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 16 

Choosing among spatially-distributed options is a central challenge for animals, from 17 

deciding among alternative potential food sources or refuges, to choosing with whom to 18 

associate. Using an integrated theoretical and experimental approach (employing 19 

immersive virtual reality), we consider the interplay between movement and vectorial 20 

integration during decision-making regarding two, or more, options in space. In 21 

computational models of this process we reveal the occurrence of spontaneous and abrupt 22 

"critical" transitions (associated with specific geometrical relationships) whereby 23 

organisms spontaneously switch from averaging vectorial information among, to 24 

suddenly excluding one, among the remaining options. This bifurcation process repeats 25 

until only one option—the one ultimately selected—remains. Thus  we  predict  that  the  26 
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brain  repeatedly  breaks  multi-choice  decisions  into  a series  of  binary  decisions  in  27 

space-time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that 28 

they exhibit these same bifurcations, demonstrating that across taxa and ecological 29 

context, there exist fundamental geometric principles that are essential to explain how, 30 

and why, animals move the way they do. 31 

 32 

Animals constantly face the need to make decisions, and many such decisions require choosing 33 

among multiple spatially-distributed options. Despite this, most studies have focused on the 34 

outcome of decisions (1–3) (i.e. which option among alternatives is chosen), as well as the time 35 

taken to make decisions (4–6), but seldom on the movement of animals throughout the 36 

decision-making process. Motion is, however, crucial in terms of how space is represented by 37 

organisms during spatial decision-making; the brains of a wide range of species, from insects 38 

(7, 8) to vertebrates (9, 10), have been shown to represent egocentric spatial relationships, such 39 

as the position of desired targets, via explicit vectorial representation (11, 12). Such neuronal 40 

representations must, and do, change as animals move through space. Thus, while the 41 

movement of an animal may, initially, appear to simply be a readout of the decision made by 42 

the brain—and consequently not particularly informative—this view overlooks important 43 

dynamical properties introduced into the decision-making process that result from the 44 

inevitable time-varying geometrical relationships between an organism and spatially-45 

distributed options (i.e. potential ‘targets’ in space). 46 

 47 

Due to a dearth of existing studies, and with the objective to develop the necessary foundational 48 

understanding of the ‘geometry’ of decision-making, we focus here—first theoretically and 49 

then experimentally—on the consequences of the recursive interplay between movement and 50 

(collective) vectorial integration in the brain during relatively simple spatial decisions. We 51 
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employ immersive virtual reality to investigate decision-making regarding multiple (two or 52 

more) options in both invertebrate (the fruit fly Drosophila melanogaster, and desert locust 53 

Schistocerca gregaria) and vertebrate (larval zebrafish Danio rerio) models. Doing so allows 54 

us to reveal the emergence of geometric principles that transcend the study organism and the 55 

decision-making context, and thus are expected to be broadly relevant across taxa. In support 56 

of this finding we also explore how these principles extend to collective decision-making in 57 

mobile animal groups, allowing us to gain insights across three scales of biological 58 

organisation, from neural dynamics, to both individual and collective decision-making. 59 

 60 

Modelling decision-making on the move 61 

Congruent with neurobiological studies of the invertebrate and vertebrate brain, we consider 62 

organisms to have an egocentric vectorial representation of spatial options (11–13). We then 63 

consider the collective dynamics of vector integration in the brain assuming there exists 64 

reinforcement (excitation/positive feedback) among neural ensembles that have similar 65 

directional representations (goal vectors), and global inhibition and/or negative feedback (both 66 

produce broadly similar results, see SI Appendix and Fig. S1) among neural ensembles that 67 

differ in vectorial representation. This captures, in a simple mathematical formulation, the 68 

essence of both explicit ring-attractor networks (as found in insects (7)), and computation 69 

among competing neural groups (as in the mammalian brain (14)). The animal’s relative 70 

preference for a target is given by activity of neurons that encode direction to that target relative 71 

to activity of neurons that encode direction to other targets, and the angular sensitivity of the 72 

neural representations (angular difference at which excitation no longer occurs) is specified by 73 

a neural tuning parameter, 𝜈. The network then computes a unique ‘consensus’ vector (‘activity 74 

bump’) that, along with some angular noise, represents the animal’s desired direction of 75 

movement (Fig. S2). This is then translated into motor output (see SI Appendix for model 76 
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details \cite{pinkoviezky_collective_2018}). Stochasticity in neural dynamics is implemented 77 

