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Mobile genetic elements with circular genomes play a key role in the evolution of microbial 

communities. These circular genomes correspond to cyclic paths in metagenome graphs, and yet, 

assemblies derived from natural microbial communities produce graphs riddled with spurious 

cycles, complicating the accurate reconstruction of circular genomes. We present an algorithm 

that reconstructs true circular genomes based on the identification of so-called ‘dominant’ cycles. 

Our algorithm leverages paired reads to bridge gaps between assembly contigs and scrutinizes 

cycles through a nucleotide-level analysis, making the approach robust to mis-assembly artifacts. 

We validated the approach using simulated and reference data. Application of this approach to 32 

publicly available DNA shotgun sequence data sets from diverse natural environments led to the 

reconstruction of hundreds of circular mobile genomes. Clustering revealed 20 clusters of cryptic, 

prevalent, and abundant plasmids that have clonal population structures with surprisingly recent 

common ancestors. This work enables the robust study of evolution and spread of mobile 

elements in natural settings. 
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INTRODUCTION 

 

Horizontal gene transfer (HGT) is a major driver of microbial evolution1. HGT supports the rapid 

adaptation of microbes to ecological niches2,3 and can facilitate the spread of virulence factors 

and antimicrobial resistance determinants within and between microbial species4–6. 

Extrachromosomal circular mobile genetic elements (ecMGEs), such as plasmids and phage with 

circular genomes, are of particular interest since they are potential intermediates of HGT7. 

Experimental methods have been developed to enrich for ecMGEs from complex microbial 

communities, including the physical enrichment for plasmid8 or viral particles9, or the removal of 

linear DNA followed by multiple displacement amplification10. Due to reduced cost and benchwork 

simplicity, MGE characterization is shifting towards metagenomic, or shotgun sequencing, 

requiring the development of robust computational tools that reliably infer MGEs from 

metagenomic data11,12. While numerous computational tools have been developed to identify 

MGE-associated sequences from metagenomic data11–16, they typically rely on reference 

sequences and can conflate extrachromosomal with integrated forms of MGE. Moreover, 

reference-based approaches classify only sequence fragments (known as ‘contigs’) and do not 

reliably recover near-complete genomes. Having near-complete MGE genomes is instrumental to 

the study of HGT dynamics, such as for tracking plasmids bearing antimicrobial resistance 

determinants in hospital settings17. 

 

Recently, new computational approaches have been developed that work directly from 

metagenomic data to recover ecMGEs, circumventing reliance on incomplete and biased 

reference data. These approaches traverse the assembly graph, in which vertices represent 

contigs and edges represent contig-contig adjacencies supported by read pairs, searching for 

graph components that correspond to putative ecMGEs18–20. However, the heuristic nature of 

these approaches makes them susceptible to high false-positive rates when faced with complex 

scenarios. A recent review21 reported that the precision of these reference-free tools is below 

0.75. The recovery of circular genomes from the assembly graph is challenging due to repeated 

genetic sequences within and between genomes that produce complex graphs riddled with 

spurious cycles. Both plasmids22 and phage23 contribute to graph complexity since they evolve 

through extensive genome rearrangements, and can maintain intra-community genetic variants 

differing by only a few genome rearrangements17,24,25. A computational approach that reliably 

distinguishes between true circular molecules and graph artifacts is needed to genotype ecMGEs 

from complex communities in a robust manner. The precise recovery of near-complete MGE 
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genomes in metagenomes will allow the field to move beyond isolate-based studies and leverage 

high-throughput computational surveys of mobile elements, strengthening the understanding of 

mobile element evolution and the emergence and dissemination of antimicrobial resistance in 

natural environments. 

 

To address this gap, we have developed a new tool (“DomCycle”) for reconstructing ecMGE 

genomes from metagenomic data with a high degree of confidence. Our approach is based a new 

concept known as a "dominant cycle", which likely correspond to true circular genomes. We 

present an algorithm for identifying all dominant cycles in an assembly graph, and evaluate the 

performance of the approach using reference data and simulated evolutionary scenarios. 

Application of the algorithm to data from 32 samples collected from human stool, sewage, and 

marine environments, revealed 20 clusters of ecMGEs that are prevalent across samples, 

abundant within their respective communities, and exhibit a surprisingly simple clonal population 

structure with little recombination and low sequence diversity. 

