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Abstract 39 

Rice feeds more than half of the world’s human population. In modern rice farming, a major constraint for 40 
productivity is weed proliferation and the ecological impact of herbicide application. Increased weed 41 
competitiveness of commercial rice varieties requires enhanced shade casting to limit growth of shade-42 
sensitive weeds and the need for herbicide. We aimed to identify traits that enhance rice shading capacity based 43 
on the canopy architecture and the underlying genetic components. We performed a phenotypic screen of a 44 
rice diversity panel comprised of 344 varieties, examining 13 canopy architecture traits linked with shading 45 
capacity in 4-week-old plants. The analysis revealed a vast range of phenotypic variation across the diversity 46 
panel. We used trait correlation and clustering to identify core traits that define shading capacity to be shoot 47 
area, number of leaves, culm and solidity (the compactness of the shoot). To simplify the complex canopy 48 
architecture, these traits were combined into a Shading Rank metric that is indicative of a plant’s ability to cast 49 
shade. Genome wide association study (GWAS) revealed genetic loci underlying canopy architecture traits, 50 
out of which five loci were substantially contributing to shading potential. Subsequent haplotype analysis 51 
further explored allelic variation and identified seven haplotypes associated with increased shading. 52 
Identification of traits contributing to shading capacity and underlying allelic variation presented in this study 53 
will serve future genomic assisted breeding programmes. The investigated diversity panel, including widely 54 
grown varieties, shows that there is big potential and genetic resources for improvement of elite breeding lines. 55 
Implementing increased shading in rice breeding will make its farming less dependent on herbicides and 56 
contribute towards more environmentally sustainable agriculture. 57 

  58 
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Introduction 59 
Rice feeds more than half of the world’s population as a staple food (Kennedy and Burlingame, 2003; Wing et 60 
al., 2018). In traditional rice farming, seedlings are transplanted into flooded paddy fields. This works as a 61 
natural way to prevent weed infestation, since it gives rice seedlings a size advantage in addition to flood-62 
suppressed germination and growth of weeds. This practice is increasingly problematic, both because of the 63 
high manual labour input (Kumar and Ladha 2011; Chakraborty et al. 2017) and because global climate change 64 
is reducing the availability of fresh water not only for rice farmers but for the global agricultural sector (FAO, 65 
2019; Oliver et al., 2019). Traditional rice farming system is transitioning towards direct-seeded rice, where 66 
rice seeds are directly sown into the fields. This practice drastically reduces the water requirement and labour 67 
input (Chauhan et al., 2017; Farooq et al., 2011; Kumar and Ladha, 2011). Besides all of its advantages, the 68 
major constraint for direct-seeded rice is abundant proliferation of weeds (Rao et al. 2017; Xu et al. 2019). In 69 
direct-seeded rice practice, rice seedlings are directly competing with weeds as they lose their seedling size 70 
advantage. Waterlogging cannot be applied to suppress emerging weeds, as most modern rice cultivars do not 71 
germinate under water (Chauhan, 2012; Ghosal et al., 2019; Kretzschmar et al., 2015). Currently, weeds are 72 
suppressed with herbicides, leading to evolution of herbicide-resistant weeds and ground water pollution. This 73 
creates a pressing need for deployment of sustainable weed management options (Chauhan, 2012a; Chauhan 74 
and Yadav, 2013; Mennan et al., 2012; Zhao et al., 2006a). One possible solution to this problem is to increase 75 
weed-competitiveness of the rice seedling (Rao et al., 2007; Sakamoto et al., 2006; Zhao et al., 2007). 76 

Just like their wild ancestors, shade casting crop varieties compete with invading weeds by reducing the weed’s 77 
access to full sunlight, thereby impeding their growth. However, the traits contributing to shading potential 78 
were neglected or even selected against in breeding efforts, since tall plants and droopy leaves are generally 79 
considered as undesired, because it makes harvesting more difficult. Here we propose to develop weed-80 
competitive rice varieties, by selecting for an ideotype with faster growth and high shade-casting potential on 81 
proximate weeds. Shoot architecture traits that help plants to gain advantage over their neighbours through 82 
light competition include: high number of leaves, increased tillering, large projected shoot area, increased 83 
planar angle of leaves and tillers (Andrew et al., 2015; Brainard et al., 2005; Mahajan and Chauhan, 2013; 84 
Seavers and Wright, 1999; Worthington and Reberg-Horton, 2013). Accelerated vertical growth might provide 85 
an additional advantage for outcompeting neighbours, yet plant height has been strongly selected against 86 
during green revolution of most cereals, including rice. Indeed, there exists great potential for weed 87 
suppression in cereal canopies, as has been shown for wheat, where a rapidly closing wheat crop canopy 88 
achieved through higher planting density, depleted weeds from access to light (Weiner et al., 2010). 89 

Building on the idea to increase shading for improved weed competitiveness, here we examined the variation 90 
in rice shoot architecture, derived the traits that contribute to shading potential, and identified genetic loci 91 
associated with shading potential. The shading potential was defined here as high ground cover and early 92 
growth vigour. We determined key architectural characteristics of shading potential in the early growth phase. 93 
For this, (1) we phenotyped a rice diversity panel of 344 globally distributed varieties where we recorded 13 94 
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quantitative traits. Based on these, (2) we determined key architectural characteristics of shading potential in 95 
early growth phase. (3) We combined these core traits into one parameter to develop the Shading Rank, where 96 
all studied rice varieties were ranked for their shading potential. (4) Genome-wide association study (GWAS) 97 
revealed association with five genetic loci for traits contributing to shade potential. The results of this study 98 
form a primer to identification of alleles contributing to increased shading and early plant vigour.  99 

 100 

Results 101 

Shoot architecture variation between rice varieties 102 

In order to establish the variation in shading potential, and resulting increased weed-competitiveness, within 103 
the rice diversity panel (Supplemental Table 1) we measured 13 traits on 4-week-old seedlings in the 104 
screenhouse (Figure 1, Table 1, Supplemental Table 2). 105 

Substantial variation was observed for all measured traits among the varieties belonging to different 106 
subpopulations (Figure 1; Supplemental Table 2). The indica subpopulation showed highest dry weight, 107 
number of leaves, and number of tillers followed by aus subpopulation and aromatic, tropical and temperate 108 
japonica ranked lowest in these parameters (Supplemental Table 2). Shoot and hull area were also observed to 109 
be higher in indica and aus subpopulations, intermediate in aromatic subpopulation and lowest in japonicas 110 
and admixture subpopulations.  Indica and aus on average develop the most compact shoots (highest solidity), 111 
contrasting with the low solidity of japonicas and aromatic. In plant height, indica lines and temperate 112 
japonica were shortest and aromatic subpopulation were tallest. When taking the entire diversity panel of 344 113 
varieties, five traits (shoot area, hull area, solidity, plant height and dry weight) already showed a significant 114 
difference between the individual varieties at four weeks after sowing (Supplemental Table 2). When grouped 115 
together in subpopulations, all traits showed significant differences between subpopulations (Supplemental 116 
Table 2). Overall, it appears that relatively large variation between subpopulations was observed for traits 117 
related to area and branchiness related traits, whereas traits related to height showed only little variation 118 
between subpopulations. These differences are clearly determined by differences in genetic background since 119 
the growth conditions were constant. The high variation observed for traits related to shading potential suggests 120 
that the investigated rice diversity panel has sufficient variation to improve shading of the elite-breeding 121 
varieties. 122 

 123 

Correlation of shoot architectural traits 124 

To explore the relationship between individually measured traits, and determine which traits are independent 125 
of each other, we performed a Pearson correlation analysis (Figure 2A, Supplemental Figure 1). Shoot area 126 
and hull area showed strong positive correlation with shoot dry weight. Leaf and tiller number were highly 127 
correlated with dry weight. Height-associated traits, such as plant height, culm height and leaf length, were 128 
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positively correlated with each other. On the other hand, a negative correlation was found between culm height 129 
and number of leaves and tillers. Solidity, leaf angle, tiller angle and droopiness did not exhibit strong 130 
correlation with other measured traits.  131 

