Genetic diversity of the pathogenic banana Fusarium wilt in northern Viet Nam

Loan Le Thi1*, Arne Mertens2,10*, Dang Toan Vu1, Dang Tuong Vu1, Pham Le Anh Minh9, Huy Nguyen Duc9, Sander de Backer2, Rony Swennen3,10, Filip Vandeven2, Bart Panis4, Mario Amalfi2,11, Cony Decock12, Sofia I.F. Gomes5,6, Vincent S.F.T. Merckx5,7, Steven B. Janssens2,8

1Plant Resources Center, Hanoi, Viet Nam; 2Meise botanic Garden, Nieuwelaan 38, BE-1860 Meise, Belgium; 3IITA-Tanzania, c/o Nelson Mandela African Institution of Science and Technology, Duluti, Arusha, Tanzania; 4Bioversity International, Willem de Croylaan 42, BE-3001 Leuven; 5Naturalis Biodiversity Center, Leiden, The Netherlands; 6Plant Ecology and Nature Conservation Group, Wageningen University, PO Box 47, NL-6700 AA Wageningen, The Netherlands; 7Department of Evolutionary and Population Biology, Institute for Biodiversity and Ecosystem Dynamics, University of Amsterdam, Amsterdam, The Netherlands; 8Department of Biology, KU Leuven, Belgium; 9Department of Agronomy, Vietnam National University of Agriculture; 10Laboratory of Tropical Crop Improvement, Department of Biosystems, KU Leuven; 11Fédération Wallonie–Bruxelles, Service général de l’Enseignement universitaire et de la Recherche scientifique, Rue A. Lavallée 1, 1080 Bruxelles, Belgium; 12 Mycothèque de l’Université catholique de Louvain (MUCL, MBLA), Place Croix du Sud 3, B-1348 Louvain-la-Neuve, Belgium

*contributed equally to this publication

Corresponding author: Steven B. Janssens
Abstract

Fusarium is one of the most important fungal genera of plant pathogens that affect the cultivation of a wide range of crops. Agricultural losses caused by *Fusarium oxysporum* f. sp. *cubense* (*Foc*) have a direct effect on the income, subsistence and nourishment of thousands of smallholder farmers worldwide. In addition, also commercial growers are strongly affected. For Viet Nam, predictions on the impact of *Foc* for the future are dramatic with an estimated loss in banana production area of 8% within the next 5 years and up to 71% within the next 25 years. In the current study we applied a combined morphological - molecular approach to assess the taxonomic identity and phylogenetic position of the different *Foc* isolates that were collected in northern Viet Nam. In addition, we aim to estimate the proportion of the different *Fusarium* races that are infecting bananas in northern Viet Nam. The morphology of the isolates was investigated by growing the collected *Fusarium* isolates on four distinct nutritious media (PDA, SNA, CLA, and OMA). Molecular phylogenetic relationships were inferred by sequencing partial *rpb1*, *rpb2* and *tef1a* genes and adding the obtained sequences into a large phylogenetic framework. The present study showed that *Foc* Race 1 is the most common strain in northern Viet Nam, causing 74% of all the infections. A more in-depth molecular characterization shows that of the *Foc* Race 1 infections, 92% are caused by *Fusarium tardichlamydosporum* and 8% by *F. duoseptatum*. Compared to *Foc* Race 1, *Foc* TR4 (represented by *F. odoratissimum*) account for only 10.5% of the Fusarium wilting in northern Viet Nam demonstrating that *Foc* TR4 is not yet a dominant strain in the region. *Foc* Race 2 infections of Vietnamese bananas also account for 10.5% of the Fusarium wilting in northern Viet Nam. One of the isolates cultured from diseased bananas collected in northern Viet Nam was phylogenetically not positioned within the *F. oxysporum* species complex (FOSC), but in contrast fell within the *Fusarium fujikuroi* species complex (FFSC). As a result, it is possible that a new pathogen for
bananas has been found. Besides being present on several ABB ‘Tay banana’, *Foc* Race 1 was also found as pathogen on wild *Musa lutea*, showing the importance of wild bananas as possible sink for *Foc*.

Key words: *Fusarium* wilt, *Musa lutea*, ABB Tay banana, AAA Cavendish, *Foc*-TR4, *Foc*-Race 1, Viet Nam, banana disease, fungal diversity
Introduction

The ascomycete genus *Fusarium* comprises one of the most important fungal plant pathogens impacting the cultivation of numerous agricultural crops (e.g., rice, coffee, tomato, melon, wheat; Dean et al. 2012). *Fusarium* has a considerable economic, social and biological impact on the daily livelihood of millions of people worldwide. *Fusarium oxysporum* is one of the two most devastating pathogens in the genus, besides *F. gramineum*. The *Fusarium oxysporum* species complex is responsible for wilt diseases of various crops (e.g., cotton and tomato wilt), but is mainly known from its massive impact on the banana industry (Panama disease). For more than 100 years, the fungus has affected banana production worldwide (Ploetz and Pegg 1997; Ploetz 2015a). For millions of people, bananas are an important food crop. With an annual global production of 153 million tons produced on 5.6 million hectares of land, a revenue of more than 26.5 billion Euro was generated in 2017 (FAO 2018). Particularly in Asia, Africa, Latin America and the Caribbean bananas support rural livelihood as most of the grown bananas are self-consumed or locally traded. As a result, any reduction in crop harvest caused by for example *Foc* infections has a direct effect on the income, subsistence and nourishment of thousands of smallholders. Additionally, also the worldwide banana export is seriously affected by *Foc*, as most of its current production depends on the cultivation of members of the Cavendish subgroup (Buddenhagen 2009, Ploetz 2009). Although these triploid ‘AAA’ Cavendish cultivars were selected in the past century for their resistance against *F. oxysporum* f. sp. *cubense* Race 1 (*Foc*-Race 1), to which the initially grown Gros Michel cultivars were highly susceptible (Stover 1962a), Cavendish cultivars (e.g., Grand Naine, Williams) are highly susceptible to *Foc*-TR4. All *Foc* strains currently known (e.g., Race 1, Race 2, STR4, TR4) pose a huge threat for banana cultivation worldwide. Moreover, knowing that nearly half of the global banana production is derived from Cavendish clones, and that they also become more popular for domestic use, a *Foc*-TR4 pandemic is still not averted to date (Ploetz 2015b; Zheng et al. 2018).

In the near future, *Foc* will further intensively spread in Asia, thereby significantly affecting important banana producing countries such as China, the Philippines, Pakistan and Viet Nam (Scheerer et al. 2018). For Viet Nam, the predictions are
dramatic, estimating a loss in banana production area for the country of 8% within the next 5 years and up to 71% within the next 25 years (Scheerer et al. 2018).

As a soil-borne fungus, *Foc* invades the rooting system from where it subsequently moves into the vascular tissue that gradually deteriorates. When reaching the corm, wilting takes place eventually resulting in the death of the contaminated plant (Stover 1962a). A particular problem that arises with *Foc* infections is the remaining presence of *Foc* spores (microconidia, macroconidia and chlamydospores) in the soil surrounding the infected plants for at least 20 years after the complete removal of all infected plants or plant tissue (Stover 1962b; Buddenhagen 2009; Dita et al. 2018). As a result, reinfection of new banana accessions in the same area is very likely to happen in the absence of a complete soil disinfection or if one has not waited long enough for planting new *Musa* cultivars (Moore et al. 2001, Huang et al. 2012). Therefore, *Fusarium* wilt not only has an impact on the overall yield during the time of infection, but also on the land use for banana cultivars during the coming 20 years.

In 1968, Vakili and coworkers published a first survey on the presence of *Fusarium* infected bananas in Southern Viet Nam (Vakili et al. 1968). Later studies showed that by the end of the 20th century, *Foc* infections were omnipresent in the whole country (Mai Van Tri 1997; Bentley et al. 1998; Vinh et al. 2001). Characterization of the *Fusarium* isolates in the above-mentioned studies demonstrated that *Fusarium* wilting on bananas in Viet Nam was derived from different *Foc* strains (e.g., VCG 0123, VCG 0124, VCG 0124/5, VCG 0125). Hung et al. (2017) reported the first observation of *Foc*-TR4 (VCG 01213/16) on Cavendish bananas in Viet Nam using a combined molecular (PCR approach) and morphological characterization. However, Zheng et al. (2018) claimed that they made the earliest collected records of *Foc*-TR4 in Viet Nam in 2016, by assessing the pathogenicity of the collected strains and characterizing them molecularly using whole genome sequencing methodology. The study of Mostert et al. (2017) also made use of a molecular-morphological characterization approach to determine the origin of the different *Fusarium* infections in Viet Nam. Their results showed the presence of at least five different *Foc* strains (VCG 0123, VCG 0124, VCG 0124/5, VCG 0128, VCG 01221) of which the latter two were not yet detected in earlier studies.

Whereas pathogenic *Foc* lineages were usually classified into three races (*Foc* 1, 2 & 4) based on the different *Musa* cultivars they had infected, the development of the Vegetative Compatibility Group (VCG) system resulted in a more in-depth
identification tool of Foc strains into 24 unique entities (Fourie et al. 2011; O’Donnell et al. 2009; Perez-Vicente et al. 2014; Mostert et al. 2017). The fact that isolated Foc lineages could already be split up in compatible vegetative groups already indicated that there are more natural lineages in the FOSC ($Fusarium$ oxysporum species complex) than can be reflected by the number of races. In addition, the polyphyletic nature of $Fusarium$ oxysporum f. sp. cubense isolates is also demonstrated by Maryani et al. (2019a), who used a combined molecular phylogenetic approach to delineate natural lineages within the $Fusarium$ oxysporum species complex (FOSC; O’Donnell and Cigelnik 1997), thereby describing 11 new $Fusarium$ species which were formerly considered as $Fusarium$ oxysporum. A side result of the study of Maryani et al. (2019) also indicated that the VCG system is perhaps slightly prone to an oversimplification of the categorization of different Foc strains that cause $Fusarium$ wilting in bananas and plantains. As a result, in the current study we aim to assess the overall diversity of Foc wilting in northern Viet Nam by using combined morphological - molecular phylogenetic approach in which also the different VCG’s are included. With this approach we provide the overall species identity and phylogenetic position of Foc infections in the northern Vietnamese region and examine the genetic diversity between the different Foc isolates (from wild and cultivated bananas) that were collected from various provinces in northern Viet Nam. Furthermore, our results will give an indication of the proportion of the different Foc strains (and linked VCG’s) that are currently infecting bananas in northern Viet Nam.

Material and methods

Sampling
From April 2018 until December 2019, several field trips were carried out focusing on the presence of banana $Fusarium$ wilt in northern Viet Nam. During these surveys, banana $Fusarium$ wilt samples were collected at 19 locations situated in three large geographic regions (North-eastern region, Red River Delta and North Central region; Table 1, Fig. 1). $Fusarium$ infected banana plants were identified by following a set of diagnostic characters in which (mostly older) leaves were clearly yellow (initiated from the leaf margin) or even completely collapsed, halfway the petiole forming a ring of dead leaves around a dying plant, combined with brown discoloration and
longitudinally fissuring of the pseudostems leaf sheaths (Fig. 2). From symptomatic plants observed in the field, discoloured brownish vascular tissue was collected from pseudostems and roots. Subsequent to collection, infected tissue samples were stored in paper bags and put in a refrigerator or cooling box to avoid quality loss upon further analysis in the molecular lab. For each sample collected, notes were taken about the altitude, longitude and latitude, site location and the host specimen. Collected Fusarium samples were stored at the Plant Resources Center (PRC), Ha Noi, Viet Nam. Of the 19 collected Fusarium samples, 17 were found in the triploid Musa ABB variety ‘Tay banana’, one in the triploid Musa AAA variety ‘Cavendish’, and one on a wild Musa lutea specimen (Table 1).

