
DeepNull: Modeling non-linear covariate effects

improves phenotype prediction and association power

Zachary R. McCaw1, Thomas Colthurst2, Taedong Yun2, Nicholas A. Furlotte1, Andrew Carroll1,

Babak Alipanahi1, Cory Y. McLean2,∗, Farhad Hormozdiari2,∗

1 Google Health, Palo Alto, CA, USA

2 Google Health, Cambridge, MA, USA

These authors contributed equally: Zachary R. McCaw, Thomas Colthurst

These authors jointly supervised this work: Cory Y. McLean, Farhad Hormozdiari

∗ Corresponding author: cym@google.com, fhormoz@google.com

Abstract

Genome-wide association studies (GWAS) examine the association between genotype and

phenotype while adjusting for a set of covariates. Although the covariates may have non-linear

or interactive effects, due to the challenge of specifying the model, GWAS often neglect such

terms. Here we introduce DeepNull, a method that identifies and adjusts for non-linear and

interactive covariate effects using a deep neural network. In analyses of simulated and real

data, we demonstrate that DeepNull maintains tight control of the type I error while increasing

statistical power by up to 20% in the presence of non-linear and interactive effects. Moreover,

in the absence of such effects, DeepNull incurs no loss of power. When applied to 10 phenotypes

from the UK Biobank (n=370K), DeepNull discovered more hits (+6%) and loci (+7%), on

average, than conventional association analyses, many of which are biologically plausible or

have previously been reported. Finally, DeepNull improves upon linear modeling for phenotypic

prediction (+23% on average).

Introduction

GWAS aim to detect genetic variants or single-nucleotide polymorphisms (SNPs) that are associ-

ated with complex traits and diseases. Over the past decade, GWAS have successfully identified
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thousands of variants associated with various and diverse phenotypes [1–6]. These associations

have expanded our knowledge of biological mechanisms [7] and improved our ability to predict

phenotypic risk [8].

In most GWAS, the association strength between genotype and phenotype is assessed while

adjusting for a set of covariates, such as age, sex, and principal components (PCs) of the genetic

relatedness matrix. Covariates are included in GWAS for two main reasons: to increase precision

and to reduce confounding. In the linear model setting, adjustment for a covariate will improve

precision if the distribution of the phenotype differs across levels of the covariate. For example,

when performing GWAS on height, males and females have different means. Adjusting for sex

reduces residual variation, and thereby increases power to detect an association between height

and the candidate SNPs. Note, however, that omitting sex from the association test is entirely

valid. In contrast, omitting a confounder will result in a biased test of association. By definition, a

confounder is a common cause of the exposure (i.e. genotype) and the outcome (i.e. phenotype) [9].

In GWAS, a potential confounder is genetic ancestry: two ancestral groups may differ with respect

to minor allele frequency (MAF) at common SNPs and, for unrelated reasons, in their phenotypic

means. Failure to adjust for ancestry will lead to spurious associations between the phenotype and

the SNPs whose MAFs differ across ancestries, inflating the type I error of the association test. To

reduce confounding due to population substructure, or the presence of genetically related subgroups

within the cohort, multiple genetic PCs are commonly included as covariates during association

testing [10, 11].

The simplest form of covariate adjustment is to include a linear term for the covariate in the

association model. If the phenotypic mean changes non-linearly with the covariate, the residual

variation may be further reduced by including higher order adjustments, such as quadratic or

interaction terms, as in the following recent examples [12–14]. Shrine et al. [12] included age2 as a

covariate when studying chronic obstructive pulmonary disease; Chen et al. [13] included squared

body mass index (BMI2) when studying obstructive sleep apnea; and Kosmicki et al. [14] included

an age by sex interaction (age× sex) when studying COVID-19 disease outcomes. Although these

recent works have recognized the potential importance of modeling non-linear covariate effects,

no systematic approach has been described for detecting the appropriate non-linear functions to

adjust for in GWAS. The difficulty stems from the exponential number of possible interactions that
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can arise from a finite set of covariates (e.g. age × sex, age2 × sex, · · · ), and the infinite number

of possible transformations of any given continuous covariate (square, logarithm, exponentiation,

etc.). Lastly, the optimal number of covariate interactions is not known a priori and requires

evaluating different possibilities (Supplementary Table 1).

In this work, we address the issue of model misspecification in GWAS; specifically, misspecifica-

tion of the relationship between the phenotype and covariates. DeepNull uses a flexible deep neural

network (DNN) to learn this potentially complex and non-linear relationship, then then adjusts for

the network’s expectation of the phenotype (based on covariates only) during association testing.

Although simpler models (e.g. a second-order interaction model) may suffice in particular cases,

the DNN architecture is sufficiently expressive to capture the broad range of phenotype-covariate

relationships that researchers might encounter in practice. Moreover, no loss of power is observed

when the relationship between the phenotype and covariates is in fact linear. Using simulated data,

we show that DeepNull markedly improves association power and phenotypic prediction in the pres-

ence of non-linear covariate effects, and retains equivalent performance in the absence of non-linear

effects. We then demonstrate improvements in association power and phenotype prediction across

10 phenotypes from the UK Biobank (UKB) [15], indicating DeepNull’s potential for broad utility

in biobank-scale GWAS. We provide DeepNull as freely available open-source software (see URLs)

for straightforward integration into existing GWAS association platforms.

Results

DeepNull overview.

DeepNull trains a DNN to predict a phenotype of interest from covariates not directly derived

from genotypic data (hereafter “non-genetic covariates”). Due to its ability to approximate any

continuous mapping [16, 17], the DNN can capture complex non-linear relationships between the

phenotype and covariates. When performing genetic association testing, the DNN’s prediction of

the phenotype for each individual is included as a single additional covariate within the association

model. Adjusting for the DNN’s prediction in the association model is equivalent to regressing it

out from both phenotype and genotype. By flexibly modeling the association between phenotype

and non-genetic covariates, DeepNull reduces the residual variation, and thereby increases the
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statistical power (Supplementary Figure 1, Supplementary Note).