To examine the types of canopy architecture exhibited within rice diversity panel, we performed hierarchical 132 
clustering (Figure 2B), resulting in seven trait clusters. The clustering shows how traits are grouped together 133 
according to the patterns observed across all rice varieties. Taking the correlation and clustering analyses 134 
together, we can determine core groups of traits: area-related (shoot area, hull area, perimeter), branchiness 135 
(number of leaves and tillers and dry weight), height-related (plant and culm height and leaf length), solidity, 136 
leaf angle, tiller angle and droopiness (Table 2). 137 

 138 

Defining “shading potential” 139 

The shading potential of a plant determines the effectiveness with which it can cover ground area. The shading 140 
potential increases with an increasing number of leaves and tillers (branchiness), the size of the leaf and tiller 141 
angles, and the shoot area. Additionally, the shading potential accounts for plant height, as it offers competitive 142 
advantage to shading shorter weed plants. Therefore, plants with an increased height, number of leaves and 143 
wider angles are considered more vigorous, and thus likely to outcompete weeds for sunlight by casting more 144 
shade. With the aim of finding the ideal plant with highest shading potential for effective weed competition, 145 
we need to determine varieties with high values for core traits. The distribution of the different varieties with 146 
respect to the core trait groups: area, branchiness, height and solidity are shown in Figure 3, together with top 147 
images of representative varieties. 148 

To quantify shading potential, we ranked varieties for the sum of the core traits contributing to shading potential 149 
(projected shoot area, number of leaves, solidity, culm height, leaf angle, tiller angle and leaf droopiness, bold 150 
in Table 2). To account for the differences in measured units and unit ranges, for each trait, the values were 151 
rescaled to a range from 0 to 100, whilst keeping the relative differences of  trait-values between different 152 
varieties unchanged and these relative differences of trait values are also reflected in the sum of the normalized 153 
trait values. Varieties then were ranked according to their sum of normalized trait values, from 344 (highest) 154 
to 1 (lowest), resulting in the Shading Rank (for detailed information see Methods section - Data processing 155 
and statistical analysis).  156 

The Shading Rank gives a quantitative measure of the shading potential for a certain variety and indicates 157 
where a specific variety ranks with respect to the entire diversity panel (Supplemental Table 3). Although this 158 
ranking allows insight into the distribution of shading potential and the identification of expected strong and 159 
weak shaders, a limitation of this ranking is that it applies only within the diversity panel tested. Shoot size is 160 
one of the major factors contributing to overall shading potential. Since the diversity panel was evaluated 28 161 
days after sowing, the large shoot size of high-ranking varieties also indicates faster growth and seedling 162 
vigour. The varieties with the highest Shading Rank were Shim Balte, Sze Guen Zim, Paraiba Chines Nova, P 163 
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737, Shirkati and Sabharaj, while varieties with lowest Shading Rank were Luk Takhar, Guineandao, Bul Zo 164 
and Shirogane. From the 25 highest ranking varieties, 14 belong to the indica subpopulation and eight to aus. 165 
Low scoring varieties in terms of shading potential include widely-grown varieties such as IR 64 and 166 
Nipponbare, ranking 74th and 73rd respectively (Table 3, Figure 3). This suggests that some of the current elite 167 
rice varieties could have a rather poor shading potential, and through breeding with varieties from indica and 168 
aus subpopulations, the shading potential and weed-competitiveness can possibly be increased.  169 

Interestingly, none of the top-ranking varieties showed the highest values for all core shading traits (Figure 3). 170 
For example, Sze Guen Zim ranks highest for shoot area and number of leaves, but is one of the lower-ranking 171 
varieties for culm height. The accession with the highest Shade Ranking (344), Shim Balte has a very high 172 
number of leaves and solidity, but has a close to average culm height. Mudgo reaches a rank of 340, despite 173 
its relatively low number of leaves and solidity. Della, a variety with a low rank of 49, ranks low for all traits 174 
except for culm height. Luk Takhar is at the bottom end of the ranking and shows low values for all core traits. 175 
The core traits that determine shading potential: shoot area, number of leaves, solidity and culm height are 176 
only weakly correlated (Figure 2, Figure 3), illustrating the diverse strategies to reach high shading potential. 177 
It is therefore important to include all of the four core traits, in addition to the angle related traits, for a 178 
comprehensive evaluation of shading potential. 179 

 180 

Predicted competitive varieties are casting more shade 181 

To validate our Shading Rank and assess functional shading capacity, we grew varieties with varying Shading 182 
Rank and evaluated them for canopy shading. We selected two of the predicted competitive (Shim Balte with 183 
a Shading Rank of 344 and Mudgo ranking 330) and two predicted non-competitive rice varieties (Luk Takhar 184 
ranking 1 and Della ranking 49) (Figure 3, Table 3). By measuring the light quantity under the canopies of 185 
selected varieties (Supplemental Table 4), we indeed observed strong shading by varieties with a high Shading 186 
Rank (Shim Balte and Mudgo) and low shading by varieties with a low Shading Rank (Luk Takhar and Della). 187 
This result validates our Shading Rank, at least for the varieties tested and the selection of shoot architecture 188 
traits to effectively predict shade casting. 189 
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SNPs associated with seedling establishment and shoot architectural traits  190 

The high phenotypic variability found in the studied diversity panel (Supplemental Table 5), together with the 191 
high genetic variation (Wang et al., 2018b) provides a strong basis for a GWAS. We observed high narrow-192 
sense heritability for all measured traits (Supplemental Table 6). We investigated the genomic trait associations 193 
on two different SNP sets, both with two different software packages (lme4QTL (Ziyatdinov et al., 2018) and 194 
Genomic Association and Prediction Integrated Tool (GAPIT) (Tang et al., 2016; Wang et al., 2018c), see 195 
methods for detailed description). The total list of p-values for SNPs association across all measured traits can 196 
be found at https://doi.org/10.5281/zenodo.4730232 (Supplemental Data 3).  197 

Three genomic regions were associated with plant height located on chromosome 3, 5 and 6 (Figure 5). The 198 
peak on chromosome 3 was also detected for other height related traits: culm height and leaf length 199 
(Supplemental Data 4). Overall, the associations with culm height showed lower LOD scores (Supplemental 200 
Data 4). The results for tiller angle and droopiness reveal strong associations with SNPs on chromosome 1 and 201 
chromosomes 1 and 10, respectively (Supplemental Data 4). Despite solidity being a very complex and likely 202 
a poly-genic trait, the analysis revealed a strong association with 14 SNPs in the locus on chromosome 3 203 
(Figure 5). The associations between leaf or tiller number, found for SNPs on chromosomes 11 and 12, were 204 
shared between these two traits (Supplemental Data 4). These two loci were also found for dry weight. This 205 
suggests that the genetic components underlying formation of new leaves and tillers might have a common 206 
genetic constituent, consistent with high correlation in their phenotypes (Figure 2). The analysis for dry weight 207 
revealed significant associations on chromosomes 3, 7 and 12, overlapping with the associations found for 208 
shoot area (Figure 5). When taking together shading potential as the sum of all core traits, a GWAS on this 209 
composite trait yielded a rather random pattern of SNP associations (Supplement Figure 4). This further 210 
highlights our earlier findings (Figure 4), that shading can be achieved through various strategies and shading 211 
potential, as such, is genetically a highly complex trait. Therefore, genetic mapping of shoot architecture 212 
components that contribute to shading capacity is much more effective approach in identifying genetic 213 
components that contribute to shading and potential weed competitiveness.  214 