Isolate cultivation

In order to observe possible morphological differences between the Fusarium wilt isolates that were collected from the wild and cultivated northern Vietnamese Musa accessions, we followed the approach of Groenewald et al. (2006) in which different Foc isolate were grown on different growing media. All 19 Fusarium isolates were cultured prior to further analysis. Infected discoloured pseudostem tissue samples were cut into 2-3 cm pieces and placed on the Komada medium (Komada 1975). After a few days, fungal Fusarium colonies were transferred to plates with different medium and were then put in a growing chamber at 25°C until the colonies reached a size of 2-3 cm. The different isolates were grown on four distinct nutritious media to observe the Fusarium wilting in different culture conditions: PDA (Potato Dextrose Agar), SNA (Spezieller Nährstoffarmer Agar), CLA (Carnation Leaf Agar), and OMA (Oatmeal Agar)(Nirenberg 1976). The PDA medium consisted of 200g potato dextrose, 20g D-glucose and 20g agar dissolved in 1000ml distilled water, whereas the SNA medium consisted of 1g KH₂PO₄, 1g KNO₃, 0.5g MgSO₄·7H₂O, 0.5g KCl, 0.2g D-glucose and 0.2g D-sucrose dissolved in 1000ml distilled water. The CLA medium contained aseptic carnation leaves and 20g agar dissolved in 1000ml distilled water. The OMA medium consisted of 50g oatmeal and 20g agar dissolved in 1000ml distilled water. Growth of the Fusarium isolates on the different media took place under in-vitro conditions with the optimal grow temperature between 23 and 27°C (Pérez et al.
After 7 days of incubation, the developing colonies were morphologically investigated under a light microscope (400x magnification). Coloration of the colony, the morphology and size of the conidia were determined. The colony reverse colour was determined on PDA medium after incubation at room temperature. Colony colours were assessed with the colour charts of Rayner (1970). In addition to colony colour, also the aroma of the different cultures was assessed as a strong rank odour generated by mature cultures is a typical characteristic for TR4 infections. In the first stage of culturing, we characterized the isolates as *Fusarium* spp. emanated from mycelium morphology and the presence of different types of conidia. The study of Maryani et al. (2019a) was used to further classify the Foc lineages into different sublineages. All obtained *Fusarium* isolates were stored in the Plant Resources Center (PRC), Ha Noi, Viet Nam.

Molecular protocols

In order to extract high-quality DNA from the *Fusarium* wilt isolates collected and cultured, we used the pure mycelium cultures that were generated for the morphological characterization of the banana wilt. Total genomic DNA was isolated using a modified TNE protocol based on the study of Lin et al. (2008) and Dellaporte et al. (1983). After the addition of 5ml TNE buffer (100 mM Tris-HCl, 50 mM EDTA, 50 mM NaCl, 8 μM β-mercaptoethanol, 1% SDS, pH 8.0) to the sampled mycelium, the samples were incubated for 1h (65°C). Subsequent to the lysis phase, 1.66ml NaOAc (5M) was added and centrifuged. Chloroform-isoamylalcohol (24/1 v/v) extraction was done twice, followed by an isopropanol precipitation at -32°C for 12h. After centrifugation at 4°C, the pellet was washed twice (75% ethanol), air-dried, and dissolved in 100μl TE buffer (10mM TrisHCl, 0.1mM EDTA; pH 8).

Amplification reactions of *rpb1*, *rpb2* and *tefla* were carried out using standard PCR (20μl). Reactions were initiated with a 3 min heating at 95°C followed by 30 cycles consisting of 95°C for 30s, 55-65°C (*rpb1* and *rpb2*) and 53°-59°C (*tefla*) for 60s, and 72°C for 60s. Reactions ended with a 3 min incubation at 72°C. Primers designed by O’Donnell et al. (1998) were used to sequence *tefla*, whereas primers for *rpb1* and *rpb2* were adopted from O’Donnell et al. (2010). PCR products were purified using an ExoSap purification protocol. Purified amplification products were sequenced by
the Macrogen sequencing facilities (Macrogen, Seoul, South Korea).

Phylogenetic analyses

Raw sequences were assembled using Geneious Prime (Biomatters, New Zealand). Automatic alignment was conducted with MAFFT (Katoh et al. 2002) using an E-INS-i algorithm, a 100PAM/k=2 scoring matrix, a gap open penalty of 1.3 and an offset value of 0.123. Manual fine-tuning of the aligned dataset was performed in Geneious Prime.

\textit{Fusarium} sequence data of \textit{rpb1}, \textit{rpb2} and \textit{tef1a} was extracted from GenBank (September 20, 2020) using the ‘NCBI Nucleotide extraction’ tool in Geneious Prime. Together with the newly generated sequences for the 19 Vietnamese \textit{Fusarium} wilt accessions, the total sequence data matrix consisted of 542 specimens divided over 210 species (Suppl. Table S1). Of those, 11 species belonging to different closely related genera of \textit{Fusarium} within the Nectriaceae family were chosen as outgroup (Cosmospora, Cylindrocarpon, Fusicolla, Macroconia and Microcera). Newly generated sequences were deposited in the GenBank sequence database (Table 1). Furthermore, in order to compare the newly collected Vietnamese \textit{Foc} accessions with the known Vegetative Compatibility Groups (VGC’s), the sequence dataset included \textit{Foc} samples representing all VCG’s (see Table S1; Ordonez et al. 2015), except for VCG01212 and VCG0129. For the latter two, only one locus was available causing phylogenetic biases due to the occurrence of too much missing data.

Possible incongruency between the different datasets was inferred by conducting an ILD test (Farris et al. 1995) as implemented in PAUP* v.4.0b10 (Swofford 2003) with following parameters applied: simple taxon addition, TBR branch swapping and heuristic searches of 1000 repartitions of the data. Despite the well-known sensitivity of the ILD test (Barker and Lutzoni 2002), the results of this test were compared in light of the resolution and support values for each of the single gene topologies. As a result, possible conflict between data matrices was visually inspected by searching for conflicting relationships within each topology (obtained per single sequence data matrix) that were supported by a Maximum Likelihood (ML) support value >70\% (hard vs. soft incongruence; Johnson and Soltis 1998; Pirie 2015). A conflict was assumed to be significant if two different relationships for the same set of taxa (one
being monophyletic and the other non-monophyletic) were observed in rival trees. ML analyses were conducted under the RAxML search algorithm (Stamatakis 2014) with the GTRGAMMAI approximation of rate heterogeneity for each gene. ML bootstrapping was carried out on five hundred bootstrapped datasets using the RAxML Rapid bootstrap algorithm (ML-BS).

The best-fit nucleotide substitution model for each dataset was selected using jModelTest 2.1.4. (Posada 2008) out of 88 possible models under the Akaike information criterion (AIC). The GTR+I+G model was determined as best fit for *rpb1*, while the TVM+G model was calculated as best substitution model for *tef1a* and HKY+I+G as best substitution model for *rpb2*. Consequently, we used a mixed-model approach to apply different evolutionary models on each DNA region of the combined dataset (Ronquist and Huelsenbeck 2003). Bayesian inference analyses were conducted with MrBayes v3.2.6 (Ronquist et al. 2012) on three individual data partitions and a combined data matrix. Each analysis was run two times for 20 million generations. Trees were sampled every 5000th generation. Chain convergence and ESS parameters were inspected with TRACER v.1.4 (Rambaut and Drummond 2007). Only nodes with Bayesian posterior probabilities (BPP) above 0.95 were considered as well supported by the data (Suzuki et al. 2002).

Results

Pathogenic *Fusarium* wilt infections are prevalent in most of northern Viet Nam as they have been observed in all provinces of northern Viet Nam that were sampled in this study. The 19 *Fusarium* wilt infections collected based on the typical plant Fusariosis symptoms (old leaves turning yellow, leaves gradually collapsing, petioles broken close to the midrib with dead leaves remaining attached to the pseudostem, pseudostem sheaths longitudinally splitting near the base, vascular necrosis) were cultured and further morphologically and molecularly analysed.

Morphological characterization of the cultured pathogenic *Fusarium* wilt isolates showed that when the isolates were grown on CLA medium, they produced macroconidia that were uniform in size and form. On SNA medium, the morphology of the macroconidia was sometimes less uniform in size compared to when SLA
medium was used. Except for two accessions (FOC56 and FOC61), no aroma was observed among the pathogenic *Fusarium* isolates collected in northern Viet Nam. In general, for all isolates, we observed that macroconidia are sickle-shaped, 3-7 septate, and thin-walled. Microconidia are oval to kidney-shaped, 0-1 septate. Chlamydospores were round and thick-walled. Subtle differences have been observed in the colony morphology and coloration. Based on these morphological differences, we tried to identify different groups within the *Fusarium* isolates analysed. The first group, consisting of 14 isolates (FOC1, 2, 5, 6-1, 7, 11, 16, 18, 21, 23-2, 24, 25-1, 25-2, 38), is characterized by a purple reverse in the centre, white-greyish towards the periphery. The colony surface is dry and is filamentous at the edge. On CLA medium, it produces ample macroconidia, yet only little microconidia. On PDA and SNA medium, it produces prolific microconidia. The second group has a reverse colony colour containing a small touch of dark purple in the centre, gradually discolouring to white towards the edge. This type is observed for isolates FOC 4 and 10. The surface of these colonies is also dry and filamentous at the margin. On CLA medium, ample macroconidia are produced whereas on PDA and SNA medium, the presence of macroconidia is less profound. On the latter two media, prolific microconidia are produced. A third group of isolates (FOC56 and 61) is characterized by an unpigmented, white colony reverse and a dry colony surface with filamentous margin. On CLA medium, a large number of macroconidia is produced while on PDA and SNA medium macroconidia are hardly formed. On PDA and SNA prolific microconidia are produced, whereas on CLA medium only few microconidia were observed. In addition, FOC 56 and 61 isolates are characterized by a typical strong odour of the older cultures. FOC 58 falls a bit amidst the first and second group, containing a pale purple colony reverse colour that becomes whitish towards the periphery and with a dry colony surface appearance.

Phylogenetic analyses of pathogenic *Fusarium* wilt isolates

Sequence characteristics of all data matrices analysed are summarized in Table 2. Despite the fact that sometimes not all gene markers could be sequenced, their absence did not influence the overall phylogenetic results, as sufficient nucleotide variation was present. No significant incongruence between all three sequence
datasets (with all P-value being larger than 0.05) was found using the partition homogeneity test. Visual examination of the two different partitions of the combined dataset corroborates this congruency analysis.