Consider a quantitative phenotype ascertained for a sample of n individuals genotyped at m

SNPs. Let Y = (yi)
n
i=1 denote the n× 1 phenotype vector, where yi is the phenotypic value of the

ith individual; let G = [gij ] denote the n ×m sample by SNP genotype matrix, where gij is the

minor allele count for the i-th individual at the j-th variant. Let Ḡ = [ḡij ] ∈ Rn×m denote the

standardized version of G, in which columns have been centered and scaled to have mean zero and

unit variance. Furthermore, let h be a (possibly non-linear) function that predicts the phenotype

from non-genetic covariates; we learn h using a DNN trained with cross-validation on the sample.

The DeepNull association model is as follows:

Y = Ḡ.jβj + X̃γ +H(X)γh + ε. (1)

Here βj is the effect sizes for the jth variant on the phenotype; X̃ = [xik] is the n × (p + g)

covariate matrix that includes p non-genetic covariates (e.g. age and sex) and g adjustments for

genetic confounding (e.g. genetic PCs); γ is the (p + g) × 1 vector of association coefficients for

all covariates. Compared with the standard GWAS association model, the DeepNull association

model differs only by the inclusion of a single additional term H(X)γh: X is the n×p subset of X̃

consisting of non-genetic covariates (see Methods); H : Rn×p → Rn is the function that applies h

row-wise to X; and γh is the scalar association coefficient for the DNN’s prediction of the phenotype

based on non-genetic covariates.

DeepNull and Baseline perform similarly under linear effects.

We simulated phenotypes based on genotypes and covariates from the UK Biobank [15]. Standard-

ized age, sex, and genotyping array served as true covariates for 10,000 randomly sampled indi-

viduals (Methods). First, we considered a linear effect for covariates on phenotypes (f(x) = γx).

We simulated 100 phenotypes for each of six different genetic architectures with varying amounts

of phenotypic variance explained by the genetic data (σ2g) and by covariates (σ2x): (i) σ2g = 0.2 and

σ2x = 0.1; (ii) σ2g = 0.2 and σ2x = 0.2; (iii) σ2g = 0.4 and σ2x = 0.1; (iv) σ2g = 0.4 and σ2x = 0.2;

(v) σ2g = 0.4 and σ2x = 0.4; and (vi) σ2g = 0.6 and σ2x = 0.2. Causal variants were randomly

embedded within chr22 and non-causal variants within chr1 and chr2. We compared the DeepNull
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Figure 1: DeepNull and baseline model achieve similar results under simulated linear covariate
effects. (a) Statistical power, (b) expected χ2 statistics for variants in the causal chromosome (chr22), (c)
type I error, and (d) expected χ2 statistics for variants on the non-causal chromosomes (chr1 and chr2.).
In the case of power and the expected χ2 statistics in the causal chromosome, higher is better. Methods
should have a type I error of 0.05 (grey dashed horizontal line). The expected χ2 statistics for the non-causal
chromosomes should be 1 (grey dashed horizontal line). X-axis values indicate the proportion of phenotypic
variance explained by genotypes and covariates, respectively. Error bars are the standard error of the mean
for each estimate. None of the quantities shown is significantly different between Baseline and DeepNull
(Wilcoxon signed-rank test).

GWAS with standard GWAS (hereafter referred to as “Baseline”), each of which was performed

using BOLT-LMM [18] (Methods). Statistical power and expected χ2 statistics for the causal chro-

mosome (chr22) were similar for DeepNull and Baseline (Figure 1a,b, Supplementary Table 2 and

Supplementary Data 1). Statistical power for both DeepNull and Baseline increased as genetic

heritability σ2g increased, which is expected since the non-centrality parameter of the χ2 test in-

creases with the heritability. Additionally, the type I error was maintained at the nominal level,

and the expected χ2 statistics for non-causal variants are similar for both methods (Figure 1c,d).

Thus, DeepNull and Baseline produce similar GWAS results when the effect of the covariates on

the phenotype is linear. Lastly, DeepNull and Baseline perform similarly both when excluding

non-confounding covariates (i.e., hidden non-confounding covariates, Supplementary Table 3) and

when including irrelevant covariates (Supplementary Table 4).

DeepNull increases power when covariates interact.

We simulated phenotypes using a similar process as described above and used standardized age,

sex, genotyping array, age2, age × sex, and age × genotyping array as true covariates. However,

both DeepNull and Baseline are only given age, sex, genotyping array as known covariates. This

simulation setting explores the case where the true covariates are known but their possible interac-
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Figure 2: DeepNull increases power in the presence of covariate interactions. (a) Statistical power,
(b) expected χ2 statistics for variants in the causal chromosome (chr22), (c) type I Error, and (d) expected
χ2 statistics for variants in the non-causal chromosomes (chr1 and chr2.). In the case of power and expected
χ2 statistics for the causal chromosome, higher is better. Methods should maintain a type I error of no more
than 0.05, which is shown by the dashed grey horizontal line. For the non-causal chromosomes, the expected
χ2 statistics should be 1, which is also shown in dashed grey horizontal line. X-axis values indicate the
proportion of phenotypic variance explained by genotypes and covariates, respectively. Error bars are the
standard error of the mean for each estimate. The numerical results are shown in Supplementary Table 5.
Indicators for P value (Wilcoxon signed-rank test) ranges: ∗P ≤ 0.05, ∗∗P ≤ 0.01, ∗∗∗P ≤ 0.001.

tions are not. DeepNull had higher statistical power (2%–13% relative improvement) than baseline,

and higher expected χ2 statistics at causal variants (2%–20% relative improvement) across all ge-

netic architectures (Figure 2a,b, Supplementary Table 5, and Supplementary Data 2). Importantly,

both DeepNull and Baseline control the type I error and generate similar expected χ2 statistics for

non-causal variants (Figure 2c,d).

DeepNull increases power under non-linear models.

