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Abstract

Increasing life expectancy is prompting the need to understand how the brain changes during 

healthy aging. Research utilizing Electroencephalography (EEG) has found that the power of alpha 

oscillations decrease from adulthood on. However, non-oscillatory (aperiodic) components in the 

data may confound results and thus require re-investigation of these findings. The present report 

aims at analyzing a pilot and two additional independent samples (total N = 533) of resting-state 

EEG from healthy young and elderly individuals. A newly developed algorithm will be utilized that 

allows the decomposition of the measured signal into aperiodic and aperiodic-adjusted signal 

components. By using multivariate sequential Bayesian updating of the age effect in each signal 

component, evidence across the datasets will be accumulated. It is hypothesized that previously 

reported age-related alpha power differences will disappear when absolute power is adjusted for the 

aperiodic signal component. Consequently, age-related differences in the intercept and slope of the 

aperiodic signal component are expected. Importantly, using a battery of neuropsychological tests, 

we will assess how the previously reported relationship between cognitive functions and alpha 

oscillations changes when taking the aperiodic signal into account; this will be done on data of the 

young and aged individuals separately. The aperiodic signal components and adjusted alpha 

parameters could potentially offer a promising biomarker for cognitive decline, thus finally the test–

retest reliability of the aperiodic and aperiodic-adjusted signal components will be assessed.
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1. Introduction

Alpha oscillations are by far the most widely studied phenomenon in human electrophysiology 

(EEG). Since the beginnings of EEG research in the 1920s, individual differences in alpha 

oscillations have been linked to variations in behavioral phenotypes and physiology (e.g., ref [1–3]). 

The alpha band is commonly defined as oscillatory activity in the range of frequencies between 8 

and 13 Hz (e.g., ref [4,5]). These oscillations are typically observed over parietal and occipital 

electrode sites (e.g., ref  [6,7]) and show the highest test–retest reliability of all frequency bands 

(e.g., ref [8]: r = 0.72-0.80). A robust finding is that alpha power decreases during task engagement 

(e.g., alpha event-related desynchronization). This led to the classical view that alpha amplitude 

reflects the idle state of cortical areas (for reviews see refs [1,3]). Moreover, modulations of alpha 

power have been linked to important concepts such as inhibition ([9], ,for reviews see refs 

[3,4,10,10]), attention [3,11], and memory retrieval [12].

Alpha oscillations are of particular interest in aging research because studies have repeatedly 

demonstrated that the alpha rhythm’s frequency slows (for a review, see ref [2]) and the alpha band 

power’s amplitude decreases with age [6,13–17]. A study investigating alpha power on source 

rather than on scalp level found age-related decreases particularly in posterior and occipital brain 

regions [13]. Furthermore, aging studies have often divided the alpha band into lower alpha and 

upper alpha sub-bands because these sub-bands have been linked to distinct cognitive functions 

[2,5,14,16,18]. Whereas the lower alpha band has been associated with attentional processing [18], 

age effects are found particularly in the upper alpha band and interpreted as changes of memory 

operations [14,16]. 

However, these results and interpretations of age-related alpha power changes need to be evaluated 

critically. Previous findings have demonstrated a slowing of the alpha rhythm with increasing age 
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(e.g., ref [2]), so an age-related shift of the alpha peak frequency could lead to a reduction of alpha 

power as measured by fixed frequency bands. This may happen when the individual frequency 

center nears the lower limit of the fixed frequency band and therefore no longer captures the 

individual alpha oscillation (for a graphical illustration, see also Fig. 1 in [19]). Thus, the frequency 

band definition should be based on the individual alpha frequency center to rule out this confound.

More importantly, recent development in EEG signal processing techniques further question earlier 

findings of decreased alpha power in age [19]. It was demonstrated that the band power of the 

observed frequency consists not only of a periodic, or oscillatory, component but also of an 

aperiodic, or non-oscillatory, background signal. Therefore, band power should be investigated 

relative to this aperiodic signal [19–24]. The aperiodic signal is characterized by its shape (1/f), as 

its amplitude decreases with higher frequencies f (see Figure 1). This is based on the observation 

that EEG power spectra exhibit a static increase in power towards lower frequencies that has been 

shown to follow an underlying broadband power law with a negative slope [25]. In recent years, the 

aperiodic signal has attracted increasing attention from the research community. Whereas the offset 

of the aperiodic signal has been linked to general spiking activity (e.g., ref [26]) and to the blood-

oxygen-level-dependent signal in functional magnetic resonance imaging [27] (fMRI), the slope has 

been associated with the synchronicity of activity in the underlying neural population [25,28]. A 

more asynchronous activation pattern has been shown to yield a flatter aperiodic slope. 

Furthermore, the aperiodic slope may be linked to the excitation–inhibition balance of 

transmembrane currents [29]. AMPA receptor mediated excitatory currents show high power at 

lower frequencies with a fast decay towards higher frequencies, leading to a steeper slope. GABA 

receptor mediated inhibitory currents show a slower decay of power towards higher frequencies, 

yielding a flatter slope for the aperiodic signal. 

Thus, decomposing aperiodic activity from periodic appears mandatory in aging research as the 

aperiodic signal itself might change with increasing age [23]; hence, it may change the shape of the 
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neural power spectrum even though the oscillatory pattern remains stable. Conventional analyses 

are prone to conflating periodic and aperiodic signal components and thus may lead to fallacious 

conclusions (see ref [19] for a discussion on further potential misinterpretations) and 

neurophysiological interpretations about age-related changes of alpha oscillations.

In this study we address this problem by directly comparing previously established age differences 

in unadjusted alpha power, here referred to as total alpha power, to age effects in the true periodic 

component of the alpha band, here referred to as aperiodic-adjusted alpha power and the aperiodic 

signal components, here referred as aperiodic intercept and aperiodic slope (see Table 2 for an 

overview of all terms related to the extracted alpha parameters). 

So far, only one study compared age effects in the decomposed EEG signal using a small sample of 

16 younger and 14 elderly subjects [19]. While a significant age-related decrease in aperiodic signal 

components, total and aperiodic-adjusted alpha power was reported; no statistical test was applied 

to investigate the particular contrast of age effects on total alpha power with age effects on 

aperiodic-adjusted alpha power. Thus, it remains largely unknown whether the age effects found on 

alpha power are mainly driven by aperiodic, periodic or both signal components. A rigorous 

statistical evaluation of age effects in alpha power, taking the aperiodic signal into account within a 

reasonably powered sample that allows to draw reliable and robust conclusions about these specific 

age differences, awaits demonstration.

The present report will fill this gap by evaluating a large sample of 100 young and 100 elderly 

subjects and employ multivariate statistical models to compare age differences in parieto-occipital 

total alpha power, aperiodic-adjusted alpha power, and aperiodic signal components. The 

multivariate approach is able to account for the potential correlation between the total and 

aperiodic-adjusted power measures. Total alpha power will be extracted using conventional spectral 

analysis, which does not adjust for the aperiodic background signal. Aperiodic-adjusted alpha 
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power and aperiodic background signal components will be extracted using the Fitting Oscillations 

One Over F [19] (FOOOF) algorithm. Figure 1 illustrates the resulting parametrization of an EEG 

power spectrum. Alpha power measures will be extracted from a canonically defined fixed 

frequency band (8–13Hz) and from the individual anchor point (the individual alpha frequency IAF, 

see Table 2 for more details) to rule out confounds from a slowing IAF on the observed alpha 

power. Spatial patterns for each parameter will be examined by including all electrodes on the full 

scalp. Source analysis will enable the exploration of the neural generators of the aperiodic and 

aperiodic adjusted parameters. Results will be validated using a second, openly available dataset 

derived from 153 young and 74 elderly participants [30].