 

RESULTS 

 

We developed a theoretical framework and associated tool (DomCycle) to recover near-complete 

ecMGEs from metagenome assembly graphs (Figure 1). In the assembly graph, circuits 

correspond to circular chains of contigs, and cycles are simple circuits that do not include a contig 

more than once. While every circular genome produces a corresponding circuit in the graph, 

inferring true genomes based on cycles can be challenging, as illustrated by a manufactured 

configuration (Figure 1a) and its corresponding graph (Figure 1b). The presence of repeat 

elements can result in spurious cycles (called here ‘phantom’ cycles), for which no corresponding 

genome exists in the biological sample. Our goal was to develop a tool that can reliably 

distinguish between phantom and real cycles. 

 

For every cycle �, the bottleneck coverage �� is the minimal read coverage along the edges of the 

cycle, the external coverage ��  is the total number of paired reads leading in or out of the cycle 

(averaging in and out), and the cycle score is the ratio ��/�� (Figure 1c). We define a cycle as 

dominant if ��/�� � 1 and developed an algorithm that recovers all dominant cycles in the 

assembly graph (Methods). In the implementation of the algorithm, contig-contig edges in the 

assembly graph are inferred using paired reads while bridging possible gaps. Candidate cycles 

are vetted on a nucleotide-level basis, making the approach robust to common forms of mis-
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assembly and coverage stochasticity due to read sampling (Figure 1d). The algorithm yields 

near-complete circular genomes (near-complete and not complete, due to possible small gaps 

between consecutive contigs) that correspond to all vetted dominant cycles. 

The latent variable of interest is the coverage �� of the genome associated with a dominant cycle 

�. A confounding latent variable is the multiplicity 	�, which is equal to the number of times the 

cycle contigs appear consecutively within the context of a larger circuit such as within a tandem 

repeat (see example in Figure 1e). Our main theoretical result is a lower bound on �� stating 

�� 
 	� · �� � ��. This lower bound means that any dominant cycle is either real (i.e., �� � 0) or it 

has a multiplicity greater than the cycle score. While high-multiplicity cycles are theoretically 

possible, they require complex tandem structures (Figure 1e). To determine the degree to which 

dominant cycles correspond to actual circular genomes in the context of microbial communities 

we turn next to empirical data.  

 

Algorithm performance on reference data 

We tested if phantom cycles (i.e., false-positives) are reported as dominant cycles using 

simulated chromosomal data of diverse bacterial species. DomCycle was applied to an assembly 

graph generated from a DNA library simulated from the chromosomal sequences of 100 strains 

including several conspecific strains (detailed in Supp. Table 1). By design, the generated 

assembly graph contained only phantom cycles since extra-chromosomal DNA was not included. 

DomCycle did not report any dominant cycles in this dataset, indicating that the likelihood of 

phantom cycles with bacterial genomes is rare (Figure 2a). We compared DomCycle to 

Recycler20, metaplasmidSPAdes19 and SCAPP26 with these data. On average, these 3 existing 

tools reported 93 false-positive elements per GB of assembly (Figure 2b), with a median element 

length of 2.3kb (Figure 2c). DomCycle stood out with zero false-positives for this dataset, 

highlighting the precision of the approach. 

 

Next, we evaluated the performance of DomCycle on a set of 56 reference plasmids and 50 

reference phage genomes (Supp. Table 2). The recall was 0.43 for plasmids and 0.86 for phage 

which was slightly lower than existing tools (Figure 2d). Importantly, DomCycle had perfect 

precision (Figure 2e) and consistently reported only a single cycle (or no cycle at all), while the 

other tools occasionally split a single plasmid or phage into multiple reported elements (Figure 

2f). To summarize, DomCycle effectively avoided reporting phantom cycles altogether, while 

achieving recall values that were close to, but slightly inferior than existing tools. 
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Recovering dominant cycles with simulated variant mobile elements 

To test performance in the face of polymorphisms we simulated two evolutionary scenarios. The 

first scenario involved a single random plasmid (central allele) and 8 variant plasmids (variant 

alleles) that were individually distinguished from the major allele by a single random genome 

rearrangement event (insertion, deletion or inversion). The second scenario, simulating a semi-

induced prophage, contained a single prophage that appeared in a circular form (central allele) 

and integrated 8 times into a single large genome (variant alleles). For both scenarios, we tested 

recall and precision as a function of central allele frequency. DomCycle successfully recovered 

47.3% of central allele plasmids and 39.5% of central allele phage. Central alleles were recovered 

when the allele frequency surpassed 55% for plasmids and 65% for phage (Figure 3a). Despite a 

background of convoluted genome rearrangements, the precision was perfect in all cases, i.e., all 

cycles reported by DomCycle were associated with real underlying genomes and multiple cycles 

were never reported. To illustrate the performance of DomCycle, we show the underlying graph 

cycle (Figure 3b) and the distribution of mapped reads along the cycle (Figure 3c) for a single 

successful plasmid run. 

