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Summary:   
SARS-CoV-2 has infected over 160 million and caused more than 3 million deaths to date. Most individuals 
(>80%) have mild symptoms and recover in the outpatient setting, but detailed studies of immune responses 
have focused primarily on moderate to severe COVID-19. We deeply profiled the longitudinal immune 
response in individuals with mild COVID beginning with early time points post-infection (1-15 days) and 
proceeding through convalescence to >100 days after symptom onset. We correlated data from single cell 
analyses of peripheral blood cells, serum proteomics, virus-specific cellular and humoral immune responses, 
and clinical metadata. Acute infection was characterized by vigorous coordinated innate and adaptive 
activation, including an early cellular and proteomic signature that correlated with the amplitude of virus-
specific humoral responses after day 30. We characterized signals associated with recovery and 
convalescence to define a new signature of inflammatory cytokines, gene expression, and chromatin 
accessibility that persists in individuals with post-acute sequelae of SARS-CoV-2 infection (PASC). 
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Introduction: 
Severe acute respiratory syndrome-related coronavirus (SARS-CoV-2) is a novel, highly infectious 

human betacoronavirus that was first detected in late 2019, and has precipitated an ongoing pandemic that 
has infected >160 million people and killed over 3 million worldwide (Johns Hopkins COVID-19 dashboard, 
WHO dashboard). COVID-19, the clinical disease associated with SARS-CoV-2 infection, commonly presents 
with one or more respiratory symptoms, and may be accompanied by fatigue, fever, and often altered smell 
and taste; these can vary in severity with outcomes ranging from asymptomatic or mild to severe and fatal.  
There is substantial interindividual heterogeneity of severity, but more than 80% of infections are mild and 
individuals recover without hospitalization (Wu and McGoogan, 2020). Given the scale of worldwide infections, 
it is important to understand details of the normal, productive immune response to SARS-CoV-2 in mild 
COVID-19 infected individuals, who like those with more severe disease may experience persistent or 
recurrent symptoms. An estimated 30% to >70% of individuals with mild disease go on to develop post-acute 
sequelae of SARS-CoV2 infection (PASC or long COVID), an umbrella designation for clinical symptoms 
persisting weeks to months post-infection (Davis et al., 2020; Dennis et al.; Huang et al., 2021; Logue et al., 
2021; Sudre et al., 2021).  

The immune response to acute infection is critical to limit viral replication, activate innate immune cells, 
and efficiently prime virus-specific adaptive responses. Viral infections are rapidly sensed by pattern 
recognition receptors (PRRs) in infected cells and innate phagocytes, producing a key mediator of antiviral 
defense- interferons (IFNs). IFNs have delayed dynamics or are absent in severe COVID-19 (Galani et al., 
2021; Hadjadj et al., 2020; Lucas et al., 2020) with multiple potential causes, including inefficient induction of 
type I and III IFNs in SARS-CoV-2-infected cells (Blanco-Melo et al., 2020), increased plasmacytoid dendritic 
cell (pDC) apoptosis and functional impairment (Arunachalam et al., 2020; Liu et al., 2021), and intrinsic type I 
IFN deficits such as somatic mutations or anti-IFN autoantibodies (Bastard et al., 2020; Wang et al., 2020; 
Zhang et al., 2020). Other hallmarks of acute infection in severe COVID-19 include lymphopenia, impaired 
early IFN-stimulated genes (ISG) expression in monocytes, and robust plasmablast expansion and 
extrafollicular B cell responses (Mathew et al., 2020; Schulte-Schrepping et al., 2020; Woodruff et al., 2020). It 
is unclear if any of these features are shared with mild COVID-19, whether they are correlated with each other, 
and how they impact clinical outcome and convalescent immunity in this subset of disease. Understanding 
immune mechanisms of a successful acute infection response in mild COVID-19 and how these correlate with 
SARS-CoV-2-specific adaptive immune responses is critical to identifying biomarkers and potential therapeutic 
strategies to limit disease severity in SARS-CoV-2 infection.  

Efficient resolution of inflammatory responses is necessary for recovery from acute infection. Failure to 
coordinate the kinetics or magnitude of inflammation can lead to dysregulated innate, cellular, and humoral 
immune responses (Carvalho et al., 2021; Schultze and Aschenbrenner, 2021; Sette and Crotty, 2021). A 
persistent inflammatory state is a characteristic of children and adults with multisystem inflammatory syndrome 
(MIS-C and MIS-A), including elevated inflammatory cytokines and chemokines in blood with similarities to 
secondary hemophagocytic lymphohistiocytosis (HLH) and cytokine release syndrome (CRS) (Consiglio et al., 
2020; Fajgenbaum and June, 2020; Morris et al., 2020; Shaigany et al., 2020; Vella et al., 2020). In contrast, a 
typical mild COVID-19 trajectory and degree of interindividual heterogeneity remains poorly characterized. 
Detailed analysis of longitudinal trajectories is needed to identify key events for successful resolution of acute 
infection, and points of coordination between innate and adaptive immune responses over time. Analysis of 
immune response kinetics can also determine if persistence of symptoms in PASC is characterized by unique 
trajectories, and whether inflammatory responses are prolonged compared to successful convalescent cases.  

To further our understanding of mild COVID-19, we performed longitudinal, deep immune phenotyping 
in SARS-CoV-2-infected participants and uninfected controls to define events coordinating innate and adaptive 
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immunity,  convalescent responses, and ongoing inflammation in the setting of persistent symptoms. 
Participants with a WHO ordinal severity score of 2 or 3 who did not require hospitalization were recruited. 
Peripheral blood was sampled and analyzed longitudinally by 1) flow cytometry, 2) single cell RNAseq, 3) 
single cell ATACseq, 4) serum proteomics, 5) serology, and 6) in vitro anti-SARS-CoV-2-specific T and B cell 
responses. Samples were collected from at least 3 timepoints for every participant from 1-121 days  post-
symptom onset (PSO). We identified multimodal immune features over time that drive interindividual 
heterogeneity of SARS-CoV-2-specific immune responses, and correlated these with convalescent outcomes 
including levels of virus-specific memory B cells, antibodies, and occurrence of PASC. Serum protein profiling 
uncovered unique signatures that defined early acute infection and PASC. Integrative multi-omic analysis 
suggested key immune regulatory nodes in acute infection, the priming of adaptive immune responses, and 
PASC. These data provide a unique addition to existing and future COVID-19 related studies, and enable 
mechanistic hypothesis generation on mild disease progression as well as identifying multiple targets for future 
validation studies in immunomonitoring natural infections and vaccine-induced immunity. 

Results: 
 
Mild COVID-19 shows heterogeneity in clinical presentation and magnitude of acute and SARS-CoV-2-
specific immune responses: 
 We recruited 20 SARS-CoV-2 PCR-positive subjects with mild disease and 23 PCR-negative, 
uninfected controls from the Seattle metropolitan area. Of the COVID-19 participants, 18 had an initial sample 
collected less than 15 days from the onset of symptoms so these were selected for full longitudinal analysis 
(see Methods for inclusion criteria and quality control). The demographics and clinical features of this cohort 
are provided in Supplementary Table 1. Participants were split between younger (<40 years; n=21) and older 
(≥ 40 years; n=17) age groups (median age 29 vs. 57 years, respectively) (Fig. 1A). Each sample was 
processed in parallel into a multi-omic immunophenotyping pipeline including PBMCs analyzed by flow 
cytometry, scRNAseq, and scATACseq. Serum was analyzed by Olink proteomics (Fig. 1B). Each COVID-19 
participant had 3-5 longitudinal study visits including, at a minimum:  early acute infection (1-15 days PSO), 
late acute infection (16-30 days PSO), and post-acute COVID-19 (>30 days PSO) with a median follow-up of 
81.5 (range: 33-121) days PSO (Fig. 1C). Uninfected controls had only a single study visit. Detailed symptom 
surveys were performed at each visit and cumulative results are summarized in Fig. 1D. Samples were also 
evaluated for SARS-CoV-2-specific adaptive immune responses by measuring IgG, IgM, and IgA antibody 
titers to spike (S) protein receptor binding domain (RBD), IgG to nucleocapsid (N) (Stamatatos et al., 2021), 
focus reduction neutralization assays against an infectious SARS-CoV-2 clone (Vanderheiden et al., 2020),  
intracellular cytokine staining (ICS) to assess cytokine expression by activating CD4+ and CD8+ T cells with 
viral peptide pools covering SARS-CoV-2 structural proteins, and measurement of antigen-specific 
plasmablasts and memory B cells using S and RBD tetramers (Fig. 1E).  
 Illness severity was classified by participant report of impact on activities of daily living for each day of 
acute illness (U S Department et al., 2017), Corrected Version 2.1). WHO clinical progression scale was 
additionally used to classify each participant (Marshall et al., 2020). Despite being classified with a score of 2 
or 3 on this WHO scale, mild COVID-19 participants had heterogeneous clinical presentations and disease 
courses.  Individuals with any symptom continuing or related to COVID-19 beyond 60 days were classified as 
PASC.  Sources of heterogeneity were primarily recovery time, ranging from 1-32 days of symptoms during 
acute infection and the spectrum of symptoms (Fig. 1D). To better quantify the range of symptom severity 
within this mild cohort, a novel score was calculated representing the weighted time duration of symptomatic 
illness severity (see Methods). This illness severity score demonstrated the substantial clinical heterogeneity 
among participants (range 3-141; median 12) (Fig. 1D) and was used for further analyses. All COVID-19 
participants were symptomatic during acute infection, but the only symptoms shared by the majority of 
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participants were fatigue or malaise (14/18), dry cough (13/18), headache (12/18), and loss of smell (11/18) 
(Fig. 1D). Most participants resolved symptoms within the acute period, but 3 female participants had 
persistent symptoms and were diagnosed with PASC. 
 The majority of donors mounted measurable SARS-CoV-2-specific adaptive immune responses. 
Antigen-specific CD4+ and CD8+ T cell responses targeting envelope (E), membrane (M), N, S, and open 
reading frame (ORF) 3, 6a, 7a, 7b, and 8 proteins peaked at approximately day 30 and did not appreciably 
decline in most participants (Fig. 1E). Frequencies of SARS-CoV-2-specific CD4+ T cells were consistently 
higher than CD8+ T cells within the same donor. Antibody responses were also analyzed for all participants, 
including neutralizing antibody and RBD-specific IgG titers (Fig. 1F): RBD-specific IgG titers peaked around 
day 30, while neutralizing antibodies peaked slightly later. While 100% (18/18) of COVID-19 participants 
mounted a sustained RBD-specific IgG response, only ~70% (13/18) sustained neutralizing antibody 
responses after acute infection. Spike-specific plasmablasts and IgG+ memory B cells were also detected in 
most participants (Fig. 1G). Peak plasmablast responses occurred within the first 15 days after onset of 
symptoms followed by a rapid decline by 30 days PSO in most participants. Spike-specific class-switched IgG+ 
memory B cells were also detected in all participants and generally increased in frequency over time. Antibody 
titers, and frequencies of CoV-2-reactive B and T cells were fit to linear mixed-effects models using data >30 
days PSO to estimate peak SARS-CoV-2 adaptive responses for each participant.  

Next, we performed pairwise correlation analysis to identify connections among and between SARS-
CoV-2-specific immune responses at day 30 PSO, demographic features, and clinical disease course (Fig. 
1H). PASC was positively correlated with an increased number and variety of symptoms (muscle aches or 
pains, fatigue or malaise, nausea or vomiting, diarrhea, loss of smell, changes in taste). Unexpectedly, PASC 
was negatively correlated with several adaptive responses including SARS-CoV-2-specific CD8+ T cells, RBD- 
and S-specific total memory B cells (sum of IgG+, IgM+(IgD-), IgA+), and N IgG and RBD IgM titers, 
suggesting association between PASC and lower virus-specific immune responses (see Fig. 4). Age was 
positively correlated with both antigen-specific CD4+ and CD8+ T cell responses as seen in the broader cohort 
analysis (Cohen et al., 2021). These results led us to perform an additional exploration of age-associated 
effects in this mild COVID-19 cohort and to perform a deeper analysis of participants with PASC. 

 
Early acute SARS-CoV-2 infection is characterized by an activated, inflammatory state including age-
enhanced IFN responses and plasmablast expansion: 

We sought to define the immune response in mild COVID-19 during early acute infection, here ≤15 
days PSO. Global unsupervised principal component analysis of the serum proteome showed significant 
differences between COVID-19 participants and uninfected controls (Fig. S1A). We compared early acute 
COVID-19 infection to uninfected controls and identified 404 differentially expressed proteins (Fig. 2A; 
Supplementary Table 2a). The serum proteome suggests a coordinated innate immune response that is 
dominated by type I IFN-related antiviral responses and pro-inflammatory cytokines (tumor necrosis factor, 
TNF; IL-18). The most differentially increased protein was RIG-I, an innate sensor encoded by the gene 
DDX58 that detects double-stranded RNA viruses and drives expression of type I IFNs. RIG-I is known to 
restrict SARS-CoV-2 infection of pulmonary epithelial cells via type I/III IFN responses (Yamada et al., 2021). 
FKBP5, a product of the acute stress response, was also differentially increased and was recently shown to 
regulate RIG-I signaling in response to influenza infection (Hao et al., 2020a). Upregulation of SAMD9L, a host 
restriction factor for poxviruses and an ISG, is also preferentially induced by type I IFNs (Pappas et al., 2009). 
Increased IFNL1 and IFNLR1 suggested type III IFN responses were also induced. Many of the proteins that 
were differentially increased overlap with the serum proteome reported in hospitalized and severe COVID-19 
(Filbin et al., 2020). Strikingly, severe participants demonstrate a pronounced increase in IFN� expression and 
increased type II IFN-driven protein expression. In contrast, IFN� was not elevated in our cohort, suggesting a 
less pronounced type II IFN-driven response may distinguish mild from severe COVID-19.  
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Cellular immune changes were assessed during acute infection by first analyzing proportions of innate 

and adaptive immune cell types and expression of phenotypic surface markers by flow cytometry. Principal 
component analysis of cell type frequencies showed significant differences between COVID-19 participants 
and uninfected controls (Fig. S1B-C). Plasmablasts and PD-1high CXCR5- T peripheral helper (Tph) cell 
frequencies were most significantly increased in COVID-19, while naive (IgD+IgM+) B cells were significantly 
decreased (Fig. 2B). Activation marker-positive B and T cells were also significantly increased, including CD69 
and PD-1 on non-naive CD4+ T cells, CD69 and CD38 on CD8+ T cells, and BCMA, CD71, CD86, and 
CD319/SLAMF7 on plasmablasts and B cells. These changes demonstrate coordinated immune activation 
across adaptive and innate immunity in acute infection. scRNAseq provided deeper phenotyping of 
transcriptional state to analyze cell type activation. Cells were labeled by mapping scRNAseq to a CITE-seq-
based multimodal reference atlas (Hao et al., 2020b), and resulting proportions were significantly correlated 
with flow cytometry (Fig. S1D-H). Proliferating lymphocytes (CD71+ CD4+ and CD8+ T cells, CD71+ NK cells; 
Fig. S2A) were also significantly upregulated in mild COVID-19 infection, consistent with previous reports of a 
proliferating T cell phenotype in more severe COVID-19 (Stephenson et al., 2021).  

Age is a well-known risk factor in COVID-19 that is associated with many compositional and functional 
changes (Channappanavar and Perlman, 2020; Richardson et al., 2020; Takahashi et al., 2020). Older 
COVID-19 participants (≥ 40 years old) had higher proportions of innate and adaptive immune cell types during 
early acute infection, including central memory CD4+ T cells (TCM), memory Tregs and CD14+ monocytes, 
while younger participants (<40 years old) had higher naive CD8 T cells and naive Tregs (Fig. S2B). Elevated 
serum levels of inflammatory cytokines (IL6, IL18BP) and chemokines (CCL8, CXCL10) were detected in older 
compared to younger COVID-19 participants during early acute infection (Fig. S2C). Functional analysis of 
cells using scRNAseq showed robust IFN responses in all cell types from older COVID-19 participants (Fig. 
S2D-E, Supplementary Table 2B) compared to uninfected controls. In contrast, only CD14+ monocytes and 
CD56bright NK cells showed IFN responses in younger COVID-19 participants (Fig. S2E). Comparing the fold-
change of these responses between older and younger COVID-19 participants revealed that IFN responses 
were significantly higher in all analyzed cell types from older participants (Fig. 2C, Fig. S2F, Supplementary 
Table 2C), with the greatest age-associated enhancement in the monocyte and NK populations. Differentially 
expressed ISGs showed a clear gradient that increased with age and did not vary across cell types: uninfected 
participants had the lowest ISG expression, followed by higher expression in younger COVID-19 participants, 
and highest expression in older COVID-19 participants (Fig. 2D). While IFN responses were significantly 
activated in diverse PBMCs by gene expression, only IFNL1 (type III) was elevated in COVID-19 serum. Other 
inflammatory cytokine signaling pathways were also up-regulated in diverse cell types from older participants 
(Fig. 2C). TNF response was most prevalent behind IFN responses, with age-enhanced responses in 
monocytes, CD56bright and proliferating NK cells, DCs, CD4+ T cells, and B cells. IL1 signaling pathways 
were also significantly up-regulated in older participant cell types, which may reflect inflammasome activation 
in early acute infection.  