 215 

Identification of alleles associated with increased sharing potential 216 

The genomic regions that consisted of multiple SNPs above the Bonferroni threshold within the calculated 217 
local average LD (Table 5) were investigated in more detail. Since the traits related to the canopy shading 218 
potential are the primary focus of this work, we prioritized the loci associated with culm height, shoot area, 219 
solidity and dry weight.  Locus 4 of shoot area overlaps with locus 5 detected for dry weight (Figure 5, Table 220 
5) and was therefore taken together in the follow up analysis. In total we determined five loci to be followed 221 
up with a haplotype analysis to identify specific alleles which could contribute to shading potential. By 222 
grouping varieties according to SNPs within one coding region, and examining the differences between 223 
identified haplotypes, we identified allelic variation associated with high shading potential (Figure 6, Table 6). 224 
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The haplotypes of two coding regions in locus 1 (Figure 6 A- B), associated with solidity, were observed to 225 
have significantly lower solidity than the most abundant haplotype identified for the respective coding regions. 226 
These are annotated as Os03g0845000 (Pirin-like protein) and Os03g0845700 (similar to RPB17 fragment). 227 
Haplotypes of two coding regions in locus 2 (Figure 6 C-D), associated with plant height, Os05g0420600 228 
(Cytochrome C) and Os05g0420900 (conserved hypothetical protein), contained taller plants than the most 229 
abundant haplotype. In locus 4, associated with shoot area and dry weight, we found that only one gene 230 
(Os07g0623200, ATPase and heavy metal transporter protein) showed clear separation across the haplotypes, 231 
where all the non-reference haplotypes showed higher shading potential, indicated by higher shoot area and 232 
dry weight (Figure 6 E-F). For locus 6, associated with dry weight, we found only one gene Os11g0216000 233 
encoding Pyruvate kinase family protein, we found that the second most abundant haplotype was associated 234 
with increased shading due to higher dry weight of varieties that were sharing this specific combination of 235 
SNPs. 236 

 237 

Discussion 238 

We studied phenotypic and genetic variation in rice shoot architecture to identify traits and their underlying 239 
genetic loci that contribute to canopy shading. We investigated variability across a natural rice diversity panel 240 
in shoot architecture at the early vegetative stage. The traits investigated here encompass both early vigour and 241 
shade casting through shoot architecture, which are hypothesized to contribute to weed suppression in rice 242 
fields. Traits related to shoot architecture, such as leaf angle or droopiness, are of special interest as they do 243 
not require substantial resource investment while creating more optimal 3D distribution of the shoot biomass 244 
for an increased shading potential. Other traits, such as leaf area, number of leaves or shoot biomass, likely 245 
require considerable resource investments and are typically associated with growth vigour i.e. rapid seedling 246 
establishment. 247 

In our screen for variation in shoot architecture traits we found significant differences between subpopulations, 248 
where varieties with an indica background have highest shading potential and temperate japonica the least. 249 
We found admixed, tropical japonica and aus subpopulations to typically range between temperate japonica 250 
and indica. This pattern could be found in the majority of the measured traits and is in line with the phylogenetic 251 
relatedness of the different subpopulations (Eizenga et al., 2014; Liakat Ali et al., 2011; McCouch et al., 2016; 252 
Zhao et al., 2011). This indicates that phylogenetic relatedness is an important component that determines 253 
phenotypic variation in shoot architecture and shading potential.  254 

 255 

Identification of core shading traits through correlation analysis  256 

In order to summarize the information contained in all the investigated traits into one parameter indicative for 257 
the shading potential, we performed an extensive correlation analysis. By assessing the correlation between 258 
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individual traits, we identified how all measured traits are related to one another and identified core traits that 259 
capture the observed variance (Figure 2). We identified groups of traits related to branchiness (number of 260 
leaves and tillers) and height (plant height, culm height and leaf length). The correlations between traits 261 
encapsulated within a trait group simply underlines the natural growth pattern; the more tillers a plant has, the 262 
more leaves it will have since each tiller will develop a certain number of leaves. Strong correlation was 263 
previously observed between tiller formation and relative growth rate (Dingkuhn et al., 2001). Likewise, in 264 
our study number of leaves and leaf area were positively correlated with shoot dry weight (Figure 2, 265 
Supplemental Figure 1). This well-established relationship (Caton et al., 2003; Dingkuhn et al., 2001; Poorter 266 
et al., 2012) can be explained due to a larger shoot area providing higher capacity for photosynthesis and 267 
thereby leading to higher overall growth rate (Caton et al., 2003). Not all traits showed expected correlations. 268 
It could for example be assumed that an increased inclination angle of the leaf blade would make a leaf 269 
droopier. In fact, leaf angle appeared to be unrelated to leaf droopiness, whereas leaf length appeared to be 270 
positively correlated with droopiness. While solidity is the ratio of shoot area and hull area, it is only weakly 271 
correlated with shoot area (Figure 2, Supplemental Figure 1). This suggests that shoot solidity is independent 272 
of how large its total shoot area, leaf number or dry weight are. Since solidity indicates the uniformity of the 273 
plant’s ability to shade its circumference, it is a valuable trait for shading capacity analysis. Inverse correlations 274 
were found between branchiness (number of leaves and tillers) and height traits. This trade-off between height 275 
and branching is well-documented as apical dominance where height growth of the main shoot is promoted at 276 
the expense of branching (Roig-Villanova and Martínez-García, 2016; Teichmann and Muhr, 2015). 277 
Summarizing, the trends observed within this study are in line with earlier observations, whereas we identify 278 
new, informative trait groups that contribute independently to the shading potential of rice plants.  279 

 280 

Shading rank as a measure for shading potential 281 

Shading potential can be defined in two-dimensional measures, such as ground cover or projected shoot area, 282 
or including a third dimension, where plant height is considered as space resource utilization (Zhang et al., 283 
2019). We hypothesized that not only projected shoot area, but also solidity and height of the shoot are crucial 284 
for shading potential. For example, a large projected shoot area with low solidity would still leave many open 285 
spaces within a single plant’s sphere for light penetration where weeds can proliferate. Or the reverse, a very 286 
solid projected shoot area of one plant that does not extend very far, is likely to leave open spaces between 287 
crop plants where weeds could grow. It is, therefore, clear that an optimal combination of shoot architecture 288 
traits is needed for maximal shading and weed suppression (Figure 3, Table 3). Architecture traits that are 289 
associated with weed-competitiveness include leaf area, ground cover, specific leaf area, leaf area index, leaf 290 
angle, droopiness, tillering capacity and plant height (Caton et al., 2003; Dingkuhn et al., 2001; Haefele et al., 291 
2004; Mahajan and Chauhan, 2013; Mennan et al., 2012; Namuco et al., 2009; Rao et al., 2007; Worthington 292 
and Reberg-Horton, 2013; Zhao et al., 2006b, 2007). In addition, plant biomass and early vigour are 293 
advantageous for competition against weeds (Haefele et al., 2004; Mahajan and Chauhan, 2013; Namuco et 294 
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al., 2009; Worthington and Reberg-Horton, 2013; Zhao et al., 2006a), but these are not specific architecture 295 
traits.  296 

To predict which components best describe a plant’s shading potential, we categorized the different traits into 297 
core groups of similarly behaving traits. We developed the Shading Rank, as a parameter that combines 298 
branchiness, solidity and height and leaf and tiller angles and droopiness. The varieties with highest shading 299 
potential belong to the indica and aus subpopulation, which have also been found in earlier studies to have 300 
higher yield and less weed biomass in weedy fields compared to japonicas (Zhao et al., 2006b). We propose 301 
that varieties that have a high Shading Rank, are likely the most weed-competitive varieties, whereas those 302 
that rank low are likely to be weak competitors. Indeed, our experiment proved that canopies of high-ranking 303 
varieties allow significantly less light penetration than low ranking ones (Figure 4). Interestingly, none of the 304 
investigated varieties resembled the full ideotype of a strongly shading plant according to the traits we 305 
examined (Figure 3), indicating there is substantial room for improvement. Early seedling vigour is particularly 306 
important for weed-competition during the critical period of weed control and some of high ranking varieties, 307 
such as Shim Balte, Paung Malaung and Sabharaj are also known by breeders for their early vigour. Increased 308 
shading ability is intrinsic to early vigour since it follows to some extent from large size. However, the Shading 309 
Rank proposed here is more comprehensive to additional traits such as solidity and plant architecture that may 310 
involve less resource investment than vigour traits. With this improved way of ranking a plant’s shading 311 
capacity, our study exemplifies a new method of selection for high-shading varieties and genetic loci associated 312 
with high-shade canopy architecture.   313 