 

We leveraged knowledge of the underlying coverages to examine the performance of three 

genome coverage estimators (Figure 3d). The best estimator was the adjusted median coverage 

(AMC), defined as �� � �� 
 ��, where �� is the median coverage along the cycle. AMC was 

both highly correlated with true coverage values (Pearson’s coefficient � � 0.94), and had an 

RMSD of 0.05 and 0.08 for plasmids and phages respectively. In summary, the analysis of 

simulated data demonstrated the ability of DomCycle to recover dominant cycles and accurately 

predict their coverage while faced with complex polymorphic mobile elements. 

 

Circular genetic elements in the human gut 

Next, DomCycle was applied to metagenomic data from stool of a healthy adult (200M paired 

reads, publicly available data from a previous study27). The contig-level and nucleotide-level 

assessment of cycles was in general agreement (Supp. Figure S1), with only 8 cycles that were 

dropped due to abnormal read coverage that likely stemmed from assembly artifacts (Supp. 

Figure S2). After stringent cycle vetting, 49 dominant cycles and their corresponding ecMGEs 

remained. Their genome lengths ranged from 0.6kb to 185kb (median length 4.8kb). In terms of 

complexity, 19% of the ecMGE genomes spanned multiple contigs and 13% of ecMGEs were 

self-loops that involved bridging an assembly gap using paired reads. We offer an example of a 

putative phage (Figure 4a) and a putative plasmid (Figure 4b) (all ecMGEs are shown in Supp. 
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Figure S3). Of note, among the recovered ecMGEs was a complete genome of a member of the 

crAssphage family27, a group of prevalent Bacteroides phage (Supp. Figure S4). The number of 

cycles identified in this dataset by existing tools was similar to their expected rate of false-

positives, suggesting that the low precision of existing tools significantly confounds MGE reporting 

on real data (Figure 4c).  

 

The AMC of the 49 ecMGEs ranged from 8.8x to 25,960x and was on average 10-fold higher than 

the average coverage of all contigs in the assembly (Figure 4d). This suggested that the ecMGEs 

we detected may have elevated abundance levels compared to the average abundance of 

bacterial members in the microbial community. However, to properly interpret AMC values we 

needed to take into account the reduced probability of detecting low-coverage cycles due to our 

stringent vetting procedure. We computed for each ecMGE its abundance percentile (AP), defined 

as the percentile of its AMC score within a background distribution of AMC values estimated using 

all contigs in the assembly (Methods). Notably, even after this normalization, ecMGEs were 

significantly abundant within the community (Kolmogorov–Smirnov test � � 0.543, � � 3.6 �

10���), with 20 ecMGEs (41%) above the 95th abundance percentile (Figure 4e). Analysis of a 

second subject (sequenced with 96M paired reads28), in which 20 dominant cycles and associated 

ecMGEs were recovered, qualitatively recapitulated these results (Supp. Figure S5). 

 

Circular mobile elements are abundant in diverse environments 

Next, we applied DomCycle to 30 additional shotgun libraries, including human stool (Gut HMP 

data29, n=10, median 104M reads per sample), sewage wastewater30 (n=10, median 48M reads 

per sample) and the marine environment31 (n=10, median 37M reads per sample) (Supp. Table 

3). In total, we identified 717 dominant cycles and reconstructed their associated ecMGE 

genomes. Analysis was limited to 221 ecMGEs (29%) that were at least 1kb long (Figure 5a). All 

ecMGEs were classified based on annotations of predicted genes, as putative plasmids (28%), 

putative phage (16%), unspecified mobile elements (17%) and undefined elements (38%) (Figure 

5b). The 3 environments differed in the distribution of classes (chi-squared test � � 10���), with 

the gut relatively depleted for undefined elements, the sewage enriched for plasmids and 

undefined elements, and the ocean enriched for undefined elements (Figure 5c). Recapitulating 

our observation in the two pilot gut samples, the 221 recovered ecMGEs were highly abundant 

(KS-test � � 10���), with 73% of ecMGEs above the 95th abundance percentile within their 

respective communities. All ecMGE classes were associated to some degree with elevated 
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abundance levels (Figure 5d). Elevated abundance of ecMGEs was observed in all environments 

yet was most prominent in the human gut (Figure 5e). 

