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Abstract.
The global efforts to control COVID-19 are threatened by the rapid emergence of novel
variants that may display undesirable characteristics such as immune escape or increased
pathogenicity. Early prediction of emerging strains could be vital to pandemic preparedness
but remains an open challenge. Here, we derive Dimensions of Concern (DoCs) in the latent
space of SARS-CoV-2 mutations and demonstrate their potential to provide a lead time for
predicting the increase of new cases. We modeled viral DNA sequences as documents with
codons treated as words to learn unsupervised word embeddings. We discovered that “blips''
in latent dimensions of the learned embeddings were associated with mutations. Latent
dimensions which harbored blips that consistently preceded and were predictive of new
caseloads were analyzed further as Dimensions of Concern, DoCs. The DOCs captured
CGG, CTG, AGG, AGT, GAC and, CAC codons associated with major global VoCs L452R,
R190S, and D1118H, thus validating our approach biologically. Tracking these DOCs can
provide a practical approach to predict country-specific emergence and spread of viral strains
for genomic surveillance and is extensible to related challenges such as immune escape,
pathogenicity modeling, and antimicrobial resistance.

COVID-19 is reported to have claimed 3.46 million lives as of May 24, 2021 [1]. Many of
these deaths are attributed to unexpected surges in infections caused by new strains of
SARS-CoV-2, prompting health organizations such as the CDC to declare these as variants of
concern (VoCs) [2]. Such emergence of new variants can seriously undermine the efficacy of
global vaccination programs or cause multiple reinfection waves as new strains may escape
antibodies. As a result, several initiatives have focused on providing high-quality tracking
information for the strains and lineages as these emerge [3]. However, early prediction of
emerging variants through genomic signals remains an open challenge. Although
domain-based, expert-reasoning approaches are the mainstay of our understanding, which
often yield retrospective understanding rather than proactive predictions. On the other hand,
black-box machine learning approaches are likely to be biased by underlying data
characteristics and do not explain the biological basis of predictions.
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Here we propose a model for tracking and predicting the spread of COVID-19 across
countries. Our approach is rooted in language models that have recently shown promise for
capturing biological insights from DNA sequences [4]. Word embeddings represent the latent
space of a corpus of text [5] and can capture highly nonlinear and contextual relationships.
Codons with their tri-nucleotide translations represent a biological basis for word
representations. They have been utilized to learn embeddings for modeling various outcomes
such as mutation susceptibility [6] and gene sequence correlations [7]. Our empirical
experiments with the learned embeddings uncovered explainable genomic signals and
predicted new caseloads across nine countries.

Reading the genome to learn word embeddings for advancing biological understanding is a
relatively recent area of research. Recently, Hie et al. [8] used machine learning and word
embedding techniques to model the semantics and grammar of amino acids corresponding to
antigenic change to predict the mutations that might lead to viral escape. This paper focuses
on the semantics of viral DNA sequences to derive Dimensions of Concern (DoCs) and
demonstrate their causal potential for increasing epidemiological spread patterns across nine
countries. Our approach is extensible to global threats in pathogen surveillance such as
emerging infections, pandemics, and antibiotic resistance.