Transcription factor motif analysis on scATACseq was used to identify the most active cell types in 
acute infection, and any differences associated with age. Plasmablasts and innate immune cells (DCs, 
monocytes) had the largest motif shifts from uninfected controls (Fig. S2G). AP-1, a regulator of stress 
response and immune activation, was significantly enriched in innate immune cells, particularly CD14+ and 
CD16+ monocytes in older and younger participants, and DCs in older participants (Fig. S2H). AP-1 
enrichment was also observed in some effector cell types (proliferating NK cells, CD8+ TEMRAs) in older 
participants. These observations are consistent with scRNAseq and proteome data showing increased 
inflammatory cytokine responses that could activate AP-1. Strong IFN responses were also observed via 
enrichment of IRF motifs, particularly in plasmablasts. 

One of the most striking differences in early infection was the increased abundance of circulating 
plasmablasts, which has typically been reported in more severe COVID-19 (Arunachalam et al., 2020; Kuri-
Cervantes et al., 2020; Mathew et al., 2020). Plasmablast proportions by flow cytometry and scRNAseq were 
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significantly higher in COVID-19 participants ≤15 days PSO when compared to uninfected controls (Fig. 2b, 
Fig. S2A). Our data demonstrated that a high portion of the plasmablast expansion in mild SARS-CoV-2 was 
S-specific (Fig. 1G). Plasmablasts from younger COVID-19 participants compared to uninfected controls were 
enriched for RAD12 and CTCF motifs, and were strongly depleted for TCF family and RUNX motifs. Consistent 
with age-enhanced IFN responses, we found IRF family motifs were significantly enriched in plasmablasts from 
older participants (Fig. 2E, left panel). In contrast to plasmablasts, DCs had the second highest magnitude 
change in motifs, but showed few age-associated changes (Fig. 2E, right panel): all participants showed 
enrichment of AP-1 and HMG (HMGN2, TCF7L2) family members, and depletion of RUNX and SPI family 
motifs. These results suggest a potential link between IFN and plasmablast responses to acute infection by 
SARS-CoV-2. 

We inferred ligand-receptor (LR) interactions from plasmablast transcriptomes during early acute 
infection to define the upstream signals that may drive their response (Browaeys et al., 2020) (Fig. 2F). The 
top ligands identified as inputs into early plasmablasts included type II and III IFNs (IFNG, IFNL1), 
TNFRSF13B/TACI, and CD40LG (AUROC>0.58). Potential PBMC sources were identified including innate 
immune cells for TNFSF13B and MAIT and γδ T cells for CD40LG. IFNG and IFNL1 had no putative PBMC 
sources identified, again suggesting tissue sources may be the primary source for IFNs in early acute infection. 
STAT1 was identified as a shared downstream target node for these ligand-receptor interactions (Fig. 2F; 
Supplementary Table 2D), consistent with strong IFN responses. These results support generation of 
mechanistic hypotheses for key signals identified in other studies, such as the role of early IFNL1 in mild 
COVID-19 (Galani et al., 2021). Our data suggest early IFN responses, particularly IFNL1, may drive 
plasmablast responses, potentially through synergy with BCR (Syedbasha et al., 2020) and TLR signaling (de 
Groen et al., 2015), and this may link early control of viral replication, inflammatory cytokine milieu, and 
extrafollicular B cell responses. Future studies will be critical to confirming the function of these plasmablasts in 
SARS-CoV-2 infection. 
 
Longitudinal analysis shows that a decrease in activated and proinflammatory responses correlated 
with an increase in repair and convalescent homeostasis pathways: 

After defining unique characteristics of early acute infection, we analyzed significant longitudinal 
changes in immune phenotype during mild COVID-19. Serum proteins that significantly decreased over time 
were largely proinflammatory proteins, including cytokines (IL18, TNF), chemokines (CCL8, CCL7, CXCL10), 
complement proteins (C4BPB, C2), and IFNL1 (Fig. S3A). These proteins were enriched for type I and II IFN 
responses, TNF signaling, interleukin (IL-1, IL-2, IL-6) signaling, and innate immune sensor (Toll-like receptor, 
TLR; Nod-like receptor, NLR) signaling (Fig. 3A, Supplementary Table 3A). Inflammatory protein changes 
detected during acute infection resolved around day 30 PSO for most COVID-19 participants. A subset of 
proteins, including the anticoagulant thrombomodulin (THBD), angiogenic factors, and proteins involved in 
tissue remodeling increased over time. These were enriched for epithelial-mesenchymal transition (EMT), 
angiogenesis, and coagulation pathways, showing that convalescence is characterized by a transition to a 
wound healing, homeostatic phenotype from the inflammatory response in acute infection (Fig. 3A). Some 
chemokines increased over time, including CCL21, which can drive lymphocyte migration to sites of 
inflammation and homeostatic lymphoid trafficking, and CCL16, an IL-10 inducible chemokine that can serve 
both proinflammatory and immunoregulatory functions, and is consistent with previous observations of CCL16 
depletion during acute infection in severe COVID-19 (Filbin et al., 2020). While most COVID-19 participants 
resolved proteome changes around 30 days PSO, the inflammatory responses in PASC participants (red 
PASC column annotation) persisted (Fig. 3A). 

Cell proportions measured by flow cytometry mirrored the proteome, with most changes during acute 
infection resolving by 30 days PSO. These included decreases in plasmablasts, Tph cells, and CD14+ CD16+ 
intermediate monocytes, and activation marker-positive B and T cells (Fig. 3B). CD1c+ DC2s and CD4+ TCMs 
increased over time, consistent with a return from virus-infected tissues for DC2s (Bosteels et al., 2020; Gill et 
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al., 2008) and expansion or differentiation of CD4+ TCM cells after acute infection. BAFF-R+ class-switched  
memory B cells and IgG+ B cells increased over time, which suggests recent memory differentiation and class-
switching from activated B cells during acute infection (Lau et al., 2021). IgA+ plasmablasts also increased 
over time and may be a consequence of acute infection-induced plasmablasts contracting. Proliferating 
lymphocytes identified in scRNAseq also significantly declined over time (Fig. S3B).  

To assess coordination of the immune response, we correlated the change in cell type proportions 
measured by flow cytometry and scRNAseq with changes in the serum proteome over time (Fig. S3C). Cell 
types that positively correlated with the activity of the most serum proteome pathways included CD14+ CD16+ 
monocytes, Tph, memory B cells, and proliferating lymphocytes (Fig. 3C). Decreases in these cell type 
proportions over time were associated with decreased type I and II IFN responses, inflammatory cytokine and 
immune activation signaling, and PRR signaling. In contrast, these decreases were correlated with increases in 
BAFF-R+ B cells and serum proteome pathways for chemokines, wound healing, and tissue repair, suggesting 
temporal coordination between inflammatory resolution and homeostasis characterizes successful recovery 
from mild COVID-19. 

We next used scRNAseq and scATACseq data to longitudinally map cell type-specific changes in 
function over time. Genes demonstrating significant changes over time were identified per cell type, then 
mapped changing genes to their corresponding pathways. Pathways that showed the top enrichment scores 
and were most decreased over time, as weighted by number of impacted cell types and participants (see 
Methods), included TNF signaling, IFN responses, TLR signaling, and apoptosis (Fig. 3D, Fig. S3D, 
Supplementary table 3B), and these were consistent with inflammatory protein decreases in serum. Innate 
immune cells (monocytes, cDC2s, NK subsets) were the majority of the top cell types expressing these 
longitudinally changing pathways. scATACseq showed that most transcriptional motifs enriched in acute 
infection rapidly declined in activity over time, as demonstrated by IRF family motif shifts (Fig S3E). AP-1 
motifs were among the most accessible features in innate immune cell types during early acute infection for 
nearly all COVID-19 participants (Fig. S2H). Accessibility of AP-1 motifs peaked in CD14+ monocytes during 
acute infection, followed by rapid decline to homeostatic baseline by 30 days PSO (Fig. 3E). PASC 
participants were a notable exception, maintaining higher accessibility >30 days PSO, which may represent 
persistent innate immune activation. Principal coordinates analysis (PCoA) on longitudinally changing immune 
features revealed the individual trajectories of COVID-19 participants from acute infection through 
convalescence (Fig. 3F). Early acute infection samples (black circles) showed clear differences from 
uninfected controls (light green circles, Fig. 3F, top inset left), while most participants around 30 days PSO 
were closer to uninfected controls (Fig. 3F, bottom inset left). COVID-19 participant trajectories (lighter colored 
circles and arrows) converged closer to the uninfected control space by ~30 days PSO (Fig. 3F, middle panel). 
Distances for each sample were calculated from the centroid of the uninfected control group to visualize the 
timing of inflammatory resolution (Fig. 3F, right panel). Most participants' trajectories resolved near uninfected 
controls around day 30, with notable exceptions for two of three PASC participants who remained >2.5 
distances from the uninfected group. Overlaying comorbidity annotations on the PCoA revealed that the PASC 
participant with the most comorbidities had the most distinct trajectory from other COVID-19 participants (Fig. 
S3F). Altogether, longitudinal analyses across data types demonstrated that most mild COVID-19 participants 
resolved into a convalescent immune phenotype similar to uninfected controls, while PASC participants have 
persistent differences and unique trajectories.  
 
PASC participants are distinguished by dampened anti-viral and IFN responses in acute infection and 
persistent, unresolved inflammatory signaling in convalescence 

Recovered COVID-19 participants had no symptoms after ~2 weeks PSO (range: 0-17 days PSO). 
There were however, 3 participants with continued symptoms lasting for > 60 days PSO, who were classified 
with PASC (Fig. 4A). All PASC participants were female, similar to the sex bias reported in previous studies 
(Davis et al., 2020; Evans et al., 2021; Sigfrid et al., 2021). Two participants had more severe illness and 
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persistent symptoms including cognitive impairment (PTID 795172; illness severity score 71, WHO score 3) 
and cardiovascular abnormalities (PTID 523731; illness severity score 141, WHO score 3). A third PASC 
participant (PTID 285840, illness severity score 3, WHO score 2) showed mild illness during acute infection, 
but presented with myriad chronic symptoms including joint swelling, tingling, chest pain, abdominal pain, and 
loss of smell (Supplementary Table 1A). Follow-up is ongoing for all PASC participants, and at present, 
symptoms have persisted for >270 days PSO. PASC participants had qualitative differences in CoV-2-specific 
responses (Fig. 4B), but none were statistically significant, likely due to the small sample size. There are 
however trends suggesting that PASC participants may have dysregulated adaptive immune responses. Most 
notably, all 3 PASC participants had low or absent SARS-CoV-2-specific CD8+ T cells after 30 days PSO. Two 
of the three also had SARS-CoV-2 response estimates below the lower quartile of recovered COVID-19 
participants for RBD- and S-specific memory B cells, RBD IgG, N IgG, and RBD IgM (Fig. 4B).  

To further identify immune pathways and cell types that may differentiate PASC from participants who 
had an uneventful recovery from acute SARS-CoV-2 infection, we evaluated scRNAseq data from both groups 
of participants. Differentially expressed genes (DEGs) were identified by comparing PASC participants to 
recovered COVID-19 participants ≤15 days PSO by cell type. CD14+ monocytes, CD8+ effector memory T 
cells (CD8+ TEM), and CD16+ monocytes showed the highest number of DEGs (Fig. S4C). Mapping DEGs to 
pathways by cell type revealed dysregulated signaling in early acute infection that persisted longitudinally in 
PASC. Consistent with evidence of dysregulated immune responses described above, early infection in PASC 
was characterized by significantly lower RIG-I signaling and IFN responses compared to uninfected controls in 
CD14+ and CD16+ monocytes, and CD8+ TEM cells (Fig. 4D, Fig. S4F). These signatures remained 
persistently low throughout disease, while levels in recovered participants increased during acute infection and 
dropped over time. Co-expressed genes from these pathways defined an antiviral response module that was 
impaired in PASC compared to recovered participants (Fig. S4G). At the same time, CD14+ monocytes (Fig. 
4D, Supplementary Table 4B) and CD8+ TEM cells (Fig. S4D) demonstrated increased expression of pro-
inflammatory genes that was significantly higher in early acute infection from PASC compared to recovered 
participants, and persisted throughout the course of infection. The up-regulated genes included IL1B, RIPK2, 
and AP-1 transcription factor subunits (FOS and JUN), components of gene modules associated with TNF 
signalling and hypoxia (Fig. S4E).   

The presence of an inflammatory gene signature led us to examine whether there are specific 
circulating immune mediators that correlate with ongoing symptoms in PASC. We performed outlier analysis on 
the longitudinal serum proteome to identify signatures that distinguished PASC from recovered COVID-19 
participants. Most recovered COVID-19 participants (14/15) had a decreasing number of differential proteins 
over time compared to uninfected controls indicating their path back to normalcy. Two of the 3 PASC 
participants had stable or increasing numbers of differential proteins over time (Fig. S4A). A signature of 
persistently elevated inflammatory signals distinguished PASC participants from recovered COVID-19, 
including IL-5, S100A16, CD74, IFNLR1, and CD28 (Fig. 4C). Due to the small sample size, we looked at a 
broader signature of 132 differentially expressed proteins (Fig. S4B, p<0.05) that distinguished PASC from 
recovered participants. Upregulated proteins were enriched for those in functional pathways associated with 
inflammatory responses including respiratory burst, T cell antigen processing, innate response in mucosa, and 
others (Supplementary Table 4A). Among the larger set of differentially expressed proteins, a number of TNF 
superfamily members were upregulated proteins in severe PASC, including TNSF10/TRAIL, TNFRSF4/CD134, 
TNFRSF9/4-1BB, and TNFRSF11B, consistent with an immune activation phenotype. In addition, two 
immunosuppressive checkpoint proteins (LAG3, PDCD1/PD-1) were upregulated in more severe PASC, which 
may result from excess T cell activation and could limit adaptive immune responses to viral infection and 
increase illness severity (Saheb Sharif-Askari et al., 2021). Hierarchical clustering of differentially expressed 
proteins showed that the two more severe PASC participants (PTIDs 795172, 523731) clustered together, 
while the third (PTID 285840) showed a distinct, less inflammatory signature (Fig. S4B). Overall, analysis of 
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the serum proteome in this limited set of PASC participants suggests a hyperinflammatory state that is most 
prominent in the two more severely affected individuals.   

In an effort to understand whether there are particular immune cells either driving or responding to the 
signals identified in the serum proteomic studies, we performed transcription factor (TF) motif analysis of 
scATACseq data. This revealed key TF motifs that correlate with aberrant cell phenotypes in PASC 
participants compared to COVID-19+ recovered participants at >30 days PSO. A set of AP-1 family motifs 
were significantly enriched in dendritic cells (DCs) and CD14+ monocytes. Paired with evidence of increased 
expression of the genes encoding the AP-1 subunits FOS and JUN, this suggests a state of persistent immune 
activation that is most prominent in innate myeloid cells (Fig. 4E). Other prominent enriched motifs included 
BACH, BATF, IRF, and STAT families, all associated with persistent inflammatory cytokine signaling. The 
same motifs were also enriched, albeit to a lesser extent, in CD4+ TEM and CD8+ TEMRAs. Motif enrichments 
were not observed across all innate immune cells or for most adaptive immune cell types in PASC. 

To identify potential signals driving the phenotype of CD14 monocytes in PASC, scRNAseq gene 
expression changes were used to predict ligand-receptor interactions by the NicheNet method (Browaeys et 
al., 2020). Ligand activity was predicted and ranked by the correlation between knowledge-based predictions 
and experimentally observed levels of target gene expression (Fig. S4H). Ligand expression was assessed in 
all cell types along with the fold increase in their expression per cell type compared to recovered subjects to 
identify PBMC sources of ligand signals (Fig. S4I). TNF, NAMPT and IFN� were the top 3 predicted ligands 
with highest target gene activity in CD14 monocytes (Fig. S4H, S4J, 4F). Diverse potential sources for these 
ligands among PBMCs included proliferating CD8+ T cells, CD8 TEMRA, CD4 CTLs, DCs, and monocytes 
(Fig. S4I). Target genes of these predicted ligands included IL1B, FOS, NAMPT, BCL2A1, PLAUR, and HIF1A 
(Fig. 4F, S4J), which confirm observations in Fig 4D and Fig. S4E. Differential signaling may be induced 
without serum-level changes in ligand abundance, since immune cells may integrate signals dependent on 
spatial context and from tissues before circulating in blood. scRNAseq analysis was consistent with this, by 
providing evidence of elevated TNF signaling in CD14 monocytes even in the absence of significant TNF 
upregulation in serum. Overall, these data suggested a key role for the cytokine milieu driving a persistently 
proinflammatory state in CD14+ monocytes, identifying biomarkers for diagnosis of PASC, and revealing 
multiple therapeutic targets. 