Highly prevalent plasmids are rapidly circulating 

We were curious to see if we could find evidence of ecMGEs circulating within and between 

environments. For this analysis, we performed pairwise genome alignments of all 286 ecMGEs 

(>1kb) detected in the 32 environmental samples described in this work. A comparison of the 

fraction of the aligned region and the average nucleotide identity (ANI) within the aligned region 

suggested that their genome structure is highly conserved (Figure 6a). The ecMGEs were 

grouped into 244 clusters based on sequence identity using a threshold of 95% ANI (Supp. 

Figure S6). Results were robust to changes in the clustering threshold (Supp. Figure S7). 

Analysis was limited to the 20 clusters (denoted M1-M20) that had two or more members (Table 

1; See Supp. Table 4 for cluster members). Clusters were extremely tight; the average fraction of 

the aligned region between pairs of cluster members was 99.56-100% (median 100%) and the 

average ANI within the aligned region was 98.43-100% (median 99.9%). We refer to these 

clustered ecMGEs, which were reconstructed independently with minor genetic variations in 

multiple samples, as circulating elements.  

 

We classified 16 clusters as putative plasmids due to the presence of mobility and/or replication 

genes, of which 5 had one or two toxin-antitoxin genes, as summarized in Table 1 (details in 

Supp. Table 5). There were 33 uncharacterized genes in total, which made up 32% of each 

cluster on average (Supp. Table 6). Clusters had 2-9 ecMGE members (Figure 6b), and all were 

from a single environment except cluster M3 that was observed in both gut and sewage samples. 

The abundance percentile (AP) of circulating ecMGEs was high (mean AP of 92%), in agreement 

with a commonly observed ecological association between prevalence and abundance (Figure 

6c). 

 

Leveraging a comprehensive plasmid reference database (PLSDB32, with over 26k plasmids), we 

identified 7 clusters with reference hits (99.7% ANI on average, Supp. Table 7). This independent 

(reference) reconstruction of the circulating ecMGEs provided validation of our metagenomic 

approach. Moreover, the isolate source information informed us about the putative host-range and 

environments of some of our clusters. These data suggested that our circulating ecMGEs may 

have a broad host-range, with 5 (out of 6 with host data) associated with multiple taxonomic 

families (Table 1). We discovered that the top three plasmids (M1-M3) were reported as cryptic 

Bacteroides plasmids in the 1980s33,34. The 13 circulating ecMGEs that did not have a close 

.CC-BY-NC-ND 4.0 International licenseavailable under a
was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445656doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445656
http://creativecommons.org/licenses/by-nc-nd/4.0/


reference in PLSDB (>95% ANI) despite their prevalence in the general population highlight the 

discovery power of our metagenomic approach. 

 

We proceeded to augment clusters with reference genomes (where available) and inferred 

cluster-specific phylogenic trees. The most prevalent plasmid (M1, 4138+/-10bp) was observed in 

9 gut samples and had 2 isolate-based reference genomes (Figure 6d). M1 is composed of a 

major clade (M1a, isolated previously from B. xylanisolvens) and a minor clade (M1b, isolated 

previously from B. fragilis), with a genetic distance of 3.27% separating the two inferred clade 

ancestors. Both have shallow clonal trees distinguished by a handful of SNPs, with a mean ANI of 

99.95% and 99.76% between clade members for M1a and M1b respectively. Out of the 12 gut 

samples we assayed, M1a was present in 7 out of the 12 gut samples (58+/-22%) making it one 

of the most prevalent plasmids recorded in the human gut to date. The most recent common 

ancestor is also relatively recent on an evolutionary timescale; a coalescence analysis suggests 

M1a may have gone through a clonal expansion merely ~600-1200 years ago (Supp. Note 4).  

 

Another cluster of interest is M18, a short cryptic plasmid (1934bp) recovered from 2 sewage 

metagenomic samples and independently reconstructed from 22 isolates (primarily 

Enterobacteriaceae species) that were collected across the globe (Figure 6e). The clonal 

population structure of M18 is in discordance with its host species, suggesting it is freely 

circulating between a diverse set of hosts. The remaining 5 ecMGE clusters that have reference 

genomes suggest that ecMGEs are found in diverse environments and bacterial hosts (Supp. 