We simulated phenotypes using a similar process as described above and again used age, sex,

genotyping array, age2, age × sex, and age × genotyping array as true covariates. However, here

we fix the genetic architecture (σ2g = 0.4 and σ2x = 0.4) and consider non-linear effects of the

covariates on the phenotype by using different non-linear functions for f(·) in Equation (9): sin(x),

exp(x), log(|x|), and sigmoid(x). Again, both DeepNull and Baseline are only given age, sex, and

genotyping array as known covariates. In all cases, DeepNull outperforms Baseline both in terms

of statistical power (3%–9% relative improvement) and expected χ2 statistics (13%–22% relative

improvement), while both methods control the type I error (Supplementary Table 6).

DeepNull is computationally efficient (Supplementary Notes) and its power increases as the

sample size increases (Supplementary Notes; Supplementary Figure 2, Supplementary Table 7).
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Finally, DeepNull’s results are not affected by random seed initialization (Supplementary Notes;

Supplementary Figure 3).

Pheno n #Hits %Improve #Loci %Improve
Baseline DeepNull Baseline DeepNull

ALP 416,232 1697 1759 3.65% 336 350 4.17%
ALT 416,057 371 379 2.16% 173 174 0.58%
AST 414,743 337 351 4.15% 137 145 5.84%
ApoB 414,639 1172 1219 4.01% 200 217 8.50%
Calcium 381,934 726 739 1.79% 272 281 3.31%
GRP 65,896 28 38 35.71% 26 38 46.15%
LDL 415,892 950 993 4.53% 193 202 4.66%
Phosphate 381,362 658 664 0.91% 224 229 2.23%
SHBG 378,459 1084 1120 3.32% 319 323 1.25%
TG 416,295 1221 1254 2.70% 261 266 1.92%
Avg. 370,151 824.4 851.6 6.29% 214.1 222.5 7.86%

Table 1: DeepNull improves association results relative to the Baseline model on ten phenotypes
from the UK Biobank. n is the sample size, hits refers to the number of independent genome-wide
significant associations detected, and loci is the number of independent regions after merging hits within
250 kb. Phenotypic abbreviations: ALP (Alkaline phosphatase), ALT (Alanine aminotransferase), AST
(Aspartate aminotransferase), ApoB (Apolipoprotein B), GRP (Glaucoma referral probability), LDL (Low-
density lipoprotein), SHBG (Sex hormone-binding globulin), and TG (Triglycerides).

DeepNull detects more hits than Baseline GWAS on real data.

To explore whether applying DeepNull is beneficial in non-simulated data, we performed GWAS

for ten phenotypes from the UK Biobank, using both Baseline and DeepNull. These were: al-

kaline phosphatase (ALP), alanine aminotransferase (ALT), aspartate aminotransferase (AST),

apolipoprotein B (ApoB), calcium, glaucoma referral probability (GRP), LDL cholesterol (LDL),

phosphate, sex hormone-binding globulin (SHBG), and triglycerides (TG), each of which has evi-

dence of potentially non-linear relationships between covariates and the phenotype (Supplementary

Figures 4–13). All phenotypes except GRP were extracted directly from the UK Biobank. age,

sex, and genotyping array were considered as input covariates for DeepNull’s DNN (Supplementary

Table 8). We performed GWAS for these phenotypes using age, sex, genotyping array, and the

top 15 genetic PCs as covariates.

GRP differs from the other phenotypes considered in that it was derived from color retinal fun-

dus images, using the model presented in Alipanahi et al. [19]. As in that study, we are interested in

biological signals for glaucoma that are not driven by the vertical cup-to-disc ratio (VCDR). Thus,

for GRP only, several additional covariates were included in the association model: VCDR visit,
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refractive error, and image gradability. To train DeepNull’s DNN, we used VCDR visit, age,

sex, and genotyping array to predict GRP. We then performed GWAS for GRP using age, sex,

genotyping array, the top 15 PCs, VCDR visit, refractive error, and image gradability as co-

variates.

For all GWAS, we first verified that the DeepNull prediction was consistent across all five data

folds (Supplementary Table 9). After running GWAS across the entire dataset, we computed the

stratified LD score regression (S-LDSC) intercept [20, 21] to determine whether there was evidence

of inflation due to confounding. In no case did the S-LDSC intercept differ significantly from 1,

providing no evidence of inflation due to confounding in our analysis (Supplementary Table 10). In

addition, the SNP-heritability of all phenotypes was estimated from both the DeepNull and Baseline

summary statistics. For all phenotypes except GRP, the heritability was nominally, though not

significantly, greater with DeepNull (Supplementary Table 10).

DeepNull detects more genome-wide significant hits (i.e. independent lead variants) and loci

(independent regions after merging hits within 250 kbp together; see Methods) than Baseline for

all phenotypes examined (Table 1). For example, we found 46% more significant loci (38 vs. 26) for

GRP using DeepNull compared to the Baseline model. Similarly, in the case of LDL, we detected

202 significant loci using DeepNull compared to the 193 significant loci detected with Baseline

(4.5% more hits and 4.7% more loci). In addition, 99 of the DeepNull loci were replicated in

the GWAS catalog compared with 96 loci for Baseline (Supplementary Figure 14). For ApoB,

DeepNull detected 1219 hits compared to 1172 hits detected by Baseline (4.0% improvement) and

DeepNull detected 217 significant loci compared to 200 significant loci obtained from Baseline (8.5%

improvement; Table 1). In addition, 166 of the DeepNull loci were replicated in the GWAS catalog

compared with 165 loci for Baseline (Supplementary Figure 15). For these three phenotypes,

we further investigated the biological significance of the detected associations using FUMA [22]

(Supplementary Table 11). For GRP, 42 gene sets, predominantly related to pigmentation, were

enriched among DeepNull’s results, whereas none were enriched among the Baseline results. For

LDL, DeepNull detected more gene sets overall (955 Baseline vs. 1000 DeepNull), although the

gene sets detected by Baseline scored higher in terms of the average − log10(p-value) (8.60 Baseline

vs. 8.38 DeepNull). However, when focusing on the subset related to lipid metabolism, DeepNull

detected more gene sets (65 Baseline vs. 72 DeepNull) and did so at a higher level of significance
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(average − log10(p-value): 13.88 Baseline vs. 14.34 DeepNull). For ApoB, DeepNull detected fewer

gene sets overall (983 Baseline vs. 946 DeepNull), but at a higher level of significance (average

− log10(p-value): 7.65 Baseline vs. 7.81 DeepNull). The gene sets detected by DeepNull related to

lipid metabolism and neurological conditions, including Alzheimer’s disease.