Phylogenetic analyses of the 19 pathogenic *Fusarium* wilt isolates that were found on various northern Vietnamese bananas showed that although overall morphological characterization pointed towards *Fusarium oxysporum* f. sp. *cubense*, it was clear that they had various evolutionary origins (Fig. 3c, d). Of the 19 accessions analysed, two (FOC61 and FOC56) were placed within the *Fusarium odoratissimum* clade (as defined by Maryani et al. 2019a, Fig. 3d) and for which pathogenicity tests by Maryani et al. (2019a) showed that the members of this group caused infections in Cavendish and Gros Michel AAA banana varieties. In addition, VCG 01213 and VCG 01216 are positioned close to FOC61 and FOC56. As a result, two of the 19 (10.5%) northern Vietnamese pathogenic *Fusarium* wilt isolates are assumed to be *Foc*-TR4 (also taking the morphological characterization into account). Interestingly, one of the two isolates characterized as *Foc*-TR4 (FOC61) infected a Cavendish plantation in Vinh Phuc province, whereas the other infection of *Foc*-TR4 (FOC56) took place on ABB Tay banana cultivars situated on a smallholder farm in Nam Dinh province (Table 1). The largest group (13 accessions; 68.5%) of pathogenic *Fusarium* wilt isolates in northern Vietnamese bananas belong to the recently delineated *Fusarium tardichlamydosporum* clade (Fig. 3d). Pathogenicity tests carried out for this clade by Maryani et al. (2019a) have indicated a large infection rate in Gros Michel cultivars for this lineage and therefore members of the *Fusarium tardichlamydosporum* clade are consequently classified as *Foc*-Race 1. Furthermore, the isolates that fell within the *Fusarium tardichlamydosporum* were also most closely related to VCG 0125, a known *Foc*-Race 1 representative. In northern Viet Nam, infections of *Foc*-Race 1 occurred both on wild and cultivated accessions. For the cultivated accessions, the *Foc*-Race 1 was only found on the ABB Tay banana cultivar, yet was clearly spread in northern Viet Nam as it was found in eight different provinces (Ha Giang, Yen Bai, Lao Cai, Bac Giang, Nam Dinh, Ha Nam, Tuyen Quang, Ha Noi; Table 1). Most interestingly, *Foc*-Race 1 was also identified (isolate FOC5) in an individual of the wild banana *Musa lutea* (section Callimusa). Here the infected accession grew sympatrically with other individuals of *Musa lutea* as well as with *Musa itinerans*. The area where this infection occurred was a steep, abandoned rice terrace in Yen Bai province where hundreds of individuals of both wild species
co-occurred and was rather close to one of the smallholder farms where Foc-Race 1 was also detected (isolate FOC6-1). In addition to the Foc-Race 1 infections caused by Fusarium tardichlamydosporum, also F. duoseptatum is classified as a Foc-Race 1 Fusarium wilt (see Maryani et al. 2019). An infection of this latter Foc isolate (FOC38) was found only once in northern Viet Nam (Nghe An province; c. 5% of the Fusarium wilt infections) where it infected the ABB Tay banana cultivars that were grown on a smallholder farm. The VCG’s that occurred in the same clade as FOC38 are VCG 01223 and VCG 01217, with the latter being known as a Foc-Race 1 representative (e.g. Katan 1999, Fraser-Smith et al. 2014).

In addition to the Foc-Race 1 and Foc-TR4 infections, two pathogenic Foc isolates (FOC4 and FOC10) were found in northern Viet Nam (10.5%) that belong to the recently described F. cugenangense (Maryani et al. 2019a; Fig. 3d). Up to now, this Fusarium species was considered to be strictly Indonesian (see Maryani et al. 2019a). Pathogenicity tests conducted for representatives of F. cugenangense by Maryani et al. (2019a) have demonstrated that it only causes a mild infection in Gros Michel and Cavendish and were regarded as non-pathogenic for the above-mentioned AAA cultivars. However, our results clearly show that the infection of this isolate also occurred on ABB Tay banana cultivars in northern Viet Nam, where it had a large impact on the fitness of the infected host plants. Although additional confirmation is needed, Maryani et al (2019a) assume that representatives of the F. cugenangense clade should be considered as Foc-Race 2 (Maryani et al. 2019a; Fig. 3d), yet more thorough analyses need to be carried out in order to further confirm this hypothesis. The VCG that occurred in the same clade as FOC4 and FOC10 is VCG 01221.

A final pathogenic Fusarium wilt infection (FOC58) that was regarded upon collection in the field and during morphological screening as a Foc infection (c. 5% of the Fusarium wilt infections observed in this study), was in fact not situated in the Fusarium oxysporum species complex (FOSC) but was a distinct lineage sister to Fusarium fujikuroi (Fig. 3c), a well-known pathogen of rice (e.g. Wulff et al. 2010; Choi et al. 2018). This pathogenic Fusarium isolate was the prime infection source of ABB Tay bananas that were cultivated on a small plantation for local use in Nam Dinh province (Fig. 1).
Discussion

Fusarium wilting in Vietnam: lineage identification

To better manage the significant threat of *Foc* dispersion in the northern Viet Nam, the correct identification and abundance of the *Foc* strains that cause Fusarium wilting in bananas in the region is necessary. This is the basis for eradication-confinement and suppression-contention measures (Perez-Vicente et al. 2014). Since the survey of Vakili et al. (1968), *Foc* Race 1 has been considered as the main *Foc* infecting edible bananas in Viet Nam. With the emergence of *Foc* TR4 it remained unclear how abundant this new pathogenic *Foc* strain had become in Viet Nam. Although officially present in Viet Nam for a few years (Hung et al. 2017; Zheng et al. 2018), *Foc* TR4 was already observed on Cavendish bananas in 1998 in Southern China (Hu et al. 2006). A few years later, in 2002, *Foc* TR4 was also found in Chinese regions adjacent to northern Viet Nam (Hu et al. 2006; Li et al. 2013). With the current shift of Cavendish cultivation in Asia from China to its neighbouring countries Laos, Myanmar and Viet Nam, there is also an active spread of *Fusarium* pathogens through transportation of planting material, farming equipment and contaminated soil from China (Zheng et al. 2018), so that *Foc* TR4 can quickly become the most dominant *Foc* race in Viet Nam affecting banana cultivation.

The present study applies the FOSC species delimitation concept of Maryani et al. (2019) in order to more thoroughly delineate the *Foc* lineages that were sampled in northern Viet Nam. Furthermore, the incorporation of the different VCG’s in the current phylogenetic dataset allowed us to link the Vietnamese *Foc* isolates with the one of the currently known VCG’s that have been assessed in the past. Based on the compatibility of the novel material with the VCG’s that are present in the same clade, as well as with their specific species allocation following the species delineation concept of Maryani et al. (2019), we classified the northern Vietnamese *Foc* isolates into one of the known *Foc* Races. Accordingly, our results shows that *Foc* Race 1 is the most common isolate in northern Viet Nam, causing 74% of all the infections. A more in-depth molecular characterization shows that among these *Foc* Race 1 infections, 13 out of 14 isolates are caused by the species *Fusarium tardichlamydosporum* and one by the species *F. duoseptatum*. Interestingly, *Foc* Race 1 *Fusarium* wilting caused by *F. tardichlamydosporum* occurred in different
provinces than Foc Race 1 Fusarium wilting caused by *F. duoseptatum* (Fig. 1). Whereas *F. tardichlamydosporum* is commonly present throughout the northerly oriented Northeastern region and Red River Delta, *F. duoseptatum* is not present in these more northerly oriented geographic regions but occurs in the more centrally oriented North Central region in Viet Nam. Also, from a global distributional perspective, *F. tardichlamydosporum* is much more widespread than *F. duoseptatum*, with the first species located in Australia, Indonesia, Malaysia, Honduras and Brazil, and the latter only known to date from Indonesia and Malaysia (Maryani et al. 2019a).

Compared to Foc-Race 1, Foc-TR4 infections (*F. odoratissimum*; Maryani et al. 2019a) account for only 10% of the Fusarium wilting in northern Viet Nam demonstrating that Foc-TR4 has not yet become a dominant banana pathogen, unlike other countries in Asia where there is a tendency to grow Cavendish cultivars as large monocultures, such as in China, the Philippines and Taiwan. The Foc-TR4 isolates that were found in the current study were located in the River Delta region of northern Vietnam, provinces Vinh Phuc and Nam Dinh, which are rather distant from Foc-TR4 infected regions in Southern China. This indicates a gradual spreading in Viet Nam of *F. odoratissimum* (=*F. oxysporum* f. sp. *cubense* TR4) towards the south as the TR4 isolates analysed by Zheng et al. (2018) were collected in the upper North of Viet Nam in the Lao Cai province at only few kilometres from the border with China (Yunnan). At the moment it is unclear whether the occurrence of Foc-TR4 in Viet Nam is still in an initial lag phase, with the potential of largely increasing its distribution range in the country if conditions would improve for the disease to spread (Pegg et al. 2019). Especially the replacement of citrus plantations and maize fields by Cavendish monocultures provides an ideal basis for Foc-TR4 to rapidly spread as plants available for infection become less limited. A more worrying observation is that Foc-TR4 is not only found in Cavendish bananas in Viet Nam, but that it also poses a threat to local banana varieties as is observed in the current study where ABB Tay banana cultivars seem to be prone to Fusarium wilting caused by Foc-TR4.

The current study demonstrates that Foc-Race 2 infections of Vietnamese bananas also account for 10% of the Fusarium wilting in northern Viet Nam. In general, Foc-Race 2 infections occur on triploid ABB Bluggoe varieties and its closely related cooking cultivars (Jones, 2000). Besides Bluggoe cooking bananas, Foc-Race 2 also infects the tetraploid AAAA Bodles Altafort hybrid between Gros Michel (AAA) and Pisang Lilin (AA)(Stover and Simmonds 1987). In addition, experimental infection of
Ensete ventricosum demonstrated that this important Ethiopian crop is highly susceptible to *Foc*-Race 2 (Ploetz, 2005). With the confirmation of a *Foc*-Race 2 infection affecting also representatives of the ABB Tay banana cultivar, it is clear that *Fusarium* wilting caused by *Foc*-Race 2 is potentially more widespread than has often been assumed.

Fusarium cf. fujikuroi as a novel pathogen of bananas

In addition to the pathogenic *Fusarium* isolates collected from northern Vietnamese bananas belonging to the FOSC, an infection with symptoms similar to *Foc* wilting was observed, yet the cultured isolate did not belong to FOSC. The morphological colony characteristics were very comparable to those observed for FOSC cultures by having a pale purple colony reverse colour that became whitish towards the periphery with a dry colony surface appearance. However, when genetically assessing within the *Fusarium* genus, this isolate did not fall within *F. oxysporum* representatives, but was member of the *Fusarium fujikuroi* species complex (FFSC) where it is the sister lineage of *F. fujikuroi*. It is not uncommon that several *Fusarium* species cause the same disease pattern as this phenomenon has also been identified in mango deformity (Lima et al. 2009) and sugar beet wilting (Burlakoti et al. 2012). Within the FFSC, some species are known to be pathogenic for some *Musa* cultivars (*F. proliferatum, F. verticillioides, F. sacchari, F. lumajangense, F. desaboruense and F. musae*; Maldonado-Bonilla et al. 2019, Van Hove et al. 2002, Huang et al. 2019, Maryani et al. 2019b), yet to date no other species of the *Fusarium fujikuroi* species complex - except for the abovementioned - was identified as pathogen for *Musa*. From a phylogenetic point of view, the novel pathogenic *Fusarium* isolate that infected a triploid ABB Tay banana cultivar in Nam Dinh province is sister to *F. fujikuroi*. *Fusarium fujikuroi* is a widespread phytopathogen causing the bakanae disease in various *Oryza sativa* cultivars (rice), but is also known to have a major impact on many other economically important crops (e.g., maize, wheat). However, to date, no infection of *F. fujikuroi* or a close relative has been detected in bananas. This result increases our knowledge on the diversity of *Fusarium* species that cause wilting symptoms on bananas. More importantly, it also demonstrates the urgent need for an accurate identification of plant pathogens that are morphologically very difficult to distinguish from each other in the field.
Fusarium wilting on wild bananas

Although mainly observed on cultivated bananas, Foc has also been rarely recorded on wild Musa species (Ploetz and Pegg 2000). Waite (1954) noticed that Fusarium wilting also occurred on M. acuminata, M. balbisiana, M. schizocarpa and M. textilis. Since these specific Musa species belong to different sections in the genus - section Musa and Callimusa (Australimusa) - it is therefore likely that Foc can also infect other wild bananas. The current finding of a Foc-Race 1 infection on a wild representative of Musa lutea, could indicate that wild species are perhaps more susceptible to Fusarium wilting than previously assumed. Besides this one individual showing visual symptoms of Fusarium wilting, none of the hundreds of individuals of Musa itinerans and Musa lutea surveyed in the same population showed any sign of Foc infection. This lack of visual symptoms either implies that F. oxysporum f. sp. cubense could have been absent from all those other wild accessions or that the Foc-Race 1 pathogen was present but failing to cause the disease in the other wild bananas. If the latter assumption is true, this could indicate that the pathogen not necessarily co-evolved together with its host in Southeast Asia as postulated by Vakili, (1965) but that Fusarium oxysporum is omnipresent throughout the native distribution range of the Musa genus and that infections take place when the plant is weakened due to external biotic of abiotic stressors and the endophytic equilibrium is disturbed.