Figure S8). The 9 ecMGE clusters with sufficient members to estimate their phylogeny had clonal 

populations with only 0-3.2% putative recombined sites (Supp. Figure S9). Finally, we noted 

several examples of clusters with an uneven distribution of SNPs along their genomes, suggestive 

of possible adaptive evolution or recombination (Supp. Figure S10). 

 

DISCUSSION 

 

In this work, we present an algorithm that recovers all dominant cycles in a metagenomic 

assembly graph and reconstructs their corresponding genomes. Our implementation achieves 

high precision by combining graph theory and nucleotide-level vetting of cycles. We show that in 

the context of microbial communities, dominant cycles likely correspond to true extrachromosomal 

circular DNA. Application to complex evolutionary scenarios and reference data reliably recovers 

ecMGEs without reporting any false-positives. 
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The approach recovers only circular genomes that correspond to graph cycles. In reality, circular 

mobile elements can contain long repeat elements (>77bp, which is the kmer size used during the 

assembly) and will therefore produce complex graph circuits that would not be detected. (Unlike a 

cycle, the path of a circuit can traverse the same contig more than once.) The ongoing transition 

to long-read sequencing technologies is expected to alleviate this problem by transforming some 

complex circuits to cycles. With meticulous handling of environmental samples, long-reads can 

extend up to 5-10kb25,35. Combining long-reads with the approach presented here will allow 

genotyping of complex ecMGEs, such as MGEs that contain insertion sequences (typically 

<2.5kb) and short transposons. Longer repeat elements and complex rearrangements that require 

bridging over more than ~10kb can be addressed with additional experimental work, such as Hi-

C28,36–38 and by sampling the same community multiple times39,40. 

 

Application of our approach to 32 environmental samples uncovered 20 clades of ecMGEs 

(primally gut and sewage plasmids), showcasing the strength of metagenomic approaches in 

tapping into understudied environmental plasmids. The surprisingly low sequence diversity and 

clonal population structure we report here were recently observed in plant-associated virulence 

plasmids41. Plasmid clonality is particularly striking when contrasted with the population structure 

of their bacterial hosts, which partake in pervasive recombination at levels that can obscure strain 

phylogeny42–44. The clonality and lack of diversity can be partially attributed to their simplified 

ecological niche that may favor rapid cycles of selective sweeps. The relative conservation of their 

genome structure (as shown in Figure 6a) suggests that among their uncharacterized genes, 

some might support the prolific lifestyle of these circulating plasmids. Further characterization of 

the adaptive landscape of MGEs in the gut and elsewhere will require a larger dataset. In 

summary, this work presents a new tool that allows reconstruction of ecMGEs from readily 

available public metagenomic shotgun data and that may help to elucidate the evolution and 

dissemination of mobile genetic elements within and between environments. 
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FIGURE LEGENDS 
 

Figure 1. Approach overview. a) A manufactured example of a latent genome configuration and 

assembly with 8 unique contigs. Contigs are color coded and DNA genomes are marked p1-p4 

with their x-coverage specified in their center. For example, p2 has an x-coverage of 6x and 

contains three unique contigs, as the short purple contig appears twice. b) The assembly graph of 

the configuration in 1a is constructed using mapped paired reads. The graph contains five cycles 

(c1-c5) and the x-coverage of edges is indicated. In this example, cycles c2 and c3 are phantom 

cycles. c) The cycle score ��/�� is specified in the center of each cycle. The algorithm recovers all 

candidate dominant cycles (��/�� � 1, score colored black) and discards non-dominant cycles 

(score colored gray). For example, the genome p3 produced the cycle c4 which has a score of 2 

(�� � 18�, �� � 9�), making it a candidate dominant cycle. Cycles c2,c3 are examples of phantom 

cycles, since each does not have a corresponding genome. d) Nucleotide-level read profiles are 

computed for all candidate dominant cycles using all paired reads for which at least one side 

mapped to the cycle, and the algorithm returns dominant cycles with estimates of x-coverage. 

Reads are grouped into cycle-supporting reads (black line) and non-supporting reads (red line). 

For example, the x-coverage of supporting reads along c4 varies, with three short stretches of 

non-supporting reads on contig-contig seams. Average read x-coverage values for portions of the 

cycles are shown on the plot. e) An alternative genome configuration that produces the same 

graph (shown in 1b). The presence of the complex genome p5, which corresponds to an involved 
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circuit in the graph, affects the multiplicity of all visited cycles. For example, the multiplicity of c4 is 

equal to 3 since the circuit that corresponds to p5 makes on its path 3 complete turns in c4. 