Overall, the average percentage improvement with DeepNull, taken across phenotypes, was

6.29% for significant hits and 7.86% for loci (Table 1). The average number of hits increased by

3.29%, from 824.4 for Baseline to 851.6 for DeepNull, and the average number of loci increased by

3.93%, from 214.1 to 222.5. In addition, the median number of hits and loci increased by 3.48%

and 3.74%, respectively. Lastly, DeepNull tends to have a higher level of significance for variants

compared to Baseline (Supplementary Figures 16–25).

To further understand the source of the DeepNull improvements, we evaluated three addi-

tional Baseline models of increasing complexity. The first model, which we call “Baseline+ReLU”,

featurizes age into five additional covariates by applying the ReLU function at different thresh-

olds (and solely for GRP, also featurizes VCDR visit in the same way). We observed that while

Baseline+ReLU generally identified more significant hits and loci than Baseline, DeepNull consis-

tently outperformed both baseline methods (Supplementary Table 12). The second model, which

we call “Second-order Baseline”, extends the Baseline model to include all second-order inter-

actions between age, sex, and genotyping array: age2, age × sex, age × genotyping array, and

sex × genotyping array. Although the additional second-order interaction covariates consistently

improve over the Baseline model results, DeepNull detects as many or more significant loci than

Second-order Baseline for nine of the 10 phenotypes (Supplementary Table 13). For AST, LDL,

phosphate, and TG, Second-order Baseline and DeepNull detected similar numbers of hits and loci

(Supplementary Tables 14 and 15), providing evidence that the hits and loci not found by the

Baseline model, which does not include interactions, were in fact true signals. The utility of Deep-

Null arises because the optimal order of covariate interactions is unknown a priori (Supplementary

Table 1), exhaustively enumerating higher-order interactions in impractical, and attempting to do

so will likely introduce collinearity. Lastly, we compared the number of hits and loci of DeepNull

with an extended Baseline model that performs sex-specific spline fitting (Methods) and observed

that DeepNull outperforms this Baseline extension as well (compare Supplementary Tables 14 and

16 for hits and Supplementary Tables 15 and 17 for loci).
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DeepNull improves phenotype prediction for UKB phenotypes.

An important feature of DeepNull is that it provides additional signal for phenotype prediction.

Typically, phenotype prediction models are created using a linear combination of common covari-

ates (such as age and sex) and a polygenic risk score (PRS) defined using GWAS association results.

Covariate interactions or higher order terms are occasionally included, but typically in an ad hoc

fashion. DeepNull provides a way to easily include potential covariate interactions or higher or-

der terms. The “Baseline” model includes a PRS computed using PLINK (PRSbaseline) and linear

covariate effects (PRSbaseline+ Linear covariates). The “DeepNull-Baseline” model includes a PRS

computed in the same way except using association results from DeepNull (PRSDeepNull+ Linear co-

variates), and “DeepNull” is a model that includes both the DeepNull-based PRS and the DeepNull

prediction (non-linear covariate effects).

When compared to the Baseline model, the DeepNull model performs significantly better in

terms of the Pearson R2 (Figure 3). We calculated R2 following previous works [23, 24]. We ob-

served that in the case of GRP, LDL, calcium, and ApoB, DeepNull improves phenotype prediction

by 83.42%, 40.33%, 23.90% and 21.61%, respectively. Overall, DeepNull improves phenotype pre-

diction (average improvement=23.72%, median improvement=16.08%) across the ten phenotypes

analyzed (average n=370K; Supplementary Table 18). In addition, DeepNull has an average R2 of

0.1940 compared to Baseline average R2 of 0.1315 (33.65% improvement; Supplementary Table 18).

To determine whether the improved predictive power stems from more accurate GWAS effect size

estimates or inclusion of the DeepNull DNN prediction, we examined predictive performance of

a model that uses age, sex, and PRSDeepNull (“DeepNull-Baseline”). This model produces slightly

higher R2 compared to Baseline for seven of the ten phenotypes, though the difference is not

statistically significant for any phenotype (Supplementary Table 18), indicating that most of the

improved predictive power arises due to better modeling the effects of non-genetic factors. Next,

we compared phenotype prediction of DeepNull to an extended Baseline model that incorporates

second order interactions (additional covariates such as age2, age × sex, age × genotyping array).

The second-order Baseline model produces similar R2 to DeepNull for many of the phenotypes, but

DeepNull increases phenotype prediction of GRP by 11.81% (compare Supplementary Tables 13

and 18). Lastly, we compared phenotype prediction of DeepNull to an extended Baseline model

10

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.05.26.445783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445783
http://creativecommons.org/licenses/by-nd/4.0/


Figure 3: DeepNull improves phenotype prediction compared to Baseline. The X-axis is the
phenotype names and the Y-axis is the R2 where R is the Pearson’s correlation between true and predicted
value of phenotypes. The error bars indicate the standard error.

that performs sex-specific spline fitting (Methods) and observed that DeepNull outperforms this

Baseline extension as well (compare Supplementary Tables 18 and 19).

DeepNull’s covariates should remain in the association model.