To qualify as biomarker of cognitive decline, a second key aspect is the reliability of the aperiodic 

signal or aperiodic-adjusted periodic activity, which remains unaddressed at present. Reliability 

estimates represent the ratio of within-subject variance (i.e., the measurement error) to the between-

subject variance (i.e., difference between age groups). If the within-subject variance explains a large 

proportion of the total observed variance, drawing any conclusion about between-subject 

differences is precluded [31]. Neglecting reliability measures can thus result in costly studies that 

are unable to produce informative outcomes [31]. Therefore, it is a fundamental requirement to 

estimate reliability for these newly emerging measures.

In the current study, the test–retest reliability of the aperiodic intercept and slope and of the total 

and aperiodic-adjusted posterior alpha power will be assessed. The sample of 100 young and 100 

elderly individuals will be used, from whom data was acquired at two consecutive measurements 

separated by a week.

Finally, the association between the decomposed power spectrum and cognitive functions will be 

examined. Literature has established a link between age-related decline in resting total alpha power 

with diminished attention and working memory performance [2,13,14,16,32,33]. However, these 
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well-established findings were challenged by demonstrating that age-related cognitive decline is 

linked to a flattening of the aperiodic slope [23]. Thus, it remains unclear to what extent this 

relationship between alpha power and cognitive performance is in fact confounded by the aperiodic 

slope. To address this, neuropsychological tests assessing attention and working memory 

performance will be conducted in this sample of 100 young and 100 elderly participants. 

Subsequently, relationships to different measures of alpha power and the aperiodic signal will be 

examined.

The analysis code for the present study was implemented in a pilot dataset [34] before either of the 

two larger, independent datasets will be accessed or analyzed. All relevant analysis parameters will 

be fixed before conducting the main study, so there will be no degrees of freedom in the planned 

analyses, and overfitting errors will be minimized. Sequential Bayesian updating will be employed 

by fitting a Bayesian regression model to each of the three datasets and passing posterior 

distributions of each analysis to the next analysis as priors. Thus, evidence can be accumulated 

across the datasets. This will produce greater statistical power than independent analyses and more 

robust outcome parameters.

Based on previous literature and pilot data results, the present hypotheses are as follows:

 H1a: The alpha rhythm is slower (i.e., has lower alpha peak frequency) in the elderly group 

than in the young group.

 H1b: In the canonical, lower and upper alpha band, there is lower total power in the elderly 

group than in the young group.

The age differences in alpha power change when adjusting for the aperiodic signal:

 H2a: The upper and canonical alpha bands exhibit less age difference in aperiodic-

adjusted alpha power than in total alpha power.
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 H2b: The lower alpha band exhibits greater age difference in aperiodic-adjusted alpha 

power than in total alpha power.

Age differences in the aperiodic parameters are expected as follows:

 H3a: The aperiodic intercept is lower in the elderly group than in the young group.

 H3b: There is a flatter aperiodic signal (i.e., a smaller aperiodic slope) in the elderly group 

than in the young group.

With respect to the test-retest reliability:

 H4a: Both age groups exhibit a good to excellent test–retest reliability (i.e., intraclass 

correlation coefficient, ICC, > 0.6) for the total and aperiodic-adjusted alpha parameters 

and for the aperiodic slope and intercept.

 H4b: There are equivalent levels of test–retest reliability in the total and aperiodic-

adjusted alpha parameters and in the aperiodic slope and intercept in both age groups.

With respect to the relationship between cognitive scores and the different parieto-occipital alpha 

power and aperiodic signal measures:

 H5a: Total alpha power is positively related to attention and working memory 

performance.

 H5b: This relationship is weaker when applied to aperiodic adjusted alpha power.

 H5c: The aperiodic signal slope is positively related to attention and working memory 

performance.
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Our findings would have important implications for the interpretation of the underlying 

neurophysiological mechanisms of aging.

If we can demonstrate that the previously reported age-related decrease in alpha power is in fact 

confounded by alterations in the aperiodic signal (i.e., a decreased aperiodic intercept and a flattening 

of the aperiodic slope), as hypothesized in our present study, these results would challenge current 

neurophysiological interpretations of age-related decreases in alpha power (e.g., refs [13,35–38]). 

These interpretations link age-related decline in resting state alpha power to an increased excitability 

of thalamo-cortical and cortico-cortical interactions [39,40]. This increased excitability can be 

explained by the age-related gradual loss of cholinergic function in the basal forebrain (e.g., refs 

[41,42]). Importantly, experimentally impairing cholinergic forebrain function in animal models led 

to decreases in alpha power (e.g., refs [43,44]). In humans, this is consistent with observed decreases 

of alpha power in patients suffering from Alzheimer dementia and mild cognitive impairment, which 

are conditions that are characterized by impaired cholinergic forebrain function (e.g., refs [45–

49]). The basal forebrain forms main cholinergic inputs to thalamic nuclei [50], which are considered 

key structures in the generation of cortical alpha oscillations (e.g., refs [51,52]). Thus, it is 

hypothesized that the decreased cholinergic input leads to decreases of power in the cortical alpha 

oscillations. This hypothesis is supported by work in animal models, which demonstrates that 

stimulation of cholinergic receptors in the reticular thalamic nucleus and thalamo-cortical cells 

produces alpha oscillatory activity [53].

If the decomposition of the measured EEG signal in the present study will reveal that age-related 

differences only relate to the aperiodic signal component but diminish for the periodic signal 

component (i.e., adjusted alpha power), as hypothesized in our present study, the current cholinergic 

theory on the effects of aging on the EEG signal needs to be reconsidered. 

An age-related decrease in the aperiodic signal intercept would indicate that age differences in the 

measured EEG signal are rather caused by decreased neuronal population spiking activity [19,54]. 

Decreases in the aperiodic slope can be summarized in the neural noise hypothesis of aging [26]. This 
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hypothesis states that age-related cognitive decline is caused by increased occurrence of temporally 

decorrelated spikes (i.e., noise) which are not involved in encoding of information or network 

communication. These irregular spikes decouple the synchronization mechanisms between brain 

regions, which leads to communication errors. This increased occurrence of errors in the 

communication between brain regions in turn result in age-related cognitive deficits [26]. The 

irregular spikes are caused by greater local positive excitatory feedback, driven by an increased 

excitation-inhibition ratio [26]. An increased neural excitation-inhibition ratio has been linked to a 

flattened aperiodic slope both in computational models and animal studies [29]. In line with this 

theory are findings that show the decrease of the aperiodic slope to be associated with more 

asynchronous activation patterns in neural populations [25,28]. If the present study will demonstrate 

that resting alpha oscillatory power associations with cognitive scores are also conflated with effects 

in the aperiodic signal, it would further support the theory that increased neural noise is the driving 

physiological mechanism underlying age-related cognitive decline.

Taken together, preserved alpha power together with age differences in the aperiodic signal 

component would indicate that previous interpretations of age difference in the measured EEG signal 

are rather caused by different, so far neglected physiological mechanisms. Thus, age-related changes 

in neural noise need to be incorporated into the above described existing interpretations.
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1.1 Summary table

Hypotheses Sampling 
plan (N, 
power 
analyses)

Statistical analyses Pre-specification of which 
outcomes confirms hypothesis

H1a: The alpha rhythm is 
slower in the elderly group 
than in the young group

Study 1: 
N=200 & 
Study 2: 
N=215, 
see 
section 
2.10

Bootstrap statistics on 
IAF (permute age 
labels 10000 times) 
and univariate 
Bayesian regression 
model with predictor 
age (see sections 2.5 
and 2.6).

Real mean difference not within 
bootstrapped confidence interval; 
combined Bayesian posterior 
credible interval does not include 0. 