 

Figure 2. Specificity and sensitivity estimated with reference sequences. (a) The distribution 

of the bottleneck coverage vs. the total non-support coverage among cycles inspected by 

DomCycle on a metagenomic dataset simulated on 100 reference chromosomal sequences. The 

dotted line shows the threshold of significance (p = 0.01) for the global nucleotide test. All cycles 

are spurious (i.e., phantom) by construction and no dominant cycles were reported. (b) The rate 

of phantom cycles reported per GB of assembly on the simulated metagenomic dataset, 

comparing the performance of DomCycle, metaplasmidSPAdes, Recycler and SCAPP. (c) The 

length distribution for phantom cycles reported on the simulated metagenomic dataset. (d) Recall 

estimates for DomCycle, metaplasmidSPAdes, Recycler, and SCAPP on 56 reference plasmids 

and 50 reference phages. The recall of a dataset was defined as the number of successful runs 

divided by the number of genomes in the dataset. (e) Precision estimates for DomCycle, 

metaplasmidSPAdes, Recycler and SCAPP on reference plasmids and phages. Precision was 

defined as the number of successful runs in the dataset divided by the total number of reported 

cycles in the dataset. DomCycle displays perfect (100%) precision on the reference plasmids and 

phages tested. (f) The number of reported cycles per sample for DomCycle, metaplasmidSPAdes, 

Recycler and SCAPP when tested on reference plasmids and phages. DomCycle reported at 

most a single cycle with the tested reference plasmids and phages.  

 

Figure 3. DomCycle performance on recombining plasmids and partially induced phage. (a) 

The recall (red) and precision (blue) for simulations at varying central allele frequencies. Each 

point represents the results of 30 trials at a single central allele frequency. Central allele 

frequency was calculated as the percent of the total x-coverage contributed by the central allele. 

(b) Example of a recovered central allele plasmid with a frequency of 55%. White points represent 

tail vertices and grey points represent head vertices, while internal edges are illustrated with solid 

lines and external edges are illustrated with dotted lines. The recovered cycle is colored in red 

and adjacent graph edges that are not part of the cycle are colored in black. Coverage units show 

the edge coverage, ��� . Labels on internal edges show contig names. (c) The nucleotide-level 

cycle coverage profile corresponding to the cycle depicted in (b). The coverage of cycle 

supporting reads is colored in black and the coverage of non-supporting reads is colored in red. 

(d) Median coverage, lower bound coverage, and adjusted median coverage (AMC) as predictors 

of true allele frequency. The Pearson correlation coefficient and root mean squared deviation are 
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shown for each predictor. In each small cross, the red horizontal line shows the median metric 

value of an estimator at a given central allele frequency, and the vertical line depicts the 

interquartile range of the estimator, created with 30 replicates for each allele frequency. Diagonal 

dotted lines show the true central allele frequency. 

 

Figure 4. ecMGEs in the gut of a healthy adult. (a) A putative phage. Shown from inner to outer 

circles are nucleotide-level coverage profiles, uniref100 hits (sequence identity (AAI) to the best 

uniref100 hit and the number of uniport genes in the uniref100 cluster), and gene classification. 

Gene descriptions for select phage-associated genes are specified outside. Cycles are cut open 

at the start of their linear sequence for visualization purposes. (b) Same as panel a, for a putative 

plasmid. (c) Number of reported cycles per GB of assembly (black) and the estimated rate of 

false-positives (gray, based on Figure 2b), compared among several tools. (d) Empirical 

cumulative distribution functions (ECDF) for the adjusted median coverage (AMC) of the 49 vetted 

dominant cycles that correspond to putative ecMGEs (black), the background AMC defined as the 

AMC of contigs vetted in the same way as dominant cycles except for the circularity condition 

(dark gray) and the background coverage all contigs in the assembly (light gray). (e) Shown for all 

49 vetted dominant cycles is the ECDF of the cycle abundance percentile (AP), defined as the 

percentile of the cycle AMC within the background AMC distribution.  

 

Figure 5. ecMGEs in the human gut, sewage wastewater and marine environments. (a) The 

number of ecMGEs identified in each environment. (b) The percentage of ecMGEs with assigned 

functional classes. (c) The percentage of ecMGEs within each environment, stratified by class. (d) 

The ECDF of AP values of ecMGEs, stratified by class. (e) Same plot as panel d, stratified by 

environment. 

