Fulmarus glacialis 

Model 8 n03655072 legging leging leg covering 

  n10738111 unicyclist 

  n09270735 dune sand dune 

  n03409393 gable gable end gable wall 

  n02331046 rat 

  n03452267 gramophone acoustic gramophone 

  n10105733 forward 

  n07911677 cocktail 

  n03797182 muffler 

  n01563128 warbler 

Model 9 n04197110 shipwreck 

  n10470779 priest 

  n02769290 backhoe 

  n03478756 hall 

  n04519153 valve 

  n04289027 sprinkler 

  n02782778 ballpark park 
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  n03558404 ice skate 

  n04138261 satin 

  n02700064 alternator 

Model 10 n03524150 hockey stick 

  n03716966 mandolin 

  n02962200 carburetor carburettor 

  n03237340 dresser 

  n04004210 printed circuit 

  n02917377 bullhorn loud hailer loud-hailer 

  n07879953 tempura 

  n04087826 ribbing 

  n02404432 longhorn Texas longhorn 

  n07830593 hot sauce 
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