here as the neural noise parameter, 𝑇.  78 

 79 

While capturing known, generic features of neural integration, our model is deliberately 80 

minimal. This serves multiple purposes: firstly, following principles of maximum parsimony 81 

we seek to find a simple model that can both predict and explain, the observed phenomena; 82 

secondly, we aim to reveal general principles and thus consider features that are known to be 83 

valid across organisms irrespective of inevitable difference in structural organization of the 84 

brain; thirdly, it provides a convenient means to implement neural noise, and can be mapped 85 

to the class of neural ring-attractor models widely-used in neuroscience (15–18) (see SI 86 

Appendix for details). In addition, our results are shown to be extremely robust to model 87 

assumptions, suggesting that it provides an appropriate low-level description of essential 88 

system properties.  89 

 90 

Deciding between two options 91 

Beginning with the simplest case, we consider the feedback between motion and internal 92 

vectorial-computation when an animal is presented with two equally-attractive, but spatially-93 

discrete, options. In this case the activity of neurons encoding option 1, 𝑁1 will be equal to 94 

those encoding option 2, 𝑁2 (Fig. 1A). Our model predicts that an animal moving, from a 95 

relatively distant location, towards the two targets, will spontaneously compute the average 96 

directional preference, resulting in corresponding motion in a direction oriented between the 97 

two targets. As it approaches the targets, however, upon reaching a certain angular difference 98 

between the options, the internal network undergoes a sudden transition in which it 99 

spontaneously selects one, or the other, target (Fig. 1C). This results in an abrupt change in 100 
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trajectory, the animal being redirected towards the respective ‘selected’ target (Fig. 1C; see 101 

also Fig. S3A for the same phenomenon occurring for a wide range of starting positions).  102 

 103 

Our model therefore predicts that despite the fact that the egocentric geometrical relationship 104 

between the animal and the targets changes continuously, upon approaching the targets, there 105 

exists a location whereby a further, very small, increase in angular difference between the 106 

targets will result in a sudden change in system (neural) dynamics, and consequently in motion, 107 

and thus decision-making. Such spatio-temporal dynamics do not occur if individuals were to 108 

simply integrate noisy vectorial information or choose their travel direction from a summed 109 

distribution of the location of targets in their sensory field (19), points we will return to later. 110 

 111 

In numerical analysis of our model we find that irrespective of starting position, as the animal 112 

reaches the respective angle in space, it will relatively suddenly select one of the options (Fig. 113 

S3A). While the specific angular difference at which this phenomenon occurs is dependent on 114 

neural tuning, 𝜈 (Fig. S3C), and the starting configuration (due to an interplay between the two 115 

timescales involved—for movement and for neural consensus, see Fig. S3B), it is always 116 

present as long as the neural noise, 𝑇 remains below a critical firing rate, 𝑇𝑐 (although even for 117 

𝑇 < 𝑇𝑐, these bifurcations may be difficult to see for small values of 𝜈 due to inherent noise in 118 

real biological systems; see Fig. S4 for simulations where vectorial representations of targets 119 

include directional error). 120 

 121 

To gain a deeper insight into the mechanism underlying the observed spatiotemporal dynamics, 122 

we constructed a mean-field approximation of our model (see SI Appendix) since this has the 123 

advantage of allowing us to conduct formal analyses of patterns realized in the simulated 124 

trajectories. 125 
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 126 

Geometric principles of decision-making 127 

The mean-field analysis of our model shows that below a critical level of neural noise, animals 128 

will adopt the average among options as they approach the targets, until a critical phase 129 

transition upon which the system spontaneously switches to deciding among the options (Figs. 130 

1B and S5A). Thus despite varying in its exact location (Fig. 1B), the sudden transition 131 

observed is an inevitable consequence of the system dynamics and will always occur. 132 

 133 

Such sudden transitions correspond to ‘bifurcations’ in the mathematical study of dynamical 134 

systems. A bifurcation is said to occur when a smooth change in an external parameter, in this 135 

case perceived angular difference between the options, causes a sudden qualitative change in 136 

the system’s behavior, here corresponding to a literal bifurcation (or branching) in physical 137 

space.  138 

 139 

When dynamical systems undergo such a phase, or quasi-phase, transition they exhibit a 140 

remarkable universal property: close to the transition, at the “critical-point” or “tipping-point”, 141 

the system spontaneously becomes extremely sensitive to very small perturbations (e.g. to 142 

small differences in preference between options (20, 21)). This is true of both physical (e.g. 143 

magnetic (22)) and biotic (e.g. cellular  (23, 24)) systems undergoing a phase transition. 144 