These results suggest that PASC is characterized by blunted innate and adaptive antiviral immune  
responses during acute infection, paired with emergence of a persistent inflammatory state that includes 
increased expression of pro-inflammatory genes and proteins. Dendritic cells and monocytes demonstrate the 
most significant changes in chromatin accessibility including binding motifs for AP-1, STAT, and IRF 
transcription factors known to play important roles in inflammatory gene transcription. It is unclear whether this 
serves as a primary driver of the phenotype observed in PASC or is the result of persistent activation by 
circulating inflammatory mediators arising from another source. 
 
Heightened early acute interferon and antiviral signaling correlate with stronger humoral responses to 
SARS-CoV-2 in convalescence: 
 Antibody responses are a key component to controlling viral infection, disease outcome, and protection 
from reinfection. Clinical trials have directly shown that neutralizing antibodies (nAb) to SARS-CoV-2 can 
reduce mortality and length of hospitalization (Chen et al., 2021). Immune responses in acute infection are 
critical for establishing the coordinated immune response required for development of antibody and memory B 
cell responses in convalescence. Serum protein expression and flow cytometry proportions were estimated at 
day 7 PSO. RBD IgG titers and S-specific memory B cell frequencies at day 30 PSO and neutralizing antibody 
(nAb) titers at day 42 PSO were estimated by linear mixed-effects models. Observed and estimated values 
were strongly correlated (Fig. S5A, S5B).  
We identified a signature of circulating proteins, present during early acute infection (day 7 PSO), that strongly 
correlated to peak antibody titers for RBD IgG and neutralizing antibody (nAb) at days 30 and 42 respectively 
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(Fig. 5A, 5B). A circulating protein signature was also identified that correlated with spike-specific memory B 
cell frequencies (Fig S5C). Correlations were also found between specific immune cell subsets identified by 
flow cytometry and RBD IgG, nAb, and the S-specific memory B cell frequency (Fig. 5D, 5E; Fig. S5D). 
Analysis of the serum protein milieu at day 7 PSO revealed that higher expression of proteins in inflammatory 
pathways were significantly correlated with higher RBD IgG titers at day 30 PSO. Among the most prominent 
were ISGs (TRIM21, SAMD9L), complement (CD55, GPB1A), and innate sensor signaling proteins (TANK, 
MAVS, RIG-I) (Fig. 5A). Neutralizing antibody titers at day 42 were also positively correlated with day 7 innate 
immune proteins (IFNλ1, DDX58), while negative correlates included a subset of inflammatory proteins (IL-34, 
IL-17A, CD209/DC-SIGN) and chemokines (CCL15, CCL28) (Fig. 5B). These underscore the importance of 
innate immunity in early infection for encoding the magnitude of the convalescent antibody response. Sixteen 
serum proteins were common correlates for both RBD IgG and nAb (Fig. 5C), but these did not share any 
functional pathways. Soluble correlates were complemented by positive correlations with flow cytometry 
populations, including selected activation marker-positive T cells (PD-1+/TIGIT+) and naive B cells (IgD+IgM-), 
as well as CD56high NK cells (Fig. 5D). This links the magnitude of humoral response to the degree of T and 
B cell activation, potentially through support of B cell maturation to plasma and memory cells. Negative 
correlates of RBD IgG included pre-switch memory B cells (CD27+IgD+), and CD11b+ B cells. Cell proportions 
that positively correlated with nAbs included circulating CXCR5+ PD-1+ Tfh cells, and CD56high and CD16- 
NK cells. Phenotypic markers of activation on T cells (CD38, CD71, PD-1) and plasmablasts (BCMA) were 
positively correlated with neutralizing titers. Negative correlates of neutralizing titers included naive CD4+ T 
cells and inhibitory receptor-positive (KLRG1, TIGIT) CD56low NK cells (Fig. 5E). Coordination of multiple 
aspects of immunity (lymphocyte activation, innate immune signaling) in early infection are strong predictors of 
effective priming for IgG and neutralizing antibody responses against SARS-CoV-2. 
 A critical role for memory B cells has been posited to provide rapid protection upon rechallenge (Dan et 
al., 2020). We identified serum proteins and cell frequencies from early infection that correlate with 
convalescent S-specific IgG+ memory B cell responses. Similar to IgG titers, we observed strong positive 
correlations with secreted proteins enriched in innate immunity, IFN responses, and RIG-I signaling (Fig. S5C). 
In contrast, proteins negatively correlated with memory B cells included complement, chemokines (CCL16, 
CCL20), and interleukin (IL-1, IL-2) signaling. Cell frequencies that positively correlated with memory B cell 
response included DC2s and CD25- ILCs, and activated plasmablasts and memory B cells (BCMA) (Fig. S5D). 
KLRG1 on non-naive CD4+ T cells and PD-L1 on CD14+CD16+ intermediate monocytes were also positively 
correlated with memory B cell responses. Overall, these findings identified diverse cellular and molecular 
features of early infection that correlate with antibody and memory B cell responses, identifying candidates for 
immunomonitoring and novel linkages between the acute antiviral response and the magnitude of humoral 
immune responses. 
 
Integrative analysis reveals key network nodes in acute SARS-CoV-2 infection, their longitudinal 
resolution, and persistence in PASC: 

We sought to trace the longitudinal resolution of immune signals that characterized acute infection 
through longitudinal resolution and convalescence. Several serum inflammatory proteins that were elevated 
during acute infection had prolonged elevation in PASC participants, including IL-1β, IL-5, IL-6, and TNF (Fig. 
6A). To infer the origin and signaling activity of these proteins, we performed intercellular communication 
analysis of scRNAseq data using NicheNet (Methods). We first identified cell type-specific expression of 
proteins from acute infection (from Fig. 6A), determined candidate secreting/sender cell types for these signals 
(Fig. S6A) to define the ligand-cell type interaction network in PBMCs from acute infection (Fig. 6B, 31 
predicted ligands in >10% of all cell types). Ten cell types were analyzed as potential receivers of signals 
based on their changes observed in early acute infection (Figs. 2, 3): plasmablasts, CD14 monocytes, CD16 
monocytes, NK cells, proliferating cells (CD4, CD8, NK), and DCs (DC1, DC2, pDC). The top 10 high-
confidence predicted ligands among these receiver cell types were determined (Fig. 6C) and ranked based on 
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the percent of cell types with predicted ligand activity. These ligands demonstrated the prevalence of 
inflammatory signaling, including IFN, IL, and TNF family members (Supplementary Table 5A; Fig 6B-D). 
These predicted ligands converged onto a shared downstream target gene, STAT1 (Fig. 6D) as well as DDIT4 
(regulator of mTOR, proliferation, autophagy), and multiple other transcriptional regulators (NFKBIA, JUN, 
FOS).  
         Next, we analyzed LR interactions of differentially expressed target genes from 3 distinct comparisons: 
1) early acute infection compared to uninfected, 2) longitudinal timepoints (>15 days PSO) compared to early 
acute infection, and 3) PASC participants (all timepoints) compared to recovered COVID-19. There was 
significant overlap of LR pairs (567 pairs, 27%) identified in early acute infection, longitudinal timepoints, and 
PASC participants (Fig. 6E, Supplementary Table 5B), indicating common signals driving each subset of mild 
COVID-19. Early acute infection had the highest number of unique LR interactions (461 pairs, 22.2%) followed 
by PASC (291 pairs, 14%), and longitudinal timepoints (175 pairs, 8.4%). Notably, a subset of LR interactions 
(77, 3.7%) were shared between early acute infection and PASC, which may represent signals from acute 
infection that persist abnormally in PASC. We dissected LR usage by participant subgroup to identify ligands 
and targets that were more abundantly used in PBMC networks for early acute infection, longitudinal 
resolution, and PASC (Figs. 6F, G). Innate immune signals and inflammation signaling from early acute 
infection compared to uninfected controls persisted in PASC compared to recovered COVID-19 participants 
(Fig. 6A). Increased activity for some predicted ligands in PASC participants were consistent with elevated 
levels in the serum proteome, including LTA, MDK, CXCL5, and MIF (Fig. 6F, Supplementary Table 5C, 
S6C). A subset of downstream gene targets from predicted ligands was used in all 3 subgroups, and primarily 
consisted of genes coding intracellular proteins: DDIT4, NFKBIA, and CDKN1A (Fig. 6G).  PASC networks 
were enriched for downstream target genes encoding for transcription factors (CEBPB; IRF4; AP-1 subunits 
FOS and JUNB) and secreted proteins including IL1B and VEGFA. Persistent activity of transcription factor 
targets was also supported by scATACseq data, where C/EBP-β and AP-1 motifs were increased in 
monocytes and DCs from PASC participants compared to recovered COVID-19 after day 30 PSO (Fig. 4E). 
Among secreted proteins, IL-1β was one of the most broadly predicted signals and downstream targets in 
PBMCs from PASC participants (Figs. 6F, G). The signal landscape from PASC suggests neutralizing soluble 
proteins such as TNF, LTA, or IL-1β after acute infection could offer a potential therapeutic approach. 
Additionally, PASC may be characterized by activation of stress response programs as evidenced by AP-1 and 
DDIT4, which may be signs along with IL-1β of an imbalance between autophagy and inflammasome 
activation. Overall, network analyses provide a platform for mechanistic hypothesis generation on key active 
pathways in mild COVID-19 from acute infection through resolution that may prime adaptive immune 
responses, influence disease outcome, and enable diagnosis and treatment of complications such as PASC.  

Discussion: 
 Our study provided an in-depth longitudinal analysis of the immune response to SARS-CoV-2 natural 
infection and mild COVID-19 by integrating serum proteomics, single-cell transcriptomics and epigenomics, 
and cellular immunophenotype by flow cytometry with clinical metadata and comprehensive analysis of the 
SARS-CoV-2-specific adaptive immune response in T cells, memory B cells, and antibodies. To our 
knowledge, this is the deepest longitudinal systems immunology study to-date in mild COVID-19, and reveals 
numerous new insights. First, we define the immune response to early acute infection including inflammatory 
cytokine and innate sensor signaling, stronger IFN responses in older participants, and a potential IFN-
plasmablast regulatory circuit. A subset of these changes were correlated with the humoral response to SARS-
CoV-2 in convalescence. We then confirmed the longitudinal resolution of these inflammatory pathways was 
coordinated with re-establishment of homeostasis in most participants. Three PASC participants were 
exceptions to this resolution, and could be distinguished by dampened IFN and antiviral response in acute 
infection coupled with prolonged inflammation. Finally, we integrated these data to identify potential master 
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regulatory nodes in early infection, longitudinal resolution, and PASC for hypothesis generation and validation 
of biomarkers and therapeutics. 
 A defining characteristic in our mild COVID-19 cohort was robust immune activation in the first 2 weeks 
of acute infection that resolved over time. This included inflammatory cytokine responses (IFNs, TNF), innate 
immune sensor signaling pathways, and activation in adaptive and innate immune cells. The key innate 
immune sensors triggered in natural SARS-CoV-2 infection are not confirmed, but multiple data types strongly 
implicate RIG-I. Serum proteomics identified increased extracellular levels of multiple PRR pathway members 
including RIG-I during acute infection, but their source and function are unclear. These may derive from recent 
cell death or extracellular vesicles, which have been reported to potentially transfer TLRs between cells (Zhang 
et al., 2019). Innate danger sensors are key drivers of the IFN response, which was also robustly induced in 
our cohort along with other inflammatory signals such as TNF. A subset of upregulated proteins (SAMD9L, 
CXCL10, CXCL11) is selective to type I/II IFN responses, suggesting bias away from type III IFNs systemically 
(Allenspach et al., 2021; Forero et al., 2019). As these pathways waned over time, activation marker-positive 
cells and inflammatory proteins largely returned to uninfected control levels around day 30 PSO. This temporal 
control is likely critical for successful resolution of mild COVID-19. This contrasts with persistent CRS reported 
in severe COVID-19, which includes mechanisms of inflammatory damage to tissue such as TNF/IFN� -
mediated cell death (Karki et al., 2021). Proteins involved in homeostatic functions (EMT, coagulation, 
angiogenesis) increased from acute infection to convalescence. The longitudinal increase of multiple 
coagulation pathway proteins may contribute to reported increases in risk of immune thrombocytopenia, a 
complication associated with severe COVID-19 infection (Guan et al., 2020). We found levels of THBD were 
significantly increased in convalescence of mild COVID-19, and has been reported to strongly correlate with 
duration of hospitalization and risk of mortality in hospitalized COVID-19 (Goshua et al., 2020). These results 
suggest a link between the inflammatory response in acute infection, the kinetics of inflammatory resolution, 
and their dysregulation in long-term coagulopathy risk and severe COVID-19.  
 We observed a clear increase in immune responses with advancing age in mild COVID-19. Age is 
among the strongest risk factors for severe COVID-19 and mortality, but the mechanisms underlying these 
effects remain poorly defined (Williamson et al., 2020). Many studies are confounded by age when comparing 
younger controls and mild COVID-19 cases with typically older individuals in moderate and severe COVID-19. 
A male-specific age effect was correlated to poorer CD8+ T cell responses and disease severity with advanced 
age (Takahashi et al., 2020). Our cohort was age-matched between COVID-19 participants and uninfected 
controls, and age was not significantly correlated with illness severity score. However, IFN responses showed 
a dramatic age-related effect in increased responsiveness of PBMCs from older COVID-19 participants to 
IFNs, as evidenced by both more pathway enrichment and higher enrichment scores from scRNAseq, and cell 
type-specific enrichment of IRF motifs in scATACseq. Enhanced IFN in older participants is contrary to 
expectations from prior studies on inflammaging, where advanced age is associated with impaired IFN 
responses (Molony et al., 2017; Pillai et al., 2016). Older participants also showed increased cytokine and 
danger sensor signaling in innate immune cells. These observations could be due to cells from older 
participants being more intrinsically reactive to cytokines, the magnitude of inflammatory cytokine response 
being higher, or persistence of inflammatory cytokines longer in older participants. We also observed increased 
adaptive immune cell activation, which contrasts with expectations from prior studies showing 
immunosenescence in elderly healthy individuals. Differences between our results and prior studies on age-
related effects in immunity may be due to our cohort including more young and middle-aged adults <55 years 
old compared to elderly adults typically >65 years old. Collectively, our results indicate that SARS-CoV-2 
infection triggers enhanced inflammatory responses in older individuals in mild COVID-19, which may underlie 
increased risk for severe COVID-19 in older populations.  
 Robust plasmablast expansion is a feature of viral infections (dengue, Ebola), vaccines, and chronic 
autoimmune diseases (Kim et al., 2016; McElroy et al., 2015; Wrammert et al., 2012). Previous studies in 
moderate and severe COVID-19 reported robust plasmablast and extrafollicular B cell responses (Bernardes et 
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al., 2020; Kaneko et al., 2020; Kuri-Cervantes et al., 2020; Mathew et al., 2020; Ren et al., 2021; Stephenson 
et al., 2021; Woodruff et al., 2020). We also observed a robust plasmablast expansion in acute infection. A 
fraction of these plasmablasts were CoV-2 spike protein-specific, indicating these cells can in principle 
contribute to early control of viral replication and are at least partly CoV-2-specific. PD-1high CXCR5- Tph cells 
were also positively correlated with plasmablasts, potentially providing help as observed in autoimmune 
diseases (Rao et al., 2017). IFN responses are among the key drivers of extrafollicular B cell subsets in 
autoimmunity (Manni et al., 2018; Soni et al., 2020), which was consistent with scRNAseq data showing 
enhanced IFN signaling and scATACseq data showing IRF motif enrichments in plasmablasts. The functional 
consequence of these plasmablasts in SARS-CoV-2 infection remains unclear, but may connect IFN 
responses to antibody titers. 
 Priming of adaptive immunity is critical to successful resolution of acute infection and protection against 
reinfection. We found the magnitude of RBD IgM and CoV-2-specific CD4+ T cells negatively correlated with 
severity score, suggesting quality of immune response may be one driver of clinical heterogeneity in mild 
COVID-19. IgA titer was also correlated with severity score, extending prior observations that correlated IgA 
with disease severity (Ma et al., 2020; Ravichandran et al., 2021). Correlates from acute infection were also 
identified that explain interindividual heterogeneity in magnitude of humoral immune responses. Serum 
proteins involved in innate immune pathways, including IFN responses, chemokines, and PRR signaling, were 
positively correlated with RBD IgG titer, neutralizing antibody titer, and CoV-2-specific memory B cell 
frequency. These were also positively correlated with activation of T and B cells, indicating the importance of 
coordination in acute infection for an optimal humoral response. Complement proteins were also enriched, 
consistent with prior studies showing complement can facilitate antigen retention in follicular DCs (Phan et al., 
2007) and enhancing BCR-mediated signaling (Fischer et al., 1998; Lyubchenko et al., 2005). Plasmablasts 
were a positive correlate of antibodies and memory B cells, but it is unclear whether they play a functional role 
in clearing infection. Overall, these findings demonstrate that the immune response to acute infection is critical 
to an effective humoral response, emphasizing importance of coordination between innate and adaptive arms 
of immunity. 

