Skip to main content
bioRxiv
  • Home
  • About
  • Submit
  • ALERTS / RSS
Advanced Search
New Results

Membrane architecture and adherens junctions contribute to strong Notch pathway activation

View ORCID ProfileJulia Falo-Sanjuan, View ORCID ProfileSarah J. Bray
doi: https://doi.org/10.1101/2021.05.26.445755
Julia Falo-Sanjuan
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Julia Falo-Sanjuan
Sarah J. Bray
1Department of Physiology, Development and Neuroscience, University of Cambridge, Downing Street, Cambridge CB2 3DY, UK
  • Find this author on Google Scholar
  • Find this author on PubMed
  • Search for this author on this site
  • ORCID record for Sarah J. Bray
  • For correspondence: sjb32@cam.ac.uk
  • Abstract
  • Full Text
  • Info/History
  • Metrics
  • Preview PDF
Loading

Abstract

The Notch pathway mediates cell-to-cell communication in a variety of tissues, developmental stages and organisms. Pathway activation relies on the interaction between transmembrane ligands and receptors on adjacent cells. As such, pathway activity could be influenced by the size, composition or dynamics of contacts between membranes. The initiation of Notch signalling in the Drosophila embryo occurs during cellularization, when lateral cell membranes and adherens junctions are first being deposited, allowing us to investigate the importance of membrane architecture and specific junctional domains for signaling. By measuring Notch dependent transcription in live embryos we established that it initiates while lateral membranes are growing and that signalling onset correlates with a specific phase in their formation. However, the length of the lateral membranes per se was not limiting. Rather, the adherens junctions, which assemble concurrently with membrane deposition, contributed to the high levels of signalling required for transcription, as indicated by the consequences from depleting α-Catenin. Together, these results demonstrate that the establishment of lateral membrane contacts can be limiting for Notch trans-activation and suggest that adherens junctions play an important role in modulating Notch activity.

Competing Interest Statement

The authors have declared no competing interest.

Copyright 
The copyright holder for this preprint is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made available under a CC-BY-NC-ND 4.0 International license.
Back to top
PreviousNext
Posted May 26, 2021.
Download PDF
Email

Thank you for your interest in spreading the word about bioRxiv.

NOTE: Your email address is requested solely to identify you as the sender of this article.

Enter multiple addresses on separate lines or separate them with commas.
Membrane architecture and adherens junctions contribute to strong Notch pathway activation
(Your Name) has forwarded a page to you from bioRxiv
(Your Name) thought you would like to see this page from the bioRxiv website.
CAPTCHA
This question is for testing whether or not you are a human visitor and to prevent automated spam submissions.
Share
Membrane architecture and adherens junctions contribute to strong Notch pathway activation
Julia Falo-Sanjuan, Sarah J. Bray
bioRxiv 2021.05.26.445755; doi: https://doi.org/10.1101/2021.05.26.445755
Digg logo Reddit logo Twitter logo Facebook logo Google logo LinkedIn logo Mendeley logo
Citation Tools
Membrane architecture and adherens junctions contribute to strong Notch pathway activation
Julia Falo-Sanjuan, Sarah J. Bray
bioRxiv 2021.05.26.445755; doi: https://doi.org/10.1101/2021.05.26.445755

Citation Manager Formats

  • BibTeX
  • Bookends
  • EasyBib
  • EndNote (tagged)
  • EndNote 8 (xml)
  • Medlars
  • Mendeley
  • Papers
  • RefWorks Tagged
  • Ref Manager
  • RIS
  • Zotero
  • Tweet Widget
  • Facebook Like
  • Google Plus One

Subject Area

  • Developmental Biology
Subject Areas
All Articles
  • Animal Behavior and Cognition (3484)
  • Biochemistry (7336)
  • Bioengineering (5308)
  • Bioinformatics (20225)
  • Biophysics (9991)
  • Cancer Biology (7717)
  • Cell Biology (11280)
  • Clinical Trials (138)
  • Developmental Biology (6426)
  • Ecology (9930)
  • Epidemiology (2065)
  • Evolutionary Biology (13298)
  • Genetics (9354)
  • Genomics (12566)
  • Immunology (7687)
  • Microbiology (18979)
  • Molecular Biology (7428)
  • Neuroscience (40944)
  • Paleontology (300)
  • Pathology (1226)
  • Pharmacology and Toxicology (2132)
  • Physiology (3146)
  • Plant Biology (6850)
  • Scientific Communication and Education (1272)
  • Synthetic Biology (1893)
  • Systems Biology (5306)
  • Zoology (1087)