H1b: There is lower total 
alpha power in the older 
group than in the young 
group, in each defined 
alpha band (canonical, 
lower & upper)

Study 1: 
N=200 & 
Study 2: 
N=215, 
see 
section 
2.10

Bootstrap statistics on 
each measure 
(permute age labels 
10000 times) and 
bivariate Bayesian 
regression model with 
predictor age (see 
sections 2.5 and 2.6).

Real mean difference not within 
bootstrapped confidence interval; 
combined Bayesian posterior 
credible interval does not include 0. 

H2a: In the upper and 
canonical alpha band, 
there are reduced age 
difference in aperiodic-
adjusted alpha power 
compared to age 
differences in total alpha 
power.

Study 1: 
N=200 & 
Study 2: 
215, see 
section 
2.10

Bootstrap statistics on 
each measure 
(permute age labels 
10000 times) and 
bivariate Bayesian 
regression model with 
predictor age. 
Compare posterior 
distributions of age on 
each of the parameter. 
Additionally, calculate 
effect size (Cohen’s d) 
for each age effect 
(see sections 2.5 and 
2.6).

Bayes factor (BF) for hypothesis 
total alpha power age effect 
parameter > adjusted alpha power 
age effect parameter indicates strong 
evidence (BF >10) [55]

H2b: In the lower alpha 
band, there are increased 
age difference in 
aperiodic-adjusted alpha 
power compared to age 

Study 1: 
N=200 &
Study 2: 
N=215, 
see 

Bootstrap statistics 
(permute age labels 
10000 times) and 
bivariate Bayesian 

Bayes factor for hypothesis total 
alpha power age effect parameter < 
adjusted alpha power age effect 
parameter indicates strong evidence 
(BF >10) [55]
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differences in total alpha 
power.

section 
2.10

regression with 
predictor age
Compare posterior 
distributions of age on 
each of the parameter. 
Additionally, calculate 
effect size (Cohen’s d) 
for each age effect 
(see sections 2.5 and 
2.6).

H3a: The aperiodic 
intercept is lower in the 
elderly group than in the 
young group.

Study 1: 
N=200 & 
Study 2: 
N=215, 
see 
section 
2.10

Bootstrap statics 
(permute age labels 
10000 times) and 
bivariate Bayesian 
regression model with 
predictor age (see 
sections 2.5 and 2.6).

Real mean difference not within 
bootstrapped confidence interval; 
combined Bayesian posterior 
credible interval does not include 0. 

H3b: There is a flatter 
aperiodic signal in the 
elderly group than in the 
young group

Study 1: 
N=200 & 
Study 2: 
N=215, 
see 
section 
2.10

Bootstrap statics 
(permute age labels 
10000 times) and 
bivariate Bayesian 
regression model with 
predictor age (see 
sections 2.5 and 2.6).

Real mean difference not within 
bootstrapped confidence interval; 
combined Bayesian posterior 
credible interval does not include 0. 

H4a: We expect a good to 
excellent test-retest 
reliability for the total and 
aperiodic adjusted alpha 
parameters as well as the 
aperiodic slope and 
intercept.

N=200, 
see 
section 
2.10

One-way random-
effects model 
intraclass correlation 
coefficients for each 
measure (see section 
2.8)

Intraclass correlation (ICC) > 0.6

H4b: Equivalent levels of 
test-retest reliability of 
total and aperiodic 
adjusted alpha parameters 
as well as the aperiodic 
slope and intercept in both 
age groups.

N=200, 
see 
section 
2.10

Equivalence tests on 
ICC measures of both 
age-groups within 
each variable. 
Therefore observed 
ICC’s are tested 
against the smallest 
effect size of interest 
(+-0.1, see section 
2.8.1)

Reliability difference between the 
two groups or conditions is smaller 
as the smallest effect size of interest 
(+- 0.1). 
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H5a: Total alpha power is 
positively related to 
attention and working 
memory performance

N= 200, 
see 
section 
2.10

Spearman correlation 
between total alpha 
power measures and 
digit span & TMT 
scores (see section 
2.9)

Significant correlation coefficient. 

H5b: This relationship is 
weaker when applied to 
aperiodic adjusted alpha 
power

N= 200, 
see 
section 
2.10

Spearman correlation 
between aperiodic 
adjusted alpha power 
measures and digit 
span & TMT scores. 
One sided test for 
dependent, 
overlapping 
correlation 
coefficients is applied 
subsequently (see 
section 2.9).

Correlation coefficient between 
memory performance and adjusted 
alpha is significantly smaller than 
correlation coefficient between 
memory performance and total alpha 
power. 

H5c: The aperiodic signal 
slope is positively related 
to attention and working 
memory performance.

N= 200, 
see 
section 
2.10

Spearman correlation 
between the aperiodic 
signal slope parameter 
and digit span & TMT 
scores (see section 
2.9)

Significant correlation coefficient. 

Table 1. Summary of each hypothesis, the according sampling plan, proposed statistical analyses and 
a pre-specification of which outcome will confirm or disconfirm the specific hypothesis

2. Methods
2.1. Datasets

This study will use data that is currently being recorded in our laboratory as part of a larger project. 

The larger project aims to quantify healthy-aging-related task performance and neuroelectric 

correlates in seven EEG tasks as well as in EEG resting-state recordings. The tasks aim to measure 

working memory, processing speed, and inhibitory control. One hundred healthy elderly subjects 

(60–80 years) and 100 healthy young participants (18–35 years) will be recruited. Exclusion criteria 

are suffering from psychiatric symptoms, severe neurological disorders such as epilepsy, prior head 
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injuries, a stroke, a transient circulatory disorder of the brain, diagnosis of dementia, Huntington's 

disease, Parkinson's disease, current use of psychotropic drugs such as antidepressants, alpha-

agonists, neuroleptics, and mood stabilizers, and intake of any recreational drugs. Additionally, 

subjects whose score in the mini-mental state examination [56] (MMSE) is below 27 will be excluded 

due to the high risk of dementia or mild cognitive impairment [57]. Each subject will take part in two 

experimental sessions following the identical EEG protocol. This is done to assess the test–retest 

reliability of all dependent measures. The sessions are scheduled with an inter-session interval of one 

to two weeks and at the same time of the day. The local ethics committee has approved the project, 

and all participants will give their written informed consent to participate in the study. The present 

study will analyze resting-state EEG data of participants who take part in both recording sessions: 

400 recordings of 200 participants. 

Additionally, a second independent dataset will serve the validation of the results obtained in our 

laboratory. This openly available, published dataset [30] contains resting-state EEG measurements of 

215 healthy participants comprising a young and an elderly group (Nyoung = 153, mean age = 25.1 

years, sd = 3.1, age range = 20–35 years, 45 female; Neldery = 74, mean age = 67.6 years, sd = 4.7, age 

range = 59–77 years, 37 female). These two datasets have not been evaluated in any way and will be 

analyzed only after in principle acceptance of the present manuscript.

A third dataset was used for the pilot analysis (see below). This dataset originates from a previous 

study [34] and contains EEG recordings of 118 subjects (Nyoung= 63, mean age = 23.37 years, sd = 

3.91, age range = 18–35 years, 40 female; Nold = 55, mean age = 68.40 years, sd = 3.29, age range = 

61–77 years, 23 female). More details about the pilot dataset are provided below (see section 3.1).

2.2. Experimental setup and procedure

Prior to the EEG assessment, participants perform a cognitive test battery. During EEG acquisition 

individuals are comfortably seated in a chair in a sound‐ and electrically shielded Faraday recording 
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cage. The cage is equipped with a chinrest to minimize head movements and a 24-inch monitor 

displaying a fixation cross. Participants are informed that EEG is recorded while they rest with their 

eyes alternately open or closed. Instructions to open or close the eyes are automatically presented via 

cage intern loudspeakers. Adopting the recording protocol from previous studies [34,58], within five 

repetitions, participants are asked to fixate for 20 s followed by 40 s of eyes closed recordings. This 

results in 100 seconds eyes open and 200 seconds eyes closed data available for further analysis.