PASC or long COVID is one of the most enigmatic consequences of the ongoing pandemic. The 
involvement of many organ systems coupled with the highly subjective nature of symptoms has made it difficult 
to define consensus, objective criteria for diagnosis or clear therapeutic options. In our cohort, a subset of 3 
COVID-19 participants progressed to PASC. All 3 PASC participants in our study were female, consistent with 
prior reports of female-biased presentation. Females are known to have stronger inflammatory responses in 
vaccines and infections, and predisposition to autoimmune disease, suggesting hyperinflammatory responses 
may be a risk factor for PASC (Klein and Flanagan, 2016). Significant correlation was observed between 
PASC and number of initial symptoms, as previously reported, but correlation with age was not reproduced, 
potentially due to our small sample size (Sudre et al., 2021). 

Elevated inflammatory proteins in serum distinguished PASC participants from recovered COVID-19 
participants. These signatures were coupled with evidence of persistent activation and inflammatory cytokine 
signaling in innate immune cells based on gene expression and chromatin accessibility after 30 days PSO. 
DCs and CD14 monocytes in PASC showed the most transcription factor motif enrichments. Among these, AP-
1, STAT, IRF, BATF, and BACH suggest ongoing cellular stress, immune cell activation and differentiation, and 
inflammatory cytokine signaling during PASC. Gene expression signatures similarly showed stronger TNF 
signaling in CD14 monocytes from PASC participants. Early infection signaling and kinetics were also unique 
in PASC, including lower RLR and IFN responses in acute infection that did not wane longitudinally. This 
combination of changes mirrors severe COVID-19: dampened antiviral responses may fail to control viral 
replication in both, which can drive innate immune responses to persist beyond acute infection and cause 
ongoing pathology.  

Integrative analysis identified multiple secreted proteins as potential therapeutic targets. Persistently 
elevated TNF may be an appealing target given the potential for TNF-driven pathogenic cell death and 
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correlations with disease severity and mortality (Del Valle et al., 2020; Karki et al., 2021). TNF can also drive 
IL-1β expression as well as AP-1 and STAT/IRF enrichment observed in motif analyses, motivating therapeutic 
targeting and blockade of these cytokines to potentially prevent the onset of PASC. LTA/TNFβ is a TNF family 
member and similarly upregulated in autoimmune diseases such as rheumatoid arthritis. Blockade in PASC 
may be beneficial and achieved by receptor antagonists (Browning, 2008) or TNF blockade (e.g., etanercept). 
Another promising target is IL-1β, which was significantly elevated in serum from PASC participants, 
coexpressed among pathways in CD14 monocytes by scRNAseq, and was both a predicted ligand signal and 
common downstream target of predicted ligand-receptor interactions. Both of these targets are consistent with 
risk factors observed in hyperinflammation from severe COVID-19, again suggesting similarities between 
severe disease and PASC. Broader anti-inflammatory therapy such as corticosteroids may be useful to 
attenuate pathogenic inflammation in PASC, and has been tested in COVID-19 patients with persistent 
inflammatory lung disease (Myall et al., 2021). These novel insights into PASC can focus future studies on 
pathogenic mechanisms and therapeutic targets. Molecular classification disease heterogeneity in PASC may 
identify disease subsets to further enhance clinical management and optimize therapeutic strategies.  

There are several key limitations to our study, including 1) a small sample size especially for PASC 
participants, 2) lack of geographic and racial diversity, 3) asynchronous sampling due to outpatient status, and 
4) gaps in sampling during early infection (first ~7 days PSO) for some participants. Natural history studies are 
intrinsically limited to correlative associations. Confirming causality from our findings to mechanistically link 
early infection immune responses to convalescent CoV-2-specific immune responses will require preclinical 
models. Multi-omic assays were conducted on parallel samples and independently from CoV-2-specific 
assays, so relationships between different -omics and CoV-2 responses were inferred. Direct multiplexed 
analysis, particularly adding TCR and BCR clonality, will better enable dissection of virus-specific vs. non-
specific immune mechanisms. Despite these weaknesses, our study provides insightful data that advance our 
understanding of SARS-CoV-2 infection, mild COVID-19, convalescence, and PASC. 

Overall, our study results provide a comprehensive longitudinal roadmap of immune activation and 
resolution in mild COVID-19, including a potential mechanism for an age-dependent effect on immune 
responses. We observed a robust plasmablast response that may be tightly regulated by early IFN responses, 
and identified key early correlates of antibody and B cell responses, both findings which should be broadly 
tested as potential shared features in diverse natural infections. A subset of participants who progressed to 
PASC revealed novel inflammatory and non-inflammatory signatures in serum proteins, and innate immune-
centric hyperactivation. Multiple potential therapeutic targets in PASC are nominated by our analyses, and 
serum protein biomarkers may provide objective diagnosis of inflammatory and non-inflammatory PASC after 
validation in larger cohorts. A more personalized approach to immunomonitoring and therapy will result in 
improved outcomes across the spectrum of COVID-19 and PASC. 
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Figure legends: 
Fig 1: Overview of the longitudinal mild COVID-19 cohort from acute infection through convalescence. 
A) Cohort overview and participant demographics. Eighteen participants had an initial blood draw within 15 
days of developing symptoms (range 1-15 days) and were then followed longitudinally. B) Sample availability 
enumerated per assay type. PBMCs were analyzed by spectral flow cytometry, scRNAseq, scATACseq, and 
antigen-specific ICS assays. Serum was analyzed for SARS-CoV2 antibody serology or proteomics by Olink 
Explore 1536. Absent samples were due to limitations on material availability or timing. C) Longitudinal 
sampling timeline. PBMCs and serum were collected at 3-5 timepoints for each participant. Younger 
participants (top) are blue; older participants (bottom) are orange. Each Gantt is annotated with sex, 
documented comorbidities, and presentation of PASC. D) Self-reported symptoms occurring at any point 
during acute COVID-19 by subject. Illness severity score was calculated as described in Methods and shown 
vs. WHO ordinal severity. Each symbol represents one participant. Red symbols indicate PASC. (E-G) Cohort 
dynamics of SARS CoV2-specific adaptive immune responses: E) Aggregate frequencies of E, M, N, S, and 
ORF3, 6a, 7a, 7b, and 8-specific CD4+ and CD8+ T cells, F) titers of RBD IgG and neutralizing antibodies, and 
G) frequencies of S-specific plasmablasts and S-specific IgG+ memory B cells are shown over time for each 
donor with Loess smoothed curves overlaid with 95% confidence intervals shaded. Symbols for CD4+ and 
CD8+ T cell frequencies represent positive (filled) or negative (open) responses for each sample based on a 
positive response to any individual peptide pool stimulation determined using MIMOSA (Methods).  H) 
Correlations between clinical metadata and estimates of SARS-CoV-2-specific immune responses. Day 30 
estimates were used for all immune responses except neutralizing antibodies, which were estimated at day 42. 
Spearman’s rank coefficients were calculated for each pairwise combination, multiple comparisons corrected 
by Benjamini-Hochberg, and only correlations with adjusted p-values < 0.05 are displayed. The size of symbols 
represents the magnitude of correlations.  
 
Fig. 2: Early acute infection in mild COVID-19 is characterized by activation of T and B cells, and age-
enhanced signatures of interferon signaling.  
A) Volcano plot showing differential expression of serum proteins between COVID-19 participants at ≤ 15 days 
PSO (n=15) compared to uninfected controls (n=22). Significantly differential proteins are colored (FDR < 
0.05). B) Flow cytometry analyses shows cell type proportion differences between COVID-19 participants 
(n=18) compared to uninfected controls (n=23). Parent populations are plotted as % of CD45+ PBMCs, while 
phenotypic markers are plotted as % of parent. Differential populations were determined by fitting a linear 
model with change in proportions as a function of infection status adjusted for age and sex. Only significant 
proportions with adjusted p-values < 0.05 for infection status are shown. C)  GSEA performed on scRNAseq 
using differentially expressed genes from comparing older COVID-19 participants to younger COVID-19 in 
early acute infection within each cell type. Size of dots represents the percent of genes in each pathway that 
were enriched. Dot color represents the normalized enrichment score (NES) comparing older COVID-19 
participants to younger COVID-19 participants. The top 10 most significant pathway enrichments are shown. 
D) Expression of genes enriched in IFN response pathways per cell type grouped by participant age and 
infection status. The column annotation bars represent the average gene expression across single cells per 
cell type and are scaled across samples. Gene expression was compared between groups using a wilcoxon 
rank sum test; asterisks indicate p < 0.05. E) Transcription factor motif analysis on scATACseq data showing 
differential accessibility of age-matched COVID-19 participants compared to uninfected controls in 
plasmablasts. Significantly enriched motifs were colored by motif family (Wilcoxon, FDR < 0.1), and the motifs 
with the largest shifts in each age subgroup (younger and older participants) are labeled. F) Predicted ligands 
signaling into plasmablasts during early acute infection. Ligand-receptor interaction analysis was performed 
using DEGs from scRNAseq as input for NicheNet. The top 10 predicted ligands are shown ranked by 
Pearson’s correlation coefficient of target genes. Potential source cell types were identified from PBMCs cell 
types based on expression of the predicted ligands.  
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Fig. 3: Longitudinal analysis shows individual heterogeneity in path to convalescence with resolution 
of inflammatory cytokine signaling coordinated with increasing wound healing and EMT. 
A) Heatmap of changes in serum proteins over time in mild COVID participants. Proteins that significantly 
changed over time were identified and enriched for pathways using Fisher’s overlap test. Individual columns 
represent samples ordered by days PSO, with column annotations for days PSO and PASC (red) vs recovered 
(grey) provided. Rows represent individual proteins. Features were considered significant with adjusted p-
values < 0.05. B)  Heatmap of longitudinally changing cell frequencies quantified by flow cytometry among 
COVID-19 participants. Columns represent individual samples ordered by days PSO, with column annotations 
for days PSO and PASC (red) vs recovered (grey) provided. Rows represent significant cell frequencies shown 
as row-scaled % of total CD45+ cells or % of parent population. C) Pairwise correlations between functional 
pathways (circles, serum proteome) and cell frequencies (squares, flow cytometry; triangles, scRNAseq) over 
time. The antibody response memory B cells node constitutes plasmablasts (% of CD45+ cells), BCMA+, 
CD71+ and CD86+ (% of post-switch memory B cells) as determined by flow cytometry. The proliferating 
lymphocytes node constitutes CD4+, CD8+ and NK proliferating cells (% of PBMCs) as obtained by 
scRNAseq. The BAFF-R+ B cells node constitutes BAFF-R+ (% B cells) and BAFF-R+ (% of post-switch 
memory B cells). The edges to these specific nodes represent the average spearman correlation coefficient 
across these cell types to individual serum proteome features. Edges are colored by magnitude of positive 
(red) or negative (blue) Spearman correlation coefficients. Only significant correlations (adjusted p-values < 
0.05) are shown. D) GSEA performed on scRNAseq genes that were longitudinally decreasing over time per 
participant by cell type. Dot size represents the percent of COVID-19 participants that showed enrichment for 
the indicated pathway and cell type. Dot color represents the negative NES indicating the magnitude of 
decreasing pathway expression over time. The top 10 significant pathway enrichments are shown. E) 
Longitudinal transcription factor motif accessibility for AP-1 in CD14+ monocytes from COVID-19 participants. 
AP-1 significantly decreased over time in most participants, but persisted in PASC participants (TEST, 
THRESHOLD). F) Principal coordinates analysis on all longitudinally changing proteins in COVID-19 
participants was used to visualize heterogeneity in the path to convalescence. Inset: early acute COVID-19 
samples (left) and ~30 days PSO (right) were plotted with uninfected controls. The middle panel shows the 
progression of COVID-19 participants from early (black symbols) to late (red symbols) days PSO. Most 
COVID-19 participants (solid circle) were well separated from  uninfected participants (green triangle) at the 
beginning but converged to the region of the latter as they recovered. The right panel shows the corresponding 
distances to the centroid of uninfected participants (solid black circles). The distances of uninfected 
participants were plotted with solid circles with randomly assigned days PSO between 0 and 5. The distances 
of recovered COVID-19 participants were plotted with black solid lines while those of PASC participants were 
plotted with red solid lines. Loess smoothing (blue line with 95% confidence intervals shaded grey) was used to 
guide the eye.  
 
Fig. 4: Persistent immune activation distinguishes post-acute sequelae of SARS-CoV2 infection (PASC) 
from recovered COVID-19. A) Overview of symptom persistence for PASC participants. No PASC 
participants (n=3) had fully recovered at time of latest follow-up while all non-PASC participants (n=15) had 
recovered. B) SARS-CoV-2-specific adaptive immune responses estimated at day 30 or day 42 as indicated 
comparing PASC and recovered COVID-19 participants. Only estimates above the limit of detection are 
shown. C) Heatmap of differentially expressed serum proteins over time. Each protein’s expression was fitted 
to a linear mixed-effects model. Only significantly differential proteins are shown with adjusted p-value < 0.05. 
D)  scRNAseq SLEA pathway scores of  significantly different pathways comparing PASC and recovered 
COVID-19 participant groups in early acute infection in CD14 monocytes. The SLEA pathway score was 
calculated per sample and tracked over time. Comparisons were significant for adjusted p-values < 0.05. E) 
Transcription factor motif analysis of scATACseq data in samples >30 days PSO. PASC participants were 
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compared to recovered COVID-19 participants and enrichments were calculated using ChromVar motif Z-
scores. The top 50 largest significant motif differences are shown (Wilcoxon FDR <0.10). F) Ligand-receptor 
interaction analysis was used to identify predicted signals driving innate (CD14 monocyte) cells in PASC 
participants. The top 5 predicted ligands and their target gene signatures are shown. Ligands were ranked by 
Pearson correlation coefficient between expected and observed target gene expression. 
 
 
Fig. 5: Immune correlates from early acute infection highlight the coordination of innate inflammatory 
response with humoral responses to SARS-CoV-2. Day 7 estimated serum proteins and pathway 
enrichments that significantly (spearman’s correlation coefficients > 0.5 and adjusted p-values < 0.05) 
correlated with estimated day 30 RBD IgG titer (A) and day 42 neutralizing antibody titers (B). C) Venn 
diagram of the early acute protein feature overlaps that correlated with both day 30 RBD IgG and day 42 
neutralizing antibody titers. Flow cytometry based cell proportions that significantly (spearman’s correlation 
coefficients > 0.5 and adjusted p-values < 0.05) correlated with estimated day 30 RBD IgG titer (D) and day 42 
neutralizing antibody titers (E). F) Venn diagram of the early acute cell proportion overlaps that correlated with 
both day 30 RBD IgG and day 42 neutralizing antibody titers.Rows correspond to proteins or cell frequencies 
measured by flow cytometry. Columns correspond to individual COVID-19 participants arranged by increasing 
order outcomes (represented as column annotation bars).  
 
Fig. 6: Integrative analysis uncovers key nodes for immunomonitoring and potential therapeutic 
targets throughout infection, convalescence, and PASC. A) Differentially expressed immune-related 
proteins (n=75, p <0.05) observed in early acute infection (≤15 days PSO), longitudinally and in PASC COVID-
19 subjects derived from serum proteomics study. B) Nichenet-based intercellular communication analyses of 
single cell RNA data from early acute COVID-19 infection subjects. We retrieved top 10 inferred ligands 
influencing the ligand-target expression in receiver cell types. The triangle shows the ligand and circle 
represents the receiver cell type. The edge between nodes and ligand shows the inferred relationship in early 
acute COVID-19 infection from scRNA data. The size of the triangle is proportional with the number of edges 
outgoing. C) The top 10 inferred ligands (per cell type) with the percent of cell types showing ligand activity, 
and D) the percentage of ligands activating downstream target genes in early acute COVID-19 infection were 
shown. E) The overlap between the inferred ligand-receptor interactions from differential intercellular 
communication between three subgroup comparisons: 1) early acute COVID-19 participants ≤ 15 days PSO 
compared to uninfected, 2) longitudinal COVID-19 at >15 days PSO compared to early acute COVID-19, and 
3) PASC participants compared to recovered COVID-19 participants at all timepoints. Longitudinal changes in 
F) ligand and G) target usage in early acute COVID-19, longitudinal and PASC participants respectively are 
shown. Changes were calculated as the difference in predicted ligand per cell type (F) or downstream target 
genes regulated by predicted ligands (G) in the subgroup specified compared to respective control conditions 
listed above. Columns represent each subgroup and differences >10% were shown.  
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Supplemental figure legends: 
Fig. S1: A) Principal component analysis (PCA) bi-plot of the serum proteome across all longitudinal COVID-
19 participant samples (red points) and uninfected controls (green points). The loadings of the most varying 
proteins are represented by arrows; arrow length is proportional to the variance of the proteins contributing to 
sample distinction. Shapes of points represent sex and age represents age. B) PCA of flow cytometry cell 
frequencies across all longitudinal COVID-19 participant samples and uninfected controls, including batch 
bridging controls. Points are colored by batch ID. Principal Variant Component Analysis (PVCA) was 
performed as indicated in the bar plot to assess batch effects. The proportion of variance (y-axis) in cell 
frequencies contributed by each factor (x-axis) is depicted. C) PCA bi-plot of the flow cytometry based 
proportions across all longitudinal COVID-19 participant samples (red points) and uninfected controls (green 
points). The loading of the top varying cell proportions are represented by arrows. D) UMAP density 
representation per batch as grids and PVCA analysis (bar plot) of the scRNAseq batch bridging control 
samples. The proportion of variance (y-axis) in gene expression contributed by each factor (x-axis) is depicted 
in the bar plot. E) UMAP density representation per batch as grids and PVCA analysis (bar plot) of the full 
scRNAseq cohort samples including all COVID-19 longitudinal samples and uninfected controls. The 
proportion of variance (y-axis) in gene expression contributed by each factor (x-axis) is depicted in the bar plot. 
F) UMAP of the cell type annotation on scRNAseq data using the Weighted Nearest Neighbors (WNN) 
approach implemented in Seurat v4 with a CITE-seq based reference dataset (Hao et al., 2020b). Each point 
represents single cells color-coded by cell type label. G) Heatmaps of selected gene and predicted ADT (x-
axes) expression by cell type (y-axes) of scRNAseq data. H) Correlation scatter plots between scRNA 
proportions (x-axis) and the equivalent population gating in flow cytometry (y-axis) across all samples. 
Significance of correlations was tested by a Spearman correlation test. 
 