 314 

Elucidating the genetic components of shading potential 315 

Architecture 316 

The SNP dataset from the rice diversity panel (Eizenga et al., 2014) was combined with the observed 317 
phenotypic variation to identify putative genetic loci underlying high shading potential. This variation (Figure 318 
1, Supplemental Table 5) together with a high trait heritability (Supplemental Table 6) provides a strong basis 319 
for GWAS. Plant height and leaf length were associated with loci on chromosomes 5 and 6. The locus on 320 
chromosome 5 harbours two genes encoding Cytochrome C and a conserved hypothetical protein. The 321 
haplotype analysis revealed one allele for both genes that was associated with a highly significant increase in 322 
plant height. (Figure 4). The locus on chromosome 6 encodes the Heading Date (Hd1) locus that was also 323 
previously associated with plant height in vegetative rice plants (Zhang et al., 2012; Yang et al., 2014). Subedi 324 
et al. (2019) performed a GWAS on plant height at plant maturity and found peaks on chromosome 1 and 11, 325 
which could indicate that at different developmental stages plant height is determined by different genomic 326 
regions. However, Subedi et al (2019) used a specifically constructed genetic population stemming from six 327 
parents and this could explain why very different loci were identified. Interestingly, haplotypes associated with 328 
high culm height exhibit low plant height and vice versa (Supplemental Data 7). Haplotypes associated with 329 
high plant height are typically showing longer leaf length (Supplemental Data 7). While all the height related 330 
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traits were highly correlated at phenotypic level (Figure 2), the lack of common loci for all the traits 331 
(Supplemental Data 4), and opposite trends within the haplotype groups (Supplemental Data 7) suggest that 332 
the three components of plant height are regulated independently at the genetic level.  333 

We also report unique loci specific for solidity and for height related traits. We revealed one strong locus, with 334 
several significant SNP associations, on chromosome 3 for solidity (Figure 5). We propose that solidity, as 335 
mentioned previously, is an important shoot trait to take into consideration for weed-competitiveness, since 336 
high crop plant solidity likely indicates low potential for weeds to proliferate within the sphere of influence of 337 
crop individuals. It is surprising to find a single locus, uniquely associated with this complex trait. However, 338 
when we grouped varieties into haplotype groups for two coding regions (Os03g0845000 and Os03g0845700, 339 
Figure 6 A – B), encoding a Pirin-like protein and an RPB17 (Fragment) within this locus, the phenotype of 340 
the haplotype groups appeared to differ not just in solidity, but also shoot area, dry weight and leaf number 341 
(Figure 6 A-B, Supplemental Data 7).  342 

In this analysis, we identified new genetic components of shading potential based on shoot architecture, and 343 
the alleles that might contribute to increased shade casting ability. 344 

Vigour 345 

Vigour-related traits (i.e., dry weight, shoot area, number of leaves) are all strongly correlated and share 346 
associated loci on chromosome 7, 11 and 12 (Figure 5, Supplemental Data 4). The locus on chromosome 11 347 
was also reported by (Yang et al., 2014) for dry weight and fresh weight at the late tillering stage, which is 348 
comparable to the developmental stage studied here. A closer look at the locus found for dry weight on 349 
chromosome 11 revealed only one gene is located within the linkage disequilibrium of associated SNPs. 350 
Interestingly, the haplotype analysis for SNPs within Os11g021600, encoding a Pyruvate kinase family protein, 351 
revealed significant difference in dry weight between the two haplotype groups (Figure 6 G). The significant 352 
differences were also observed for shoot area and number of leaves and tillers. As only one gene was located 353 
within this locus and one specific haplotype was related with high biomass, this locus is a promising candidate 354 
for follow-up studies and promising to be included in breeding programmes. The locus on chromosome 7 355 
associated with shoot area and dry weight (Figure 6 E and F), harbours two genes, where we found that the 356 
haplotypes were associated with an increased shoot area and dry weight but also increased number of leaves 357 
and tillers. QTLs for height at 7 and 14 days after sowing and fresh weight, in a study that involved exclusively 358 
temperate japonica genotypes (Cordero-Lara et al., 2016) were entirely non-overlapping with the loci 359 
identified here for these traits. This is most likely because of the different genetic make-up of the populations 360 
used, which inevitably leads to variation. Even though the GWAS results for number of leaves and dry weight 361 
revealed different genetic associations for each of these traits, the identified haplotypes affected both these 362 
traits in a similar way. The haplotypes associated with high projected shoot area also showed increased 363 
branchiness and dry weight (Supplemental Data 4). This might suggest that by selecting for a genetic locus 364 
associated with branchiness, the other traits contributing to shading potential might also be affected. This 365 
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relationship is to be further studied in future reverse-genetic studies that could explore the role of identified 366 
candidate loci in increased shading potential as well as weed-competitiveness. 367 

It should be kept in mind that rice is known to be a highly plastic species and we have performed our 368 
experiments under stable conditions in a controlled environment. In order to further translate our findings, and 369 
implement them in breeding programmes, it will be relevant to factor in architectural plasticity under field 370 
conditions. One obvious factor affecting architecture would be planting density and the associated changes in 371 
light composition and availability. Another so far neglected aspect of weed-competitiveness would be the root 372 
systems, for which the rapidly evolving high throughput phenotyping methods are a major opportunity to 373 
resolve comparable questions as done here for shoot architecture. We conclude that breeding for specific vigour 374 
traits will likely have additional beneficial effects, as indicated by the haplotype studies. Vigour from root 375 
growth can then be an added layer at a later step towards field-grown, weed-competitive varieties that can be 376 
farmed in a sustainable manner. 377 

 378 

Conclusion 379 

This study explored diversity in shoot architecture of rice seedlings, identified traits contributing to canopy 380 
shading potential and identified the putative genetic components related to canopy shading. The traits 381 
contributing to a high Shading Rank, and therefore a proposed increased weed-competitiveness, are also 382 
intrinsically relevant for seedling vigour. Shoot area, number of leaves and plant height contribute strongly to 383 
early vigour and are therefore imperative target traits for weed-competitiveness. We also highlight additional 384 
shoot architecture traits, such as solidity and leaf angles, that contribute to increased shading potential and are 385 
therefore desirable traits for weed-competitiveness (Figure 2). Indeed, we confirmed that light extinction is 386 
significantly stronger under canopies of varieties predicted to have high shading potential and therefore likely 387 
being more weed-competitive.  388 

We identified 26 significant marker-trait associations including five novel loci related to canopy shading traits, 389 
and the haplotypes corresponding to high-shading potential. Phenotypic investigations carried out in previous 390 
studies focused on adult plants and yield traits. This is also reflected in the breeding programme over the last 391 
decades, which aimed for high yielding dwarf varieties. Many widely cultivated varieties, such as IR 64 and 392 
Nipponbare, showed low Shading Ranks in our analyses, and the most abundant haplotypes, with only few 393 
exceptions, were often the ones with lowest shade casting. Our study indicates a clear potential for 394 
improvement towards sustainable weed suppression in the current breeding programmes, and that some of the 395 
newly studied traits here could be introduced into future breeding programmes. 396 

Summarizing, the acquired knowledge of relevant traits, together with the information about their underlying 397 
genomic regions and haplotypes described here can serve as a basis for future reverse-genetic studies and 398 
genome-assisted breeding programmes that will contribute to making rice farming more sustainable and help 399 
to improve yield in dry, direct-seeded rice.  400 
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Material and methods 401 

 402 

Plant material 403 

344 Asian rice (O. sativa) cultivars were used out of an established rice diversity panel (Rice diversity panel 404 
1; RDP1 (Eizenga et al., 2014)). In addition, one African rice variety (O. glaberrima) TOG7192 was also 405 
included. The RDP1 is a collection of purified, homozygous rice varieties spread over 82 countries all over the 406 
world. The panel includes landraces and elite rice cultivars from five subpopulations: indica and aus belonging 407 
to the Indica varietal group and tropical japonica, temperate japonica and aromatic which comprise the 408 
Japonica varietal group, in addition to the admixture group, (Liakat Ali et al., 2011; Zhao et al., 2011). The full 409 
panel and detailed information (accession name, accession ID, subpopulation and country of origin) can be 410 
found in the Supplemental Table 1. 411 