When performing genetic association analysis via the model shown in Equation (1), the covariates X

input row-wise to the DNN prediction function h are also included as components of the linear term

X̃γ. This secondary adjustment for X is necessary because h captures the association between the

covariates Xi and the phenotype yi, but does not capture any association between the covariates Xi

and genotype ḡij . Failure to include Xi in the final association model is comparable to projecting

Xi out of yi but not gij . To empirically demonstrate the necessity of adjusting Xi in the final

association model, we generated phenotypes via

yi = ḡiβ + xiγ1 + x2i γ2 + εi.
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Figure 4: Adjusting for covariates provided to DeepNull during association testing is necessary
to avoid bias. The unadjusted model regresses yi on ḡi and h(xi), the prediction of yi based on xi, omitting
xi from the association model. This approach results in biased estimation of the genetic effect. The linear
adjustment model regresses yi on ḡi, xi, and h(xi). This approach is unbiased. The generative model
regresses yi on ḡi, xi, and x2i . This represents the best possible performance.

For this simulation only, ḡi was generated as a continuous random variable, allowing for fine control

of the correlation between ḡi and xi, and the model h for predicting yi from xi was the oracle model

yi = xiγ1 + x2i γ2 + εi.

We compare two methods for estimating the genetic effect β. The unadjusted model incorporates

the prediction h(xi) of yi based on xi but omits xi from the association model, emulating the

exclusion of covariates provided to DeepNull from the association model as shown in Equation (1),

yi = ḡiβ + h(xi)γh + εi. (2)

The adjusted model includes both h(xi) a linear correction for xi, emulating the application of (1)

in practice where the functional form linking yi and xi is unknown,

yi = ḡiβ + xiγ1 + h(xi)γh + εi. (3)

Figure 4 presents the relative bias of the unadjusted and linearly adjusted models for estimating

the association parameter β. The relative bias for estimating β from the generative model, which

represents the best possible performance, is also provided. For these simulations γ1 = 2, γ2 =

−1, and β ∈ {±1,±2,±3}; the correlation between ḡi and xi was 0.5. The unadjusted estimate
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is generally biased. The magnitude and direction of the bias depend on the coefficients of the

generative model. For the unadjusted estimator to be unbiased, ḡi and xi must be independent.

Since the dependence of ḡi and xi is seldom clear, and the linearly adjusted model is unbiased in

either case, we adopted the linearly adjusted model for all other analyses. Moreover, the linearly

adjusted estimator remained unbiased in the presence of lower- and higher-order covariate effects

(Supplementary Figures 26 and 27).

Discussion

A typical GWAS examines the association between genotypes and the phenotype of interest while

adjusting for a set of covariates. While covariates potentially have non-linear effects on the phe-

notype in many real world settings, due to the challenge of specifying the model, GWAS seldom

include non-linear terms. Although it is theoretically possible to model the non-linear effects by

considering all possible covariate interactions in a linear model, this approach has multiple lim-

itations. First, the optimal order of covariate interactions is unknown a priori (Supplementary

Table 1) as it depends on the particular phenotype and set of covariates. Second, adding higher

order covariate interactions requires careful analysis to avoid overfitting and collinearity. We pro-

posed a new framework, DeepNull, that can model the non-linear effect of covariates on phenotypes

when such non-linearity exists. We show that DeepNull can substantially improve phenotype pre-

diction. In addition, we show that DeepNull achieves results similar to a standard GWAS when

the covariate effect on the phenotype is linear and can significantly outperform a standard GWAS

when the covariate effects are non-linear. DeepNull reduces residual variation, thereby increasing

statistical power (Supplementary Figure 1).

Increasing the statistical power of GWAS is an area of active research that aims to uncover

the many variants, each with individually small effect sizes, that collectively explain substantial

variation in complex traits and diseases. Multiple complementary approaches have been proposed

for increasing statistical power. The most fundamental is to increase the sample size [25]. However,

when resources are limited, the sample size cannot be increased indefinitely, and power can be

improved through the use of more refined statistical analyses. Linear mixed models (LMMs) were

introduced to perform GWAS including related individuals, who are not statistically independent

13

.CC-BY-ND 4.0 International licenseavailable under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is made 

The copyright holder for this preprintthis version posted September 27, 2021. ; https://doi.org/10.1101/2021.05.26.445783doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445783
http://creativecommons.org/licenses/by-nd/4.0/


[18, 26–33]. An orthogonal modeling-based approach is to remap or transform the phenotype to

make the distribution of phenotypic residuals more nearly normal [34–38]. While normality of

the phenotypic residuals is not necessary for valid association testing, standard association tests

are most powerful when the residuals are in fact normally distributed. The final class of methods

increases power by leveraging external data on the prior biological plausibility of the variants under

study. Highly conserved variants, variants in exons, and protein-coding variants all have higher

prior probability of being causal than variants in intergenic regions. A series of methods have been

developed that incorporate functional data to detect biologically important variants and up-weight

their association statistics or reduce their significance thresholds [39–44]. By focusing on capturing

non-linear covariate effects, DeepNull constitutes a distinct approach to improving statistical power

of GWAS, and thus can be used in combination with any or all of the approaches discussed above.

We note several limitations of our work. First, while training the DeepNull model, we assume

individuals (e.g. samples) are independent. Although this is a general assumption among machine

learning methods and optimization frameworks, this is not necessary true in the presence of related

individuals. Thus, we believe that an ML optimizer that can incorporate sample relatedness may

improve the prediction accuracy of DeepNull’s DNN. Importantly, although DeepNull makes the in-

dependence assumption during training, this does not mean that type I error is not controlled. Our

analyses used BOLT-LMM to perform the association testing, which does correctly account for the

relatedness between individuals. Second, DeepNull does not attempt to model possible genotype-

covariate (G×X) or genotype-genotype (G×G) interactions. This limitation is shared by standard

GWAS, and can only be overcome by employing different statistical models to explicitly capture

these interactions during association testing. Third, DeepNull’s DNN is not easily interpretable

compared to less expressive models such as the Baseline model. For improving GWAS power, this

is not a major limitation as the parameter of interest is the coefficient describing the relationship

between genotype and phenotype. By estimating this coefficient within a linear model that incor-

porates DeepNull’s prediction of phenotype, we obtain a more precise estimate of the genetic effect.