Following the linguistic idea that the meaning of a word is characterized by the company it
keeps, we leveraged a word2vec language model to learn the latent representations of codons
in spike protein sequences of SARS-COV-2. Sequence-level embeddings were then obtained
from the codon embeddings and investigated for the presence of genomically meaningful
characteristics. The phylogenetic tree (obtained from the embeddings) for the United
Kingdom (Figure 1(a)) shows two clear temporally split clusters for 2020 and 2021
sequences, which may be indicative of different strains in these time periods. The temporality
of the collected sequences was found to be preserved in the two clusters, even though the
model was trained only on genome sequences. Figures 1(b,c) demonstrate that geospatial
information is preserved in the sequence embeddings. Some countries form distinct clusters,
while others are dispersed across many clusters. This behavior was expected because viral
strains spread from one country to another, and our samples had different collection dates for
each country. This analysis suggests that our language model captures the temporal
emergence of strains and geographic information in a country-specific manner.
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Figure 1: Latent space preserves spatiotemporal information of COVID-19 spread.
Phylogenetic trees are constructed using cosine similarities between 400 randomly sampled
sequence embeddings. (a) Dendrogram for strains from the U.K.: Cluster 1 (blue) contains
strains from the period Oct 2020 - Dec 2020, while Cluster 2 (orange) contains strains
collected between Jan 2021 - Mar 2021. (b) Dendrogram for 16 countries across the globe:
Chinese, Australian, Mexican, and England strains form tight clusters (marked in green,
purple, and magenta), while strains from Italy, France, Brazil, Japan, Canada, USA,
Scotland, and India are dispersed with other countries. (c) T-SNE plot for visualization of
high-dimensional latent embeddings (200 randomly sampled sequences from each country).
Distinct clusters for China, Australia, and Mexico were observed.
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Further analysis of the sequence embeddings for different periods revealed sudden changes
(“blips”) in values in each dimension. We attributed these blips to changes in the spike
protein of the genome sequence. This hypothesis was based on the fact that the embedding of
a word (codon) represents the context it occurs. A mutation results in a codon that is known
to be found in a different context. This alters the semantic sense of the original sequence, and
this modification of meaning is reflected as a change in values (blips) across different latent
dimensions. This hypothesis was validated in simulation experiments in synthetic datasets
(Supplementary Information).

Monthly normalized blip counts were computed for each dimension (blip dimensions). A
comparison of total normalized blip counts for different locations revealed that geospatially
proximate regions have similar blip patterns across the latent dimensions (Figure 2(a)),
indicating that these regions have been accumulating similar changes. Conversely, some
regions that show dissimilar patterns suggest that they have accumulated unlike
changes(Figure 2(b)).

Figure 2: Latent space dimensions capture mutations in the spike protein.
Countries in the U.K. (a) - England and Scotland show a similar distribution of total
normalized blips across dimensions, while (b) England and Brazil have dissimilar
distributions.

We then attempted to decipher the relationship between blip dimensions and monthly new
COVID-19 cases in different countries. Cross-correlation between the two revealed that blip
dimensions have a leading relationship with new cases (Figure 3(a)-(d)). This suggests that
the genome sequence data in a given month can be used to predict new cases in subsequent
months. Boruta algorithm was employed to assign feature importance scores to different
dimensions, which revealed that dimension 3 is the most significant predictor of new cases
(Figure 3(e)). Statistically significant dimensions from Boruta analysis were termed
Dimensions of Concern (DoCs).  Random forest-based regression modeling on the DoCs
achieved an R-squared of 37% on the test set, out of which 3% variance was explained by the
blip dimensions.
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Figure 3: Blip dimensions are predictive of new COVID-19 caseloads.
a) Cross-correlation between Delta log-transformed blip dimension three and  Delta
log-transformed new cases for Brazil. b) Line plot for blip dimension three and monthly new
cases for Brazil. c, d) Heatmaps of cross-correlation between delta log-transformed blip
dimensions and delta log-transformed new cases for Brazil and England (Darker colors
represent higher correlations). These plots indicate that blip dimensions have an overall
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leading relationship with new cases. e) Feature importance scores from the Boruta algorithm
for predicting cases in subsequent months.

The Biological significance of DoCs was assessed by finding the top ten contributing trimers
and their associated weights in each of these dimensions (Table 1). These codons were then
mapped to Variants of concern (VOCs) and Variants of Interest (VOIs) (Supplementary Table
2). It was observed that codons CGG, CTG, AGG, AGT, GAC, CAC, ACG, and CAT were
captured by DoCs associated with VoCs and VoIs such as L452R, R190S, D1118H, K417T,
and Δ69. These variants are generally known to exhibit increased infectivity, pathogenicity,
and transmissibility.