Fig. S2: A) Box and jitter plots of scRNAseq based cell type proportions that were significantly different 
(adjusted p-values < 0.05) comparing the early acute infection timepoints of COVID-19 participants (red) to 
uninfected controls (green) assessed by a fitting linear model adjusted for age and sex. B) Heatmap of the flow 
cytometry and scRNAseq cell type proportions (rows) that were significantly different (adjusted p-values < 0.05 
assessed by wilcoxon rank sum test) comparing older to younger COVID-19 participants (columns) in early 
acute infection. C) Heatmap of serum proteins (rows) that were significantly different (adjusted p-values < 0.05 
assessed by wilcoxon rank sum test) comparing older to younger COVID-19 participants (columns) in early 
acute infection. D) Bar plot of the number of DEGs (y-axis) comparing age-matched early acute COVID-19 
participants to uninfected controls (per grid) within each cell type (x-axis) detected in scRNAseq. Number of 
DEGs that were significantly up-regulated (red) and down-regulated (blue) at an adjusted p-value < 0.05 are 
reported. E) GSEA pathway enrichment (y-axis) among DEGs comparing age matched early acute COVID-19 
participants to uninfected controls (per grid) in every cell type (x-axis) of scRNAseq data. The color gradient of 
points represents the NES per pathway indicating up-regulation (red) or down-regulation (blue) of each 
pathway. The size of points represent the percent of genes enriched in a pathway per cell type and age group. 
F) GSEA pathway enrichment (y-axis) among DEGs comparing early acute infection timepoints of older 
COVID-19 participants to younger in every cell type (x-axis) of scRNAseq data. The color gradient of points 
represents the positive NES per pathway indicating up-regulation of the pathways in older participants. The 
size of points represent the percent of genes enriched in a pathway per cell type and age group. Pathways are 
arranged as being expressed in most to the least number of cell types.  G) Scatterplot of the -log10 of the 
lowest P value per cell type by the absolute value of the maximum z-score shift per cell type. CD16 Monocytes, 
CD14 Monocytes, DCs, and plasmablasts appear to be the most impacted during the early infection period. H) 
Heatmap of top 50 motif accessibility changes during early COVID19 infection. Z-scores representing motif 
accessibility as compared to background were calculated for each cell. Z-score shifts were tested for statistical 
significance by a wilcoxon test with an FDR < 0.1. Only significant shifts are colored. 
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Fig. S3: A). Serum cytokines, chemokines and complement proteins (individual grids) among COVID-19 
participants that significantly (adjusted p-values < 0.05) showed decrease over time. Individual lines are color 
coded by the participant ID. B) scRNA based cell type proportions (individual grids) among COVID-19 
participants that significantly (adjusted p-values < 0.05) showed decrease over time. Individual lines are color 
coded by the participant ID. C) Pairwise correlations between functional pathways (circles, serum proteome) 
and cell type proportions (squares, flow cytometry; triangles, scRNAseq) overtime. The edge color gradient 
indicates significant (p-values < 0.05) positive (red) or negative (blue) spearman correlations over time. D) 
GSEA pathway enrichment (y-axis) among longitudinal gene changes per COVID-19 participant in every cell 
type (x-axis) of scRNAseq data. The size of points represents the percent of COVID-19 participants the 
pathway is enriched in. Pathways are arranged as being expressed in most to the least number of cell types 
across participants. E) Longitudinal IRF motif accessibility per participant over disease course. Curves are 
colored for PASC (red) and recovered (black) COVID-19 participants. Loess curves were added to visualize 
group trends. F) PCoA of serum proteome trajectories for individual COVID-19 participants and uninfected 
controls (black circles, no arrows). Symbols are colored by comorbidities and clinical features. Arrows are 
colored by visit interval over time.  
 
Fig. S4: A) Number of differentially expressed serum proteins over time compared to uninfected controls for 
each COVID-19 participant. Outlier analysis was performed comparing COVID-19 participants to uninfected 
background and selecting features >2 standard deviations from the mean. B) Differential serum proteome 
features (130, p<0.05) between the PASC subjects and recovered COVID19+ subjects using linear mixed 
model adjusted for age, sex.C) Bar plot of the number of DEGs (y-axis) comparing early acute infection 
timepoints of PASC participants to recovered COVID-19 participants in every cell type (x-axis) detected in 
scRNAseq. Number of DEGs that were significantly up-regulated (red) and down-regulated (blue) at an 
adjusted p-value < 0.05 are reported. D) Box plot of the SLEA score (y-axis) of TNF signaling via NFkb and 
Hypoxia pathways significantly upregulated (adjusted p-values < 0.05) in CD8 TEMs from PASC compared to 
recovered COVID-19 participants in early acute infection. The SLEA score of the pathways per sample was 
calculated based on scRNAseq gene expression per cell type and tracked over the course of disease (x-axis). 
E) Arc co-expression network of genes enriched in the TNF signaling pathway in CD14 monocytes, from early 
acute timepoints of PASC participants. Edges represent correlation between genes at greater than 0.8 
spearman correlation coefficient, while size of each gene node represents the degree or number of gene 
correlations above mentioned coefficient. F) Box plot of the SLEA score (y-axis) of the RIG-I receptor signaling 
and interferon response scRNA pathways significantly downregulated (adjusted p-values < 0.05) in CD14 
monocytes, CD16 monocytes and CD8 TEM from PASC compared to recovered COVID-19 participants in 
early acute infection. The SLEA score of the pathways per sample was calculated and tracked over the course 
of disease (x-axis). G) Arc co-expression network of genes enriched in the RIG-I and interferon responses in 
CD14 monocytes, from early acute timepoints of PASC participants. Edges represent correlation between 
genes at greater than 0.8 spearman correlation coefficient, while size of each gene node represents the 
degree or number of gene correlations above mentioned coefficient. H) Ligand activity observed in CD14 
monocytes and their log-fold change in sender cell types in PASC subjects (I). J) Target genes of predicted 
ligands to CD14 monocytes include IL1B, FOS, NAMPT, BCL2A1, PLAUR, and HIF1A. 
 
Fig. S5. A) Correlation scatterplots between the observed (y-axis) and estimated values (x-axis) as obtained 
by fitting linear mixed effect models over time to the serum proteome and B) to flow cytometry based 
proportions. For flow cytometry, the top 15 (ranked by spearman’s correlation coefficient) are shown. All 
correlations were significant (p-values < 0.05) with greater than a 0.5 coefficient as assessed by the 
Spearman’s correlation test. C) Day 7 estimated serum proteins and pathway enrichments, and cell 
proportions (D) that significantly correlated (spearman’s correlation coefficients > 0.5 and adjusted p-values < 
0.05) with the estimated S-specific memory B cells. Rows correspond to proteins or cell frequencies measured 
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by flow cytometry. Columns correspond to individual COVID-19 participants arranged by increasing order 
outcomes (represented as column annotation bars).  
 
Fig. S6. A) Gene expression of differentially expressed serum proteins per cell type. The scaled average 
expression shown for each gene in a given cell type in COVID19 participants. The size of the circle represents 
the percent (per number of cells) expression observed. B) Cell-cell communication analysis comparison 
between early visit and PASC subjects with control as healthy and non-PASC/recovered COID19 subjects 
respectively. Pearson correlation coefficient (PCC) between a ligand’s target predictions and the observed 
transcriptional response were calculated and corresponding scores attributed to ligand-receptors were 
visualized in scatter plot. C) Serum protein expression changes in COVID-19 participants (recovered and 
PASC) are shown in the box plot. Samples were grouped based on days PSO covering: 1) early acute 
infection ≤15 days; 2) late acute infection, 16-30 days; and 3) post-acute infection and convalescence, ≥31 
days. T-tests were used to compare the PASC to recovered participants, and a representative subset of 
significantly differential proteins is shown. P-values < 0.05 were considered statistically significant. 
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METHODS 

RESOURCE AVAILABILITY 

Lead contacts 

Further information and requests for resources and reagents should be directed to and will be 
fulfilled by the lead contacts: Gregory Szeto (greg.szeto@alleninstitute.org); M. Juliana McElrath 
(jmcelrat@fredhutch.org); and Thomas F. Bumol (tomb@alleninstitute.org).  

Materials Availability: 

This study did not generate new unique reagents. 

Data and code availability 

The RNAseq and ATACseq data generated during this study are available at GEO under 
accession number GSE173590. All analytical code and figure generation will be available on Github. 

 

EXPERIMENTAL MODEL AND SUBJECT DETAILS 

Demographics 

Eighteen immunocompetent study participants who were diagnosed with SARS-CoV-2 were selected for these 
studies, as they had donated at least one sample of serum at or earlier than 15 days post-symptom onset. 
Both studies were recruited at the Seattle Vaccine Trials Unit (Seattle, Washington, USA). The cohort 
demographics are described in the following table. 

Volunteers with SARS CoV-2 
Diagnosis  

Females Males 

Number 10 8 

Age Mean 46  
Range 29-79  

Mean 46 
Range 22-65 

Race and Ethnicity 100% White (n=10) 
 

100% White (n=8) 
12.5% Hispanic/Latino (n=1) 

Co-morbidities previous to SARS-
CoV2 Diagnosis 

Asthma (n=1) 
High Blood Pressure (n=1) 
Autoimmune Disease (n=2) 
Current or past Smoker (n=1) 
Anemia (n=1) 
Obesity (n=2) 

Heart disease (n=1) 
High Blood Pressure (n=1) 
Current or past Smoker (n=1) 
Obesity (n=1) 
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Uninfected SARS-CoV-2-negative 
Volunteers 

Females Males 

Number 10 13 

Age Mean 47  
Range 29-61  

Mean 48 
Range 31-77 

Race and Ethnicity 100% White (n=10) 
 

84.6% White (n=11) 
15.4% Hispanic/Latino (n=2) 
Other:  
American Indian or Alaska 
Native;White (n=1) 
Asian;White (n=1) 
 
 

Co-morbidities previous to SARS-
CoV2 Diagnosis 

Asthma (n=1) 
High Blood Pressure (n=1) 
Autoimmune Disease (n=3) 
Current or past Smoker (n=3) 
Anemia (n=1) 
 

COPD (n=1) 
Cancer (n=1) 
Current or past Smoker (n=2) 
High Blood Pressure (n=1) 
Hypertension(n=1) 
 
 

 

Informed consent was obtained from all participants and the Fred Hutchinson Cancer Research Center 
Institutional Review Board approved the study and procedures (IR10440). 

METHODS DETAILS 

Study Conduct 

Peripheral blood mononuclear cells (PBMCs) and serum were collected from participants enrolled in the 
longitudinal study, “Seattle COVID-19 Cohort Study to Evaluate Immune Responses in Persons at Risk and 
with SARS-CoV-2 Infection”.  Eligibility criteria included adults in the greater Seattle area at risk for SARS-
CoV2 infection or those diagnosed with COVID-19 by a commercially available SARS CoV-2 PCR assay. 
Study data were collected and managed using REDCap electronic data capture tools hosted at Fred 
Hutchinson Cancer Research Center, including detailed information on symptoms during acute infection and 
longitudinal follow-up ranging from 33-233 days post symptom onset.   Plasma from pre-pandemic controls 
used for ELISA controls were blindly selected at random from the study, “Establishing Immunologic Assays for 
Determining HIV-1 Prevention and Control”, with no considerations made for age, or sex. Informed consent 
was obtained from all participants at the Seattle Vaccine Trials Unit and the Fred Hutchinson Cancer Research 
Center Institutional Review Board approved the studies and procedures.  

Regulatory approvals from FH and AIFI 

COVID19 FH samples and healthy controls: FH RG: 1007696 IR File: 10440 Main Consent 04/05/2020 and 
6/04/2020 Seattle COVID-19 Cohort Study to Evaluate Immune Responses in Persons at Risk and with SARS-
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CoV-2 Infection.  IR File: 5567 Main Consent 08/04/2017 Establishing Immunologic Assays for Determining 
HIV-1 Prevention and Control. 
Batch control leukopack from BIOIVT used in flow cytometry: PROSPECTIVE COLLECTION OF NON-
MOBILIZED LEUKOCYTES VIA LEUKAPHERESIS FOR RESEARCH; PROTOCOL NO: SERATRIALS-
18002; WIRB® Protocol #20190318 

Serum and PBMC isolation 

Blood collected in SST tubes was allowed to clot for at least 30 min at room temperature. Following cotting, the 
samples were centrifuged in the primary tubes at 1600-1800 X for 10 min. Serum was transferred to a 15ml 
tube, aliquoted into 300ul aliquots and stored at -80°C until use in the assays. 

Blood collected in acid citrate dextrose tubes was transferred to Leucosep tubes (Greiner Bio One). The tube 
was centrifuged at 800-1000g for 15 min and the PBMC layer recovered above the frit.  Peripheral blood 
mononuclear cells (PBMCs) were washed twice with Hanks Balanced Solution without Ca+ or Mg+ (Gibco) at 
200-400xg for 10 min, counted, and aliquoted in heat-inactivated fetal bovine serum with 10% 
dimethylsulfoxide (DMSO, Sigma) for cryopreservation. PBMCs were cryopreserved at -80°C in Stratacooler 
(Nalgene) and transferred to liquid nitrogen for long-term storage. 

Cell Type Flow Cytometry 

To assess cell type proportions, PBMCs were analyzed with four 25-color immunophenotyping flow cytometry 
panels (P1, P2, P3 and P4). 1×106 thawed PBMCs were centrifuged (750×g for 5 minutes at 4°C) using a 
swinging bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, B99516), the 
supernatant was removed using a vacuum aspirator pipette, and the cell pellet resuspended in DPBS without 
calcium and magnesium (Corning 21-031-CM). Cells were incubated with Fixable Viability Stain 510 (BD, 
564406) and an Fc receptor blocking reagent, TruStain FcX (BioLegend, 422302) P1, P3 and P4 or purified 
mouse IgG (Bio-Rad, PMP01) P2 for 30 minutes at 4°C, then washed with chilled Cell Staining Buffer 
(BioLegend, 420201). Cells were stained with a cocktail of antibodies (P1, P2, P3 and P4) in Cell Staining 
Buffer plus BD Horizon Brilliant Stain Buffer Plus (BD, 566385) (Key Resources Table) at a staining volume of 
100 µl for 30 minutes at 4°C, then washed with chilled Cell Staining Buffer. Fixation was performed by 
resuspending cells in 100 µl of FluoroFix Buffer (BioLegend, 422101) and incubating for 30 minutes at 25°C, 
protected from light. Following fixation, cells were washed twice with Cell Staining Buffer and resuspended in 
100 µl Cell Staining Buffer. Stained cells were analyzed on a 5 laser Cytek Aurora spectral flow cytometer. 
Spectral unmixing was calculated with pre-recorded reference controls using Cytek SpectroFlo software 
(Version 2.0.2). Cell types were quantified by traditional bivariate gating analysis performed with FlowJo 
cytometry software (Version 10.7) 

Spike and RBD Memory B cell flow cytometry assays 

Fluorescent SARS-CoV-2-specific S6P (Hsieh et al., 2020) (provided by Roland Strong, Fred Hutchinson 
Cancer Research Center, Seattle, WA) and RBD (provided by Leonidas Stamatatos, Fred Hutchinson Cancer 
Research Center, Seattle, WA) probes were made by combining biotinylated protein with fluorescently labeled 
streptavidin (SA). The S6P probes were made at a ratio of 1:1 molar ratio of trimer to SA.  Two S6P probes, 
one labeled with AlexaFluor488 (Invitrogen), one labeled with AlexaFluor647 (Invitrogen), were used in this 
panel in order to increase specificity of the detection of SARS-CoV-2-specific B cells. The RBD probe was 
prepared at a 4:1 molar ratio of RBD monomers to SA, labeled with R-phycoerythrin (Invitrogen). 
Cryopreserved PBMCs from SARS-CoV-2-convalescent participants and a pre-pandemic SARSCoV-2-naïve 
donor were thawed at 37°C and stained for SARS-CoV-2-specific memory B cells as described previously 
(Seydoux et al., 2020) with a flow cytometry panel shown in Reagents Table 1. Cells were stained first with the 
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viability stain (Invitrogen) in PBS for 15 min at 4°C. Cells were then washed with 2% FBS/PBS and stained with 
a cocktail of the three probes for 30 min at 4°C. The probe cocktail was washed off with 2% FBS/PBS and the 
samples were stained with the remaining antibody panel and incubated for 25 min at 4°C. The cells were 
washed two times and resuspended in 1% paraformaldehyde/1x PBS for collection on a LSR II or 
FACSymphony flow cytometer (BD Biosciences). Data was analyzed in Flow Jo version 9.9.4. 