Correspondingly, we find that below a critical level of neural noise, the mean-field model 145 

exhibits a sudden increase in susceptibility as the animal approaches the critical point, 146 

immediately prior to the decision being made (Fig. S5A). This will not occur in previously-147 

considered models where an animal is assumed to choose its direction of travel based on the 148 

summed distribution of targets in its sensory field, also known as probability density function, 149 

or PDF, sum-based models (19). Thus, as animals approach targets we predict they will pass 150 
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through a window of space (corresponding to the critical angle for the respective geometry they 151 

are experiencing) in which their brain spontaneously becomes capable of discriminating 152 

between very small differences between options (e.g. a very small difference in neuronal 153 

activity being in ‘favor’ of one option; see Fig. S3D and SI Appendix for details). This highly-154 

valuable property (for decision-making) is not built into the model, but is rather an emergent 155 

property of the inherent collective dynamics. 156 

 157 

In many real biological systems, including the ones we consider here, the (neural) system size 158 

is typically not large enough to consider true phase transitions (which only occur for very large 159 

systems, as per the mean-field approximation), but rather ‘phase-transition-like’, or ‘quasi-160 

phase transition', behavior. Even though real biological systems are not necessarily close to the 161 

infinite size limit of the mean-field approximation, we see very similar dynamics for both small 162 

and large system sizes (Fig. S6). 163 

 164 

Decision-making beyond two options 165 

While the majority of decision-making studies consider only two options (due to both 166 

theoretical and experimental tractability (14, 25, 26)), animals moving in real space frequently 167 

encounter a greater number than this. Here we consider how animals will be expected to select 168 

among three, or more, options (possible targets) in space. First we begin with three identical 169 

options (𝑁1 = 𝑁2 = 𝑁3) since this gives us the clearest insight into the relationship between 170 

motion and decision-making dynamics. Then we relax these assumptions and consider 171 

differences between options (Fig. S3E) as well as a greater number of options (Fig. 2). Note 172 

that we do not modify our model in any way prior to introducing these additional complexities. 173 

 174 
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Below 𝑇𝑐 (see SI Appendix and Fig. S7 for considerations when 𝑇 > 𝑇𝑐), we once again find 175 

that the direction in which the animal moves is a function of the angular difference between 176 

the targets. When relatively far from the targets, it moves in the average of these three 177 

directions. Upon reaching a critical angular threshold between the leftmost and rightmost 178 

option (from the animal’s perspective), however, the neural system spontaneously eliminates 179 

one of them and the animal begins moving in the direction average between the two remaining 180 

options (Fig. 1D,E). It continues in this direction until a second critical angle is reached, and 181 

now the animal eliminates one of the two remaining options and moves towards the only 182 

remaining target (Figs. 1F and S5B). Thus we predict that the brain repeatedly breaks multi-183 

choice decisions into a series of binary decisions in space-time. Such bifurcation dynamics are 184 

not captured in models of decision-making that do not include the required feedbacks, such as 185 

if individuals simply sum noisy vectors (or PDFs) to targets in their sensory field (19). For the 186 

case of three targets, vectors/votes to the leftmost option would tend to cancel those that favor 187 

the rightmost option, resulting in the selection of the central option, an issue we will return to 188 

later when considering collective animal behavior. Simulating a larger number of options (Fig. 189 

2) and varying environmental geometries (Figs. S8 and S9) demonstrate the robustness of this 190 

mechanism in the face of environmental complexity and the more complex spatial dynamics 191 

that emerge as organisms undergo repeated bifurcations. 192 

 193 

Experimental tests of our predictions 194 

Since the decision-process is predicted to be sequential, and dependent on the geometry with 195 

respect to the targets from an egocentric perspective, it should be possible to visualize it directly 196 

from the trajectories taken by animals when making spatial decisions. In this respect, our 197 

theoretical studies make a key testable prediction: if neural groups within the decision-making 198 

ensemble exhibit relatively local excitation, and long-range/global inhibition, we should 199 
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observe bifurcations in the animals’ trajectories as they choose among identical options; and 200 

that if animals face three (or more) such options, then the complex decision task should be 201 

broken down to a series of binary decisions.  202 

 203 

Since the geometrical principles revealed above are expected to be both robust and generic, we 204 

use immersive virtual reality (27) (Fig. S10) to test our predictions by investigating both two- 205 

and three-choice decision-making in three evolutionarily highly-divergent brains under 206 

ecologically-relevant scenarios: fruit flies (Drosophila melanogaster) and desert locusts 207 