Dimensions of Concern

3 12 13 15 30 33

trimers Weights trimers Weights trimers Weights trimers Weights trimers Weights trimers Weights

TAA 1.02 TAA 1.85 ACG 0.9 ACG 0.84 TAG 1.11 TAA 6.31

GGG 0.83 CGC 1.38 TCG 0.7 CGG 0.81 GGG 0.62 CGC 2.96

AGC 0.77 CGG 1.18 AGC 0.65 CCC 0.71 CAT 0.55 CAC 2.19

CGC 0.75 TCG 1.05 TAA 0.61 CGC 0.5 TAA 0.53 CGA 2.09

ACG 0.69 TGA 0.93 GCG 0.53 CGT 0.42 CTG 0.5 CCG 2.03

TGA 0.58 CAC 0.73 TCC 0.51 AGG 0.35 TCG 0.46 TGC 1.89

TAG 0.53 ACG 0.57 AGG 0.47 TAG 0.33 CAC 0.45 GAC 1.81

TCG 0.53 CCC 0.52 TGC 0.35 GGA 0.3 ACC 0.35 GAG 1.81

CGG 0.52 CTG 0.51 AGT 0.32 CTC 0.29 ACG 0.33 TGT 1.79

CAC 0.42 AGC 0.37 CGG 0.32 GGC 0.28 CTA 0.3 ACG 1.78

Table 1: Dimensions of Concern capture biologically significant K-mer contributions.
The table shows the top contributing trimers for the Dimensions of Concern. It provides a
way to map the latent space dimensions to specific codons, and by extension, particular
Variants of concern (VOCs) and Variants of Interest (VOIs). For example, dimension-12
captures the CGG and CTG codons, known to occur in the L452R variant. Dimension-33
captures the codons ACG, TGT, GAG, GAC, and CAC, associated with multiple variants
such as K417T, W152C, Del 156, and D1118H. Dimension 30 captures codons CAT and
CAC, associated with Δ69 and D1118H, respectively.

This mapping from latent space blips to different SARS-CoV-2 variants allows for the
opportunity to predict emerging strains and take preventive measures in advance.
Furthermore, distinct dimensions capture country-specific changes and maybe surveilled to
monitor the spread of the pandemic. This hypothesis was confirmed by performing empirical
analysis on several DoCs. Dimension-33 captures the codons GAC and CAC, known to occur
in the D1118H variant of the U.K. origin. The decrease in blip counts in this dimension for
the period November 2020 to January 2021 (Figure 4) coincided with the second and third
national lockdown, the start of vaccination, and enforcement of stricter policies for social
distancing [9][10]. Dimensions 12 and 15 reflect blips in codons ACG (linked with K471T
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variant) and AGG (related with R190S variant), respectively, and are known to be associated
with the P.1 lineage [11] in Brazil. This variant was responsible for the enhanced
transmissibility rate in Brazil from December 2020. Both the dimensions show an increase in
the normalized blip counts across the three months (Figure 4). Dimensions 3 and 12 capture
the double mutant L452R (associated with lineage B.1.617.1 and B.1.617.2), first observed in
India in December 2020 [12], and was found to have increased infectivity and
transmissibility. The two dimensions show an increase in the normalized blip counts across
the three months for India (Figure 4). Therefore our analysis suggests that temporal tracking
of these dimensions may be used as a surrogate to track the spread of the pandemic.

Figure 4: Temporal tracking of blips in Dimensions of Concern may be used as a
surrogate to track the spread of the pandemic. The radar plots depict the normalized blip
counts for selected dimensions in November 2020, December 2020, and January 2021 for
Brazil, England, and India. Both Brazil and India show an increase in normalized blip counts
in Dimension 12 (associated with the L452R  variant) across the three months, concurrent
with the respective spreads in these countries. Conversely, England shows a decrease in
Dimension 33 (associated with the D1118H variant), concurrent with the national lockdown
and strict social distancing policies.

Our study exploits the fact that a mutation in a genome sequence changes its ‘meaning’ and,
therefore, its latent space representation. We have shown that these changes can be linked to
specific strains and could potentially be used to model new COVID-19 cases in several
countries across the globe. The latent dimensions may further be employed to predict the
clinical consequences of emerging strains. The currently available vaccines are intended for
early SARS-CoV-2 strains, but with new emerging variants, immune responses triggered by
these vaccines may be weaker and short-lived. As seen in the devastating second wave of the
pandemic in India, newer SARS-CoV-2 variants have acquired an increased pathogenic
potential resulting in rapid clinical progression and overwhelmed health systems. Mitigating
such future events will require more robust surveillance systems in place. Our study offers a
promising solution in this direction and lays the foundation for proactive genomic
surveillance of COVID-19.
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Discussion.