2.3. Cognitive assessment

The cognitive assessment will include the Trial making Test A / B (TMT, e.g., ref [59]) and digit span 

forward / backward task [60].

TMT A/B task

In the TMT A task, the participant is asked to increasingly connect a series of 25 spatially distributed 

circled numbers using a pencil. In the B part, 25 circled numbers and letters need to be connected 

alternatingly in a numerical and alphabetical order. Time to completion is measured by the 

experimenter. The subtest TMT A measures motor speed and visuospatial attention, the B version 

further captures working memory operations such as executive control (e.g., refs [61,62]). The score 

of the TMT A and B versions are defined as the time to completion in each condition. Additionally, 

the ratio of TMT B / TMT A will be calculated as a third score. This is thought to minimize visual 

attention components and to be a more direct indicator of working memory function [63].

Digit span task

The digit span task constitutes a forward and backwards version. A sequence of numbers is read to 

the participant who is then asked to repeat the sequence either forward or in reverse order. The length 

of the sequence increases until the participant fails to recall the correct order twice (for more details, 

see ref [60]). The forward task is designed to measure attention and short term memory, or the 
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functioning of the phonological loop component of Baddely’s working memory model [64]. The digit 

span backwards task captures working memory processes such as executive control functions (e.g., 

refs [65,66]). The performance score (forward and backward) will be defined as the number of 

correctly recalled sequences in each condition.

2.4. Electroencephalography acquisition and preprocessing

The high‐density EEG is recorded at a sampling rate of 500 Hz, using a 128‐channel EEG Geodesic 

Sensor Net system (Electrical Geodesics, Eugene, Oregon). The recording reference is at Cz (vertex 

of the head), and impedances are kept below 40 kΩ. All subsequent analyses will be performed using 

MATLAB 2018b (The MathWorks, Inc., Natick, Massachusetts, United States). EEG data will be 

automatically preprocessed using the current version (2.5) of the MATLAB toolbox Automagic [67]. 

The analysis pipeline will consist of the following steps. First, error-prone channels will be detected 

by the algorithms implemented in the eeglab plugin clean_rawdata 

(http://sccn.ucsd.edu/wiki/Plugin_list_process). An electrode is defined as an error-prone when 

recorded data from that electrode is correlated at less than 0.85 to an estimate based on neighboring 

electrodes. Furthermore, an electrode is defined as error-prone if it has more line noise relative to its 

signal than all other electrodes (4 standard deviations). Finally, if an electrode has a longer flat line 

than 5 s, it is considered error prone. These error-prone electrodes will automatically be removed and 

later be interpolated using a spherical spline interpolation (EEGLAB function eeg_interp.m). This 

interpolation will be performed as a final step before the automatic quality assessment of the EEG 

files (see below). Next, data will be filtered using a high-pass filter (cutoff frequency (-6 dB): 0.5 Hz) 

and Zapline [68] will be applied to remove line noise artifacts, removing 7 power line components. 

Subsequently, independent component analysis (ICA) will be performed on temporary highpass 

filtered data (cutoff frequency (-6 dB): 1 Hz). Components reflecting artifactual activity will be 
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classified by the pre-trained classifier ICLabel [69]. Each component being classified with a 

probability rating >0.8 for any class of artifacts (line noise, channel noise, muscle activity, eye activity 

or heart artifacts) will be removed from the data. The retained components will be back-projected on 

the 0.5 Hz high-pass filtered data. Finally, residual bad electrodes will be excluded if their standard 

deviation exceeds a threshold of 25 μV. After this, the pipeline automatically assesses the quality of 

the resulting EEG files based on four criteria. First, a data file will be marked as bad-quality EEG and 

will not be included in the analysis if the proportion of high-amplitude data points in the signals (>30 

μV) is larger than 0.2. Second, more than 20% of time points show a variance larger than 15 μV 

across channels. Third, 30% of the electrodes show high variance (>15 μV). Fourth, the ratio of bad 

electrodes is higher than 0.3. This standardized and objective preprocessing pipeline and data quality 

metrics remove all degrees of freedom from the preprocessing. The analysis code for the planned 

preprocessing can be found in an OSF repository (https://osf.io/8e2kd/) and will be applied on all 

three investigated datasets. After this automatic preprocessing step, the resulting continuous EEG 

data will be down-sampled to 125 Hz, and the number of electrode will be reduced to a subset of the 

70 electrodes that closely match the standard 10-10 electrode locations [70]. This will be done to 

reduce computational costs for parametrization of the neural power spectra and estimation of the 

Bayesian statistical models. It will also allow direct comparison of EEG from the three datasets using 

different cap layouts: ours described above, that of the validation dataset [30] and that of the pilot 

dataset [34]. Finally, the data will be re-referenced to a common average reference. The first and the 

last 2 s of each eyes-closed block will be discarded to exclude motor activity related to opening and 

closing the eyes and auditory activity due to the prompt from the loudspeakers. The remaining data 

will be concatenated, resulting in a total of 180 seconds of continuous EEG data. Subsequently, the 

data is further segmented into epochs of 2 sec length. EEG epochs exceeding a 土90μV amplitude 

threshold will be excluded from further analysis. We note that, because several quality metrics from 

the Automagic toolbox were used for selecting EEG data, it is unlikely that at this point a significant 

number of EEG epochs will be excluded. Nevertheless, we will exclude subjects from the analysis 
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for whom less than 50% of the epochs for the eyes closed condition remain available for further 

analyses. 

2.5. Spectral analysis

Spectral analysis will be performed on artifact-free 2 sec segments from five blocks of the eyes-closed 

condition. Only data from the eyes closed condition will be analyzed, as this data contains fewer 

artifacts and generally shows the strongest alpha amplitudes. Additionally, eyes-closed data has been 

previously used to establish a link between age and alpha power [6,13,14,17]. Power spectral densities 

(PSDs) will then be calculated using Welch’s Method [71] as implemented in the EEGLab toolbox 

[72] (by default, non-overlapping windows). Zero padding will be applied to provide a frequency 

resolution of 0.25 Hz in the 2 s time windows. Averaging the individual PSDs of each window results 

in a smoothed power spectrum that complies with the requirements of the FOOOF algorithm used 

subsequently (see below, Figure 1). Additionally, PSDs will be transformed to log scale, to make 

results equally scaled to outputs from the FOOOF algorithm, which only operates in log space. In the 

following, the two approaches to extract total alpha power and the adjusted alpha power together with 

the aperiodic signal are described. Table 2 provides an overview of all extracted parameters.
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Table 2

Overview of extracted parameters

Parameter of uncorrected 
(“total”) PSD

Parameter from aperiodic 
adjusted PSD

Description

Total canonical alpha 
power

Aperiodic adjusted 
canonical alpha power

Averaged log power in 8-13Hz 
window

Total lower alpha power Aperiodic adjusted lower 
alpha power

Averaged log power in window [-4 Hz 
IAF] 

Total upper alpha power Aperiodic adjusted upper 
alpha power

Averaged log power in window [ IAF 
+2Hz]

Individual alpha frequency Individual alpha frequency Frequency at maximum power in 
search window 7-14Hz

N/A Aperiodic intercept Intercept parameter of the aperiodic 
signal component

N/A Aperiodic slope Slope parameter of the aperiodic 
signal component

Note: Individual alpha frequency is not affected by the adjustment for the aperiodic signal. If the 
search criteria in the total power spectrum cannot be met, IAF will also not be taken from the 
flattened (aperiodic adjusted) power spectrum. Aperiodic intercept and slope are not applicable on 
the uncorrected PSD.