(Schistocerca gregaria) deciding which among multiple vertical objects to approach (e.g. to 208 

perch), and zebrafish (Danio rerio) choosing with which conspecific(s) to school. 209 

 210 

Like many other insects (28–31), fruit flies (32) and desert locusts (33) exhibit a natural 211 

tendency to orient and move towards high-contrast vertical features (potential landing sites or 212 

indicators of vegetation) in their environment. We exploit this tendency, presenting multiple 213 

identical black pillars as targets in an otherwise white environment. We record trajectories of 214 

our focal animals (solitary flies or locusts) as they choose to move towards one of these pillars, 215 

thus obtaining a behavioral readout of the decision-making process (see SI Appendix for 216 

experimental details; Figs. S11 and S12 show raw trajectories of flies and locusts respectively).   217 

 218 

As predicted by our theory (Fig. 1B,C), we find that, in the two-choice case, most flies and 219 

locusts that choose one of the presented targets initially move in the average of the egocentric 220 

target directions until a critical angular difference (Fig. S13), at which point they select 221 

(randomly) one, or the other, option and move towards it (randomization test where 222 

𝑦 −coordinates between trajectories were swapped showed that the bifurcation fit to our 223 

experimental data was highly significant; 𝑝 < 0.01 for both flies and locusts; Figs. 1G and 224 
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S13). Here, we note that there may be multiple factors that affect the animals' direction of 225 

movement. For example, it could be that animals repeatedly switch between fixating on each 226 

of the two options before reaching the critical angular difference, following which it selects 227 

one. However, quantification of their heading relative to the targets, and to the average 228 

direction between the targets (Fig. S13), finds no evidence for this; instead, prior to the 229 

bifurcation, both flies and locusts exhibit a heading towards the average of the egocentric target 230 

directions. In the three-choice case, the animals’ movements are also consistent with our 231 

theory; as predicted (Fig. 1E,F) they break the three-choice decision into two sequential binary 232 

decisions (𝑝 < 10−4 for both flies and locusts; Fig. 1H). For both animals, the observed angle 233 

of bifurcation (~110° for flies and ~90° for locusts) is much larger than their visual spatial 234 

resolution (~8° and ~2° for flies (34) and locusts (35, 36), respectively). We note ~30% of 235 

animals in our experiments (both flies and locusts) did not exhibit the sequential bifurcations 236 

(see Figs. S11 and S12) described above, and instead moved directly towards one of the 237 

presented targets (Figs. S11 and S12). Such variability in response is expected in animals, and 238 

is consistent with recent work on the visual response of flies, which demonstrates a link 239 

between stochastic (non-heritable) variation in brain wiring within the visual system and 240 

strength of visual orientation response to a vertical stripe target (37). Furthermore, flies that 241 

experience high temperatures during development appear to exhibit a particularly strong 242 

orientation tendency, exhibiting the most direct paths to targets while flies that experience low 243 

developmental temperatures exhibit wandering paths to targets (38). In our model such 244 

differences can be accounted for by variation in directional tuning of the neural groups, with 245 

high directional tuning (low 𝜈) being associated with a strong orientational response, and such 246 

individuals exhibiting direct tracks to targets from the outset (see Fig. S14). 247 

 248 
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A further, non-mutually exclusive, possibility, is that a subset of insects exhibit "handedness". 249 

For example, in (39), it was shown that approximately 25% of Drosophila were either strongly 250 

left-biased or right-biased when moving on a Y-maze, and that these consistent differences 251 

among flies were similarly non-heritable. This experimental design did not assess whether a 252 

further subset are biased to go directly forwards if offered three directional choices (such as 253 

could occur in a hypothetical Ψ maze). In such cases, it is certainly possible that these intrinsic 254 

directional biases break symmetry (Fig. S3D,E), resulting in directed paths to different targets. 255 

 256 

We note that individuals predisposed to exhibit direct paths to targets would be expected to 257 

make faster, yet less accurate, decisions, a prediction we plan to test in future studies. 258 