Intracellular Cytokine Staining (ICS) Assay 

Flow cytometry was used to examine SARS-CoV-2-specific CD4+ and CD8+ T-cell responses using a 
validated ICS assay.  The assay was similar to a published report (Dintwe et al., 2019; Horton et al., 2007) and 
the details of the staining panel are included in Reagents Table 2. Peptide pools covering the structural 
proteins of SARS-CoV-2 were used for the six-hour stimulation.  Peptides matching the SARS-CoV-2 spike 
sequence (316 peptides, plus 4 peptides covering the G614 variant) were synthesized as 15 amino acids long 
with 11 amino acids overlap and pooled in 2 pools (S1 and S2) for testing (BioSynthesis).  All other peptides 
were 13 amino acids overlapping by 11 amino acids and were synthesized by GenScript.  The peptides 
covering the envelope (E), membrane (M) and nucleocapsid (N) were initially combined into one peptide pool, 
but the majority of the assays were performed using a separate pool for N and one that combined only E and 
M.  Several of the open reading frame (ORF) peptides were combined into two pools, ORF 3a and 6, and ORF 
7a, 7b and 8.  All peptide pools were used at a final concentration of 1 microgram/ml for each peptide.  As a 
negative control, cells were not stimulated, only the peptide diluent (DMSO) was included.  As a positive 
control, cells were stimulated with a polyclonal stimulant, staphylococcal enterotoxin B (SEB).  Cells 
expressing IFNγ and/or IL-2 and/or CD154 were the primary immunogenicity endpoint for CD4 T cells and cells 
expressing IFNγ were the primary immunogenicity endpoint for CD8 T cells.  The overall response to SARS-
CoV-2 was defined as the sum of the background-subtracted responses to each of the individual pools. A 
sample was considered positive for CD4+ or CD8+ T cell responses to SARS-CoV-2 if any of the CD4+ or 
CD8+ T cell responses to the individual peptide pool stimulations was positive. Positive responses to a given 
peptide pool stimulation were determined using the MIMOSA (Mixture Models for Single-Cell Assays) method 
(Finak et al. 2014). The MIMOSA method uses Bayesian hierarchical mixture models that incorporate 
information on cell count and cell proportion to define a positive response by comparing peptide-stimulated 
cells and unstimulated negative controls. MIMOSA estimates the probabilities that peptide-stimulated 
responses are responders and applies a false-discovery rate multiplicity adjustment procedure (Newton et al 
2004). Responses with false-discovery rate q-values < 0.05 were considered positive.The total number of 
CD4+ T cells must have exceeded 10,000 and the total number of CD8 T cells must have exceeded 5,000 for 
the assay data to be included in the analysis.  

Antibody ELISAs for RBD and N 

Half-well area plates (Greiner) were coated with purified RBD protein at 16.25ng/well in PBS (Gibco) for 14-
24h at room temperature. After 4 150ul washes with 1X PBS, 0.02% Tween-2 (Sigma) using the BioTek 
ELx405 plate washer, the IgA and IgG plates were blocked at 37°C for 1-2 hours with 1X PBS, 10% non-fat 
milk (Lab Scientific), 0.02% Tween-20 (Sigma); IgM plates were blocked with 1X PBS, 10% non-fat milk, 
0.05% Tween-20. 

Serum samples were heat inactivated by incubating at 56°C for 30 minutes, then centrifuged at 10,000 x g / 5 
minutes, and stored at 4°C previous to use in the assay. For IgG ELISAs, serum was diluted into blocking 
buffer in 7-12 1:4 serial dilutions starting at 1:50. For IgM and IgA ELISAs, serum was diluted into 7 1:4 serial 
dilutions starting at 1:12.5 to account for their lower concentration. A qualified pre-pandemic sample (negative 
control) and a standardized mix of seropositive serums (positive control) was run in each plate and using to 
define passing criteria for each plate. All controls and test serums at multiple dilutions were plated in duplicate 
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and incubated at 37°C for 1 hour, followed by 4 washes in the automated washer. 8 wells in each plate did not 
receive any serum and served as blocking controls. 

Plates then were plated with secondary antibodies (all from Jackson ImmunoResearch) diluted in blocking 
buffer for 1h at 37C. IgG plates used donkey anti-human IgG HRP  diluted at 1:7500; IgM plates used goat 
anti-human IgM HRP diluted at 1:10,000; IgA plates used goat anti-human IgA HRP at 1:5000. After 4 washes, 
plates were developed with 25ul of SureBlock Reserve TMB Microwell Peroxide Substrate (Seracare) for 4 
min, and the reaction stopped by the addition of 50ml 1N sulfuric acid (Fisher) to all wells. Plates were read at 
OD450nm on SpectraMax i3X ELISA plate reader within 20 min of adding the stop solution. 

OD450nm measurements for each dilution of each sample were used to extrapolate RBD endpoint titers when 
CVs were less than 20%. Using Excel, endpoint titers were determined by calculating the point in the curve at 
which the dilution of the sample surpassed that of 5 times the average OD450nm of blocking controls + 1 
standard deviation of blocking controls. 

N IgG was measured using SARS CoV-2 IgG Architect (Abbot), and index values used as a quantitative 
measure of the N binding activity.   

Neutralizing antibody assay 

Viruses and cells 

VeroE6 cells were obtained from ATCC (clone E6, ATCC, #CRL-1586) and cultured in complete DMEM 
medium consisting of 1x DMEM (VWR, #45000-304), 10% FBS, 25mM HEPES Buffer (Corning Cellgro), 2mM 
L-glutamine, 1mM sodium pyruvate, 1x Non-essential Amino Acids, and 1x antibiotics. The infectious clone 
SARS-CoV-2 (icSARS-CoV-2-mNG), derived from the 2019-nCoV/USA_WA1/2020 strain, was propagated in 
VeroE6 cells (ATCC) and sequenced (Xie et al. 2020). 

Focus Reduction Neutralization Test  

Neutralization assays with SARS-CoV-2 virus were performed as previously described (Vanderheiden et al. 
2020). Plasma/serum were serially diluted (three-fold) in serum-free Dulbecco’s modified Eagle’s medium 
(DMEM) in duplicate wells and incubated with 100–200 FFU infectious clone derived SARS-CoV-2-mNG virus 
at 37°C for 1�hr. The antibody-virus mixture was added to VeroE6 cell (C1008, ATCC, #CRL-1586) 
monolayers seeded in 96-well blackout plates and incubated at 37°C for 1 h. Post-incubation, the inoculum 
was removed and replaced with pre-warmed complete DMEM containing 0.85% methylcellulose. Plates were 
incubated at 37°C for 24 h. After 24 h, methylcellulose overlay was removed, cells were washed twice with 
PBS and fixed with 2% paraformaldehyde in PBS for 30 min at room temperature. Following fixation, plates 
were washed twice with PBS and foci were visualized on a fluorescence ELISPOT reader (CTL ImmunoSpot 
S6 Universal Analyzer) and enumerated using Viridot (Katzelnick et al. 2018). The neutralization titers were 
calculated as follows: 1 - (ratio of the mean number of foci in the presence of sera and foci at the highest 
dilution of respective sera sample). Each specimen was tested in two independent assays performed at 
different times. The FRNT-mNG50 titers were interpolated using a 4-parameter nonlinear regression in 
GraphPad Prism 8.4.3. Samples with an FRNT-mNG50 value that was below the limit of detection were plotted 
at 20. 

Single-cell RNA-seq 

Sample preparation, hashing, and pooling: Single-cell RNA-seq libraries were generated using the 10x 
Genomics Chromium 3’ Single Cell Gene Expression assay (#1000121) and Chromium Controller Instrument 
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according to the manufacturer’s published protocol with modifications for cell hashing (Stoeckius et al., 2018). 
To block off-target antibody binding, Blocking Solution (5 µL of Human Trustain FcX (BioLegend #422302) , 
and13.7 µL of a 10% Bovine Serum Albumin (BSA)) was added to 500,000 cells suspended in 50 µL 
Dulbecco’s Phosphate Buffered Saline (DPBS; Corning Life Sciences #21-031-CM) and incubated for 10 
minutes on ice. To stain samples, 0.5 µg (1 µL) of a TotalSeq™-A anti-human Hashtag Antibody was 
suspended in 31.3 µL DPBS/2% BSA, then added to each sample with . For each batch of samples, 100,000 
cells from 8 hashedsamples with a distinct Hashtag Antibody were pooled into Pool 1; 8 additional samples 
were pooled using the same method into Pool 2. Roughly 20,000 cells from a Leukopak healthy control were 
also labeled with a distinct TotalSeq™-A Hashtag Antibody, and were spiked into each pool to serve as a 
batch control.  

Droplet encapsulation and reverse transcription: From each pool, 64,000 cells were loaded into each well 
of a Chromium Single Cell Chip G (10x Genomics #1000073) (8 wells per chip), targeting a recovery of 20,000 
singlets from each well. Gel Beads-in-emulsion (GEMs) were then generated using the 10x Chromium 
Controller. The resulting GEM generation products were then transferred to semi-skirted 96-well plates and 
reverse transcribed on a C1000 Touch Thermal Cycler programmed at 53°C for 45 minutes, 85°C for 5 
minutes, and a hold at 4°C. Following reverse transcription, GEMs were broken and the pooled single-stranded 
cDNA and Hashtag Oligo fractions were recovered using Silane magnetic beads (Dynabeads MyOne SILANE 
#37002D). 

Library generation and separation: Barcoded, full-length cDNA including the Hashtag Oligos (HTOs) from 
the TotalSeq™-A Hashtag Antibodies were then amplified with a C1000 Touch Thermal Cycler programmed at 
98°C for 3 minutes, 11 cycles of (98°C for 15 seconds, 63°C for 20 seconds, 72°C for 1 minute), 72°C for 1 
minute, and a hold at 4°C. Amplified cDNA was purified and separated from amplified HTOs using a 0.6x size 
selection via SPRIselect magnetic bead (Beckman Coulter #22667) and a 1:10 dilution of the resulting cDNA 
was run on a Fragment Analyzer (Agilent Technologies #5067-4626) to assess cDNA quality and yield. HTO 
libraries were purified further with SPRIselect magnetic bead (Beckman Coulter #22667) and amplified and 
indexed with a custom HTO i7 index on a C1000 Touch Thermal Cycler programmed at 95°C for 3 minutes, 10 
cycles of (95°C for 20 seconds, 64°C for 30 seconds, 72°C for 20 seconds), 72°C for 1 minute, and a hold at 
4°C. The resulting HTO libraries were purified with SPRIselect magnetic bead (Beckman Coulter #22667) post-
amplification and a 1:10 dilution of the resulting HTO libraries were run on a Fragment Analyzer (Agilent 
Technologies #5067-4626) to assess HTO quality and yield. A quarter of the cDNA sample (10 ul) was used as 
input for library preparation. Amplified cDNA was fragmented, end-repaired, and A-tailed is a single incubation 
protocol on a C1000 Touch Thermal Cycler programmed at 4°C start, 32°C for minutes, 65°C for 30 minutes, 
and a 4°C hold. Fragmented and A-tailed cDNA was purified by performing a dual-sided size-selection using 
SPRIselect magnetic beads (Beckman Coulter #22667). A partial TruSeq Read 2 primer sequence was ligated 
to the fragmented and A-tailed end of cDNA molecules via an incubation of 20°C for 15 minutes on a C1000 
Touch Thermal Cycler. The ligation reaction was then cleaned using SPRIselect magnetic beads (Beckman 
Coulter #22667). PCR was then performed to amplify the library and add the P5 and indexed P7 ends (10x 
Genomics #1000084) on a C1000 Touch Thermal Cycler programmed at 98°C for 45 seconds, 13 cycles of 
(98°C for 20 seconds, 54°C for 30 seconds, 72°C for 20 seconds), 72°C for 1 minute, and a hold at 4°C. PCR 
products were purified by performing a dual-sided size-selection using SPRIselect magnetic beads (Beckman 
Coulter #22667) to produce final, sequencing-ready libraries.  

Quantification and sequencing: Final libraries were quantified using Picogreen and their quality was 
assessed via capillary electrophoresis using the Agilent Fragment Analyzer HS DNA fragment kit and/or 
Agilent Bioanalyzer High Sensitivity chips. Libraries were sequenced on the Illumina NovaSeq platform using 
S4 flow cells. Read lengths were 28bp read1, 8bp i7 index read, 91bp read2. 
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Single-cell ATAC-seq 

FACS neutrophil depletion: To remove dead cells, debris, and neutrophils prior to scATAC-seq as described 
previously (Swanson et al. 2021), PBMC samples were sorted by fluorescence activated cell sorting (FACS) 
prior to cell permeabilization. Cells were incubated with Fixable Viability Stain 510 (BD, 564406) for 15 minutes 
at room temperature and washed with AIM V medium (Gibco, 12055091) plus 25 mM HEPES before 
incubating with TruStain FcX (BioLegend, 422302) for 5 minutes on ice, followed by staining with mouse anti-
human CD45 FITC (BioLegend, 304038) and mouse anti-human CD15 PE (BD, 562371) antibodies for 20 
minutes on ice. Cells were washed with AIM V medium plus 25 mM HEPES and sorted on a BD FACSAria 
Fusion. A standard viable CD45+ cell gating scheme was employed; FSC-A x SSC-A (to exclude sub-cellular 
debris), two FSC-A doublet exclusion gates (FSC-W followed by FSC-H), dead cell exclusion gate (BV510 
LIVE/DEAD negative), followed by CD45+ inclusion gate. Neutrophils (defined as SSChigh, CD15+) were then 
excluded in the final sort gate. An aliquot of each post-sort population was used to collect 50,000 events to 
assess post-sort purity. 

Sample preparation: Permeabilized-cell scATAC-seq was performed as described previously (Swanson et al. 
2021). A 5% w/v digitonin stock was prepared by diluting powdered digitonin (MP Biomedicals, 0215948082) in 
DMSO (Fisher Scientific, D12345), which was stored in 20 µL aliquots at −20°C until use. To permeabilize, 
1×106 cells were added to a 1.5 mL low binding tube (Eppendorf, 022431021) and centrifuged (400×g for 5 min 
at 4°C) using a swinging bucket rotor (Beckman Coulter Avanti J-15RIVD with JS4.750 swinging bucket, 
B99516). Cells were resuspended in 100 µL cold isotonic Permeabilization Buffer (20 mM Tris-HCl pH 7.4, 150 
mM NaCl, 3 mM MgCl2, 0.01% digitonin) by pipette-mixing 10 times, then incubated on ice for 5 min, after 
which they were diluted with 1 mL of isotonic Wash Buffer (20 mM Tris-HCl pH 7.4, 150 mM NaCl, 3 mM 
MgCl2) by pipette-mixing five times. Cells were centrifuged (400×g for 5 min at 4°C) using a swinging bucket 
rotor, and the supernatant was slowly removed using a vacuum aspirator pipette. Cells were resuspended in 
chilled TD1 buffer (Illumina, 15027866) by pipette-mixing to a target concentration of 2,300-10,000 cells per 
µL. Cells were filtered through 35 µm Falcon Cell Strainers (Corning, 352235) before counting on a Cellometer 
Spectrum Cell Counter (Nexcelom) using ViaStain acridine orange/propidium iodide solution (Nexcelom, C52-
0106-5). 