2.5.1. Computation of total alpha power

In this standard analysis approach, no adjustment will be made for the aperiodic signal, as it was 

used throughout previous literature. First, the IAF will be determined by extracting the maximum 

power value in between a lower and upper frequency limit [2]. Following previous work, these 

frequencies limits will be set to 7 and 14 Hz [73,74]. If this maximum is at the border of the search 

range, no IAF will be extracted for that subject and the corresponding data will be excluded from 

further analysis (see also exclusion criteria in section 2.5.4). Therefore, the effective search range 

for the IAF will be between 7.5 and 13.5 Hz. If an IAF can be identified, additional alpha sub-bands 

will be extracted: total lower alpha power [-4 Hz IAF] and total upper alpha power [IAF +2 Hz] 

will be calculated by averaging power in the above-defined range in reference to the IAF [2].

Additionally, the commonly used total canonical alpha band power will be calculated by averaging 

power in the range fixed of 8 to 13 Hz [13].
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2.5.2. FOOOF algorithm

The FOOOF algorithm [19] parameterizes the power spectrum to separate oscillations from the 

aperiodic background signal. The algorithm estimates oscillatory peaks that are superimposed on the 

aperiodic background signal (see Figure 1) and therefore measured relative to this rather than to the 

absolute zero. Thus, it parametrizes the PSD by iteratively fitting the aperiodic background curve (L) 

to the observed smoothed spectral signal, resulting in two parameters: the aperiodic intercept b and 

the aperiodic exponent χ (i.e., slope, the smaller χ, the flatter the spectrum). 

𝐿 = 𝑏 ― log(𝑘 + 𝐹χ )

Here, F represents the vector of input frequencies and k the “knee” parameter, which is not further 

discussed here, as it is set to 0 in the proposed analysis (i.e., no bend of the aperiodic component is 

additionally modeled in the data, which is the default state of the FOOOF algorithm).

In order to extract oscillatory components, this aperiodic background signal is subtracted from the 

power spectrum. Gaussians are iteratively fitted to the remaining signal and subsequently subtracted 

whenever data points exceed two standard deviations of the data. The Gaussians represent the true 

oscillatory components in the data; if data points are below the specified threshold, they are 

considered as noise. This results in a data-driven number of Gaussians, each parameterized by the 

frequency center, power relative to the aperiodic signal and the frequency bandwidth. The power 

spectrum is therefore modeled by

𝑃 =  𝐿 + ∑𝑁
𝑛=0 𝐺𝑛 + 𝑚ε,

where Gn represents the nth Gaussian, and m the scaling factor of the noise ε. Note that this description 

of the algorithm is simplified; for a more detailed definition, see ref [19]. 
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In the planned analyses, the frequency range of 2 to 40 Hz will be passed to the algorithm because 

very low frequencies may lead to overfitting of noise as small bandwidth peaks. The release 1.0.0 of 

the FOOOF toolbox from the github repository (https://github.com/fooof-tools/fooof) will be used, 

applying standard peak detection parameters (2 standard deviations above mean).

Figure 1: Illustration of a neural power spectrum (black line) and the various parameters extracted by 
the FOOOF algorithm. The yellow indicated canonical alpha band illustrates a fixed frequency band 
(e.g., the here used 8-13 Hz), the orange broadband alpha illustrates the here used band based on the 
IAF (-4Hz to +2Hz), which better captures the individual alpha oscillation.

To correct the above-described total alpha power measures (see 2.5.1) for the aperiodic signal, the 

aperiodic signal will be reconstructed by its parameters. Subsequently, the aperiodic signal will be 

subtracted from the total power spectrum to receive an aperiodic adjusted power spectrum. Using this 

power spectrum, adjusted alpha power values (adjusted canonical alpha power, adjusted lower alpha 

power, adjusted upper alpha power) will be calculated in the frequency ranges described above 

(2.5.1).
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2.5.3. Cluster-wise analysis

To test age effects in electrode sites derived from literature, electrode-cluster-based analyses will be 

performed. This cluster will be based on data from the parietal and occipital electrodes: E72 (POz), 

E75 (Oz), E62 (Pz), E67 (PO3), E77 (PO4), here referred to as the parieto-occipital cluster (see Figure 

3a). These electrodes were chosen because of the strong prominence of Oz and Pz electrodes in EEG 

alpha peak research [2] and previous findings for age effects on alpha band power in these electrodes 

(e.g., refs [6,14]). To account for individual anatomical differences and to create a more robust cluster, 

the three electrodes adjacent to Oz (E75) and Pz (E62) will be added (E72 (POz), E67 (PO3), E77 

(PO4)). All the parameters described above will be averaged within the cluster.

2.5.4. Exclusion criteria

Before statistical analyses are performed, data will be excluded if any the following criteria applies:

 The fit of the parameterized power spectrum to the original PSD is below a cut-off of R2 < 

0.9. If the fit of the parametrized spectrum is below the specified cut off, total alpha parameters 

will be still included, as these are not contingent on the parametrization of the FOOOF 

algorithm. 

 Any of the extracted parameters exceed a threshold of 3 standard deviations above or below 

the mean of the sample.

 No individual alpha peak can be detected. If no alpha peak can be detected, aperiodic signal 

components of the according subject will still be used, as the aperiodic signal components do 

not depend on the individual alpha peak detection.

 EEG data file is rated “bad” by the preprocessing pipeline.

 Less than 50% artifact-free data.

These first three criteria will be applied within data of each electrode separately. 
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2.6 Statistical analyses of age differences

To correct for multiple comparisons in the statistical analyses, the significance level will be adjusted. 

We assume a high correlation between the eleven outcome variables, as many of the dependent 

variables represent different characteristics of the individual alpha oscillations. To account for this, 

we will first calculate the effective number of tests of all dependent variables using Nyholt’s approach 

[75]. Following this approach, the significance level (0.05) will then be adjusted using Šidák-

Correction [75]. Subsequently, the confidence intervals of the bootstrap statistics (see 2.6.1) as well 

as the credible intervals (CIs) of the Bayesian posterior distributions (see 2.6.2) will be defined based 

on the newly calculated levels of significance.

Besides the electrode cluster based analysis, we will also investigate the spatial distribution of all 

statistical parameters on full scalp level. To correct for multiple comparisons we will apply a non-

parametric cluster-based permutation analysis. This will be done using the ft_freqstatistics function 

implemented in FieldTrip [76].

2.6.1 Bootstrap analysis

For each dataset, robust and assumption free bootstrap statistics will be performed. Therefore the 

original data will be permuted 10000 times. To investigate age effects within each of the nine above-

described parameters (see Table 2), the mean age difference of all nine parameters will be calculated 

within each permuted dataset. Subsequently, the corrected confidence interval of the bootstrapped 

age differences will be calculated for each measure. If this interval does not include zero, the age 

difference will be considered significant.
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2.6.2 Bayesian regression model

In order to accumulate evidence across the three different dataset used in this study, an additional 

multivariate Bayesian generalized linear mixed model was formulated using the brms R package [77]. 

In this analysis, the model will first be fitted to the pilot data, using uninformative priors (see below). 

The extracted posteriors will not be interpreted but used as priors for the next analysis of the main 

dataset (N=200), which uses the same model as before. This will be done by applying the best fitting 

distribution to the posterior samples using the fitdistrplus R package [78]. The resulting posterior 

distributions of the main analyses will be approximated the same way and then serve as priors for the 

analyses of the validation dataset [30] (N=215). Only these resulting posterior distributions of the age 

effects will be interpreted as a final and more robust outcome.