Acknowledgements

This study was funded by a bilateral grant between the Research Foundation - Flanders (FWO) and the Vietnamese National Foundation for Science and Technology Development (NAFOSTED) G0D9318N / FWO.106-NN.2017.02. This work was also supported by the University of Queensland via the Bill & Melinda Gates Foundation project ‘BBTV mitigation: Community management in Nigeria, and screening wild banana progenitors for resistance’ [OPP1130226]. We are grateful to for the technical laboratory work carried out at Meise Botanic Garden by Wim Baert, Pieter Asselman, Lynn Delgat and Annelies Heylen. The authors thank all donors who supported this work also through their contributions to the CGIAR Fund
(http://www.cgiar.org/who-we-are/cgiar-fund/fund-donors-2/), and in particular to the CGIAR Research Program Roots, Tubers and Bananas (RTB-CRP).

Author Contribution

LLT, AM, DTV and SBJ conceptualized the manuscript. LLT, SdB, AM and SBJ carried out the experimental work. SBJ, AM and LLT wrote the original manuscript. MA, SG and CD optimized the morphological analyses. RS, FV, DTV and SBJ acquired funding for the project. All other authors optimized the initial draft and provided helpful contributions to the finalization of the paper.
References

Stover RH (1962a) Fusarium wilt (Panama disease) of Bananas and Other Musa Species. Commonwealth Mycological Institute, Kew.

Table 1. List of collected *Fusarium* (Foc) wilt samples on bananas in northern Vietnam

<table>
<thead>
<tr>
<th>Isolate</th>
<th>Locality</th>
<th>Cultivar or Species</th>
<th>Altitude (m)</th>
<th>Latitude</th>
<th>Longitude</th>
</tr>
</thead>
<tbody>
<tr>
<td>FOC1</td>
<td>Yen Binh town, Quang Binh district, Ha Giang province</td>
<td>Tay banana (ABB)</td>
<td>78</td>
<td>22°23'5.28"</td>
<td>104°32'54.0"</td>
</tr>
<tr>
<td>FOC2</td>
<td>Dong Cay village, Yen Thang commune, Luc Yen district, Yen Bai province</td>
<td>Tay banana (ABB)</td>
<td>188</td>
<td>22°05'46.2"</td>
<td>104°45'34.0"</td>
</tr>
<tr>
<td>FOC4</td>
<td>Khe Chao village, Ngoi A commune, Van Yen district, Yen Bai province</td>
<td>Tay banana (ABB)</td>
<td>76</td>
<td>21°54'21.4"</td>
<td>104°43'48.3"</td>
</tr>
<tr>
<td>FOC5</td>
<td>No 7 village, Dai Son commune, Van Yen district, Yen Bai province</td>
<td>Musa lutea</td>
<td>351</td>
<td>21°48'17.6"</td>
<td>104°36'01.0"</td>
</tr>
<tr>
<td>FOC6-1</td>
<td>No 4 village, Dai Son commune, Van Yen district, Yen Bai province</td>
<td>Tay banana (ABB)</td>
<td>352</td>
<td>21°48'16.9"</td>
<td>104°36'02.5"</td>
</tr>
<tr>
<td>FOC7</td>
<td>No 18 village, Lam Giang commune, Van Yen district, Yen Bai province</td>
<td>Tay banana (ABB)</td>
<td>137</td>
<td>22°02'35.3"</td>
<td>104°30'52.3"</td>
</tr>
<tr>
<td>FOC10</td>
<td>Hai Son 1 village, Phu Nhuan commune, Bao Thang district, Lao Cai province</td>
<td>Tay banana (ABB)</td>
<td>370</td>
<td>22°13'58.6"</td>
<td>104°08'14.9"</td>
</tr>
<tr>
<td>FOC11</td>
<td>Khanh Yen town, Van Ban district, Lao Cai province</td>
<td>Tay banana (ABB)</td>
<td>383</td>
<td>22°06'53.9"</td>
<td>104°14'37.9"</td>
</tr>
<tr>
<td>FOC16</td>
<td>Hoang An commune, Hiep Hoa district, Bac Giang province</td>
<td>Tay banana (ABB)</td>
<td>20</td>
<td>21°23'00.2"</td>
<td>105°58'40.5"</td>
</tr>
<tr>
<td>FOC18</td>
<td>Hoang Thanh commune, Hiep Hoa district, Bac Giang province</td>
<td>Tay banana (ABB)</td>
<td>18</td>
<td>21°23'22.1"</td>
<td>106°00'24.9"</td>
</tr>
<tr>
<td>FOC21</td>
<td>Thinh Long town, Hai Hau district, Nam Dinh province</td>
<td>Tay banana (ABB)</td>
<td>4</td>
<td>20°01'59"</td>
<td>106°12'49.0"</td>
</tr>
<tr>
<td>FOC23-2</td>
<td>Thanh Chau commune, Phu Ly district, Ha Nam province</td>
<td>Tay banana (ABB)</td>
<td>7</td>
<td>20°31'24.2"</td>
<td>105°55'31.1"</td>
</tr>
<tr>
<td>FOC24</td>
<td>Hung Thanh commune, Tuyen Quang city, Tuyen Quang province</td>
<td>Tay banana (ABB)</td>
<td>26</td>
<td>21°48'19.4"</td>
<td>105°11'39.7"</td>
</tr>
<tr>
<td>Code</td>
<td>Location details</td>
<td>Taxon</td>
<td>Accession</td>
<td>Lat</td>
<td>Long</td>
</tr>
<tr>
<td>-------</td>
<td>---</td>
<td>-------------</td>
<td>-----------</td>
<td>-----------</td>
<td>----------</td>
</tr>
<tr>
<td>FOC25-1</td>
<td>Le Chi commune, Gia Lam district, Ha Noi province</td>
<td>Tay banana (ABB)</td>
<td>11</td>
<td>21°18'20.5"</td>
<td>106°00'24.6"</td>
</tr>
<tr>
<td>FOC25-2</td>
<td>Le Chi commune, Gia Lam district, Ha Noi province</td>
<td>Tay banana (ABB)</td>
<td>11</td>
<td>21°18'20.5"</td>
<td>106°00'24.6"</td>
</tr>
<tr>
<td>FOC38</td>
<td>Quan Mia village, Nghia Tan commune, Nghia Dan district, Nghe An province</td>
<td>Tay banana (ABB)</td>
<td>85</td>
<td>19°19'07.5"</td>
<td>105°21'53.7"</td>
</tr>
<tr>
<td>FOC56</td>
<td>Agriculture University, Trau Quy town, Gia Lam district, Ha Noi province</td>
<td>Tay banana (ABB)</td>
<td>11</td>
<td>21°18'20.5"</td>
<td>106°00'24.6"</td>
</tr>
<tr>
<td>FOC58</td>
<td>Nui Ngam, Minh Tan commune, Vu Ban district, Nam Dinh province</td>
<td>Tay banana (ABB)</td>
<td>3</td>
<td>20°21'59.1"N</td>
<td>106°04'02.9"E</td>
</tr>
<tr>
<td>FOC61</td>
<td>Hong Chau commune, Yen Lac district, Vinh Phuc province</td>
<td>Cavendish (AAA)</td>
<td>3</td>
<td>21°10'17.1"N</td>
<td>105°34'37.0"E</td>
</tr>
</tbody>
</table>

Table 2. Alignment and sequence characteristics of the different partitions (including outgroup specimens).

<table>
<thead>
<tr>
<th></th>
<th>rpb1</th>
<th>rpb2</th>
<th>tef1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>N° taxa</td>
<td>469</td>
<td>539</td>
<td>273</td>
</tr>
<tr>
<td>Sequence length range</td>
<td>558-1574</td>
<td>597-859</td>
<td>343-636</td>
</tr>
<tr>
<td>Aligned sequence range</td>
<td>1578</td>
<td>917</td>
<td>797</td>
</tr>
<tr>
<td>Variable characters</td>
<td>1106 (70%)</td>
<td>573 (62%)</td>
<td>529 (66%)</td>
</tr>
<tr>
<td>Constant characters</td>
<td>472</td>
<td>344</td>
<td>268</td>
</tr>
</tbody>
</table>
Supplementary Tables

Supplementary Table S1. List of accessions used for the phylogenetic analyses, including voucher information and GenBank numbers. Asterisks indicate accessions for which new sequences were generated in the current study.