We have implemented an approach for analyzing the emerging strains based on the latent
space of spike protein-coding nucleotide sequences. We chose the nucleotide sequences
instead of proteins to capture and track the variations that may not have immediate functional
consequences. Our approach has two central underlying tenets: (i) long-range interactions are
known to modulate the functional [13] interaction between receptor binding domain and
ACE2 receptors, hence may be captured in the NLP models that capture trimer changes and
context, and (ii) latent space dimensions may be differentially correlated with indicators of
spread, thus providing a data-driven handle for tracking and predicting variants of concern
and variants of interest. Our approach takes advantage of temporal changes in the semantics
of mutating sequences. Preservation of phylogenetic structure based upon the similarity
matrix obtained using the embeddings validated that the latent dimensions capture
Spatio-temporal information. Analyzing the dynamic patterns and underlying correlations in
the 30,000 base pair long sequence of SARS-CoV-2 [14] is vital to highlight the mechanistic
understanding of mutations. SARS-CoV-2 seems to show an exceptionally high frequency of
recombinations arising due to the absence of proof-reading mechanism and sequence
diversity, which calls for urgency in studying its transmission pattern [15][16]. Therefore
predicting mutations in the spike protein, which binds to ACE2 receptors, can help us
estimate the spread of disease and the efficacy of treatments and vaccines [17][18].

In our study, each genomic sequence is represented in a 36-dimensional latent vector space.
Each dimension captures the trimers at the nucleotide level, showing blips driven by
substitution, insertion, and deletion of trimers. The top ten trimers for each dimension are
filtered based on weights and mapped with variants of interest and concern.

The biological significance of our embeddings-based approach can be understood from the
known variants and their properties. One-third of the spike region is known to have mutated
so far, as evidenced by the data deposited in publicly available databases such as GISAID
[19]. The classification of variants into three classes, i.e., Variants of Interest (VOIs), Variants
of Concern (VOCs), and Variants of high consequence (VOHC)[11], provide some insights
into the genomic features of these strains. B.1.1.7, B.1.351, P.1, B.1.427, and B.1.429
lineages are associated with VOCs that are capable of evading host immune mechanisms and
cause outbreak clusters with increased infectivity, transmissibility, and severity. These are
known to accumulate several mutations before these transform into established lineages. For
example, Δ69/70, A570D, D614G, P681H, T716I, S982A, D1118H, K1191N characterize the
B.1.1.7 strain, identified first in the UK. Similarly, the P.1 lineage, reported first in Brazil,
includes the variants T20N, D138Y, R190S, K417N, K417T, E484K, N501Y, D614G,
H665Y. The B.1.526, B.1.526.1, B.1.617, B.1.617.1, B.1.617.2, B.1.617.3, and P.2 lineages
are associated with VOIs and are characterized by reduced neutralization post-vaccination
and increased transmissibility. The P.2 lineage, first detected in Brazil [11], includes
mutations F565L, D614G, V1176F, and E484K. The B.1.617 lineage consists of the L452R,
E484Q, and D614G variants, its sub-lineages B.1.617.1 (including additional variants T95I,
G142D, E154K, P681R, and Q1071H) and B.1.617.2 (including additional variants T19R,
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G142D, Δ156, Δ157, R158G, T478K, P681R, D950N) have shown the capability of reduced
susceptibility to monoclonal antibody treatment and hence require urgent attention [11]. The
L452R mutation, characterized by replacement of CTG (Leu, L) with CGG (Arg, R) at 452nd

position of the Receptor Binding Domain (RBD) of the Spike protein and by a T-to-G
nucleotide substitution at 22917th genomic position of the spike region, offers a particular
significance in both infection and transmission, making it a predominant variant across many
countries [20][21].