The multivariate model was chosen as it is able to account for correlation between multiple dependent 

variables. Further advantages of this Bayesian approach are the facilitations to make inferences about 

the nonexistence of any effects and to statistically compare posterior distributions of the different 

parameters. In all planned analyses, the following model will be used. To account for the repeated 

measurement structure of the study design of the main analysis (two identical measurements of each 

subjects within 1-2 weeks) and the multiple dependent variables per subject, random intercepts are 

added for the participant IDs as shown in equation 1:

[𝑑𝑣′𝑠] ∼ 𝑎𝑔𝑒𝑔𝑟𝑜𝑢𝑝 +  (1 | 𝑝𝑎𝑟𝑡𝑖𝑐𝑖𝑝𝑎𝑛𝑡𝐼𝐷 )

This model will be fitted five times in each of the three datasets: for each of the three alpha band 

power parameters together with their according aperiodic adjusted equivalent (lower alpha, upper 

alpha, canonical alpha), for the aperiodic signal components together (intercept and slope) and for the 

IAF. This will allow the direct comparison between the resulting posteriors of each total alpha 
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parameter and its corresponding aperiodic adjusted equivalent using the brms hypothesis function 

(see below). 

If the corrected posterior CI of a parameter of the model will not include 0, it will be considered 

significant. This will allow to test hypotheses H1a, H1b, H3a and H3b. If the CI will include zero, 

the test for practical equivalence [55,79] will be used to assess whether the observed effect is in favor 

of the null hypothesis. The test for practical equivalence is based on the “HDI+ROPE” decision rule 

[55,79] to decide whether parameter values should be accepted or rejected against an explicitly 

formulated null hypothesis (i.e., region of practical equivalence “ROPE”). If the ROPE completely 

covers the 89% highest density interval (HDI, i.e., credible values of a parameter are inside the ROPE) 

the null hypothesis is accepted. According to Kruschke’s recommendation [79], the ROPE will be set 

to a negligible effect size (d = -0.1 to d = 0.1) [80]. Converting this effect size to the betas provided 

by the models (standard deviation of the dependent variable is 0.5, see below), yields a ROPE of -

0.05 to 0.05 [81].

Furthermore, to test whether age differences are changing when adjusting alpha parameters for the 

aperiodic signal (H2a & H2b), the according posterior distributions will be compared. Therefore, one 

sided Bayes Factors will be calculated for the hypotheses total alpha power age effect parameter > 

adjusted alpha power age effect parameter or total alpha power age effect parameter < adjusted 

alpha power age effect parameter, depending on the corresponding above-described hypotheses H2a 

and H2b. This will be done using the brms hypothesis function [77]. Additionally, to estimate how 

strongly the age differences change, Cohens d’s will be calculated and reported for the age differences 

within each alpha measure. 

In line with Gelman’s recommendations [82], the predictors and outcome variables of the Bayesian 

regression model will be scaled as follows: The binary parameter (age) will be centered at 0 and each 

numeric parameter (total canonical alpha power, adjusted canonical alpha power, individual alpha 

frequency, aperiodic signal slope and aperiodic signal intercept) will be scaled to provide a mean of 

0 and standard deviation 0.5. For the first analysis of the pilot data, weakly informative Cauchy priors 
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(mean = 0, scale = 2.6.2) were chosen in line with Gelman’s recommendations [82] for Bayesian 

regression models.

2.7 Source level analysis

To investigate the neural generators of adjusted alpha power and aperiodic slope, source level analysis 

utilizing a beamformer spatial filtering approach will be applied. A template forward model will be 

derived from the MNI ICBM 2009 template brain 

(http://www.bic.mni.mcgill.ca/ServicesAtlases/ICBM152NLin2009) using the OpenMEEG 

implementation [83] of the Boundary Element Method (BEM). The linear constrained minimum 

variance [84] (LCMV) beamformer algorithm will be applied to construct the spatial filters. These 

spatial filters will then be multiplied with the eyes closed time series data, resulting in source level 

time series for each voxel. Subsequently, source power spectra will be calculated and decomposed 

into aperiodic and periodic signal components as described in 2.5. Based on these, aperiodic adjusted 

canonical alpha power and the aperiodic slope parameter will be visualized. 

2.8 Test-retest reliability

In order to quantify test–retest reliability for the output measures collected at the two recording 

sessions per subject, we will calculate one-way random-effects model intraclass correlation 

coefficients (ICCs). This will be done using the absolute agreement measure among multiple 

observations [85–87] with the irr open-source software package (https://CRAN.R-

project.org/package=irr). These measures will be calculated for the eleven parameters of the parieto-

occipital electrode cluster. We will use the generally adopted interpretation of ICC [88]: less than 

0.40 (poor reliability), between 0.40 and 0.59 (fair reliability), between 0.60 and 0.74 (good 

reliability), and between 0.75 and 1.00 (excellent reliability).
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Additionally, Bland-Altman plots [89] will be used for graphical comparison of the measurements 

from test and retest recording sessions. In the Bland-Altman plot, each sample is represented on the 

graph by plotting the mean value of the two assessments against the difference between them. The 

chart can then highlight possible anomalies, such as that one method overestimates high values and 

underestimates low value [90]. We will also use a quantitative method to assess the agreement of test 

and retest. This is based on a priori defined limits of agreement: as for other relevant measures, it is 

recommended that 95% of the data points should lie within ±1.96 SD of the mean difference [91,92].

2.8.1 Equivalence test

To investigate the agreement between the reliability of the two age groups (hypothesis H4b: test-

retest reliability between the two ages groups is not different) equivalence tests on the ICC values 

will be conducted [93]. The equivalence test seeks to determine whether the reliability difference 

between the two groups or conditions is at least as extreme as the smallest effect size of interest 

(SESOI), following the two one-sided tests (TOST) procedure. In other words, the equivalence test 

does not test whether there exists no reliability differences at all between the groups, rather does it 

examine whether the hypothesis that effects are extreme enough to be considered meaningful can be 

rejected [93]. Performing TOST therefore involves determining the SESOI. Thus, SESOI and its 

lower and higher equivalence bounds respectively need to be determined first. As ICC values can be 

roughly compared to Cohen’s d effect size measures, we will consider an ICC of +-0.1 as the 

respective equivalence bounds. The TOST procedure is then performed against lower and upper 

equivalence bounds that are specified based on the SESOI. 

2.9 Relation to cognitive scores

To test hypotheses 5a, 5b and 5c, Spearman correlations between the different measures of parieto-

occipital alpha power and the aperiodic signal (total and aperiodic adjusted lower-, upper-, and 
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canonical alpha power, aperiodic slope and intercept) and the scores of the TMT and the digit span 

task will be calculated. Spearman correlation is preferred over Pearson correlation to avoid effects of 

outliers and to minimize bias due to possible non-normality of the data. To test hypothesis 5b, we 

will test whether correlation coefficients between adjusted alpha power measures and the cognitive 

scores are smaller than correlation coefficients between total alpha power measures and the cognitive 

scores. Therefore, a confidence interval based one sided test for dependent, overlapping correlation 

coefficients implemented in the R cocor package [94] will be applied [95]. If there will be no 

significant difference, equivalence tests will additionally be performed as described in 2.8.1. SEOSI 

will be defined as r=0.1, which is the smallest correlation coefficient acknowledged as a meaningful 

effect by Cohen [96]. This procedure will be applied to data of the young and elderly group separately.

2.10 Power analysis

In order to determine statistical power in the available sample, a literature search was conducted. 

Subsequently a simulation-based power analysis was performed. The literature search focused on age 

differences in the following EEG features: spectral power in the alpha frequency range as well as 

parameters extracted by the FOOOF algorithm (i.e., aperiodic signal slope and intercept). Five studies 

were identified which reported analyses similar to the planned analyses on age differences in total 

alpha spectral power [6,13–15,17].