<table>
<thead>
<tr>
<th>Species</th>
<th>Accession n°</th>
<th>rpb1</th>
<th>rpb2</th>
<th>tef1a</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cosmospora arxii</td>
<td>NRRL 54560</td>
<td>JX171554</td>
<td>JX171666</td>
<td>-</td>
</tr>
<tr>
<td>Cosmospora coccinea</td>
<td>NRRL 53583</td>
<td>JX171545</td>
<td>JX171657</td>
<td>-</td>
</tr>
<tr>
<td>Cosmospora cymosum</td>
<td>NRRL 54561</td>
<td>JX171555</td>
<td>JX171667</td>
<td>-</td>
</tr>
<tr>
<td>Cylindrocarpon candidum</td>
<td>NRRL 20485</td>
<td>JX171588</td>
<td>JX171474</td>
<td>-</td>
</tr>
<tr>
<td>Cylindrocarpon cylindroides</td>
<td>NRRL 22505</td>
<td>JX171499</td>
<td>JX171612</td>
<td>-</td>
</tr>
<tr>
<td>Cylindrocarpon heteronema</td>
<td>NRRL 20487</td>
<td>JX171475</td>
<td>JX171589</td>
<td>-</td>
</tr>
<tr>
<td>Cylindrocarpon sp.</td>
<td>NRRL 6149</td>
<td>JX171445</td>
<td>JX171559</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium acaciae/mearnsii</td>
<td>NRRL 26755</td>
<td>KM361640</td>
<td>KM361658</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium acuminatum</td>
<td>NRRL 28449</td>
<td>MG282373</td>
<td>MG282402</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium acuminatum</td>
<td>NRRL 28652</td>
<td>MG282384</td>
<td>MG282414</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium acutatum</td>
<td>CBS 402.97</td>
<td>MT010947</td>
<td>KT154005</td>
<td>MT010989</td>
</tr>
<tr>
<td>Fusarium acutatum</td>
<td>NRRL 13308</td>
<td>MN193911</td>
<td>MN193883</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium aethiopicum</td>
<td>NRRL 46718</td>
<td>KM361652</td>
<td>KM361670</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium agapanthi</td>
<td>NRRL 31653</td>
<td>KU900619</td>
<td>KU900624</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium agapanthi</td>
<td>NRRL 54464</td>
<td>KU900622</td>
<td>KU900627</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium albicum</td>
<td>NRRL 22152</td>
<td>JX171492</td>
<td>JX171605</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium albosuccineum</td>
<td>NRRL 20459</td>
<td>JX171585</td>
<td>JX171585</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium algeriense</td>
<td>NRRL 66647</td>
<td>MF120488</td>
<td>MT049451</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium ambrosium</td>
<td>NRRL 20438</td>
<td>JX171470</td>
<td>JX171584</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium ambrosium</td>
<td>NRRL 22345</td>
<td>KC691586</td>
<td>KC691618</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium ambrosium</td>
<td>NRRL 36510</td>
<td>KC691588</td>
<td>KC691619</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium anguioides</td>
<td>NRRL 25385</td>
<td>JX171624</td>
<td>JX171624</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium anthophilum</td>
<td>CBS 119858</td>
<td>MT010940</td>
<td>KU604275</td>
<td>MT010997</td>
</tr>
<tr>
<td>Fusarium anthophilum</td>
<td>NRRL 25214</td>
<td>KU171696</td>
<td>KF466403</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium arcuatisporum</td>
<td>NRRL 32997</td>
<td>HM347164</td>
<td>GQ505802</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium armeniacum</td>
<td>NRRL 43641</td>
<td>HM347192</td>
<td>GQ505494</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium armeniacum</td>
<td>NRRL 6227</td>
<td>JX171446</td>
<td>HQ54480</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium arthrosporioides</td>
<td>NRRL 25656</td>
<td>MG282383</td>
<td>MG282413</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium asiaticum</td>
<td>NRRL 13818</td>
<td>JX171459</td>
<td>JX171573</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-----------------------------</td>
<td>--------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium astromatum</td>
<td>NRRL 22566 JX171500 JX171613</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium atrovinosum</td>
<td>CBS 130394 MN120714 MN120734</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium atrovinosum</td>
<td>NRRL 13444 JX171454 JX171568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium atrovinosum</td>
<td>NRRL 34016 HM347170 GQ505475</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium austroafricanum</td>
<td>NRRL 53441 MH742536 MH742615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium austroafricanum</td>
<td>NRRL 66741 MH742537 MH742616</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium avenaceum</td>
<td>NRRL 28585 KM361643 KM361661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium avenaceum</td>
<td>INRA495 MH667523 MH667549</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium avenaceum</td>
<td>INRA496 MH667524 MH667550</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium avenaceum</td>
<td>NRRL 36374 MG282366 MG282395</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium aywerte</td>
<td>NRRL 25410 JX171513 JX171626</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium azukicola</td>
<td>NRRL 54364 KJ511276 KJ511287</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium azukicola</td>
<td>NRRL 54366 KJ511277 KJ511288</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium babinda</td>
<td>NRRL 25539 JX171632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium babinda</td>
<td>NRRL 53470 MH742548 MH742627</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium babinda</td>
<td>NRRL 53488 MH742552 MH742631</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium bactridioides</td>
<td>CBS 100057 MT010939 MT010963</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium begoniae</td>
<td>CBS 452.97 MT010936 MT010964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium begoniae</td>
<td>NRRL 25300 MN193914 MN193886</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium beomiforme</td>
<td>NRRL 25174 JX171506 JX171619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium boothii</td>
<td>NRRL 26916 KM361641 GQ915487</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brachygibbosum</td>
<td>NRRL 13829 JX171460 JX171574</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brachygibbosum</td>
<td>NRRL 31008 JX171529 MH845433</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brachygibbosum</td>
<td>NRRL 34033 HM347172 GQ505482</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brasiliicum</td>
<td>NRRL 31238 KM361645 KM361663</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brasiliense</td>
<td>NRRL 31779 KJ511272 KJ511283</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brasiliense</td>
<td>NRRL 43350 KJ511274 KJ511285</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brevicatenulatum</td>
<td>CBS 404.97 MT010948 MT010979</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brevicatenulatum</td>
<td>NRRL 25447 MN193915 MN193887</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium brevicaudatum</td>
<td>NRRL 43694 HM347193 GQ505846</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium buharicum</td>
<td>NRRL 13371 JX171449 JX171563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium buharicum</td>
<td>NRRL 25488 KX302920 KX302928</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium bulbicola</td>
<td>NRRL 13618 KF466394 KF466404</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium bulbicola</td>
<td>NRRL 22947 KU171679 KU171699</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium burgessii</td>
<td>NRRL 66654 MF120495 MT409450</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium burgessii</td>
<td>RBG5319 KJ716217 HQ646392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium buxicola</td>
<td>NRRL 36148 JX171534 HM068357</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium caatingaense</td>
<td>NRRL 34003 HM347166 GQ505805</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium californicum</td>
<td>BL24 MK878580 MK878565</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium californicum</td>
<td>BL28 MK878582 MK878567</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium californicum</td>
<td>BL30 MK878584 MK878569</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cerealis</td>
<td>NRRL 13721 KM361638 KM361656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cerealis</td>
<td>NRRL 25491 MG282371 MG282400</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Common Name</td>
<td>Accession(s)</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------------</td>
<td>-------------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cf. fujikuroi *</td>
<td>Foc 58 XX000000 XX000000 XX000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium chlamydosporum</td>
<td>CBS 145.25 MN120715 MN120735</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium circinatum</td>
<td>NRRL 25331 JX171510 HM068354</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium citri</td>
<td>MoPo1 LT970750 LT970778</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium citri</td>
<td>MoPo2 LT970751 LT970779</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium citri</td>
<td>MoSm29 LT970754 LT970782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium citriola</td>
<td>CPC 27067 LT746287 LT746307 LT746194</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium citricola</td>
<td>CPC 27069 LT746288 LT746308 LT746195</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium clavum</td>
<td>ITEM 10393 LN901601 LN901563</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium clavum</td>
<td>ITEM 10445 LN901603 LN901568</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium clavum</td>
<td>NRRL 34032 HM347171 GQ505813</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium coffeatum</td>
<td>CBS 635.76 MN120717 KU604328</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium coicis</td>
<td>RBG5368 KP083269 KP083274</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium commune</td>
<td>NRRL 28387 JX171638 HM068356</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium compactum</td>
<td>FiPo2=FiPoR LT970748 LT970776</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium compactum</td>
<td>NRRL 28029 HM347150 GQ505780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium concentricum</td>
<td>CBS 450.97 MT010942 MT010981 MT010992</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium concolor</td>
<td>NRRL 53455 MH742506 MH742583</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium concolor</td>
<td>NRRL 53480 MH742513 MH742591</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium concolor</td>
<td>NRRL 53493 MH742535 MH742614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium continuum</td>
<td>F201030 KM520387 KM236782</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium continuum</td>
<td>F201127 KM520386 KM236779</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium continuum</td>
<td>F201129 KM520385 KM236781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cortaderiae</td>
<td>NRRL 29297 KM361644 KM361662</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium crassistipitatum</td>
<td>NRRL 46170 KJ511275 KJ511286</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>InaCC F983 LS479559 LS479307 LS479756</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>InaCC F984 LS479560 LS479308 LS479757</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>NRRL 25433 LS479462 LS479202 LS479648</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>NRRL 36118 (VCG01221) LS479477 LS479221 LS479669</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>BRIP29094 KX434922 KX434957</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>BRIP45952 KX434923 KX434958</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense</td>
<td>NRRL 25387 JX171625 HM347209</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense *</td>
<td>Foc 10 XX000000 XX000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cugenangense *</td>