Growth conditions 412 

Rice plants were grown in the screen-house facilities of the International Rice Research Institute (IRRI)in The 413 
Philippines, during October 2017 – April 2018. Temperatures ranged from 37 °C during the day to 27 °C during 414 
the night, with a relative humidity of 75 % and 80 %, respectively and a photoperiod ranging from 11 to 12 415 
hours. Four temporally separated replications were carried out, with three plants per variety within each 416 
replicated experiment. Plants were grown in a randomized block design in single pots with a 30 cm x 30 cm 417 
distance between seedlings. In the first experiment, seeds received from the gene bank at IRRI were exposed 418 
to 40 °C for up to 5 days, to break dormancy, followed by 24 h at 21 °C. For germination, seeds were put in 419 
Petri dishes (12 per variety) on wet filter paper and incubated at 32 °C for 24 h. Seeds were planted directly 420 
on the soil, following the direct-seeded rice method: 4 seeds were placed per pot (diameter of 16 cm and 13 421 
cm high, without drainage holes on the bottom) filled with sterilized clay-loam field soil mixed with complete 422 
fertilizer (NPK fertilizer with 46 / 18 / 60 g per kg soil). The seeds were sown at a depth of x-cm and then 423 
covered with a thin layer of soil. From planting onwards, soil was kept moist. At 7 days after sowing (DAS), 424 
surplus seedlings were removed to retain only 1 seedling per pot. At 14 DAS, fertilizer was added, with 50% 425 

of N of concentration off first application. From 15 DAS until the end of the experiment, watering was done 426 
to keep a layer of water on the soil and the plants under water-logged conditions.  427 

Phenotyping 428 

Plants were measured by hand at 28 DAS for the following traits: number of leaves, number of tillers, total 429 
plant height, culm height, and length of longest leaf. Plants were photographed from the top and side using 2 430 
digital cameras in a fixed imaging set-up at 21 and 28 DAS. At the last time point, a scan of the blade of the 431 
longest leaf was taken and the whole shoot was harvested for analysis of dry weight upon 48 h of drying at 432 
70 °C (IRRI, 2013; Caton et al., 2003). In Table 1, each trait, their abbreviations and evaluation methods are 433 
described. The raw data for each replicate can be accessed at https://doi.org/10.5281/zenodo.4730232  434 
(Supplemental Data 1). 435 
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Data processing and statistical analysis 436 

In order to extract traits from RGB images, an automatised image analysis pipeline was established using the 437 
open source, python based PlantCV software (PlantCV version 3.7) (Fahlgren et al., 2015; Gehan et al., 2017). 438 
We made optimisations to the script for detection of monocots, to enable the extraction of values for shoot 439 
area, hull area and perimeter. The python script describing the developed pipeline can be accessed at 440 
https://plantcv.readthedocs.io/en/stable/ and the adapted Jupiter notebook used for processing all the images 441 
athttps://doi.org/10.5281/zenodo.4730232 (Supplemental Data 2). The measurements of tiller angle, leaf angle 442 
and leaf erectness, were done using the free ImageJ software (https://imagej.nih.gov/ij/). Tiller angles were 443 
taken between the two outermost tillers and the culm, respectively. The leaf angles were taken between the 444 
second and third youngest leaf and the culm, respectively. The leaf droopiness was measured on the same 445 
leaves as the interception angle of two tangents aligned to the initiation and the tip of the leaf blade. 446 

The values of the first replicate were excluded for 62 varieties as their position within the greenhouse was 447 
more shaded. These positions were excluded from further experimental replication, to ensure equal light 448 
conditions for all studied plants. Prior to statistical analysis, the raw data was curated for outliers (using 449 
1.5*IQR away from the mean) and mean was calculated out of the four replicates, with two biological 450 
replicates each. Statistical analysis such as ANOVA, Pearson Correlation and Hierarchical Clustering were 451 
performed using R (R Version: 3.6.1-1bionic; R Core Team, 2020) and the online tool MVapp 452 
https://mvapp.kaust.edu.sa (Julkowska et al., 2019). The Pearson Correlation coefficients between traits were 453 
calculated using raw data. For Hierarchical Clustering traits and individual samples were clustered using 454 
ward.D2 method. The values of individual traits were normalized per trait using z-Fisher transformation and 455 
scaled prior to clustering. Based on the correlation and clustering analysis, a subset of phenotypic traits, was 456 
defined as the core traits. The core traits were shoot area, leaf number, solidity, culm height, leaf angle, tiller 457 
angle and leaf droopiness. Then we calculated the Shading Rank as follows:  458 

First, we normalized the trait values  459 

 460 

where is the value of a certain trait measured for a certain plant in the investigated population and min 461 
and max are the minimum and maximum values of the measured trait in the whole population, with the 462 
normalized values ranging from 0 to 100. 463 

Next, we calculated the Shading Score for each variety  464 

𝑆𝑆!"#$%&' = ∑ 𝑡!"#$%&'(
)*#%&#"$&+ where ∑ is calculated as the sum only from the normalized values of the core 465 

traits. From this, we get the Shading Rank (SR), which is the rank given to each variety according to its SS, 466 
ordering the varieties from 1 (lowest) to 344 (highest). The list of 344 varieties with their normalized core trait 467 
values, the sum of normalized core trait values and their Shading Rank can be found in Supplemental Table 3. 468 
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Canopy shading experiment 469 

Rice were grown in the greenhouse facilities of Utrecht University, in The Netherlands, in February 2021. 470 
Temperatures were set to 29 °C during the day and 25 °C during the night and a photoperiod from 8 am to 8 471 
pm, with a minimal light intensity of 400 ɥmol m-2 s-1 and artificial light (Valoya, Model Rx400 500mA 5730, 472 
Spectrum AP673L) switching on if sunlight flux rate dropped below 400 ɥmol m-2 s-1. Automatic watering kept 473 
soil in pots saturated. The selected O. sativa varieties were Shim Balte, Mudgo, Della and Luk Takhar, with 474 
Shading Ranks of 344, 330, 49 and 1, respectively. Germination protocol was followed as described above. 475 
Four plants were grown per pot, in each of the corners of a square pot (10 x 10 x 11 cm) in a substrate mix of 476 
black soil, vermiculite and sand in a ratio of 5 : 3 : 2 together with 6 g Osmocote and 1 l Yoshida nutrient 477 
solution per kg substrate. Pots were arranged at a distance of 10 cm in mixed plots. The experiment units (the 478 
eight plants that were measured) were surrounded by bordering plants to avoid border effects on the 479 
experimental units. Light intensity (photosynthetic active radiation (PAR) of 400-700 nm waveband) was 480 
measured at the ground level between rice plants (with six measurements in each of the three replicates) and 481 
above the plants for reference at the same time to calculate light extinction. PAR values can be found in 482 
Supplemental Table 4. 483 

Phenotype data for GWAS 484 

For the GWAS analyses, the mean values of all phenotypes were included, only O. glaberrima TOG7192 was 485 
excluded since it does not belong to the O. sativa species. We tested for the normal distribution across the 486 
recorded traits prior to running the GWAS. The list for all 344 varieties with 13 shoot trait values (as the mean 487 
value out of eight replicates, for raw data see Supplemental Data 1) which were used as input for GWAS can 488 
be found in Supplemental Table 5. 489 