Ref [15] reported a p-value (p < 0.01) but no measure that could be used to calculate an effect size. 

Ref [6] reported t-values of interest as a topographical plot in which the color scale represented 

individual t-values. From this color scale, no exact values can be extracted for further calculation. 

Ref [17] provide unstandardized regression coefficients but these do not allow any calculation of an 

effect size. The remaining two studies [13,14] both divided the alpha band into a lower and an upper 

sub-band. Ref [14] reported a negative correlation of r = -.27 between upper alpha band power and 

age in a parietal electrode (Pz). Ref [13] calculated alpha power on source space. The upper alpha 

band was investigated in the occipital and parietal brain regions which most closely match the 
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electrode cluster in the planned study. For the occipital cluster, an r2 of .18 (r = ± .42) was reported; 

for the parietal cluster, the corresponding r2 value was .1 (r = ± .32). Taken together, the literature 

review revealed five studies reporting consistent age differences in total alpha power, but only two 

allowed a calculation of effect sizes. Due to the small number of available observations and the high 

probability of publication bias (e.g., ref [97]), only the smallest observed effect (r = -.27) was chosen 

as the basis for power analysis. This value was transformed to Cohen’s d, resulting in d = 0.56.

The literature search for age differences in aperiodic background signal parameters extracted as in 

the FOOOF algorithm yielded only one study. Ref [23] reported a correlation of aperiodic signal 

slope with age of r = .66 (d = 1.75). Therefore, we conclude that the minimum sample size needed 

for the planned study is driven by the age differences in total alpha power (d = 0.56), as all other 

effects are larger and therefore require smaller sample sizes.

Next, a retrospective power analysis was performed, as the maximum number of participants 

available for the main study is 200. Therefore, a simulation-based approach was chosen. One 

thousand simulated datasets of alpha parameters were drawn randomly from normal distributions, 

each with a group difference of d = 0.56. On each dataset, a brms model was fitted investigating age 

effects on the alpha power. When the 95% CI of the model coefficient of the age effect did not include 

zero, the result was considered significant [55,98]. When using a sample size of 200, the age effect 

was found in 97.4% of the 1000 simulations. Figure 2 shows the results of the simulations using 

sample sizes ranging from 2 to 200.
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Figure 2: Percentage of simulations (1000 per sample size) being sufficiently powered (i.e., showing 
significant age effects on total alpha power). Red line indicates power of 0.9.

Based on this simulation analysis, we conclude that the sample size is determined by the effect size 

of age on total alpha power, as this is the smallest effect that was found in the literature. The planned 

sample size of 200 subjects for the main analysis provides sufficient power for the investigation of 

both total alpha power and aperiodic signal parameters, even in the case of a considerable proportion 

of subjects drop out (see Figure 2). This also applies to the validation dataset, which consists of data 

from 215 subjects.

2.11 Secondary analyses

In order to validate the results obtained for the main dataset in the analysis described above, the same 

analyses will be performed on an openly available dataset [30]. The dataset has been downloaded and 

no further observations on this data have been made. The dataset consists of EEG recordings of 215 

healthy participants comprising a young and an elderly group. In this study, participants were seated 

in a sound-attenuated Faraday cage, a 16-minute resting-state EEG was recorded (eight blocks of 

eyes-open condition, eight blocks of eyes-closed condition, each 60s long). EEG was recorded using 

62-channel active ActiCAP electrodes, attached according to the international 10-10 system. Data 
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was recorded with a sampling rate of 2500 Hz and referenced to the electrode FCz. Data was bandpass 

filtered between 0.015 Hz and 1 KHz, and impedances were kept below 5 KΩ. 

To ensure this data is comparable to that in the other two datasets, it will be down-sampled to 125 Hz 

and only the first five of the eight eyes-closed blocks will be used. We will extract data from a time-

window ranging from 2 seconds to 38 seconds after the beginning of each block, as done with the 

main dataset. Data will be preprocessed, analyzed, and scaled in exactly the same way as described 

above. Accordingly, the same exclusion criteria will be applied.

For the remaining data, the same statistical procedure will be applied here as described in 2.6.

As this dataset is publicly available it has been analyzed several times, yet no other study so far has 

done similar efforts to investigate EEG age differences in total or aperiodic adjusted alpha power.

2.12 Quality & feasibility checks, positive controls & bias minimization

In order to ensure that the obtained results can test the stated hypothesis, we will implement different 

checks. First, the data quality of the EEG files is automatically and objectively rated by the 

preprocessing pipeline (see 2.4). Additionally, the grand average topographical distribution of alpha 

power will be plotted. This also serves as a quality check of the data, as alpha power shows a specific 

topographical distribution, with maximum power in posterior and occipital electrodes (e.g., refs 

[6,7]). Furthermore, we also test age differences in total alpha power, which is a prerequisite for 

testing whether these effects change when adjusting for the aperiodic signal. Replicating previous 

findings [6,13–17] will ensure that the analyses can also test the additional hypothesis. Pilot analyses 

(see section 3) serve as feasibility checks for the analysis code, as descriptive support for the 

principled evaluation of the proposed hypotheses. Positive controls as defined for classical 

experiments cannot be applied here, as no experimental manipulation is performed in resting state 

recordings.

All analysis code is prepared using the pilot samples and is shared in an OSF repository 

(https://osf.io/8e2kd/). The only changes for the analysis of two main datasets, which have not been 
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observed in any way so far, will be done in order to adjust the scripts to correctly handle the different 

data structure of the two datasets. This will remove all the degrees of freedom for the experimenter.

2.13 Anticipated timeline

Data collection of the dataset recorded in our laboratory is ongoing and expected to be completed 

within the next two months. Preprocessing, analysis and preparation of stage 2 submission including 

possible exploratory analysis are expected to be finished within 4 months after in principle 

acceptance. 

2.14 Data availability plan

All data used for the planned analysis will be stored on the OSF repository https://osf.io/8e2kd/. In 

this repository, code of the pilot analyses is published. The adapted analyses for the main dataset and 

the validation dataset will also be publicly available here.

2.15 Ethical approval plan

The study was approved by the ethics committee of the canton of Zurich, Switzerland (BASEC-Nr: 

2017–00226) and written informed consent was obtained from each subject.

3. Pilot data

We conducted a pilot study to test the feasibility of proposed methods, to implement reality checks, 

to prepare analysis code for the main analyses, and to extract priors for Bayesian analysis in the main 
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study. The pilot study investigated age effects on all the spectral parameters described above in a 

dataset from a longitudinal cognitive training study [34]. Because of the smaller sample size, the pilot 

dataset has insufficient power (see Power Analysis section) to conduct robust statistical analyses. 

Therefore, the pilot data results are presented here exclusively for illustrative purposes and only effect 

sizes (i.e., Cohen’s d) are reported. We refrain from any interpretation based on these data, which 

should be based on the two larger independent samples.

3.1. Methods

We used a dataset from a previous study published by our group [34] consisting of data from 118 

subjects. In this study, participants underwent four weeks of adaptive working memory (WM) 

training. EEG was recorded twice, once before the onset of the four-week training phase (time point 

1) and once after all training was completed (time point 2). EEG recordings included a resting-state 

condition and a subset of the WM tasks. Only the resting-state EEG data from the first time point was 

included in this pilot study, as the WM training might otherwise affect the parameters extracted here. 

The data acquisition, preprocessing, and analysis parameters were identical to those described for the 

main dataset described in section 2.2, 2.4, 2.5 and 2.7 except that the EEG was recorded with a 

256‐channel EEG Geodesic Netamps system (Electrical Geodesics, Eugene, Oregon). After the 

preprocessing, data dimensionality was reduced to the same 70 channels as in the planned study. All 

parameters described above (see 2.5.1 and 2.5.2) were extracted for each of the 70 electrodes. Of the 

original 118 subjects, three were excluded from further processing due to poor data quality rating by 

the preprocessing pipeline (see 2.4). 