Tagmentation and fragment capture: scATAC-seq libraries were prepared according to the Chromium 
Single Cell ATAC v1.1 Reagent Kits User Guide (CG000209 Rev B) with several modifications. 15,000 cells 
were loaded into each tagmentation reaction. Permeabilized cells were brought up to a volume of 9 µl in TD1 
buffer (Illumina, 15027866) and mixed with 6 µl of Illumina TDE1 Tn5 transposase (Illumina, 15027916). 
Transposition was performed by incubating the prepared reactions on a C1000 Touch thermal cycler with 96–
Deep Well Reaction Module (Bio-Rad, 1851197) at 37°C for 60 minutes, followed by a brief hold at 4°C. A 
Chromium NextGEM Chip H (10x Genomics, 2000180) was placed in a Chromium Next GEM Secondary 
Holder (10x Genomics, 3000332) and 50% Glycerol (Teknova, G1798) was dispensed into all unused wells. A 
master mix composed of Barcoding Reagent B (10x Genomics, 2000194), Reducing Agent B (10x Genomics, 
2000087), and Barcoding Enzyme (10x Genomics, 2000125) was then added to each sample well, pipette-
mixed, and loaded into row 1 of the chip. Chromium Single Cell ATAC Gel Beads v1.1 (10x Genomics, 
2000210) were vortexed for 30 seconds and loaded into row 2 of the chip, along with Partitioning Oil (10x 
Genomics, 2000190) in row 3. A 10x Gasket (10x Genomics, 370017) was placed over the chip and attached 
to the Secondary Holder. The chip was loaded into a Chromium Single Cell Controller instrument (10x 
Genomics, 120270) for GEM generation. At the completion of the run, GEMs were collected and linear 
amplification was performed on a C1000 Touch thermal cycler with 96–Deep Well Reaction Module: 72°C for 5 
min, 98°C for 30 sec, 12 cycles of: 98°C for 10 sec, 59°C for 30 sec and 72°C for 1 min. 
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Sequencing library preparation: GEMs were separated into a biphasic mixture through addition of Recovery 
Agent (10x Genomics, 220016), the aqueous phase was retained and removed of barcoding reagents using 
Dynabead MyOne SILANE (10x Genomics, 2000048) and SPRIselect reagent (Beckman Coulter, B23318) 
bead clean-ups. Sequencing libraries were constructed by amplifying the barcoded ATAC fragments in a 
sample indexing PCR consisting of SI-PCR Primer B (10x Genomics, 2000128), Amp Mix (10x Genomics, 
2000047) and Chromium i7 Sample Index Plate N, Set A (10x Genomics, 3000262) as described in the 10x 
scATAC User Guide. Amplification was performed in a C1000 Touch thermal cycler with 96–Deep Well 
Reaction Module: 98°C for 45 sec, for 9 to 11 cycles of: 98°C for 20 sec, 67°C for 30 sec, 72°C for 20 sec, with 
a final extension of 72°C for 1 min. Final libraries were prepared using a dual-sided SPRIselect size-selection 
cleanup. SPRIselect beads were mixed with completed PCR reactions at a ratio of 0.4x bead:sample and 
incubated at room temperature to bind large DNA fragments. Reactions were incubated on a magnet, the 
supernatant was transferred and mixed with additional SPRIselect reagent to a final ratio of 1.2x bead:sample 
(ratio includes first SPRI addition) and incubated at room temperature to bind ATAC fragments. Reactions 
were incubated on a magnet, the supernatant containing unbound PCR primers and reagents was discarded, 
and DNA bound SPRI beads were washed twice with 80% v/v ethanol. SPRI beads were resuspended in 
Buffer EB (Qiagen, 1014609), incubated on a magnet, and the supernatant was transferred resulting in final, 
sequencing-ready libraries. 

Quantification and sequencing: Final libraries were quantified using a Quant-iT PicoGreen dsDNA Assay Kit 
(Thermo Fisher Scientific, P7589) on a SpectraMax iD3 (Molecular Devices). Library quality and average 
fragment size was assessed using a Bioanalyzer (Agilent, G2939A) High Sensitivity DNA chip (Agilent, 5067-
4626). Libraries were sequenced on the Illumina NovaSeq platform with the following read lengths: 51nt read 
1, 8nt i7 index, 16nt i5 index, 51nt read 2. 

 

Olink serum protein measurement 

Serum samples were inactivated with 1% Triton X-100 for 2h at room temperature according to the Olink 
COVID-19 inactivation protocol. Inactivated samples were then run on the Olink Explore 1536 platform, which 
uses paired antibody proximity extension assays (PEA) and a next generation sequencing (NGS) readout to 
measure the relative expression of 1472 protein analytes per sample. Analytes from the inflammation, 
oncology, cardiometabolic, and neurology panels were measured. 
 
For plate setup, samples were randomized across plates to achieve a balanced distribution of age and gender. 
Longitudinal samples from the same patient were run on the same plate. To facilitate comparisons with future 
batches, sera from 15 donors was commercially purchased (BioIVT) and randomly interspersed amongst the 
above study samples. Commercial samples included serum from COVID-19 serology-negative, serology-
positive, PCR-positive, and recovered (no longer symptomatic) donors.  
 
Data were first normalized to an extension control that was included in each sample well. Plates were then 
standardized by normalizing to inter-plate controls run in triplicate on each plate. Data were then intensity 
normalized across all samples. Final normalized relative protein quantities were reported as log2 normalized 
protein expression (NPX) values. 
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Data analyses 

Illness severity metrics and scoring 

For acute COVID-19, categorization of illness severity was classified by participant report of impact on 
Activities of Daily Living (ADLs) for each day of illness (of Health et al. 2017). Severe days hospitalized were 
also recorded as were any treatment or therapies received. Participants were scored according to their 
maximum severity for each day: 0, no symptoms; 1, mild impact on ADLs reported; 2, moderate impact on 
ADLs reported; 3, severe illness without hospitalization; 4, severe illness with hospitalization; 5, life threatening 
illness hospitalized with ICU care. Durations were assigned for days spent at each illness severity. A 
cumulative illness severity score was calculated for each patient by multiplying each severity score by the 
number of days spent at each level, then summing all values. Participants were classified as post-acute 
sequelae of SARS-CoV-2 infection (PASC) if any symptoms continued from acute illness or related to COVID-
19 beyond 60 days. 

Metadata correlations 

Spearman’s rank correlation coefficients were calculated for pairwise combinations of SARS-CoV-2-specific 
immune response estimates and clinical metadata. Symptoms at diagnosis and comorbidities with ≤ 3 events 
were excluded from analysis. P-values were adjusted using Benjamini-Hochberg method and adjusted p-
values ≤ 0.05 were considered significant. 

Flow cytometry 

Following sample acquisition on the Cytek Aurora flow cytometer, samples were unmixed using library 
reference controls pre-recorded on the instrument using the batch control sample, and the data files were 
exported in FCS 3.1 format. Unmixing performance was visually checked and unmixing errors were adjusted 
with compensation on the batch control sample in each individual batch using FlowJo v10.7.1. Compensation 
adjustments from the batch control were applied to the entire batch. The fluorescent channels in each 
compensated FCS file were transformed using the logicle transform. The compensated and transformed data 
was analyzed using bivariate hierarchical gating. Initial placement of gates was implemented automatically 
using the openCyto R package using customized gating templates for each panel. Following the preliminary 
automated gate placement, all gates were visually checked for errors and corrected manually per sample in a 
Flowjo v10.7.1 workspace file generated with the CytoML R package (Finak, Jiang, and Gottardo 2018). Gating 
plots for all samples from each donor were generated with the ggCyto R package (Van et al. 2018), and gates 
were further reviewed for consistency and batch effects across longitudinal timepoints. For each population 
gate, a cutoff of 50 events was also set, below which populations were not reported. Proportions for each cell 
subtype were calculated by dividing the counts for the gated subpopulation by the total number of CD45+ 
leukocytes for each sample. Proportions of activated cell populations were calculated by dividing the counts for 
each positive activation marker population by the counts of the corresponding parent population. Samples 
were run in multiple batches with bridging controls and we determined that the proportion of variability due to 
batch was lower than biological variability across samples (Fig. S1b).  

Participant-specific linear modeling of binding antibodies, intercept and slope 

Linear mixed effects models were used to estimate binding antibody RBD titer, ���, as a function of ���, the ��� 
time since symptom onset for the ��� individual, with random effects for intercept and slope and ��� > 30 days 
for all �, �: 

��� � ��� � ������ � 	��   
where ��� �  �� � �� and ��� �  �� � �� with �� , ��� iid ~ ��0, ��, with 
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� � ���� ����, �� ����, �� �	� � 

and ��� and �	� are the between-person variation in the intercept and slope of log RBD titer responses 
respectively, Cov(b, c) is the covariance between the intercept and slope, and 	�� iid ~ �0, ���. The random 
effects, �� and ��, are each assumed to be independent for different individuals and the within-individual errors 
	�� are assumed to be independent for different i, j and to be independent of the random effects. A similar 
model was fit to the untransformed IgG N indices, which are linear on the original scale. The function lme from 
the R package nlme was used to fit the models. Individual-level estimates of the intercepts, slopes, day 30 and 
day 180 were obtained from the models.  
 

scRNA-seq analysis 

Data preprocessing: Binary Base Call (BCL) files were demultiplexed using cellranger mkfastq (10x 
Genomics v3.0.2) to produce FASTQ files for scRNA-seq and HTO barcode libraries. scRNA-seq FASTQ files 
for each hashed well were aligned to the 10x Genomics GRCh38 reference transcriptome (10x Genomics 
vGRCh38-3.0.0) using cellranger (10x Genomics v3.1.1) using default settings. HTO barcode FASTQ files 
were processed using BarCounter (Swanson et al. 2021) to quantify the count of each HTO barcode for each 
cell barcode. A custom R pipeline, BarcodeTender (to be released at 
https://github.com/AllenInstitute/BarcodeTender-pipeline), was used to deconstruct gene-by-cell matrices from 
cellranger outputs and assign cells to their originating donor sample based on HTO counts. For each well, a 
threshold was determined for each HTO by removing barcodes with low counts, then performing 1 dimensional 
k-means clustering to group cells into a "high" or "low" group. The minimum count for the "high" group was set 
as a cutoff, and all cells above that cutoff were considered positive for that HTO barcode. If the mean of the 
"high" group was not greater than 4-fold of the mean of the "low" group, the minimum cutoff was updated to the 
mean of the "low" group, and the process was iterated. If a separation could not be established, the cutoff was 
set to the maximum count, and all cells were considered negative for the HTO barcode. Cutoffs were then 
used to binarize cell barcodes as positive or negative for each HTO, and the number of positive HTOs was 
calculated for each cell barcode. Cell barcodes positive for only one HTO barcode were considered "singlets", 
and any cells with two or more were considered "multiplets". For each well, count matrices generated by 
cellranger were split to select singlet cell barcodes from each PBMC sample based on HTO barcodes, then 
cells from each PBMC sample were concatenated into separate matrices for each donor. Throughout the 
process, metadata tracking the originating Batch and 10x Chromium Chip and Well were retained to enable 
batch effect analysis. During the splitting and merging process, quality control reports were generated to allow 
review prior to downstream analysis. 
 
Cell type labeling: We utilized the supervised PCA projection and anchor-based transfer approach 
implemented in Seurat v4.0.0 to map cells to a reference projection generated using the Weighted Nearest 
Neighbor (WNN) graph algorithm, as described in (Hao et al. 2020). A CITE-seq dataset from 8 healthy HIV 
vaccine volunteers during the course of vaccination was used as the reference dataset to label cells. The 
CITE-seq reference consisted of 228 surface proteins (antibody-derived tags, ADT) and approximately 160k 
single cells. The reference consisted of three levels of cell label granularity (Levels 1, 2 and 3). We constructed 
a level 2.5 label structure that consists of all cell type annotations from level 2 except merging the "CD8 
TEM_4" and "CD8 TEM_5" from level 2, into a "CD8 TEMRA" label (based on marker gene expression) and 
replacing the "Tregs" label in level 2, with "Treg naive" and "Treg memory" labels from level 3, thus spanning a 
complete spectrum of cell type annotations. We assessed the distribution of label transfer scores per cell and 
retained cells with a label score ≥0.5. Batch variability was lower than biological variation contributed by cell 
type and participant-specific differences (Fig. S1d, S1e). 
 
Differential expression early acute infection visit compared to uninfected controls: The hurdle model 
implemented in the MAST package (Finak et al. 2015) was used to identify differentially expressed genes 
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between the early acute infection COVID-19 participants compared to uninfected controls. An age matched 
comparison between infected and uninfected controls was performed, i.e older (> 40 years) COVID-19 
participants versus older uninfected controls and younger (< 40 years) COVID-19 participants versus younger 
uninfected controls. Genes that were expressed in at least 10% of all cells were considered for downstream 
analysis. Gene expression was normalized by scaling raw counts by the total number of reads per cell 
multiplied by a scaling factor of 10,000, then using a log2 transformation. A hurdle model was fit on the filtered 
and normalized data, modeling the infection status and adjusting for the batch for every cell type. A likelihood 
ratio test was then performed to assess if the coefficients are different from zero. The p-values were adjusted 
for multiple comparisons using the Benjamini and Hochberg (BH) method (Benjamini and Hochberg 1995). 
Adjusted p-values < 0.05 were considered significant.  
 
Patient-specific longitudinal gene expression changes: Longitudinal changes in gene expression were 
also identified using the hurdle model implemented in the MAST package. A hurdle model was fit to each 
COVID-19 participant independently in order to identify patient-specific longitudinal transcriptomic changes. 
Genes that were expressed in at least 10% of cells per participant were considered for this analysis. The 
models were fit on the filtered and normalized data, modeling the days since symptom onset as a continuous 
variable within each cell type and adjusting for the batch only if any timepoints from the same participant were 
run across multiple batches. A likelihood ratio test was then performed to assess if the coefficients are different 
from zero. Obtained p-values are adjusted for multiple comparisons using the BH method. Adjusted p-values < 
0.05 were considered significant. 
 
Pathway enrichment analysis: Gene Set Enrichment Analysis (GSEA) (Subramanian et al. 2005) was 
performed among genes that defined early acute infection status and genes that defined longitudinal changes. 
A custom collection of genesets that included the Hallmark v7.2 genesets, KEGG v7.2 and Reactomev7.2 from 
the Molecular Signatures Database (MSigDB, v4.0) was used as the pathway database. The "Type III 
interferon signaling" gene set was manually curated from the Interferome database (Rusinova et al. 2013). 
Genes were pre-ranked by the decreasing order of their log fold changes or coefficients. The running sum 
statistics and Normalized Enrichment Scores (NES) were calculated for each comparison. The pathway 
enrichment p-values were adjusted using the BH method and pathways with p-values < 0.05 were considered 
significantly enriched. 

 
Sample-level enrichment (SLEA): Sample-level enrichment analysis (SLEA, Gundem and Lopez-Bigas 2012) 
was used to represent the GSEA pathway expression results on a per-sample basis. The SLEA score was 
calculated by first calculating the mean expression value of genes (averaged across single cells) enriched in a 
pathway, then comparing it to the mean expression of random sets of genes (averaged across single cells) of 
the same size for 1,000 permutations per sample. The difference between the observed and expected mean 
expression values for each pathway was determined as the SLEA pathway score per sample.  

scATAC-seq analysis 

Data preprocessing: scATAC-seq libraries were processed as described previously (Swanson et al. 2021). In 
brief, cellranger-atac mkfastq (10x Genomics v1.1.0) was used to demultiplex BCL files to FASTQ. FASTQ 
files were aligned to the human genome (10x Genomics refdata-cellranger-atac-GRCh38-1.1.0) using 
cellranger-atac count (10x Genomics v1.1.0) with default settings. Fragment positions were used to quantify 
reads overlapping a reference peak set (GSE123577_pbmc_peaks.bed.gz from GEO accession GSE123577; 
(Lareau et al. 2019)) which was converted from hg19 to hg38 using the liftOver package for R (Lawrence et al. 
2009), ENCODE reference accessible regions (ENCODE file ID ENCFF503GCK; (Vierstra et al. 2020)), and 
TSS regions (TSS ±2kb from Ensembl v93; (Yates et al. 2020)) for each cell barcode using a bedtools 
(v2.29.1; (Quinlan and Hall 2010)) analytical pipeline. 

was not certified by peer review) is the author/funder. All rights reserved. No reuse allowed without permission. 
The copyright holder for this preprint (whichthis version posted May 26, 2021. ; https://doi.org/10.1101/2021.05.26.442666doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.442666


 
 
Quality Control: Custom R scripts were used to remove cells with less than 1,000 uniquely aligned fragments, 
less than 20% of fragments overlapping reference peak regions, less than 20% of fragments 
overlappingENCODE TSS regions, and less than 50% of peaks overlapping ENCODE reference regions. The 
ArchR package (Granja et al. 2021) was used to assess doublets in scATAC data. Doublets were identified 
using the ScoreDoublets function using a filter ratio of 8, and cells with DoubletEnrichment scores from 0-1.16 
were considered "singlets" and retained for further analysis. Samples with particularly high doublet scores 
across all cells  (>70% of cells with DoubletEnrichment scores  > 1.5) were not considered for downstream 
analysis. 