 

Figure 6. Analysis of circulating ecMGEs. (a) The distribution of cycle tightness metrics across 

pairs of ecMGEs (>1kb) in the 32 samples assayed. The overlap identity is defined as the 

average identity of aligned regions between two cycle genomes. The overlap fraction is defined as 

the percent of two cycle genomes that align. For a cycle pair, genomic similarity is defined as the 

overlap identity times the overlap fraction. Cycle pairs are linked if their genomic similarity is >0.95 

and clusters are defined as groups of linked cycles. (b) The distribution of the number of members 

in clusters. (c) The ECDF of AP values of circulating ecMGEs, compared to ecMGEs stratified by 

their environment and to all ecMGEs. (d) Detailed view of cluster M1. Data are projected onto a 

reference ‘pivot’ cluster member (gut4, cycle 181) that is shown in a linear format for visualization 
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purposes. Shown from the bottom up are the x-coverage profiles of the pivot ecMGE member 

(see color legend), SNP patterns of cluster members (in bold) and reference sequences (isolate 

source, location and year of collection), and annotated genes on top. SNP patterns are colored 

according to differences from the pivot, with white indicating segments that failed to align. A 

phylogenic tree is shown on the left. The units of the scale bar under the tree are mean nucleotide 

differences. Clades M1a and M1b are marked on the plot. (e) Detailed view of cluster M18, see 

panel (d) for a description.  

 

Table 1. Table columns from left to right specify for each cluster the number of cluster members, 

the average genome length in base pairs, the environments in which the cluster was identified 

(out of the 32 samples examined), the average nucleotide identity (ANI) between pairs of cluster 

members, the average abundance percentile, the cluster classification, number of genes, number 

of genes that did not match the queried databases or matched an uncharacterized or hypothetical 

protein, mobility classification based on HMMs, presence of replication gene, presence of a toxin 

gene (T) and/or an anti-toxin gene (A), number of hits (>95% ANI) in the plasmid database 

PLSDB, and the taxonomic families as inferred from the isolate source specified in PLSDB. 
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Table 1
id #members length environment identity AP class #genes #uncharacterized mobility replication addiction #references host family

M1 9 4148 Gut 98.27 0.999 plasmid 8 4 MOBP1 Y T+A 2 Bacteroidaceae

M2 7 2751 Gut 98.97 0.998 plasmid 2 1 MOBP1 3
Bacteroidaceae
Enterobacteriaceae

M3 4 4494 Gut, Sewage 99.92 0.939 plasmid 8 4 NA Y T+A 6
Bacteroidaceae
Moraxellaceae

M4 3 5820 Gut 99.94 1 plasmid 9 5 MOBP1 Y T+A 0
M5 3 4971 Gut 99.7 0.947 plasmid 8 2 MOBP1 Y T 0
M6 3 2413 Gut 98.86 0.366 undetermined 4 3 NA 0
M7 2 3034 Gut 99.9 0.7076 plasmid 2 0 MOBV Y 0
M8 2 2775 Gut 99.61 0.804 plasmid 2 0 MOBV Y 1

M9 2 2750 Gut 98.4 1 plasmid 2 0 MOBP1 Y 3
Pseudomonadaceae
Bacteroidaceae

M10 2 8598 Gut 99.52 0.837 plasmid 11 5 MOBF 0
M11 2 5843 Gut 99.87 0.389 plasmid 7 4 MOBP1 0
M12 2 1488 Sewage 100 0.408 plasmid 2 1 NA Y 2 Enterobacteriaceae
M13 2 1483 Sewage 99.26 0.551 plasmid 2 1 NA Y 0
M14 2 3086 Sewage 100 0.546 plasmid 3 1 MOBQ 0
M15 2 1044 Marine 99.61 0.899 undetermined 0 0 NA 0
M16 2 2585 Sewage 100 0.947 plasmid 3 0 MOBV A 0
M17 2 2349 Sewage 99.91 0.536 plasmid 2 0 MOBP1 Y 0

M18 2 1934 Sewage 99.95 0.389 plasmid 2 1 NA Y 17
Enterobacteriaceae
Yersiniaceae

M19 2 1382 Sewage 100 0.613 plasmid 2 1 MOBT Y 0
M20 2 1705 Sewage 98.22 0.482 plasmid 1 0 NA Y 0