A final sample size of 115 participant was evaluated (Nyoung = 61, mean age = 23.37 years, sd = 3.97 

years, age range = 18–35 years, 38 female; Nold = 54, sd=3.17 years, mean age = 68.42 years, age 

range = 61–77, 22 female).
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3.1.1 Cluster-wise analysis

The same electrode-cluster-based analysis was performed as described in 2.5.3. For this larger 

electrode cap, matching electrodes for the parieto-occipital cluster were: E101 (Pz), E126 (Oz), E119 

(POz), E109 (PO3), E140 (PO4). 

To investigate how the age differences in alpha power are affected by the adjustment for the aperiodic 

signal, the same bootstrapping methods as described above (2.6.1) were applied on the averaged data 

of the cluster.

In order to receive informative prior distributions for the planned analyses, the same Bayesian models 

as described above (see 2.6.2) were also fitted to the pilot data.

3.1.2 Electrode-wise analysis

For the additional electrode-wise analysis, each parameter of each electrode was extracted as 

described above (2.5.1 and 2.5.2, Table 2) and grand-averaged within the two age groups. The results 

were then plotted as topographical maps to visualize regions of interest for possible differences 

between the age groups. Additionally, to extract meaningful priors for the main analyses, the brms 

models were fitted for each electrode. The models were defined as described in equation 1. The 

models included all extracted parameters as dependent variables (see 2.6.2). 

As described in 3.1.1, all parameters were scaled and the same uninformative Cauchy priors were 

used.

3.1.3 Source level analysis

The same source analysis as described in 2.7 was performed on this dataset.
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3.2. Results

Due to bad model fits (R2 <.90), 6.06% of data points (i.e., only affected data points were removed, 

not the full subject, as described in 2.5.4) were excluded in the group of old subjects, in the young 

group, 1.62% of data points were excluded.

In the remaining data, both age groups showed a high model fit over all electrodes for the 

parameterized power spectrum (R2
old = 0.985, sd = 0.017; R2

young = 0.988, sd = 0.014).

Additionally, in the group of elderly subjects, 1.96% of data points were excluded as they exceeded 

a threshold of three standard deviations in any of the parameters. In the young group, 1.08% were 

excluded from further processing.

3.2.1. Cluster-wise analysis

For the parieto-occipital electrode cluster, grand average power spectral components for each age 

group are visualized in Figure 3: 

Figure 3: Grand average spectral decompositions in parieto-occipital electrode cluster for both age 
groups. Shaded areas represent standard error bars. Panel a illustrates the location of the parieto-
occipital electrode cluster. Panel b shows unadjusted power spectra for each group. Panel c visualizes 
the fitted aperiodic signal for each age group. Panel d shows aperiodic-adjusted power spectra.

Figure 3 B and C indicate that the decrease of power in age in the range of the alpha oscillation is at 

least partly driven by decreases in the aperiodic signal. This is also reflected in the bootstrapped age 
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differences in upper and canonical alpha power (Figure 4). While the age differences in the aperiodic 

adjusted alpha measure are centered at 0 (no age difference), the age difference in the total power 

spectrum tend to be more negative in this smaller pilot sample. 

Figure 4: Bootstrapped age difference in lower alpha, upper alpha and canonical alpha band power.

Investigating Cohen’s d for each alpha related measure, decreases in age effects on adjusted power 

to the corresponding age effect in total power were observed in canonical alpha (dtotal = 0.23, dadjusted 

= 0.02) and upper alpha (dtotal = 0.24, dadjusted = 0.12), while an increase was observed in lower alpha 

(dtotal = 0.31, dadjusted = 0.52).

As indicated by Figure 3 C, the aperiodic intercept and slope tend to show a decrease in age in the 

bootstrapped age differences (see Figure 5). Furthermore, these bootstrapped results indicate a 

decrease of the IAF in age.
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Figure 5: Bootstrapped age difference in aperiodic intercept, aperiodic slope and alpha peak 

frequency (IAF)

The results of the Bayesian statistical models should not be interpreted as the used sample is not 

sufficiently powered to investigate age effects in the alpha power measures (see section 2.10). The 

models were still fitted in order to fix the analyses scripts and to extract priors for the planned 

analyses. For completeness, the results will briefly be reported in supplementary table 1 

(https://osf.io/8e2kd/).

3.2.2 Electrode-wise analysis

Figure 6 shows the age differences (Cohen’s d) for each alpha parameter. The scalp topographies 

indicate a widespread decrease of the various total alpha power parameters in age. Additionally, when 

adjusting for the aperiodic signal, an increase of age differences for lower alpha power can be 

observed, especially in occipital electrodes. In the upper and canonical alpha parameters, the changes 

in age effects when correcting for the aperiodic signal are more diffuse but tend to decrease in parietal 

electrodes. 
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Figure 6. Scalp distribution of age differences (Cohen’s d) for total canonical alpha power and the 
corresponding aperiodic-adjusted measure. Above each difference plot, topographies of the 
corresponding measure in log power microvolt are plotted for each age group. 

The scalp distribution of the aperiodic signal parameters indicates a widespread decrease in age for 

both the aperiodic intercept and slope (see Figure 7).
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Figure 7. Scalp distribution of age differences (Cohen’s d) of the intercept and slope parameter of the 
aperiodic signal. Above each difference plot, topographies of the corresponding measure are plotted 
for each age group. 

The topographical plots for lower and upper alpha power age differences and the resulting posterior 

distributions from the statistical models for each electrode are available in an OSF repository 

(https://osf.io/8e2kd/). Posteriors are not reported here in detail as they are only used to extract 

informative priors for the planned main analysis.

3.2.3 Source-level analysis

Source analysis of adjusted canonical alpha power reveals similar spatial distribution as scalp level 

topographies. Yet, topographical age-related increases in central adjusted alpha power (as indicated 

in Figure 6) seem to originate from temporal source regions (see Figure 8). These preliminary plots 

indicate that the previously observed parieto-occipital age-related decreases of alpha power (e.g., 

refs [13,14]) may no longer be existent in the aperiodic adjusted measure.
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Figure 8. Distribution of age differences (Cohen’s d) for aperiodic-adjusted canonical alpha power in 
source space. Above the difference plots, spatial distributions are plotted for each age group. 

Figure 9 illustrates source reconstructed spatial distribution of the aperiodic slope parameter. Similar 

to the topographical results (see Figure 7), there are wide spread age differences across the cortex.
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Figure 9. Source reconstructed spatial distribution of the aperiodic slope parameter for each age group 
(top) and age differences (bottom).

For source reconstructed spatial distribution of lower and upper aperiodic-adjusted alpha power, see 

supplementary figure 3 and 4 (https://osf.io/8e2kd/).

3.3. Evaluation of feasibility of the planned project

Pilot data analysis showed the feasibility of the proposed analysis in the main study, as differences in 

total alpha power were observed between the two age groups. The statistical models should not be 

interpreted independently of the main analyses, yet they provide first hints of a replication of previous 

findings of decreased alpha power in age when analyzing total alpha power in parietal electrodes 

(e.g., refs [13,14]). Additionally, topographical plots of age differences and the bootstrap statistics 

indicate that these results may change when adjusting for the aperiodic background signal. At the 

same time, the analysis of the pilot sample could replicate age differences in the aperiodic signal 

parameters [23]. This suggests that the aperiodic background signal may introduce a bias in aging 

studies investigating alpha band power differences, as proposed by ref [19] and awaits further 

investigation.
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