 
Dimensionality reduction and cell type labeling: We used the ArchR package to generate a count matrix for 
the PBMC reference peak set described above (Lareau, et al. 2019 Nat Biotech). Dimensionality reduction was 
performed using the ArchR addIterativeLSI function (parameters varFeatures = 10000, iterations = 2), and the 
addClusters function was used to identify clusters in LSI dimensions using the Louvain community detection 
algorithm. For visualization, UMAP was performed using ArchR's addUMAP function with default settings. The 
ArchR  addGeneIntegrationMatrix function (parameters transferParams = list(dims = 1:10, k.weight = 20) was 
used to label our scATAC cells using the Seurat level 1 cell types from the Seurat v4.0 PBMC reference 
dataset (Hao et al. 2020). We observed that Louvain clusters contained cells with mixed level 1 identity 
assignments from label transfer,  and cluster labels were often spread across the UMAP space. In comparison, 
cell type assignments in UMAP coordinates seemed to cleanly separate cell-type identities. To generate 
clusters that more closely matched label transfer results, we performed K-means clustering on the UMAP 
coordinates using a range of number of cluster centers from 3 to 50, and identified a set of K-means clusters 
that each had > 80% of cells sharing a single cell type identity. Almost all such clusters contained  >= 98% 
cells from a single  major cell type class (T Cells, B Cells, NKs, or Monocytes/DCs/other), with the exception of 
a single cluster with 88% purity. We used K-means clusters that shared cell class identities to subset the  data 
into T Cells, B Cells, NKs, or monocytes/DC/other classes for downstream analyses. For each broad type, we 
performed dimensionality reduction by Iterative LSI using 500 bp genomic tiles. We then performed a second 
round of label transfer using the ArchR addGeneIntegrationMatrix function (parameters as described for level 
1, above) using the higher resolution level 2.5 cell identities (described for scRNA-seq label transfer, above) 
from the Seurat PBMC reference dataset.  

 
Peak calling and motif enrichment analysis: For each of the broad types above, we grouped cells within 
each level 2.5 cell type label by donor, and used the ArchR addGroupCoverages and 
addReproduciblePeakSets functions to perform de novo peak calling to identify putative regulatory regions 
throughout the genome. We ensured that pseudo-bulk replicates derived from donor and cell type intersections 
were robust by requiring a minimum of 100 cells per pseudo-bulk replicate, with a minimum of 2 replicates for 
each group.. After identifying de novo peak sets, we annotated transcription factor binding sites (TFBS) in all 
peaks using the ArchR addArchRAnnotations function (parameter collection = "EncodeTFBS") to label binding 
sites that have been previously observed in ENCODE datasets. We then used the ArchR addBgdPeaks and 
addDeviationsMatrix functions (parameter peakAnnotation = "EncodeTFBS") , based on ChromVar (Schep et 
al. 2017), to generate a measure of increased or decreased binding site accessibility compared to a random 
GC-matched peakset. Differential TFBS usage was computed using the ArchR getMarkerFeatures function 
(parameters bias = c("TSSEnrichment", "log10(nFrags)"), testMethod = "wilcoxon") to identify differentially 
accessible genomic regions, followed by the peakAnnoEnrichment function (parameters peakAnnotation = 
"EncodeTFBS", cutOff = "FDR <= 0.1") to score differentially enriched TFBS deviations.  Longitudinal TFBS 
usage scores were calculated by taking the mean TFBS deviation Z-score for each TF, participant, and time 
point among COVID19-positive samples.  
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Linear regression models of early acute infection 

Linear regression models were fit to assess changes in normalized protein expression (NPX) for each protein 
from Olink, as well as flow cytometry or scRNA-seq cell proportions as a function of infection status using the 
lm function from the package stats in R. Subject age and biological sex were used as fixed effects in the model 
in order to control for these potentially confounding variables. P-values were adjusted using the BH method to 
control false discovery rate (FDR). Adjusted p-values < 0.05 were considered significant. 

Linear mixed-effects models of longitudinal infection 

Linear mixed-effects models (LME) were fit to assess the longitudinal changes in the serum proteome, flow 
cytometry and scRNA based cell type proportions as a function of days since symptom onset using the lme 
function (lme4 v1.1-26) implemented in R. Individual NPX protein expression and cell type proportion values 
were treated as dependent variables. However, COVID-19 patients appear to vary in the slopes and intercepts 
of days since symptoms. Thus, random effects for both the slope (days since symptom onset) and intercept 
(participant ID), and fixed effects for age and sex were used in the mixed effects model. P-values were 
calculated using Wald chi-square tests and adjusted using the BH method to control FDR. Adjusted p-values < 
0.05 were considered significant. 
 
Pathways enriched among significant longitudinally changing proteins were identified using Fisher's over-
representation analysis. Pathway p-values were adjusted for multiple comparisons using the BH method and 
pathways significant at adjusted p-value < 0.05 were reported 

Outlier analysis 

We performed outlier analysis to identify differential proteins in each COVID19 participant. To identify outliers, 
we calculated mean expression and standard deviation (SD) of each protein in uninfected participants. The 
normalized protein expression in COVID-19 participants was compared with the average expression from 
uninfected participants. Outliers were defined as proteins with expression greater than mean ± 2SD (uninfected 
participants). 

 

Supervised principal coordinate analysis 

Supervised principal coordinate analysis (PCoA) was performed on Olink data using the R function pcoa from 
the ape package (v5.5, Paradis and Schliep, 2019, Bioinformatics). Euclidean distances between proteins that 
were significantly different between COVID-19 participants at Visit 1 and uninfected controls and proteins that 
significantly changed over time among COVID-19 participants based on the linear regression models and 
linear mixed effect models were used to define the distance matrix between samples. The distance of a 
particular sample to the centroid of uninfected controls was then defined as 

� � �� � ����/�
� � � � ����/���, where �, � are the first and the second principal coordinates of the sample 

while ��, ��, �
, and ��are the corresponding mean values and standard deviations of uninfected controls. 

Integrative cell-cell network analysis 

To identify the cell type specific ligand-receptor pairs significantly enriched in COVID-19 patients we selected 
scRNA-seq data from healthy donors and  COVID patient first visit samples for analysis using the nichnetr 
package (Browaeys, Saelens, and Saeys 2020). The ligand-target model retrieved from the nichnetr package 
includes 688 ligands and 25,345 potential downstream target genes, with values denoting the prior potential 
that a particular ligand might regulate the expression of a specific target gene. Receivers and senders were 
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identified per cell type for plasmablasts, proliferating CD4 T cells, proliferating CD8 T cells, CD14 monocytes, 
CD16 monocytes, NK cells, proliferating NK cells, cDC1, cDC2, and pDC types. Genes were considered for 
downstream analysis if expressed in at least 10% of the cells from the corresponding cell type. Background 
gene expression data was obtained from samples of uninfected control subjects. Ligand-receptor scores were  
ranked based on Pearson correlation coefficients (PCC). The top 50 identified ligands were then used to infer 
putatively active ligand-target links using the nichenetr get_weighted_ligand_target_links function with default 
parameters. The top 10 ligands and their targets were used to visualize the cell type-specific interaction 
network. 
 
To calculate the changes in the ligand-receptor network as a result of COVID-19 infection, we identified 
differentially expressed genes from 2 comparisons: 1) acute infection (≤15 days PSO) compared to uninfected 
controls, and 2) all COVID-19 participant samples compared to uninfected controls (adjusted p-value < 0.05). 
All proteomic features were included for corresponding change in proteomic features. 
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KEY RESOURCES TABLE: 

REAGENT or RESOURCE SOURCE IDENTIFIER 

Antibodies (flow cytometry) 

Marker/Fluorophore Clone/Vendor Cat# Panel 

Mouse anti-human CD3/BUV395 UCHT1/BD 563546, RRID:AB_2744387 1,4 

Mouse anti-human CD45/BUV496 HI30/BD 624283 1,2,3,4 

Mouse anti-human CD15/BUV563 W6D3/BD 624284 1,3 

Mouse anti-human CD45RA/BUV615 HI100/BD 624297 1 

Mouse anti-human CD14/BUV661 MφP9/BD 741684, RRID:AB_2868407 1 

Mouse anti-human CD8/BUV737 RPA-T8/BD 624286 1,4 

Mouse anti-human CD11c/BUV805 B-ly6/BD 624287 1,3 

Mouse anti-human CD25/BV421 M-A251/BD 562442, RRID:AB_11154578 1 

Mouse anti-human CD4/BV480 SK3/BD 566104, RRID:AB_2739506 1 

Mouse anti-human CD16/BV605 3G8/BD 563172, RRID:AB_2744297 1 

Mouse anti-human CD123/BV650 6H6/BioLegend 306020, RRID:AB_2563827 1 

Mouse anti-human CD127/BV711 A019D5/BioLegend 351328, RRID:AB_2562908 1,4 

Mouse anti-human IgD/BV750 IA6-2/BD 747484, RRID:AB_2868411 1 

Mouse anti-human CD304/BV786 U21-1283/BD 743132, RRID:AB_27412 1 

Mouse anti-human CD141/BB515 1A4/BD 565084, RRID:AB_2739058 1,3 

Mouse anti-human CD11b/PerCP-Cy5.5 M1/70/BD 561114, RRID:AB_2033995 1 

Mouse anti-human CD19/BB790 HIB19/BD 624296 1,3 

Mouse anti-human CD27/PE O323/BioLegend 302808, RRID:AB_314300 1,2 

Mouse anti-human abTCR/PE-Dazzle594 IP26/BioLegend 306726, RRID:AB_2566599 1 

Mouse anti-human CD34/PE-Cy5 581/BD 555823, RRID:AB_396152 1 

Mouse anti-human CD197/PE-Cy7 G043H7/BioLegend 353226, RRID:AB_11126145 1,3,4 

Mouse anti-human CD38/APC HB-7/BioLegend 356606, RRID:AB_2561902 1 

Mouse anti-human CD56/APC-R700 NCAM16.2/BD 565139, RRID:AB_2744429 1 

Mouse anti-human HLA-DR/APC-Cy7 L243/BioLegend 307618, RRID:AB_493586 1 

Mouse anti-human CD38/BUV395 HB7/BD 563811, RRID:AB_2744372 2 

Mouse anti-human IgM/BUV563 UCH-B1/BD  624284 2 

Mouse anti-human CD56/BUV615 NCAM16.2/BD 613001 2,3 

Mouse anti-human CD24/BUV661 ML5/BD 624285 2 

Mouse anti-human CD319/BUV737 235614/BD 624491 2 

Mouse anti-human CD20/BUV805 2H7/BD 612905 2 

Mouse anti-human CD269/BV421 19F2/BioLegend 357520, RRID:AB_2687358 2 

Mouse anti-human IgD/BV480 IA6-2/BD 566138, RRID:AB_2739536 2 

Mouse anti-human CD268/BV605 11C1/BD 624290 2 

Mouse anti-human CD71/BV650 L01.1/BD 624280 2 

Mouse anti-human CD274/BV711 29E.2A3/BioLegend 329722, RRID:AB_2565764 2 

Mouse anti-human CD3/BV750 SK7/BioLegend 344846, RRID:AB_2800923 2 

Mouse anti-human HLA-DR/BV786 G46-6/BD 564041, RRID:AB_2738559 2 
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Mouse anti-human IgA/FITC IS11-8E10/Miltenyi 
Biotec 130-113-475, RRID:AB_2726166 2 

Mouse anti-human CD14/BB660 MφP9/BD 624295 2,4 

Mouse anti-human IgG/PerCP-Cy5.5 M1310G05/BioLegend 410710, RRID:AB_2565788 2 

Mouse anti-human CD86/PE-Dazzle594 BU63/BioLegend 374218, RRID:AB_2814337 2 

Mouse anti-human CD10/PE-Cy5 HI10a/BioLegend 312206, RRID:AB_314917 2 

Mouse anti-human CD21/PE-Cy7 Bu32/BioLegend 354912, RRID:AB_2561577 2 

Mouse anti-human CD85j/APC GHI/75/BioLegend 333720, RRID:AB_2728294 2 

Mouse anti-human CD19/APC-R700 HIB19/BD 564977, RRID:AB_2744308 2 

Mouse anti-human 40/APC-Cy7 5C3/BioLegend 334324, RRID:AB_10641702 2 

Mouse anti-human CD14/BUV395 MφP9/BD 563561, RRID:AB_2744288 3 

Mouse anti-human CD304/BUV661 U21-1283/BD 624285 3 

Mouse anti-human CD33/BUV737 HIM3-4/BD 624286 3 

Mouse anti-human CX3CR1/BV421 2A9-1/BD 565800, RRID:AB_2744471 3 

Mouse anti-human HLA-DR/BV480 G46-6/BD 566113, RRID:AB_2739515 3 

Mouse anti-human CD192/BV605 K036C2/BioLegend 357214, RRID:AB_2563876 3 

Mouse anti-human CD3/BV650 UCHT1/BioLegend 300468, RRID:AB_2629574 3 

Mouse anti-human CD11b/BV711 ICRF44/BioLegend 301344, RRID:AB_2563792 3 

Mouse anti-human CD40/BV750 5C3/BD 624380 3 

Mouse anti-human CD80/BV786 L307.4/BD 564159, RRID:AB_2738631 3 

Mouse anti-human CD123/BB660 7G3/BD 624295 3 

Mouse anti-human CD172a/PerCP-
efluor710 15-414/Thermo Fisher 46-1729-42, RRID:AB_11043409 3 

Mouse anti-human CD370/PE 3A4/Clec9a/BD 563488, RRID:AB_2738237 3 

Mouse anti-human CD86/PE-CF594 FUN-1/BD 562390, RRID:AB_11154047 3 

Mouse anti-human CD16/PE-Cy5 3G8/BioLegend 302009, RRID:AB_314209 3 

Mouse anti-human CD274/APC 29E.2A3/BioLegend 329708, RRID:AB_940360 3 

Mouse anti-human CD195/APC-R700 2D7/CCR5/BD 624348 3 

Mouse anti-human CD1c/APC-Cy7 L161/BioLegend 331519, RRID:AB_10643413 3 

Mouse anti-human CD56/BUV563 NCAM16.2/BD 612928 4 

Mouse anti-human CD19/BUV615 HIB19/BD 624297 4 

Mouse anti-human CD27/BUV661 L128/BD 624285 4 

Mouse anti-human CD39/BUV805 Tu66/BD 624287 4 

Mouse anti-human CD103/BV421 Ber-ACT8/BioLegend 350214, RRID:AB_2563514 4 

Mouse anti-human abTCR/BV480 IP26/BD 624278 4 

Mouse anti-human CD223/BV605 11C3C65/BioLegend 369324, RRID:AB_2721541 4 

Mouse anti-human CD95/BV650 DX2/BioLegend 305642, RRID:AB_2632622 4 

Mouse anti-human CD278/BV750 DX29/BD 624380 4 

Mouse anti-human CD45RA/BV786 HI100/BioLegend 304140, RRID:AB_2563816 4 

Mouse anti-human CD185/BB515 RF8B2/BD 564624, RRID:AB_2738871 4 

Mouse anti-human CD4/BB700 SK3/BD 566392, RRID:AB_2744421 4 

Mouse anti-human HLA-DR/BB790 G46-6/BD 624296 4 

Mouse anti-human CD279/PE EH12.2H7/BioLegend 329906, RRID:AB_940483 4 
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Mouse anti-human TIGIT/PE-Dazzle594 A15153G/BioLegend 372716, RRID:AB_2632931 4 

Mouse anti-human CD38/PE-Cy5 HIT2/BD 555461, RRID:AB_395854 4 

Mouse anti-human CD69/APC FN50/BioLegend 310910, RRID:AB_314845 4 

Mouse anti-human CD25/APC-R700 2A3/BD 565106, RRID:AB_2744339 4 

Mouse anti-human KLRG1/APC-Fire750 SA231A2/BioLegend 367718, RRID:AB_2687392 4 

Software and algorithms 

R (Version 4.0.1, 4.0.2) The R Foundation https://www.r-project.org/ 

BarCounter (Swanson et al. 2021) 

https://github.com/AllenInstitute/BarCounter-
release  

flowCore (2.3.2) (Hahne et al. 2009) https://github.com/RGLab/flowCore 

flowWorkspace (4.3.5) Gottardo Lab https://github.com/RGLab/flowWorkspace 

ncdfFlow (2.37.0) Gottardo Lab https://github.com/RGLab/ncdfFLow 

openCyto (2.3.0) (Finak et al. 2014) https://github.com/RGLab/openCyto 

ggCyto (1.19.1) (Van et al. 2018) https://github.com/RGLab/ggCyto 

CytoML (2.3.1) (Finak et al. 2018) https://github.com/RGLab/CytoML 

tidyverse (1.1.2) (Wickham 2017) https://www.tidyverse.org 

  

Panels: 

1: PS1 (Survey) 

2: PB1 (B cell) 

3: PM1 (Myeloid/dendritic cell) 

4: PT1 (T cell) 

Note: 

BD antibodies with a 600000 cat # are custom conjugates. 

 

Lot Number(s): Gender: Age: Race: 
# of 

Vials: 

Target 
Concentration 

(per Vial): 

Post-Processing 
Concentration (per 

Vial): 

% 
Viability: 

HMN169517 Male 24 Black 330 10 X 10^6 16.2 x 10^6 94.9% 
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