Genotype data 490 

For the genotype data we have used two data sets publicly available at  http://ricediversity.org/data/index.cfm 491 
tools/. As a second dataset, we used the newer version of genomic data imputed HDRA with 4.8 M SNPs, from 492 
3,010 O. sativa varieties assembling the established Rice Reference Panel by merging the high-density rice 493 
array with 700 K SNPs from in total 1,568 O. sativa varieties including RDP1 (rice diversity panel 1), RDP2 494 
and NIAS (national institute of agrobiological sciences) from (McCouch et al., 2016) and 3000 Rice Genomes 495 
data sets (D. R. Wang et al., 2018). The data was curated by filtering for unique SNPs, 90% call rate (90% 496 
minimum count) and minor allele frequency ≥ 5 %. We used the SNP data that adhere to the filtering criteria 497 
for 344 varieties that were included in the phenotypic screen, which resulted in total of 1.7 M SNPs remained 498 
as an input for the GWAS. As an average genome-wide linkage disequilibrium (LD) decay in rice we used 499 
previously calculated values (Zhao et al. 2011; Huang et al. 2010). LD is calculated by measuring the pairwise 500 
SNP LD among the common SNPs (with MAF > 0.05) using r2, the correlation in frequency among pairs of 501 
alleles across a pair of markers, using the software PLI NK (http://zzz.bwh.harvard.edu/plink/).  502 
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Genome wide association study (GWAS) 503 

We used two different software packages to perform the GWAS. The first is an R package (R version 3.6.1) of 504 
Genomic Association and Prediction Integrated Tool (GAPIT) (Tang et al., 2016; Wang et al., 2018c). We 505 
employed a mixed linear model (MLM) (Yu et al., 2006) with the optimal number of Principal Components 506 
based on the calculated Bayesian information criterion (BIC) for each trait, including as coefficients a kinship 507 
matrix (K-matrix), based on clustering analysis to account for genetic relationship between individuals, 508 
together with the population structure (Q-matrix). The Manhattan plots for GWAS using the GAPIT can be 509 
found in Supplemental Data 5,  for shoot area, hull area, perimeter, plant height, culm height, leaf length, 510 
solidity, number of leaves, number of tillers, dry weight, droopiness, leaf angle, tiller angle and the Sum of 511 
normalized traits. Shown are SNPs with MAF > 0.05, with the negative logarithmic p-values on the y-axis, for 512 
1.7 M SNPs across the 12 rice chromosomes along the x‐axis. The second software package is lme4QTL 513 
(Ziyatdinov et al., 2018). We performed GWAS as described in the paper, taking population structure into 514 
account by using a kinship matrix. This kinship matrix was calculated using the cov() function in R 3.6 515 
(Supplemental Figure 2). The decomposition matrix to correct for population structure was made by following 516 
the lme4QTL protocol. It uses the relmatLmer(), varcov() and decompose_varcov() functions in order. The 517 
obtained decomposition matrix, together with the traits and binary SNP matrix is then used in the matlm() 518 
function to calculate the significance and effect per SNP. The full list of detected significant SNP associations 519 
can be accessed at https://doi.org/10.5281/zenodo.4730232 (Supplemental Data 3). As a confirmation for the 520 
reliability of SNP trait associations, we correlated the results of the two methods applied here (GAPIT and 521 
lme4QTL). We do not expect an exact overlap, as there is a small difference in how the kinship matix is 522 
calculated and GAPIT uses MLM, whereas lme4QTL does not. The narrow sense heritability (h2) of the 523 
analysed traits was calculated with GAPIT (Supplemental Table 6). To set the significance threshold the rather 524 
conservative Bonferroni correction was applied, calculated by the –log10(p-value of 0.05/ΣSNPs), which 525 
corresponds to -log10(0.05/1.700.000) = -7.53 for the imputed HDRA data set. To examine the GWAS model 526 
performance and estimate possible model overfitting, QQ plots were generated (Supplemental Data 6).  527 

Post-GWAS analysis 528 

For all follow-up analysis the output of the GWAS on the raw, untransformed phenotype data was used. 529 

Locus definition: We determined loci to be of interest, if there are several significantly associated SNPs found 530 
in close proximity. Single SNPs passing the threshold were neglected, because whole-genome sequencing data 531 
provides enough markers in each linkage disequilibrium block. Since rice has a low rate of LD decay, this 532 
makes it more difficult to identify causal genes (Wang et al., 2020). Therefore, the local LD analysis was used 533 
to define LD clumps surrounding the index SNPs, using LD clumping in PLINK, where the local LD between 534 
SNPs is considered. A strong LD between SNPs is one of the three criteria that must be simultaneously 535 
satisfied. The other two criteria are p-value threshold set to 0.01 and physical distance set to 250 kb, given 536 
with the R2 value. We considered SNPs with –log10(p-value) > 5 as index SNPs to perform the analysis and 537 
clump SNPs with p-value > 4. For the determination of loci of interest for weed-competitiveness, we focused 538 
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on the core traits culm height, shoot area, solidity and number of leaves. For culm height and number of leaves 539 
single significant SNPs were not found to be surrounded by other significant SNPs within LD and therefore 540 
did not meet our selection criteria. Since, dry weight is highly correlated with the traits of branchiness, we 541 
included the peaks found for dry weight as a representative locus for branchiness and similarly the loci for 542 
plant height as a representative of height related traits.   543 

Gene models: Genetic regions covered by significant SNPs were searched for candidate genes using two 544 
different gene annotation models, which were then merged: the Michigan State University (MSU; 31 Oct. 2011 545 
- Release 7; http://rice.plantbiology.msu.edu/) and the Rice Annotation Project Database (RAP-DB; 24 March 546 
2020; https://rapdb.dna.affrc.go.jp/). Other data resources used, were the gene ID converter 547 
(https://rapdb.dna.affrc.go.jp/tools/converter), GALAXY – rice genome browser 548 
(http://13.250.174.27:8080/?tool_id=getgenes&version=1.0.0&__identifer=pxuu9t4bnk) and SNP seek 549 
(http://snp-seek.irri.org/). 550 

Haplotype analysis 551 

In order to facilitate the identification of candidate genes within the found loci related to the canopy 552 
architecture, we performed haplotype analysis spanning the coding sequence regions of the genes within each 553 
locus. For each locus, we used the combined gene model annotation (MSU and RAP-DB) to identify the coding 554 
sequences belonging to individual genes (Supplemental Table 7). We subsequently compiled all SNPs that 555 
were within the coding sequence region into one haplotype and grouped all studied varieties based on their 556 
haplotype sequence. The haplotypes represented by 2 or less varieties were excluded from the analysis, due to 557 
low representation. Based on the haplotype grouping for each coding sequence, we performed a t-test for 558 
significant differences between the most abundant haplotype with all the other identified haplotypes for all 559 
measured traits. The individual haplotypes are represented by A/T, where A stands for reference accession 560 
sequence, and T for any alternative variant. Supplemental Data 8 contains the full list of coding sequences of 561 
genes within the defined loci of interest. 562 

  563 
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replicates, for raw data see Supplemental Data 1) which were used as input for genome-wide association 583 
studies, their normalized trait values, the sum of normalized core trait values and their Shading Rank. 584 

Supplemental Table 6: Narrow sense heritability of all analysed traits in genome-wide association studies, 585 
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categories from Rice Annotation Project Database. 588 

Supplemental Figure 1: Scatter plots and  R² values for pair-wise correlation analysis for individual traits. 589 

Supplemental Figure 2: Kinship matrix of screened rice diversity panel (RDP1). 590 

Supplemental Data 1 (https://doi.org/10.5281/zenodo.4730232): List of 344 varieties with raw data of 13 591 
shoot traits from eight replicates. 592 

Supplemental Data 2 (https://doi.org/10.5281/zenodo.4730232): Python script based on PlantCV used for 593 
image analysis. 594 

Supplemental Data 3 (https://doi.org/10.5281/zenodo.4730232): Association results for GWAS with 595 
Lme4QTL using a mixed linear model (MLM) based on the lme4QTL protocol, for shoot area, hull area, 596 
perimeter, plant height, culm height, leaf length, solidity, number of leaves, number of tillers, dry weight, 597 
droopiness, leaf angle, tiller angle and the Sum of normalized traits.  598 

Supplemental Data 4: Genetic regions underlying shoot architectural traits and seedling vigour in 4-week-599 
old rice seedlings. Single-trait genome-wide association studies (GWAS) using a mixed linear model (MLM) 600 
based on the lme4QTL protocol, for droopiness, leaf angle, tiller angle, SUM_norm_traits, number of leaves, 601 
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number of tillers, culm height, leaf length hull area and perimeter. The Manhattan plots depict the single 602 
nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) > 0.05. Negative logarithmic P-values 603 
on the y-axis, for 1.7 M SNPs across the 12 rice chromosomes along the x‐axis. P-values of association results 604 
for all traits can be found in Supplemental Data 3.  605 