 259 

Our zebrafish experiments consider spatial decision-making in a social context. We present 260 

virtual conspecifics (see SI Appendix for methodological details) that move back-and-forth in 261 

the arena parallel to each other as targets (Figs. 3A and S15A) and behave (Fig. S16), and are 262 

responded to (Fig. S17), in the same way as real fish. Because they are social, the real fish 263 

respond to these virtual fish by tending to follow at a (relatively) fixed distance behind them 264 

(Fig. S15E). Our data are best represented within this moving frame of reference (the virtual 265 

fish; Fig. S15). Theoretically we predict that for two virtual fish we should see a single 266 

bifurcation, where the real fish will suddenly switch from averaging the target directions to 267 

deciding among them (i.e. swimming predominantly with one of the virtual fish), as a function 268 

of increasing the lateral distance, 𝐿, between the virtual fish (Figs. 3B and S18; see SI Appendix 269 

for details of model implementation). The existence of this bifurcation is clearly seen in our 270 

experiments (Fig. 3C). When considering three moving virtual conspecifics, the model predicts 271 

that real fish will spontaneously break the three-choice decision to two binary decisions, and a 272 
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comparison of the theoretical prediction and experimental results demonstrates this to be the 273 

case (c.f. Fig. 3E,F).  274 

 275 

We also test predictions under conditions where there is an asymmetric geometry whereby two 276 

fish swim closer to each other than the central one does to the third fish (Fig. 4A). As predicted 277 

by our theory (Fig. 4B), the real fish tends to swim between the two closely-associated fish, or 278 

close to the third, more distant, fish (Fig. 4B). Note that, also as predicted, the real fish spends 279 

a similar amount of time in each of the two locations. 280 

 281 

Although detailed models considering the specifics of each system would be expected to 282 

provide additional quantitative fits (at the expense of losing some degree of generality and 283 

analytical tractability), our results are broadly independent of the model implementation 284 

details. Thus, we find that the key predictions of our model are validated in fruit flies, desert 285 

locusts and larval zebrafish in distinct, yet ecologically relevant contexts. 286 

 287 

Model features that determine network behavior 288 

There are key features that are essential to produce the bifurcation patterns observed in our data 289 

i.e. for any decision-making system to break multi-choice decisions to a series of binary 290 

decisions.  291 

• Feedback processes that provide the system directional persistence, and drive such 292 

bifurcations, are crucial to exhibit the observed spatio-temporal dynamics. In the neural 293 

system, this is present in the form of local excitation and long-range/global inhibition 294 

(7, 16, 17). However, as shown in our model of collective animal behavior below, we 295 

expect that similar dynamics will be observed if the necessary feedbacks are also 296 
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incorporated into other models of decision-making, such as to PDF-sum-based models, 297 

for example (19). 298 

• Observing similar decision dynamics requires a recursive (embodied) interplay 299 

between neural dynamics, and motion in continuous space. Here, the animal's 300 

geometrical relationship with the targets changes as it moves through physical space. 301 

Since neural interactions depend on this changing relationship, space provides a 302 

continuous variable by which the individual traverses the time-varying landscape of 303 

neural firing rates. 304 

These essential features, along with the observed animal trajectories in the two-choice context, 305 

are reminiscent of collective decision-making in animal groups (models (40–44), fish schools 306 

(45), bird flocks (46) and baboon troops (25)). Below, we consider an established model of 307 

collective decision-making (40) to draw links between these two scales of biological 308 

organization—decision-making in the brain, and decision-making in animal groups.  309 

 310 

A link to collective decision-making 311 

In order to draw a link between individual decision-making and collective decision-making in 312 

animal groups, we consider an animal group with equal number of individuals exhibiting 313 

preference for each target (see SI Appendix for methodological details). A long-standing 314 

approach in the study of animal collectives is to consider them integrating vectorial information 315 

from neighbors (47, 48), and there are a great number of publications of such “flocking”, 316 