<td>Foc 4 XX000000 XX000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium culmorum</td>
<td>NRRL 25475 JX171515 JX171628</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium culmorum</td>
<td>NRRL 66294 MG282380 MG282410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cuneirostrum</td>
<td>NRRL 31157 KJ511271 FJ240389</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cyanescens</td>
<td>NRRL 37625 HM347175</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cyanostomum</td>
<td>NRRL 53998 JX171546 JX171658</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium cyanostomum</td>
<td>NRRL 54603 JX171553 JX171665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium dactyloides</td>
<td>NRRL 29298 KM361654 KM361672</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium dactyloides</td>
<td>NRRL 29380 KM361653 KM361671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>Strain Code</td>
<td>Accession Code 1</td>
<td>Accession Code 2</td>
<td>Accession Code 3</td>
</tr>
<tr>
<td>-------------------------</td>
<td>-------------</td>
<td>------------------</td>
<td>------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>Fusarium decemcellulare</td>
<td>KNU01</td>
<td>LC212975</td>
<td>LC214751</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium decemcellulare</td>
<td>NRRIL 13412</td>
<td>JX171567</td>
<td>JX171567</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium delphinoides</td>
<td>NRRIL 36160</td>
<td>HM347204</td>
<td>HM347219</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium denticulatum</td>
<td>CBS 407.97</td>
<td>MT010953</td>
<td>MT010970</td>
<td>MT011002</td>
</tr>
<tr>
<td>Fusarium dimerum</td>
<td>NRRIL 20691</td>
<td>JX171478</td>
<td>JX171592</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium dimerum</td>
<td>NRRIL 36140</td>
<td>HM347203</td>
<td>HM347218</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium dlaminii</td>
<td>NRRIL 13164</td>
<td>KU171681</td>
<td>KU171701</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium domesticum</td>
<td>NRRIL 29976</td>
<td>JX171528</td>
<td>JX171641</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>FocMal43</td>
<td>-</td>
<td>LS479207</td>
<td>LS479653</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F828</td>
<td>LS479520</td>
<td>LS479266</td>
<td>LS479715</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F829</td>
<td>LS479528</td>
<td>LS479274</td>
<td>LS479723</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F831</td>
<td>LS479538</td>
<td>LS479285</td>
<td>LS479734</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F835</td>
<td>LS479567</td>
<td>LS479315</td>
<td>LS479764</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F911</td>
<td>-</td>
<td>LS479234</td>
<td>LS479683</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F915</td>
<td>LS479494</td>
<td>LS479238</td>
<td>LS479687</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F916</td>
<td>LS479495</td>
<td>LS479239</td>
<td>LS479688</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F920</td>
<td>LS479499</td>
<td>LS479244</td>
<td>LS479693</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F921</td>
<td>LS479500</td>
<td>LS479245</td>
<td>LS479694</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F975</td>
<td>LS479549</td>
<td>LS479296</td>
<td>LS479745</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F976</td>
<td>LS479550</td>
<td>LS479297</td>
<td>LS479746</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F977</td>
<td>LS479551</td>
<td>LS479298</td>
<td>LS479747</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F978</td>
<td>LS479552</td>
<td>LS479299</td>
<td>LS479748</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>InaCC F979</td>
<td>LS479553</td>
<td>LS479300</td>
<td>LS479749</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>Indo80</td>
<td>LS479619</td>
<td>LS479387</td>
<td>LS479829</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>NRRIL 36115</td>
<td>LS479475</td>
<td>LS479218</td>
<td>LS479666</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>NRRIL 36116</td>
<td>-</td>
<td>LS479219</td>
<td>LS479667</td>
</tr>
<tr>
<td>Fusarium duoseptatum</td>
<td>* Foc 38</td>
<td>-</td>
<td>-</td>
<td>XX0000000</td>
</tr>
<tr>
<td>Fusarium ensiforme</td>
<td>CPC 27190</td>
<td>-</td>
<td>LT746312</td>
<td>LT746199</td>
</tr>
<tr>
<td>Fusarium ensiforme</td>
<td>CPC 27191</td>
<td>-</td>
<td>LT746313</td>
<td>LT746200</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>FUS18</td>
<td>MN692709</td>
<td>MN692731</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>FUS28</td>
<td>MN692714</td>
<td>MN692736</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>FUS42</td>
<td>MN692718</td>
<td>MN692740</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>ITEM 10675</td>
<td>-</td>
<td>LN901607</td>
<td>LN901573</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>ITEM 11363</td>
<td>-</td>
<td>LN901609</td>
<td>LN901574</td>
</tr>
<tr>
<td>Fusarium equiseti</td>
<td>NRRIL 43636</td>
<td>HM347189</td>
<td>GQ505841</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium euwallaceae</td>
<td>NRRIL 54724</td>
<td>JQ038023</td>
<td>JQ038030</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium euwallaceae</td>
<td>NRRIL 54725</td>
<td>JQ038024</td>
<td>JQ038031</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium euwallaceae</td>
<td>NRRIL 54726</td>
<td>JQ038025</td>
<td>JQ038032</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium falciforme</td>
<td>MIW 58</td>
<td>MN242937</td>
<td>MN725019</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium falciforme</td>
<td>NRRIL 43529</td>
<td>JX171541</td>
<td>JX171653</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium falciforme</td>
<td>NRRIL 43529</td>
<td>JX171541</td>
<td>JX171653</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium ficicrescens</td>
<td>CBS 125178</td>
<td>MT010950</td>
<td>KT154002</td>
<td>MT011004</td>
</tr>
<tr>
<td>Fusarium flagelliforme</td>
<td>ITEM 11296</td>
<td>-</td>
<td>LN901606</td>
<td>LN901572</td>
</tr>
</tbody>
</table>
Fusarium flocciferum NRRL 25473 JX171514 JX171627 -
Fusarium flocciferum NRRL 45999 HM347195 GQ505497 -
Fusarium floridanum NRRL 62608 KC691592 KC691623 -
Fusarium floridanum NRRL 62628 KC691593 KC691624 -
Fusarium floridanum NRRL 62629 KC691594 KC691625 -
Fusarium foetens CBS 110286 MT010945 MT010984 MT011001
Fusarium foetens NRRL 38302 JX171652 JX171652 -
Fusarium fujikuroi NRRL 13566 JX171456 JX171570 -
Fusarium fujikuroi NRRL 5538 MN193916 MN193888 -
Fusarium fujikuroi NRRL 66288 MG282385 MG282415 -
Fusarium gaditjirri NRRL 45417 JX171654 -
Fusarium globosum NRRL 26132 LT746301 LT746343 -
Fusarium globosum NRRL 26133 LT746302 LT746344 -
Fusarium globosum NRRL 26134 LT746303 LT746345 -
Fusarium gracilipes NRRL 43635 HM347188 GQ505840 -
Fusarium graminearum SP100 - MN625698 MK611901
Fusarium graminearum SP102 - MN625699 MK611900
Fusarium graminearum SP99 - MN625697 MK611899
Fusarium graminum NRRL 20692 JX171479 JX171593 -
Fusarium grosmichelli InaCC F832 LS479542 LS479289 LS479738
Fusarium grosmichelli InaCC F833 LS479548 LS479295 LS479744
Fusarium grosmichelli InaCC F848 LS479588 LS479338 LS479786
Fusarium grosmichelli InaCC F849 LS479589 LS479339 LS479787
Fusarium grosmichelli InaCC F850 - LS479340 LS479788
Fusarium grosmichelli InaCC F851 - LS479341 LS479789
Fusarium grosmichelli InaCC F852 - LS479342 LS479790
Fusarium grosmichelli InaCC F853 - LS479343 LS479791
Fusarium grosmichelli InaCC F854 LS479591 LS479345 LS479793
Fusarium grosmichelli InaCC F855 LS479592 LS479346 LS479794
Fusarium grosmichelli InaCC F861 LS479597 LS479351 LS479797
Fusarium grosmichelli InaCC F862 LS479598 LS479352 LS479798
Fusarium grosmichelli InaCC F863 LS479599 LS479353 LS479799
Fusarium grosmichelli InaCC F867 - LS479360 LS479806
Fusarium grosmichelli InaCC F868 - LS479361 LS479807
Fusarium grosmichelli InaCC F884 LS479616 LS479382 LS479824
Fusarium grosmichelli InaCC F887 LS479620 LS479388 LS479830
Fusarium grosmichelli InaCC F888 LS479621 LS479389 LS479831
Fusarium grosmichelli Indo83 - LS479390 -
Fusarium grosmichelli NRRL 36120 (VCG01218) LS479478 LS479222 LS479670
Fusarium guilinense NRRL 32865 HM347161 GQ505792 -
Fusarium guttiforme CBS 409.97 MT010938 MT010967 MT010999
Fusarium guttiforme NRRL 2294 MN193917 MN193889 -
Fusarium guttiforme NRRL 22945 JX171505 JX171618 -
<table>
<thead>
<tr>
<th>Species</th>
<th>Accession Numbers</th>
<th>Accession Numbers</th>
<th>Accession Numbers</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusarium hainanense</td>
<td>NRRL 26417</td>
<td>JX171522</td>
<td>GQ505776</td>
</tr>
<tr>
<td>Fusarium heterosporum</td>
<td>NRRL 20693</td>
<td>JX171480</td>
<td>JX171594</td>
</tr>
<tr>
<td>Fusarium hexaseptatum</td>
<td>InaCC F866</td>
<td>-</td>
<td>LS479359</td>
</tr>
<tr>
<td>Fusarium hostae</td>
<td>NRRL 29888</td>
<td>MT409435</td>
<td>MT409445</td>
</tr>
<tr>
<td>Fusarium hostae</td>
<td>NRRL 29889</td>
<td>JX171640</td>
<td>JX171640</td>
</tr>
<tr>
<td>Fusarium humicola</td>
<td>CBS 124.73</td>
<td>MN120718</td>
<td>MN120738</td>
</tr>
<tr>
<td>Fusarium illudens</td>
<td>NRRL 22090</td>
<td>JX171488</td>
<td>JX171601</td>
</tr>
<tr>
<td>Fusarium incarnatum</td>
<td>ITEM 6748</td>
<td>-</td>
<td>LN901618</td>
</tr>
<tr>
<td>Fusarium incarnatum</td>
<td>ITEM 7155</td>
<td>-</td>
<td>LN901617</td>
</tr>
<tr>
<td>Fusarium incarnatum</td>
<td>NRRL 32866</td>
<td>HM347162</td>
<td>GQ505793</td>
</tr>
<tr>
<td>Fusarium ipomoeae</td>
<td>NRRL 43640</td>
<td>HM347191</td>
<td>GQ505845</td>
</tr>
<tr>
<td>Fusarium irregulare</td>
<td>NRRL 32175</td>
<td>JX171532</td>
<td>GQ505787</td>
</tr>
<tr>
<td>Fusarium irregulare</td>
<td>NRRL 34006</td>
<td>HM347169</td>
<td>GQ505808</td>
</tr>
<tr>
<td>Fusarium kalimantanense</td>
<td>InaCC F917</td>
<td>LS479497</td>
<td>LS479241</td>
</tr>
<tr>
<td>Fusarium kyushuense</td>
<td>NRRL 66296</td>
<td>MG282364</td>
<td>MG282393</td>
</tr>
<tr>
<td>Fusarium lacertarum</td>
<td>NRRL 20423</td>
<td>JX171581</td>
<td>GQ505771</td>
</tr>
<tr>
<td>Fusarium lactis</td>
<td>CBS 411.97</td>
<td>MT010954</td>
<td>MT010969</td>
</tr>
<tr>
<td>Fusarium langsethiae</td>
<td>NRRL 54940</td>
<td>JX171550</td>
<td>JX171662</td>
</tr>
<tr>
<td>Fusarium lateritium</td>
<td>NRRL 13622</td>
<td>JX171457</td>
<td>HM068350</td>
</tr>
<tr>
<td>Fusarium lateritium</td>
<td>NRRL 25197</td>
<td>HM347140</td>
<td>HM347207</td>
</tr>
<tr>
<td>Fusarium longipes</td>
<td>NRRL 13368</td>
<td>JX171448</td>
<td>JX171562</td>
</tr>
<tr>
<td>Fusarium longipes</td>
<td>NRRL 13374</td>
<td>JX171450</td>
<td>JX171564</td>
</tr>
<tr>
<td>Fusarium longipes</td>
<td>NRRL 20723</td>
<td>JX171483</td>
<td>JX171596</td>
</tr>
<tr>
<td>Fusarium luffae</td>
<td>NRRL 32522</td>
<td>HM347158</td>
<td>GQ505790</td>
</tr>
<tr>
<td>Fusarium lunatum</td>
<td>NRRL 36168</td>
<td>JX171536</td>
<td>JX171648</td>
</tr>
<tr>
<td>Fusarium lunulosporum</td>
<td>NRRL 13393</td>
<td>KM361637</td>
<td>KM361655</td>
</tr>
<tr>
<td>Fusarium lyarnte</td>
<td>NRRL 54252</td>
<td>JX171661</td>
<td>MN193908</td>
</tr>
<tr>
<td>Fusarium macrosporum</td>
<td>CPC 28191</td>
<td>-</td>
<td>LT746331</td>
</tr>
<tr>
<td>Fusarium mangiferae</td>
<td>NRRL 25226</td>
<td>JX171509</td>
<td>HM068353</td>
</tr>
<tr>
<td>Fusarium mangiferae</td>
<td>UMAF 910</td>
<td>KP753434</td>
<td>KP753441</td>
</tr>
<tr>
<td>Fusarium meridionale</td>
<td>NRRL 28436</td>
<td>KM361642</td>
<td>KM361660</td>
</tr>
<tr>
<td>Fusarium mesoamericanum</td>
<td>NRRL 25797</td>
<td>KM361639</td>
<td>KM361657</td>
</tr>
<tr>
<td>Fusarium mexicanum</td>
<td>MICMW 32.13a</td>
<td>MN242900</td>
<td>MN724975</td>
</tr>
<tr>
<td>Fusarium miscanthi</td>
<td>NRRL 26231</td>
<td>JX171634</td>
<td>JX171634</td>
</tr>
<tr>
<td>Fusarium multiceps</td>
<td>NRRL 43639</td>
<td>HM347190</td>
<td>GQ505844</td>
</tr>
</tbody>
</table>
Fusarium mundagurra
RBG5717 KP083272 KP083276