Supplemental Data 5: Genetic regions underlying shoot architectural traits and seedling vigour in 4-week-606 
old rice seedlings. Single-trait GWAS using a mixed linear model (MLM)  with the GAPIT package in R, for 607 
shoot area, hull area, perimeter, plant height, culm height, leaf length, solidity, number of leaves, number of 608 
tillers, dry weight, droopiness, leaf angle, tiller angle and the Sum of normalized traits. The Manhattan plots 609 
depict the single nucleotide polymorphisms (SNPs) with minor allele frequencies (MAF) > 0.05. Negative 610 
logarithmic P values on the y-axis, for 1.7 M SNPs across the 12 rice chromosomes along the x‐axis.  611 

Supplemental Data 6: QQ plots with negative logarithmic P values for observed on the y-axis and expected 612 
SNP - trait associations on the x-axis. 613 

Supplemental Data 7: Haplotype groups for all determined loci of interest with their phenotype effect for 13 614 
investigated shoot traits. 615 

Supplemental Data 8: List of sequences of genes for loci of interest, with haplotypes for screened varieties.616 
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Tables 617 
 618 

Table 1: Description of 13 investigated shoot traits. 619 

Trait Unit Description 

Number of leaves  Number of all visible green leaf blades 

Number of tillers  Number of side branches classified as tillers as soon as it splits off the culm having two leaves 

Total plant height cm Height from soil to the straightened topmost leaf tip 

Culm height cm Mother stem - from soil to highest node, where youngest leaf blade bends off 

Leaf length cm Length of longest leaf blade 

Projected shoot area cm² All green leaf area projected from top view 

Convex hull area cm² Smallest area enclosing outermost leaf tips 

Shoot perimeter cm Outline of the projected shoot area 

Leaf angle ° Angle between culm and leaf blade initiation measured for second and third leaf 

Tiller angle ° Angle between the culm and tillers, measured for the left and right outermost tillers 

Leaf droopiness ° Interception angle of two tangents aligned to initiation and tip of leaf blade measured  
for second and third leaf 

Dry weight shoot g Dry matter of shoot biomass after drying in oven at 70 C for 48 h 

Solidity  Ratio of projected shoot area divided by convex hull area 

 620 

Table 2: Core groups of shoot traits. For core groups with multiple traits, we have selected a representative 621 
trait as the core trait, shown in bold. 622 

Core groups Measured shoot architectural traits 

Area Projected shoot area, convex hull area, perimeter 

Branchiness Number of leaves, number of tillers, dry weight 

Height Culm height, leaf length, plant height 

Solidity Solidity 

Leaf angle Leaf angle 

Tiller angle Tiller angle 

Droopiness Droopiness 

 623 

624 
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Table 3: Shading Rank for ten highest and ten lowest ranking varieties, and for varieties of special interest 625 
(Mudgo, IR 64-21, Nipponbare and Della) with normalized core trait values (between 0 as lowest and 100 626 
highest) compared to the min and max values within the screened panel and the sum of the core traits. Varieties 627 
in bold are visualized in Figure 3. The Shading Rank ranges from 344 as the highest and 1 as the lowest. The 628 
list of Shading Ranks for the entire panel can be found in Supplemental Table 3. 629 

 630 

  631 
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Table 4: Loci of interest for traits of core groups for shading potential (solidity, plant height, shoot area, 632 
and dry weight) with significant SNPs (LOD > 5 as index SNPs) and clumped SNPs (LOD > 4) in local LD 633 
up- and downstream. Full list of SNP positions in loci of interest can be found in Supplemental Table 7. 634 

  635 

Trait Locus Chromosome Index SNP_ID Position Span_locus [kb] Coordinates_locus [kb] 

Solidity  Locus1 3 SNP-3.35500735. 35507867 404 chr3:35347550..35752533 

Plant height  Locus2 5 SNP-5.20612311. 20674871 59 chr5:20621852..20680955 

Plant height  Locus3 6 SNP-6.13994152. 13995152 240 chr6:13754207..13995152 

Shoot area Locus4 7 SNP-7.25787749. 25788744 146 chr7:25659129..25806056 

Dry weight Locus5 7 SNP-7.25766799. 25767794 35 chr7:25767794..25803081 

Dry weight Locus6 11 SNP-11.6059294. 6063543 23 chr11:6039907..6063875 
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Table 5: Summary of determined loci of interest with the Locus ID and gene annotation. Loci represented 636 
in Figure 6 are highlighted in bold.  Full list of SNP positions in loci of interest with gene annotation and gene 637 
ontology categories can be found in Supplemental Table 7.638 
Trait Locus Chromosome Locus_ID Gene annotation 

 Solidity Locus1 3 

Os03g0841800 GSK3/SHAGGY-like kinase 

Os03g0841850 Hypothetical protein. 

Os03g0843700 FAR1 domain containing protein. 

Os03g0845000 Similar to Pirin-like protein. 

Os03g0845700 Similar to RPB17 (Fragment). 

Os03g0845800 Conserved hypothetical protein. 

Os03g0848700 Coiled-coil, nucleotide-binding, and leucine-rich repeat protein 

 Plant height Locus2 5 

Os05g0420500 Conserved hypothetical protein. 

Os05g0420600 Cytochrome c. 

Os05g0420900 Conserved hypothetical protein. 

 Plant height Locus3 6 
Os06g0269300 TolB-like domain containing protein. 

Os06g0346300 acyl-CoA oxidase/ oxidoreductase 

 Shoot area Locus4 7 

Os07g0623200 Heavy metal transporter protein; ATPase, P-type. 

Os07g0623501 Hypothetical gene. 

Os07g0623600 Similar to mRNA, clone: RTFL01-43-H20. 

Dry weight Locus5 7 

Os07g0623200 Heavy metal transporter protein; ATPase, P-type. 

Os07g0623501 Hypothetical gene. 

Os07g0623600 Similar to mRNA, clone: RTFL01-43-H20. 

Dry weight Locus6 11 Os11g0216000 Pyruvate kinase family protein. 
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Figure legends 639 
 640 

Figure 1: Shoot traits in rice differ between subpopulations. Distribution of investigated shoot traits in the 641 
screened diversity panel. The plots represent the trait value (y-axis) observed for varieties grouped according 642 
to different subpopulations on x-axis. A) Shoot area [cm2], B) Hull area [cm2], C) Perimeter [cm], D) Solidity, 643 
E) Dry weight [g], F) number of leaves, G) Number of tillers, H) Plant height [cm], I) Leaf length [cm], J) 644 
Culm height [cm], K) Leaf angle [°], L) Tiller angle [°] and M) Droopiness [°]. Each data point represents the  645 
mean out of 8 replicates for each of the 344 varieties. The colours represent different groups of subpopulations, 646 
ind – indica, aus, adm – admixed, aro -aromatic, trj – tropical japonica and tej – temperate japonica. The 647 
letters in the graphs represent the significantly different groups, as determined with Tukey's HSD with p-value 648 
< 0.05. Mean values for all 13 traits and the sum of the normalized traits including results for Tukey’s pairwise 649 
post hoc test can be found in Supplemental Table 2.  650 

Figure 2: Correlation and clustering of 13 shoot traits defines core groups of traits. A) Pearson Correlation 651 
coefficients between traits. The colour and size of the circles reflect the strength of the correlation. B) 652 
Hierarchical Cluster Analysis. Traits are clustered using ward.D2 method. Rows represent 13 studied shoot 653 
traits. The values of individual samples are normalized per trait using z-Fisher transformation scaled prior to 654 
clustering. Based on a cut off at seven clusters and together with the correlation coefficients, we grouped 655 
together the traits into defined core groups. 656 