For more interpretable phenotypic prediction, possibly at the expense of some prediction accuracy,

using a non-linear model such as spline regression or generalized additive model [45], symbolic re-

gression [46], or neural additive model [47] may be beneficial. Alternatively, the trained DeepNull

model can be interrogated with a variety of methods [48–51], though we note that DNN inter-
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pretability is an active and evolving area of research. Lastly, DeepNull is a proof of concept. For

some phenotypes, a simpler model such as the Second-order Baseline model may suffice to capture

the phenotype-covariate relationship. For others, an alternative non-linear model such as boosted

trees may equal or possibly outperform DeepNull’s DNN. For example, we observed that XGBoost

obtained similar GWAS hits, loci, and phenotypic predictions for the 10 example UKB phenotypes

(Supplementary Tables 16, 17, and 20). Although XGBoost and DNN performed similarly for these

phenotypes, the added flexibility of DNNs may prove advantageous for other phenotypes or sets of

covariates. For example, DNNs can handle complex inputs such as image and text that XGBoost

typically cannot. Importantly, we observed in all cases that DeepNull performed as well or better

than current standard practice, and the underlying DNN is sufficiently expressive to capture many

of the phenotype-covariate relationships likely to be encountered in practice.

By accurately modeling the non-linear interactions between covariates and the phenotype of

interest, DeepNull improved phenotype prediction and association power, both in simulations and

on 10 UKB phenotypes. Software for performing end-to-end cross-validated training and prediction

is freely available (see URLs). The resulting phenotypic predictions can readily be included among

the input data to commonly-used GWAS models, including PLINK and BOLT-LMM. The improved

performance of DeepNull, combined with its ease of use, suggest that it or similar approaches to

modeling non-linear covariate effects should become a standard component of performing pheno-

typic prediction and association testing.

Methods

Notation: We use bold capital letters to indicate matrices, non-bold capital letters to indicate

vectors, and non-bold lowercase letters to indicate scalars.

Standard GWAS.

We consider GWAS of a quantitative trait for a sample of n individuals genotyped at m SNPs.

Let Y = (yi)
n
i=1 denote the n × 1 phenotype vector, where yi is the phenotypic value of the i-th

individual, and G = [gij ] the n×m sample by SNP genotypes matrix, where gij is the minor allele

count for the i-th individual at the j-th variant. Since human genomes are diploid, each variant has
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3 possible minor allele counts: gij ∈ {0, 1, 2}. G·j = (gij)
n
i=1 is a vector of minor allele counts for all

individuals at the j-th SNP. For simplicity, assume the phenotypes and genotypes are standardized

to have zero mean and unit variance. Let Ḡ = [ḡij ] ∈ Rn×m be the standardized version of G,

i.e. the empirical mean and variance of Ḡ.j are zero and one, respectively: 1
n

∑
i ḡij = 0 and

1
n

∑
i ḡ

2
ij = 1 for each j-th SNP.

A typical GWAS assumes the effect of each variant on the phenotype is linear and additive.

Thus, we have the following generative model:

Y = Ḡβ + Xγ + ε (4)

where β is the m× 1 vector of effect sizes for each variant on the phenotype, X = [xik] is the n× q

covariate matrix, including covariates such as age and sex, and γ is the q × 1 vector of association

coefficients for the covariates. Let X indicate covariates not directly derived from genotypic data

(“non-genetic covariates”). For genotypes gij ∈ {0, 1, 2} the assumptions of linearity and additivity

are not restrictive. On the other hand, a typical GWAS also assumes that the covariates are linearly

associated with the phenotype. This is a far more restrictive assumption if any of the covariates

are continuous. ε = (εi)
n
i=1 is an n × 1 residual vector that models the environmental effects and

measurement noise.

To perform a GWAS, each variant is individually tested for association with the phenotype.

For example, the j-th variant is tested for association using the following model:

Y = Ḡ·jβj + X̃ γ̃ + ε (5)

Here X̃ contains the known set of covariates (e.g. age and sex), in addition to adjustments for

confounding that become necessary when the genotypes at SNPs j̃ 6= j are omitted from the model

shown in Equation (4). Confounding due to the presence of genetically related subgroups within the

sample, for example subgroups of individuals with common ancestry, is referred to as population

structure, and is commonly accounted for by including the top several genetic PCs in X̃ [10, 11, 52].

The model in Equation (5) can be simplified by projecting away the covariates [18, 53]. Define

P = I − X̃(X̃T X̃)−1X̃T , which is the projection onto the orthogonal complement of the linear
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subspace spanned by X. Multiplying Equation (5) through by P on the left yields:

PY = P Ḡ·jβj + ε∗. (6)

The projected phenotype PY is the residual from regression of Y on X̃. Likewise, P Ḡ·j is the

residual from regression of Ḡ·j on X̃. Importantly, if Ḡ·j and X̃ are dependent, which is necessarily

true if X̃ contains confounders of the genotype-phenotype relationship, then P Ḡ·j will differ from

Ḡ·j . Consequently, an analysis that residualizes only Y with respect to X̃ will be misspecified.

Instead, to remove dependence on X̃, both Y and Ḡ·j should be residualized in Equation (5).

Though including genotypic PCs can control for population structure, it fails to correct for

cryptic or family relatedness between individuals [26, 27, 54, 55]. LMMs were introduced to GWAS

to overcome these limitations [18, 26–33]. LMMs account for random variation in the phenotypic

mean that is correlated with the genetic relatedness of the individuals under study, and have proven

effective for increasing power even when the kinship among subjects is more distant [18, 32, 33].

We use BOLT-LMM [18, 33] to perform our analyses and we refer to it as the Baseline method.

DeepNull model.

In this work, we consider a model in which the covariates have potentially non-linear effect on the

phenotypes. The corresponding generative model for an individual i can be written as

yi = Ḡi·β + f(Xi·)γf + εi

where all variables are defined identically as in formula (4), f : Rq → R is any (potentially non-

linear) function, Ḡi· = (ḡij)
m
j=1, and Xi· = (xik)

q
k=1. In vector form,

Y = Ḡβ + F (X)γf + ε

where F : Rn×q → Rn is the function that applies f to each row of X.