Supplementary Figure 1. The distribution of the global nucleotide score and local cycle score for each 
candidate cycle reported on the gut sample from a healthy adult (SRR8187104). Vetted dominant cycles 
are shown in black and candidate cycles filtered out by either the global nucleotide score test or the local 
cycle score test are shown in grey. Horizontal dotted lines drawn show the lower-bound threshold for 
classifying vetted dominant cycles without accounting for significance through p-values in both score tests. 
The Pearson correlation coefficient is computed between candidate cycle’s global nucleotide score and 
local cycle score.
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Supplementary Figure 2. Examples of candidate cycles filtered out due to poor local nucleotide-level 
scores in the gut of a healthy adult (SRR8187104). The local nucleotide-level score test calculates the p-
value for the hypothesis that the support coverage is greater than the total base pair non-support profile 
at each base in the candidate cycle (see Methods). In comparison to the global nucleotide-level score, the 
local score accounts for the singleton coverage and tests significance at each candidate cycle base. For 
instance, CYC244 (middle left) has out singleton coverage (light green) that exceeds the support coverage 
at the beginning of the cycle; accordingly, this cycle receives a non-significant local nucleotide-level score 
(𝑝 > 0.01) at the bases where the singleton out coverage exceeds the support. Intuitively, the high 
density of singleton reads on CYC244 indicates that there was assembly fragmentation near the contig 
junction at the beginning (and end) of the cycle. We conservatively assume that the missing singleton 
read side originated from a sequence that is missing in the assembly. Thus, we cannot confidently 
conclude that CYC244 is dominant. A similar rationale extends to other candidate cycles depicted.
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Supplementary Figure 3. All ecMGEs identified in the gut of pilot subject 1. Each plot shows 
the coverage profile, gene positions, gene identity, Uniref cluster size, and gene classification for 
each cycle.
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Supplementary Figure 4. CrAssphage-like element identified in the gut of the central subject in 
the study.
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Supplementary Figure 5. Results for a second deeply-sequenced gut sample from a healthy 
human adult (SRR8186375) recapitulate trends shown in Figure 4. (a) Empirical cumulative 
density functions (ECDF) for the median support coverage distribution for candidate 
pseudodominant genomes (light grey), the adjusted median coverage (AMC) distribution for 
pseudodominant genomes (dark grey), and AMC distribution for dominant cycles (black). (b)
ECDF for the abundance percentiles (AP) of dominant cycles. The AP for each cycle is 
computed to be the percentile of the cycle AMC in the background distribution of AMCs among 
pseudo-dominant genomes. The dotted line shows the AP ECDF for pseudo-dominant genomes 
(KS-test, P < 2.8 ∗ 10!").
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Supplementary Figure 6. The 286 eMGEs were clustered using hierarchical clustering 
performed with single linkage. Shown are eMGEs for which the distance to their nearest 
neighbor was under 0.5 (i.e., >50% ANI). Left shows clustering dendrogram, with a scale bar 
showing a distance of 0.2 (equivalent to 80% ANI) and nodes colored by environment. Matrix 
squares colored by sequence identity, with perfect alignments (100% ANI) highlighted in orange. 
The 20 multi-member clusters (threshold 95% ANI), numbered M1 to M20, are marked on the 
plot. The PhiX cluster and all single-member clusters were omitted from downstream analysis.
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Supplementary Figure 7. The median of each intra-cluster mean metric as a function of 
clustering genomic similarity threshold. The three metrics for cluster tightness are robust to 
changes in the minimum genome similarity clustering threshold.
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Supplementary Figure 8. Clusters with one or more references in PLSDB. Legends as in 
Figure 6. The 5 clusters were found in multiple environments (human gut, sewage and rat 
microbiome) and are associated with diverse microbial hosts.
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Supplementary Figure 9. Putative recombination events are rare. For each cluster and each 
cluster member, the phylogenetic tree as inferred by PhyML was used to classify all polymorphic 
sites. A bi-allelic site was classified as consistent if the partitioning of samples matched an edge 
in the tree, as inconsistent otherwise. Non bi-allelic sites were classified as such. a) The 
breakdown of site classification for all clusters and all options of pivot cluster members. The 
pivot members selected for visualization purposes in Figure 6 and Supp. Figure 8 and 10 are 
highlighted in bold. b) The maximal percentage of consistent sites out of all sites over all cluster 
members. Clusters with a value of zero (such as M1) have at least one tree topology that is 
consistent with all polymorphic sites.
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Supplementary Figure 10. Gut clusters with uneven distribution of SNPs along genomes. 
Groups of nearby SNPs can indicate a recombination event or positive selection. Legends as in 
Figure 6.
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