Fusarium musae
CBS 624.87 MT010957 MT010973 MT010991

Fusarium nanum
NRRL 32868 HM347163 GQ505795

Fusarium napiforme
CBS 748.97 MT010958 KU604233 MT011011

Fusarium nectrioides
NRRL 20689 JX171477 JX171591

Fusarium nelsonii
NRRL 13338 JX171447 GQ505466

Fusarium nematophilum
NRRL 54600 JX171552 JX171664

Fusarium neocosmosporiellum
NRRL 22436 JX171497 JX171610

Fusarium newnesense
RBG5443 KJ397218 KJ397254

Fusarium nisikadoi
NRRL 25179 JX171620 JX171620

Fusarium nisikadoi
NRRL 25203 MG282388 MG282418

Fusarium nodosum
CBS 200.63 MN120724 MN120742

Fusarium nodosum
CBS 201.63 MN120725 MN120743

Fusarium nodosum
CBS 698.74 MN120726 MN120744

Fusarium nurragi
NRRL 36452 JX171538 JX171650

Fusarium nygamai
CBS 749.97 MT010955 KU604262 MT011009

Fusarium nygamai
NRRL 66291 MG282368 MG282397

Fusarium nygamai
NRRL 66293 MG282367 MG282396

Fusarium obliquiseptatum
NRRL 62610 KC691605 KC691636

Fusarium obliquiseptatum
NRRL 62611 KC691606 KC691637

Fusarium odoratissimum
InaCC F1000 LS479575 LS479323 LS479772

Fusarium odoratissimum
InaCC F816 LS479485 LS479228 LS479677

Fusarium odoratissimum
InaCC F817 LS479556 LS479304 LS479753

Fusarium odoratissimum
InaCC F818 LS479584 LS479333 LS479782

Fusarium odoratissimum
InaCC F819 LS479600 LS479354 LS479800

Fusarium odoratissimum
InaCC F821 LS479609 LS479374 LS479818

Fusarium odoratissimum
InaCC F822 LS479618 LS479386 LS479828

Fusarium odoratissimum
InaCC F824 LS479486 LS479229 LS479678

Fusarium odoratissimum
InaCC F825 LS479496 LS479240 LS479689

Fusarium odoratissimum
InaCC F836 LS479577 LS479325 LS479774

Fusarium odoratissimum
InaCC F837 LS479578 LS479326 LS479775

Fusarium odoratissimum
InaCC F838 LS479579 LS479327 LS479776

Fusarium odoratissimum
InaCC F839 Indo25 (VCG01219) LS479580 LS479328 LS479777

Fusarium odoratissimum
InaCC F840 - LS479329 LS479778

Fusarium odoratissimum
InaCC F846 - LS479336 LS479785

Fusarium odoratissimum
InaCC F857 LS479594 LS479348 LS479795

Fusarium odoratissimum
InaCC F864 - LS479356 LS479802

Fusarium odoratissimum
InaCC F870 LS479602 LS479363 LS479809

Fusarium odoratissimum
InaCC F871 - LS479365 LS479811

Fusarium odoratissimum
InaCC F873 LS479604 LS479369 LS479814
<table>
<thead>
<tr>
<th>Fusarium odoratissimum</th>
<th>InaCC F875</th>
<th>LS479607</th>
<th>LS479372</th>
<th>LS479816</th>
</tr>
</thead>
<tbody>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F876</td>
<td>LS479608</td>
<td>LS479373</td>
<td>LS479817</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F877</td>
<td>LS479610</td>
<td>LS479375</td>
<td>LS479819</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F879</td>
<td>LS479612</td>
<td>LS479377</td>
<td>LS479820</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F880</td>
<td>-</td>
<td>LS479378</td>
<td>LS479821</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F882</td>
<td>LS479614</td>
<td>LS479380</td>
<td>LS479822</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F883</td>
<td>LS479615</td>
<td>LS479381</td>
<td>LS479823</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F885</td>
<td>-</td>
<td>LS479384</td>
<td>LS479826</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F891</td>
<td>-</td>
<td>LS479393</td>
<td>LS479833</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F892</td>
<td>LS479624</td>
<td>LS479394</td>
<td>LS479834</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F893</td>
<td>LS479625</td>
<td>LS479395</td>
<td>LS479835</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F894</td>
<td>LS479626</td>
<td>LS479396</td>
<td>LS479836</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F896</td>
<td>LS479629</td>
<td>LS479399</td>
<td>LS479839</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F897</td>
<td>LS479630</td>
<td>LS479400</td>
<td>LS479840</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F898</td>
<td>LS479631</td>
<td>LS479401</td>
<td>LS479841</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F899</td>
<td>LS479632</td>
<td>LS479402</td>
<td>LS479842</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F900</td>
<td>LS479633</td>
<td>LS479403</td>
<td>LS479843</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F901</td>
<td>LS479634</td>
<td>LS479404</td>
<td>LS479844</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F902</td>
<td>LS479635</td>
<td>LS479405</td>
<td>LS479845</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F903</td>
<td>LS479636</td>
<td>LS479406</td>
<td>LS479846</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F904</td>
<td>LS479637</td>
<td>LS479407</td>
<td>LS479847</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F905</td>
<td>LS479638</td>
<td>LS479408</td>
<td>LS479848</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F906</td>
<td>LS479639</td>
<td>LS479409</td>
<td>LS479849</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F907</td>
<td>LS479487</td>
<td>LS479230</td>
<td>LS479679</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F908</td>
<td>LS479488</td>
<td>LS479231</td>
<td>LS479680</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F909</td>
<td>LS479489</td>
<td>LS479232</td>
<td>LS479681</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F910</td>
<td>LS479490</td>
<td>LS479233</td>
<td>LS479682</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F912</td>
<td>LS479491</td>
<td>LS479235</td>
<td>LS479684</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F919</td>
<td>LS479498</td>
<td>LS479243</td>
<td>LS479692</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F923</td>
<td>LS479501</td>
<td>LS479247</td>
<td>LS479696</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F924</td>
<td>LS479502</td>
<td>LS479248</td>
<td>LS479697</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F925</td>
<td>LS479503</td>
<td>LS479249</td>
<td>LS479698</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F926</td>
<td>LS479504</td>
<td>LS479250</td>
<td>LS479699</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F927</td>
<td>LS479506</td>
<td>LS479252</td>
<td>LS479701</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F928</td>
<td>LS479507</td>
<td>LS479253</td>
<td>LS479702</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F929</td>
<td>LS479508</td>
<td>LS479254</td>
<td>LS479703</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F930</td>
<td>LS479509</td>
<td>LS479255</td>
<td>LS479704</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F931</td>
<td>LS479510</td>
<td>LS479256</td>
<td>LS479705</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F932</td>
<td>LS479511</td>
<td>LS479257</td>
<td>LS479706</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F933</td>
<td>LS479512</td>
<td>LS479258</td>
<td>LS479707</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F934</td>
<td>LS479514</td>
<td>LS479260</td>
<td>LS479709</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F935</td>
<td>LS479515</td>
<td>LS479261</td>
<td>LS479710</td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F936</td>
<td>LS479516</td>
<td>LS479262</td>
<td>LS479711</td>
</tr>
<tr>
<td>Species</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------</td>
<td>----------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium odoratissimum</td>
<td>InaCC F937 LS479517 LS479263 LS479712</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F938 LS479518 LS479264 LS479713</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F939 LS479519 LS479265 LS479714</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F942 LS479521 LS479267 LS479716</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F943 LS479522 LS479268 LS479717</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F944 LS479523 LS479269 LS479718</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F945 LS479524 LS479270 LS479719</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F948 LS479527 LS479273 LS479722</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F953 LS479529 LS479275 LS479724</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F954 LS479530 LS479276 LS479725</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F955 LS479531 LS479277 LS479726</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F973 LS479547 LS479294 LS479743</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F985 LS479562 LS479310 LS479759</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F986 LS479563 LS479311 LS479760</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F989 LS479566 LS479314 LS479763</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F990 LS479568 LS479316 LS479765</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F994 LS479569 LS479317 LS479766</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F997 LS479572 LS479320 LS479769</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F998 LS479573 LS479321 LS479770</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>InaCC F999 LS479574 LS479322 LS479771</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo204 LS479561 LS479309 LS479758</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo222 LS479576 LS479324 LS479773</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo4 LS479590 LS479344 LS479792</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo53 - LS479357 LS479803</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo61 - LS479366 LS479812</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo62 - LS479367 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo66 LS479605 LS479370 LS479815</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo77 LS479617 LS479383 LS479825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Indo89 LS479627 LS479397 LS479837</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>JV11 LS479465 LS479205 LS479651</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Leb1.2C LS479466 LS479206 LS479652</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRRL 36102 (VCG0121) LS479468 LS479209 LS479655</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Pak1.1A LS479479 LS479223 LS479671</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foc 56 - LS479459 LS479198 LS479644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>Foc 61 - XX0000000000000000000000</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>FocII5 (VCG01213) LS479459 LS479198 LS479644</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRRL 20711 HM347202 HM347217 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>NRRL 32864 HM347160 GQ505791 -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPC 26829 - LT991909 LT991902</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPC 26830 - LT991910 LT991903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>CPC 26832 - LT991912 LT991905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Species</td>
<td>GenBank Accession Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>-------------------------------</td>
<td>--------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium peruvianum</td>
<td>CBS 511.75, MN120728, MN120746</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium petersiae</td>
<td>JW14004, MG386138, MG386149</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium petersiae</td>
<td>JW14005, MG386139, MG386150</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phaseoli</td>
<td>CBS 265.50, KM232226, KM232375, HE647964</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phaseoli</td>
<td>NRRL 22276, JX171495, JX171608</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phaseoli</td>
<td>NRRL 22411, KJ511267, KJ511278</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>FocIndo25, LS479464, LS479204, LS479650</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>FocST4.98 (VCG0120), LS479484, LS479227, LS479676</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F826, LS479505, LS479251, LS479700</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F827, LS479513, LS479259, LS479708</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F830, LS479536, LS479282, LS479731</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F834, LS479557, LS479305, LS479754</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F842, LS479582, LS479331, LS479780</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F843, LS479583, LS479332, LS479781</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F844, LS479585, LS479334, LS479783</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F845, LS479586, LS479335, LS479784</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F889 Indo84 (VCG01216), LS479622, LS479391, LS479832</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F969, LS479543, LS479290, LS479739</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F970, LS479544, LS479291, LS479740</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F971, LS479545, LS479292, LS479741</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F972, LS479546, LS479293, LS479742</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F981, LS479581, LS479303, LS479752</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F982, LS479558, LS479306, LS479755</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F987, LS479564, LS479312, LS479761</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F995, LS479570, LS479318, LS479767</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>InaCC F996, LS479571, LS479319, LS479768</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 36101 (VCG0123), LS479467, LS479208, LS479654</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 36103 (VCG0122), LS479469, LS479210, LS479656</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 36109 (VCG01211), LS479471, LS479214, LS479661</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 36112 (VCG01215), LS479473, LS479216, LS479664</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 36123, LS479483, -</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium phialophorum</td>
<td>NRRL 13617, KF466399, KF466410</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium plagianthi</td>
<td>NRRL 22632, JX171501, JX171614</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium poae</td>
<td>NRRL 13714, JX171458, JX171572</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium poae</td>
<td>NRRL 66297, MG282363, MG282392</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium praegraminearum</td>
<td>NRRL 39664, KX260125, KX260126</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium proliferatum</td>
<td>ITEM2287, LT841251, LT841252, LT841245</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium proliferatum</td>
<td>ITEM2400, LT841265, LT841266, LT841259</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium proliferatum</td>
<td>NRRL 22944, JX171504, H9043825</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium pseudensiforme</td>
<td>NRRL 46517, KC691615, KC691645</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium pseudoanthophilum</td>
<td>CBS 414.97, MT010949, MT010980, MT011006</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium pseudocircinatum</td>
<td>NRRL 22946, MG838070, MN724939</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium pseudocircinatum</td>
<td>NRRL 31631, MG838073, MN724942</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium pseudocircinatum</td>