Figure 3: Visualization of shading potential in the investigated rice diversity panel based on cor traits 657 
for the Shading Rank. A) - D) Scatter plots showing the distribution of 344 rice varieties in pair-wise 658 
combination of four core traits, shoot area, number of leaves,  solidity and culm height. Representative high 659 
(344, 343 and 330) and low (49 and 1) ranking varieties together with Nipponbare (73) and IR 64-21 (74) are 660 
highlighted in colours. B) Top view images of representative varieties, with colour coded frames. Numbers are 661 
respective Shading Ranks as found in Table 3. 662 

Figure 4: Shading Rank predicts the canopy shading capacity of high and low ranking rice varieties. 663 
Significant difference in shading capacity between canopies of different rice varieties at five weeks after 664 
sowing. The plot shows the reduction in light intensity (% PAR) measured at the ground level under the rice 665 
canopy compared to above the canopy, for different rice varieties on x-axis, where Della and Luk Takhar were 666 
classified as non-competitive (blue) with Shading ranks of 49 and 1, respectively and Mudgo and Shim Balte 667 
as competitive (green) with Shading Ranks of 330 and 344, respectively. Letters indicate significance (ANOVA 668 
with Tukey’s pairwise comparison post hoc test p < 0.05). Measured PAR values (photosynthetic active 669 
radiation of 400-700 nm waveband) can be found in Supplemental Table 4.  670 

Figure 5: GWAS identifies putative the genetic regions underlying shoot architectural traits and seedling 671 
vigour in 4-week-old rice seedlings, reflecting the early vegetative growth stage. We used single-trait genome-672 
wide association studies (GWAS) with a mixed linear model (MLM) for plant height, solidity, shoot area and 673 
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dry weight. The Manhattan plots depict the single nucleotide polymorphisms (SNPs) with minor allele 674 
frequencies (MAF) > 0.05. Negative logarithmic p-values on the y-axis, for 1.7 M SNPs across the 12 rice 675 
chromosomes along the x‐axis. Dashed red lines indicate significance threshold set at –log10(p-value) > 7.5. 676 
Genomic regions highlighted in green are loci of interest (numbered L1 – L6). 677 

Figure 6: Haplotypes for genes of interest associated with increased trait values. Locus 1 was detected for 678 
solidity with haplotypes in the coding sequence of the genes A)  Os03g0845000 consisting of two SNPs and 679 
B) Os03g0845700 consisting of one SNPs. Locus 2 was detected for plant height with haplotypes in the coding 680 
sequence of the genes C) Os05g0420600 consisting of four SNPs and B) Os05g0420900 consisting of six 681 
SNPs. Locus 4 was detected for shoot area and dry weight with haplotypes in the coding sequence of the gene 682 
Os07g0623200 consisting of four SNPs shown for E) shoot area and F) dry weight. Locus 6 was detected for 683 
dry weight encoding only one gene G) Os11g0216000 with haplotypes consisting of nine SNPs. Dot plots for 684 
t-test, comparing each haplotype with the most abundant (blue) haplotype, on core traits for shading potential. 685 
Y-axis trait value, x-axis groups of haplotypes. Additional information about the detected genes can be found 686 
in Table 5 and dot plots for haplotypes for all 13 traits found in loci of interest are shown in Supplemental 687 
Figure 5.  688 
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Figures 836 
 837 

Figure 1: Shoot traits in rice differ between subpopulations. Distribution of investigated shoot traits in the screened diversity panel. 838 
The plots represent the trait value (y-axis) observed for varieties grouped according to different subpopulations on x-axis. A) Shoot area 839 
[cm2], B) Hull area [cm2], C) Perimeter [cm], D) Solidity, E) Dry weight [g], F) number of leaves, G) Number of tillers, H) Plant height [cm], 840 
I) Leaf length [cm], J) Culm height [cm], K) Leaf angle [°], L) Tiller angle [°] and M) Droopiness [°]. Each data point represents the  mean 841 
out of 8 replicates for each of the 344 varieties. The colours represent different groups of subpopulations, ind – indica, aus, adm – admixed, 842 
aro -aromatic, trj – tropical japonica and tej – temperate japonica. The letters in the graphs represent the significantly different groups, as 843 
determined with Tukey's HSD with p-value < 0.05. Mean values for all 13 traits and the sum of the normalized traits including results for 844 
Tukey’s pairwise post hoc test can be found in Supplemental Table 2.   845 
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 846 

Figure 2: Correlation and clustering of 13 shoot traits defines core groups of traits. A) Pearson Correlation coefficients between 847 
traits. The colour and size of the circles reflect the strength of the correlation. B) Hierarchical Cluster Analysis. Traits are clustered using 848 
ward.D2 method. Rows represent 13 studied shoot traits. The values of individual samples are normalized per trait using z-Fisher 849 
transformation scaled prior to clustering. Based on a cut off at seven clusters and together with the correlation coefficients, we grouped 850 
together the traits into defined core groups.  851 

.CC-BY-NC-ND 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.25.445664doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.25.445664
http://creativecommons.org/licenses/by-nc-nd/4.0/


 

 

 852 

Figure 3: Visualization of shading potential in the investigated rice diversity panel based on cor traits for the Shading Rank. A) - 853 
D) Scatter plots showing the distribution of 344 rice varieties in pair-wise combination of four core traits, shoot area, number of leaves,  854 
solidity and culm height. Representative high (344, 343 and 330) and low (49 and 1) ranking varieties together with Nipponbare (73) and 855 
IR 64-21 (74) are highlighted in colours. B) Top view images of representative varieties, with colour coded frames. Numbers are respective 856 
Shading Ranks as found in Table 3.  857 
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Figure 4: Shading Rank predicts the canopy shading capacity of high and low ranking rice varieties. Significant difference in 858 
shading capacity between canopies of different rice varieties at five weeks after sowing. The plot shows the reduction in light intensity (% 859 
PAR) measured at the ground level under the rice canopy compared to above the canopy, for different rice varieties on x-axis, where Della 860 
and Luk Takhar were classified as non-competitive (blue) with Shading ranks of 49 and 1, respectively and Mudgo and Shim Balte as 861 
competitive (green) with Shading Ranks of 330 and 344, respectively. Letters indicate significance (ANOVA with Tukey’s pairwise 862 
comparison post hoc test p < 0.05). Measured PAR values (photosynthetic active radiation of 400-700 nm waveband) can be found in 863 
Supplemental Table 4.   864 
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 865 

Figure 5: GWAS identifies putative the genetic regions underlying shoot architectural traits and seedling vigour in 4-week-old rice 866 
seedlings, reflecting the early vegetative growth stage. We used single-trait genome-wide association studies (GWAS) with a mixed linear 867 
model (MLM) for plant height, solidity, shoot area and dry weight. The Manhattan plots depict the single nucleotide polymorphisms (SNPs) 868 
with minor allele frequencies (MAF) > 0.05. Negative logarithmic p-values on the y-axis, for 1.7 M SNPs across the 12 rice chromosomes 869 
along the x-axis. Dashed red lines indicate significance threshold set at –log10(p-value) > 7.5. Genomic regions highlighted in green are 870 
loci of interest (numbered L1 – L6).  871 
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 872 

Figure 6: Haplotypes for genes of interest associated with increased trait values. Locus 1 was detected for solidity with haplotypes 873 
in the coding sequence of the genes A)  Os03g0845000 consisting of two SNPs and B) Os03g0845700 consisting of one SNPs. Locus 2 874 
was detected for plant height with haplotypes in the coding sequence of the genes C) Os05g0420600 consisting of four SNPs and B) 875 
Os05g0420900 consisting of six SNPs. Locus 4 was detected for shoot area and dry weight with haplotypes in the coding sequence of 876 
the gene Os07g0623200 consisting of four SNPs shown for E) shoot area and F) dry weight. Locus 6 was detected for dry weight encoding 877 
only one gene G) Os11g0216000 with haplotypes consisting of nine SNPs. Dot plots for t-test, comparing each haplotype with the most 878 
abundant (blue) haplotype, on core traits for shading potential. Y-axis trait value, x-axis groups of haplotypes. Additional information about 879 
the detected genes can be found in Table 5 and dot plots for haplotypes for all 13 traits found in loci of interest are shown in Supplemental 880 
Figure 5. 881 
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