We convert the estimation of ui = f(Xi·) into a learning problem, where we predict ui using yi

and Xi· as targets and input features, respectively. In other words, we train a model h using the
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covariates Xi· and the phenotype yi by minimizing

‖yi − h(Xi·)‖2. (7)

We designed a DNN architecture for modeling the function h (Figure 5). We explored the

model proposed previously to detect interpretable statistical interactions [56] but found that a

simpler model with an explicit linear effect performed equally well on four UKB phenotypes tested

(data not shown). The resulting model is inspired by residual networks [57] and consists of two

components. One component (the shorter path from input to output in Figure 5) is linear, to

directly represent the linear effect of the covariates on the phenotype. The other component (the

longer path in Figure 5) is a multi-layer perceptron (MLP), to model a potentially non-linear effect

of the covariates. The MLP component has 4 hidden layers, all of which use the Rectified Linear

Unit (ReLU) activation.

In an equation form, the DeepNull model h can be written as

h(Xi·) = H(5) +H(6),

where

H(1) = φ(W
(1)
64×qXi· +B

(1)
64×1)

H(2) = φ(W
(2)
64×64H

(1) +B
(2)
64×1)

H(3) = φ(W
(3)
32×64H

(2) +B
(3)
32×1)

H(4) = φ(W
(4)
16×32H

(3) +B
(4)
16×1)

H(5) = W
(5)
1×16H

(4) +B
(5)
1×1

H(6) = W
(6)
1×qXi· +B

(6)
1×1

and φ is the coordinate-wise ReLU function, i.e.

φ
(

(xp)
P
p=1

)
=
(

max(0, xp)
)P
p=1

.
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DeepNull learns

W = {W (1)
64×q,W

(2)
64×64,W

(3)
32×64,W

(4)
16×32,W

(4)
16×32,W

(5)
1×16,W

(6)
1×q}

and

B = {B(1)
64×1, B

(2)
64×1, B

(3)
32×1, B

(4)
16×1, B

(5)
1×1, B

(6)
1×1}

by minimizing the mean squared error in (7) using the Adam optimizer [58] implemented in Keras

for TensorFlow 2. Adam is run with β1 = 0.9 and β2 = 0.99. We also used a batch size of 1024 and

a learning rate of 10−4. We train DeepNull for 1,000 epochs (running DeepNull with more epochs

can improve the results with the cost of increasing the training time), without early stopping,

batch normalization, or dropout. Kernel initializers were set to default (glorot uniform) and bias

initializers were set to default (zeros).

Input

64

64

32

16

Output

+

1

1

Figure 5: DeepNull DNN model architecture. Each rectangle represents one layer and all layers are
fully connected. Shaded layers use the ReLU activation and the non-shaded layers do not use an activation
function (i.e. linear connection). The input is the set of known covariates and the output is the predicted
phenotype.
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Performing GWAS using DeepNull.

After training DeepNull, we use the following model to test for association between the jth variant

and the phenotype:

yi = ḡijβj + h(Xi.)γh + X̃i.γ + ε.

The vectorized form of the above association test is

Y = Ḡ.jβj +H(X)γh + X̃γ + ε. (8)

where H : Rn×q → Rn is the function that applies h to each row of X. Compared to the standard

GWAS association model in Equation (5), the DeepNull association model differs only by the

inclusion of an extra term H(X)γh, where h(Xi.) is the DNN’s prediction of the phenotype, based

on non-genetic covariates only, and γh is a scalar association coefficient. As in the model shown

in Equation (5), X̃ includes both non-genetic covariates (e.g. age and sex) and adjustments for

confounding (e.g. genetic PCs) while X excludes PCs. PCs are excluded because the aim of

DeepNull is to predict phenotypes without utilizing genetic data, whereas the PCs are computed

from genotypes. In addition, higher-order interactions of PCs may capture true biological signals

that it is not desirable to remove (e.g. conditional associations) in GWAS.

To avoid overfitting, DeepNull should be trained and run on distinct sets of individuals. How-

ever, to maximize the GWAS’s statistical power, all individuals in the cohort should receive Deep-

Null predictions. To satisfy both of these criteria, we split the cohort by individual into k partitions.

For each selected partition, we train a DeepNull model using data from k−2 of the other partitions

and use the remaining partition for validation and model selection. The model that performs best

on the validation partition is then used to predict all individuals in the selected partition. The

partitioning scheme ensures that each partition is used as the validation/selection partition exactly

once.
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Simulation framework.

We simulate data using the model

Y = Ḡβ +

q∑
k=1

f(X.k)γk + ε (9)

where X.k is the value of the k-th covariate for all individuals, γk is the effect size, and f(·) is an

arbitrary function from R to R, such as the identity f(x) = x or exponential function f(x) = exp(x).

For j = 1, · · · ,m, the variant effect sizes βj are drawn independently from a normal distribution

with mean zero and variance equal to
σ2
g

m where σ2g ∈ [0, 1) is the proportion of phenotypic variance

explained by genotype (i.e., the heritability) and m is the number of causal variants: βj
iid∼ N (0,

σ2
g

m ).

Similarly, the covariate effects are drawn independently from a normal distribution with mean zero

and variance equal to σ2
x
q such that σ2x is the proportion of phenotypic variance explained by the

covariates: γk
iid∼ N (0, σ

2
x
q ). Lastly, ε is drawn from another independent normal distribution with

mean 0 and variance 1 − (σ2g + σ2x): ε ∼ N (0, 1 − σ2g − σ2x). Under this model, E(Y ) = 0 and

V(Y ) = E(Y 2) = 1. In the case f(·) is the identity function f(x) = x, our simulation framework is

similar to previous works [18, 32].