<td>NRRL 53570</td>
<td>MG838075</td>
<td>MN724944</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium pseudograminearum</td>
<td>NRRL 28062</td>
<td>JX171524</td>
<td>JX171637</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium pseudograminearum</td>
<td>NRRL 28065</td>
<td>MG282389</td>
<td>MG282419</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium pseudonygmae</td>
<td>CBS 417.97</td>
<td>MT010951</td>
<td>MT010978</td>
<td>MT011008</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F823</td>
<td>LS479628</td>
<td>LS479398</td>
<td>LS479838</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F886</td>
<td>-</td>
<td>LS479385</td>
<td>LS479827</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F913</td>
<td>LS479492</td>
<td>LS479236</td>
<td>LS479685</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F914</td>
<td>LS479493</td>
<td>LS479237</td>
<td>LS479686</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F966</td>
<td>LS479539</td>
<td>LS479286</td>
<td>LS479735</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F967</td>
<td>LS479540</td>
<td>LS479287</td>
<td>LS479736</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>InaCC F968</td>
<td>LS479541</td>
<td>LS479288</td>
<td>LS479737</td>
</tr>
<tr>
<td>Fusarium purpurascens</td>
<td>NRRL 36107 (VCG0126)</td>
<td>-</td>
<td>LS479213</td>
<td>LS479659</td>
</tr>
<tr>
<td>Fusarium ramigenum</td>
<td>CBS 418.97</td>
<td>MT010959</td>
<td>MT010975</td>
<td>MT011012</td>
</tr>
<tr>
<td>Fusarium ramigenum</td>
<td>NRRL 25208</td>
<td>KF466401</td>
<td>KF466412</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium redolens</td>
<td>CBS 743.97</td>
<td>MT010935</td>
<td>MT010961</td>
<td>MT010987</td>
</tr>
<tr>
<td>Fusarium redolens</td>
<td>NRRL 22901</td>
<td>JX171616</td>
<td>JX171616</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium redolens</td>
<td>NRRL 25600</td>
<td>MT409433</td>
<td>MT409443</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium rusci</td>
<td>NRRL 22134</td>
<td>JX171490</td>
<td>JX171603</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sacchari</td>
<td>CBS 147.25</td>
<td>MT010941</td>
<td>MT010962</td>
<td>MT010988</td>
</tr>
<tr>
<td>Fusarium sacchari</td>
<td>NRRL 44901</td>
<td>HM347194</td>
<td>HM347212</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sacchari</td>
<td>YN BS37</td>
<td>MK983434</td>
<td>MK829737</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium salinense</td>
<td>CPC 26403</td>
<td>LT746284</td>
<td>LT746304</td>
<td>LT746191</td>
</tr>
<tr>
<td>Fusarium salinense</td>
<td>CPC 26457</td>
<td>LT746285</td>
<td>LT746305</td>
<td>LT746192</td>
</tr>
<tr>
<td>Fusarium salinense</td>
<td>CPC 26973</td>
<td>LT746286</td>
<td>LT746306</td>
<td>LT746193</td>
</tr>
<tr>
<td>Fusarium sambucinum</td>
<td>NRRL 22187</td>
<td>JX171493</td>
<td>JX171606</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sangayamense</td>
<td>InaCC F961</td>
<td>-</td>
<td>LS479284</td>
<td>LS479733</td>
</tr>
<tr>
<td>Fusarium sarcochroum</td>
<td>CPC 28075</td>
<td>LT746296</td>
<td>LT746324</td>
<td>LT746211</td>
</tr>
<tr>
<td>Fusarium sarcochroum</td>
<td>CPC 28116</td>
<td>LT746297</td>
<td>LT746325</td>
<td>LT746212</td>
</tr>
<tr>
<td>Fusarium sarcochroum</td>
<td>NRRL 20472</td>
<td>JX171472</td>
<td>JX171586</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium scirpi</td>
<td>NRRL 13402</td>
<td>JX171452</td>
<td>GQ505770</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium setosum</td>
<td>NRRL 36526</td>
<td>JX171539</td>
<td>JX171651</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium siculi</td>
<td>CPC 27188</td>
<td>LT746299</td>
<td>LT746327</td>
<td>LT746214</td>
</tr>
<tr>
<td>Fusarium siculi</td>
<td>CPC 27189</td>
<td>LT746300</td>
<td>LT746328</td>
<td>LT746125</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>FBF7</td>
<td>-</td>
<td>MK606410</td>
<td>MK606409</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>LEMM_110148</td>
<td>-</td>
<td>LN828050</td>
<td>LN827961</td>
</tr>
<tr>
<td>Fusarium solani</td>
<td>LEMM_110266</td>
<td>-</td>
<td>LN828053</td>
<td>LN827964</td>
</tr>
<tr>
<td>Fusarium solani melongenae</td>
<td>MIM 28</td>
<td>MN242938</td>
<td>MN725021</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium solani melongenae</td>
<td>MIW 81</td>
<td>MN242939</td>
<td>MN724934</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium solani melongenae</td>
<td>NRRL 22147</td>
<td>MG282390</td>
<td>MG282420</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium spinosum</td>
<td>CBS 122438</td>
<td>MN120729</td>
<td>MN120747</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium spinosum</td>
<td>NRRL 43631</td>
<td>HMT347187</td>
<td>GQ505491</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sporodochiale</td>
<td>CBS 199.63</td>
<td>MN120730</td>
<td>MN120748</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sporodochiale</td>
<td>CBS 220.61</td>
<td>MN120731</td>
<td>MN120749</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>Strain Code 1</td>
<td>Strain Code 2</td>
<td>Strain Code 3</td>
<td>Strain Code 4</td>
</tr>
<tr>
<td>-------------------------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
<td>---------------</td>
</tr>
<tr>
<td>Fusarium sporotrichioides</td>
<td>NRRL 25479</td>
<td>HM347144</td>
<td>HM347210</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sporotrichioides</td>
<td>NRRL 3299</td>
<td>JX171444</td>
<td>DQ676587</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sporotrichioides</td>
<td>NRRL 66295</td>
<td>MG282378</td>
<td>MG282408</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium staphyleae</td>
<td>NRRL 22316</td>
<td>JX171496</td>
<td>JX171609</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sterilihyphosum</td>
<td>NRRL 25623</td>
<td>LR792581</td>
<td>LR792617</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium stilboides</td>
<td>HA 1 2</td>
<td>MK887361</td>
<td>MK887362</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium stilboides</td>
<td>NRRL 20429</td>
<td>JX171468</td>
<td>JX171582</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium subglutinans</td>
<td>NRRL 22016</td>
<td>JX171486</td>
<td>JX171599</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium subglutinans</td>
<td>NRRL 54158</td>
<td>HM347201</td>
<td>HM347216</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium subglutinans</td>
<td>NRRL 66333</td>
<td>MN193926</td>
<td>MN193898</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sublunatum</td>
<td>NRRL 13384</td>
<td>JX171451</td>
<td>JX171565</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium subtropicale</td>
<td>NRRL 66764</td>
<td>MH706972</td>
<td>MH706973</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium sulavesiense</td>
<td>NRRL 34004</td>
<td>HM347167</td>
<td>GQ505806</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium tanahbumbuense</td>
<td>CBS 101138</td>
<td>MN120733</td>
<td>MN120751</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium tanahbumbuense</td>
<td>NRRL 34005</td>
<td>HM347168</td>
<td>GQ505807</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>BRIP44611</td>
<td>KX434927</td>
<td>KX434962</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>BRIP62955</td>
<td>KX434936</td>
<td>KX434971</td>
<td>-</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 1</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 11</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 16</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 18</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 2</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 21</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 23-2</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 24</td>
<td>XX000000</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 25-1</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 25-2</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 5</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 6</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum *</td>
<td>Foc 7</td>
<td>-</td>
<td>XX000000</td>
<td>XX000000</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>InaCC F956</td>
<td>LS479532</td>
<td>LS479278</td>
<td>LS479727</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>InaCC F957</td>
<td>LS479533</td>
<td>LS479279</td>
<td>LS479728</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>InaCC F958</td>
<td>LS479534</td>
<td>LS479280</td>
<td>LS479729</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>InaCC F959</td>
<td>LS479535</td>
<td>LS479281</td>
<td>LS479730</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>NRRL 36105</td>
<td>LS479470</td>
<td>LS479211</td>
<td>LS479657</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>NRRL 36106</td>
<td>-</td>
<td>LS479212</td>
<td>LS479658</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>NRRL 36111</td>
<td>LS479472</td>
<td>LS479215</td>
<td>LS479663</td>
</tr>
<tr>
<td>Fusarium tardichlamydosporum</td>
<td>NRRL 36117</td>
<td>LS479476</td>
<td>LS479220</td>
<td>LS479668</td>
</tr>
<tr>
<td>Fusarium tardicrescens</td>
<td>NRRL 36113</td>
<td>LS479474</td>
<td>LS479217</td>
<td>LS479665</td>
</tr>
<tr>
<td>Fusarium tardicrescens</td>
<td>NRRL 37622</td>
<td>LS479463</td>
<td>LS479203</td>
<td>LS479649</td>
</tr>
<tr>
<td>Fusarium tardicrescens</td>
<td>NRRL 54005</td>
<td>LS479482</td>
<td>LS479226</td>
<td>LS479674</td>
</tr>
<tr>
<td>Fusarium tardicrescens</td>
<td>NRRL 54008</td>
<td>LS479481</td>
<td>LS479225</td>
<td>LS479673</td>
</tr>
<tr>
<td>Fusarium temperatum</td>
<td>NRRL 25622</td>
<td>LR792582</td>
<td>LR792618</td>
<td>-</td>
</tr>
<tr>
<td>Species</td>
<td>Accession Numbers</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>--------------------------</td>
<td>---------------------------</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium thapsinum</td>
<td>NRRL 22045 JX171487 JX171600</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium thapsinum</td>
<td>NRRL 22049 KU171713 MN193899</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tjaetaba</td>
<td>RBG5361 KP083267 KP083275</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tonkinense</td>
<td>CPC 27195 - LT746340 LT746227</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium torreyae</td>
<td>NRRL 54149 JX171548 HM068359</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium torulosum</td>
<td>NRRL 22748 JX171502 JX171615</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium torulosum</td>
<td>NRRL 52772 JF741003 MH582377</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tricinctum</td>
<td>NRRL 25481 JX171516 HM068327</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tuaranense</td>
<td>NRRL 22231 KC691600 KC691631</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tuaranense</td>
<td>NRRL 46518 KC691601 KC691632</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tuaranense</td>
<td>NRRL 46519 KC691602 KC691633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tucumaniae</td>
<td>NRRL 31086 KJ511269 KJ511280</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tucumaniae</td>
<td>NRRL 34546 KJ511273 KJ511284</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tucumaniae</td>
<td>NRRL 53984 LR792583 LR792619</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tpiense</td>
<td>UMAF 0917 KP753436 KP753443</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tpiense</td>
<td>UMAF 0933 KP753437 KP753444</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium tpiense</td>
<td>UMAF 1992 MN193928 MN193900</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium ussarianum</td>
<td>NRRL 45681 KM361648 KM361666</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium vanettenii</td>
<td>NRRL 45880 JX171543 JX171655</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium venenatum</td>
<td>NRRL 22196 JX171494 JX171607</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium ventricosum</td>
<td>NRRL 13953 JX171461 JX171575</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium ventricosum</td>
<td>NRRL 20846 JX171484 JX171597</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium ventricosum</td>
<td>NRRL 25729 JX171529 JX171633</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium verticilloioides</td>
<td>YN DH24 MK886821 MK886821</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium verticilloioides</td>
<td>YN DH28 MK983460 MK983384</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium verticilloioides</td>
<td>YN SI46 MK983456 MK983397</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium virguliforme</td>
<td>NRRL 31041 JX171643 FJ240386</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium vorosii</td>
<td>NRRL 37605 KM361647 KM361665</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium xylarioides</td>
<td>NRRL 25486 JX171630 HM068355</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium xyrophilum</td>
<td>NRRL 62710 MN193931 MN193903</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium xyrophilum</td>
<td>NRRL 62721 MN193933 MN193905</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium xyrophilum</td>
<td>NRRL 66890 MN193932 MN193904</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusarium zealandicum</td>
<td>NRRL 22465 JX171498 JX171611</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusicolla aquaeductum</td>
<td>NRRL 20686 JX171476 JX171590</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Fusicolla sp.</td>
<td>NRRL 22136 JX171491 JX171604</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroconia leptosphaeria</td>
<td>NRRL 54562 JX171556 JX171668</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Macroconia sp.</td>
<td>NRRL 54563 JX171557 JX171669</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcera coccophila</td>
<td>NRRL 13962 JX171462 JX171576</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcera diploa</td>
<td>NRRL 36545 JX171463 JX171577</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Microcera larvarum</td>
<td>NRRL 20473 JX171473 JX171587</td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
Figure Legends

Fig. 1. Distribution map of localities in northern Viet Nam where Fusarium wilting was observed. Colours indicate different *Fusarium* strains or species. Squares indicate *Fusarium* infections of wild bananas; circles indicate infections of cultivated bananas.
Fig. 2. A. Overall view of a banana plant infected by *Fusarium* wilt, B. Detailed view of wilted plant. C. Radial cutting of *Fusarium* infected banana pseudostem. D. Tangential cutting of *Fusarium* infected banana pseudostem.
Fig. 3. Maximum Likelihood topology obtained via heuristic search algorithm of the combined *rpb1*, *rpb2* and *tef1a* data matrix. Bootstrap support (ML-BS) values above 50 are indicated with a dot, ML-BS values above 75 are indicated with an asterisk. No indication above the branches indicates a ML-BS value below 50. Newly included accessions are indicated in red. FOSC: *Fusarium oxysporum* species complex, FFSC: *Fusarium fujikuroi* species complex.
Fig. 3. continuation
Fig. 3. continuation
Fig. 3. continuation