Latent space dimensional analysis revealed that the codons AGG (Arginine, R) and AGT
(Serine, S), associated with R190S mutation [22], were captured in 5 out of total 36
dimensions. Similarly, CTG (Leu, L) and CGG (Arg, R), associated with L452R, were
captured in 18 and 22 dimensions. Capturing these codons adds a special significance to our
studies as variants R190S and L452R exhibit antibody neutralizing characteristics resulting in
increased infectivity [11][23]. Besides this, the variants crucial to India and UK were also
captured by our dimensional analysis. For instance, the codons CAT (Gln, Q) associated with
Q1071H of B.1.617.1 lineage, codons AGA (Arg, R) and GGA (Gly, G), associated with
R158G of B.1.617.2 lineage, codons ACA (Thr, T) and ATA (Ile, I) linked to T716I of
B.1.1.7 lineage were captured in multiple dimensions.

While all the 36 dimensions can capture the trimers associated with variants of concern and
interest, dimensions 3, 12, 13, 15, 30, and 33 were found to be statistically significant from
Boruta feature selection for the prediction of new cases in the successive month. These
Dimensions of Concern (DoCs) show a strong relationship with the current pandemic trends,
as illustrated in the radar plots. Dimensions 3, 12 captured the codons CGG (Arg, R), ACG
(Thr, T), and CAC (His, H). Codons CGG and CTG are significant as they are associated
with the Indian double mutant L452R. The latent space dimensional analysis also captured
the deletions related to variants. For instance, dimensions 4 and 33 captured GAG (E)
associated with the mutation Δ156 belonging to B.1.617.2 (recorded in December 2020 in
India). Similarly, dimension-13 captured four trimers (ACG, CGG, AGG, AGT) associated
with multiple variants such as K417T, L452R, and R190S causing increased infectivity and
spread.

Prediction models can be used for training the genomic sequence for predicting infection
severity based on Co-associations between the SNPs of Co-morbid Diseases and COVID-19
[24]. The machine learning models can also be trained on genomic sequences for COVID-19
classification [25]. Our exploratory cross-correlation analysis suggested a leading relationship
of normalized blip dimension with new COVID-19 cases. This finding motivated using
machine learning techniques such as Boruta to select important predictors of future new
cases. We have used the Random Forest model for predicting the monthly new cases by
taking the Dimensions of Concern as a feature vector. Although the variance explained by our
model is low, however, we were able to compute the variability associated with spike protein
mutations. So our method showed a possible way to estimate the new cases variability
associated with spike protein mutations. Our methods can be incorporated with the epidemic
projections model to predict the epidemic trajectories better.
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There are few limitations to our study. Although the embeddings indicate trimers with high
weights, these do not tell the position where the trimer change may have happened in the
genome. This is because low-dimensional embeddings do not preserve the positional
encoding of words. However, we plan to evaluate advanced approaches such as
complex-valued word embeddings with positional encodings [26] and transformer models
such as BERT [27][28]. The latter are considered expensive and data-hungry models. It will
remain to be evaluated if the gain of positional information may be countered by the loss of
prediction accuracy for forecasting new cases in the future. However, we believe that the
availability of sequences for a wide variety of viral pathogens presents an exciting
opportunity to train data-hungry models that may be able to transfer insights across pathogens
and yet remain interpretable. Another limitation of our study is the relatively small number of
samples used to construct the supervised predictive models. This eliminates the sampling bias
that may arise while building the supervised models as some countries had a
disproportionately higher number of samples submitted to GISAID. However, the
unsupervised embeddings and temporal cross-correlations were learned upon the complete
datasets, and these presented clear patterns in DoCs and significant cross-correlations with
caseloads. Nevertheless, our models need to receive at least 30 samples per month for getting
reliable prediction results for the coming months. This also underscores the need for a more
agile and dependable approach to deposit country-level datasets on repositories such as
GISAID. We appeal to the countries to facilitate the ing such data to be prepared for any
future waves of the current pandemic and prevent the new emergence of strains. We believe
our study is an instance of the new paradigm of pathogen surveillance using a novel language
modeling approach that is potentially scalable to infectious disease surveillance and
antimicrobial resistance.
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