Phenotypes were simulated based on genotypes and covariates from the UKB. Age, sex, and

genotype array were included as covariates. Causal variants were selected uniformly at random from

chr22 such that 1% variants (i.e., 127 variants) were causal. Association testing was performed

using BOLT-LMM [33] applied to chromosomes chr1, chr2, and chr22. BOLT-LMM is a linear

mixed model that incorporates a Bayesian spike-and-slab prior for the random effects attributed to

variants other than that being tested. The prior allows for a non-infinitesimal genetic architecture,

in which a mixture of both small and large effect variants influence the phenotype. Specifically,

the BOLT-LMM association statistic arises from Equation (8) with the inclusion of an additional

random effect Ḡ(−j)δ. Here Ḡ(−j) denotes genotype at all variants not on the same chromosome

as variant j, and the components of δ follow the spike-and-slab prior [18].

In our setting, chr1 and chr2 are utilized to compute the type I error of the association test,

which is the proportion of non-causal variants erroneously associated with the phenotype at a given

significance threshold α (e.g. α=0.05). For null SNPs, the expected χ2 statistic is 1. Methods that

effectively control type I error are compared with respect to their power for correctly rejecting the
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null hypothesis [59–61], and their expected χ2 statistics [18, 32, 33]. Power is defined as the proba-

bility of correctly detecting that a variant with a non-zero effect size is causal [59–61]. Additionally,

the expected χ2 statistic of an association method is a proxy for its prediction accuracy [18, 32, 33].

UKB GWAS evaluation.

All GWAS were performed in a subset of UKB individuals of European genetic ancestry, identified

as in Alipanahi et al. [19]. Briefly, the medioid of the top 15 genetic PC values of all individuals

with self-reported “British” ancestry was computed, then the distance from each individual in UKB

to the British medioid was computed and all individuals within a distance of 40 were retained. The

threshold of 40 was selected based on the 99th percentile of distances of individuals who self-identify

as British or Irish.

Association testing was performed via BOLT-LMM [18, 33] (see URLs) with covariates specific

to each experiment. GWAS “hits” were defined as genome-wide significant (i.e. P ≤ 5 × 10−8)

lead variants that are independent at an R2 threshold of 0.1. Hits were identified using the --clump

command in PLINK (see URLs). The linkage disequilibrium (LD) calculation was based on a

reference panel of 10,000 randomly sampled unrelated subjects of European ancestry from the

UKB. The span of each hit was defined based on the set of reference panel variants in LD with the

hit at R2 ≥ 0.1. GWAS “loci” were defined by merging hits within 250 Kbp.

Comparison of two GWAS results G1 and G2 for shared and unique hits was performed by

examining overlap of the hit spans; a given hit H1 from G1 is classified as shared if the span of any

hit from G2 overlaps it, otherwise it is classified as unique.

Comparison of our GWAS with the GWAS catalog (see URLs) was performed analogously

to comparing two GWAS. We used gwas catalog v1.0.2-associations e100 r2021-04-05 and con-

verted coordinates from GRCh38 to GRCh37 using UCSC LiftOver (see URLs) with default param-

eters. All catalog variants whose “DISEASE/TRAIT” column matched the phenotype of interest

and were genome-wide significant were converted into loci by merging variants within 250 Kbp.

Learning phenotype-covariates relationship via spline regression.

We can learn the non-linear relationship between the phenotype and covariates by fitting sex-specific

spline regression models to predict the desired phenotype using a set of covariates. For each sex,
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we learn an independent spline regression model based on the other non-genetic covariates. We

utilized the python scikit-learn package (URLs) to perform spline fitting.

Learning phenotype-covariates relationship via XGBoost.

We can also learn the non-linear relationship between the phenotype and covariates by fitting

gradient boosted decision trees. XGBoost (URLs) is one existing implementation of gradient

boosted decision trees. We utilized XGBoost to learn the non-linear relationship. The optimal

XGBoost hyperparameters were selected by performing black-box hyperparameter optimization

with Google Vizier [62]. The optimization objective was to minimize root mean squared error for

the total protein phenotype in UKB. The dataset was randomly split into train (80%) and test

(20%) folds. The optimal parameters identified, and used for all 10 UKB phenotypes, were the

following: max depth=3, eta=0.3190, alpha=0.6577, and lambda=2.

URLs

BOLT-LMM software: https://data.broadinstitute.org/alkesgroup/bolt-lmm

BaselineLD annotations: https://data.broadinstitute.org/alkesgroup/ldscore

DeepNull software: https://github.com/google-health/genomics-research/tree/main/nonlinear

-covariate-gwas

GWAS Catalog: https://www.ebi.ac.uk/gwas/

PLINK software: https://www.cog-genomics.org/plink1.9

scikit-learn: https://scikit-learn.org/stable/

TensorFlow: https://www.tensorflow.org

UCSC LiftOver: https://genome.ucsc.edu/cgi-bin/hgLiftOver

UK Biobank study: https://www.ukbiobank.ac.uk

XGBoost: https://xgboost.readthedocs.io/en/latest/

Data Availability

This work used genotyped and phenotypes from the UK Biobank study (see URLs).
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Code Availability

DeepNull software is available for download from GitHub (see URLs) or installation via PyPI

(https://pypi.org/project/deepnull/).
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Benedicte A Lie, Christina M Lill, Magdalena Lindén, Jenny Link, Felix Luessi, Jan Ly-
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Lehtimäki, Owen M Woodward, Yukinori Okada, Adrienne Tin, Christian Müller, Christo-

pher Oldmeadow, Margus Putku, Darina Czamara, Peter Kraft, Laura Frogheri, Gian An-

dri Thun, Anne Grotevendt, Gauti Kjartan Gislason, Tamara B Harris, Lenore J Launer,

Patrick McArdle, Alan R Shuldiner, Eric Boerwinkle, Josef Coresh, Helena Schmidt, Michael

Schallert, Nicholas G Martin, Grant W Montgomery, Michiaki Kubo, Yusuke Nakamura,

Toshihiro Tanaka, Patricia B Munroe, Nilesh J Samani, David R Jacobs, Jr, Kiang Liu,

Pio D’Adamo, Sheila Ulivi, Jerome I Rotter, Bruce M Psaty, Peter Vollenweider, Gerard

Waeber, Susan Campbell, Olivier Devuyst, Pau Navarro, Ivana Kolcic, Nicholas Hastie, Bev-
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