“schooling” or “herding” behaviors (47–49). Individuals within groups may also have 317 

preferences to reconcile this local vector-averaging with goal-oriented behavior, such as a 318 

desired direction of travel (40, 45), and such models have made effective predictions regarding 319 

how the number of individuals with a common desired direction of travel influences the 320 

accuracy of group motion towards targets (25) and how the weighting of the internal ‘goal-321 
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oriented' vector representing the desired direction of travel, influences the capacity and 322 

accuracy for individuals to act as leaders and to influence the directon taken by the group as a 323 

whole (50). 324 

 325 

We demonstrate here, however, that while ubiquitous, such models of collective animal 326 

behavior fail to account for the known capability for animal groups to make decisions among 327 

spatially discrete targets (see Fig. S19A,B). To do so, it is essential that the necessary 328 

feedbacks, as described above for collective decision-making among neurons, are incorporated. 329 

While these feedbacks are inherent to our neural model, they can also be included in other 330 

models in the form of social interactions, or in the animals' response to their environment (51). 331 

 332 

For example, one way feedback can be introduced here is via ‘informed’ individuals (those 333 

with a desired direction of travel) associating with ‘uninformed’ or ‘unbiased' individuals 334 

(individuals that exhibit social interactions but have no specific desired direction of travel) (40, 335 

45); ‘uninformed’ individuals are effectively recruitable by those with a desired direction of 336 

travel (providing local positive feedback), but are also in finite supply, creating what is 337 

effectively a competition among informed subsets that differ in their preferred direction of 338 

travel (a form of longer-range inhibition between informed subsets). However, because 339 

‘uninformed' individuals tend to average the direction of all ‘informed' individuals that recruit 340 

them, we find that this type of feedback functions more as a social glue, and is only able to 341 

explain bifurcations when the group is choosing between two options. In a decision-making 342 

context with three options, this type of feedback, alone, results in the group almost always 343 

moving towards the central target (Fig. S19D). 344 

 345 
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A means of resolving this issue is for individuals to change the strength of their goal-346 

orientedness as a function of their experienced travel direction; for example, individuals that 347 

find themselves consistently moving in a (group) direction that differs from their preferred 348 

target direction could weaken the strength of their preference over time (a form of 349 

forgetting/negative feedback, effectively resulting in long-range/global inhibition; and once 350 

this preference is lost, they will tend to spontaneously reinforce the majority-selected direction 351 

(45), a form of positive feedback). We find that this biologically-plausible mechanism (40) will 352 

allow individuals within the group to recover the capability to come to consensus even in the 353 

absence of uninformed individuals (Fig. 5), and for a greater number of options than two (Fig. 354 

5B).  355 

 356 

Despite considerable differences in details between this model and that of neural dynamics 357 

described above, with the former involving individual components that change neighbor-358 

relationships over time and where inhibition emerges from a different biological process, the 359 

predictions regarding motion during decision-making are extremely similar (c.f. Fig. 5 and Fig. 360 

1 for a comparison between predictions for animal groups and neural groups, respectively). 361 

Thus, we find that similar principles may underlie spatial decision-making across multiple 362 

scales of biological organization. Furthermore by presenting social interactions in a decision-363 

making context, our zebrafish experiments elucidate the neural basis of schooling allowing us 364 

to glean insights across three scales of biological organization—from neural dynamics to 365 

individual decisions, and from individual decisions to collective movement. 366 

 367 

Conclusions 368 

We demonstrate that, across taxa and contexts, explicitly considering the time-varying 369 

geometry during spatial decision-making provides new insights that are essential to understand 370 
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how, and why, animals move the way they do. The features revealed here are highly robust, 371 

and we predict that they occur in decision-making processes across various scales of biological 372 

organization, from individuals to animal collectives (see Figs. 5 and S19, and SI Appendix), 373 

suggesting they are fundamental features of spatiotemporal computation. 374 

 375 
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 507 

Materials and Methods 508 

We construct a simple, spatially-explicit model of neural decision-making to study how the 509 

brain reduces choice in the presence of numerous spatial options (adapted from (52)). 510 

Theoretical predictions obtained were then tested experimentally by exposing invertebrate 511 

(fruit flies and desert locusts) and vertebrate systems (zebrafish) to spatial choice tests in virtual 512 

reality. To identify unifying principles of spatiotemporal computation across scales of 513 

biological organisation, we also reproduce the obtained decision-making patterns with an 514 

established model of collective decision-making in animal groups. 515 

 516 

Neural decision-making model. We construct a computational model of neural decision-517 

making that takes in a representation of directions to the different targets as input, and outputs 518 

a collective vectorial representation of the agent’s future velocity (adapted from (52)). This 519 

provides us explicit predictions for animal trajectories, allows us to determine which target is 520 

reached in each realization of the simulation, and facilitates direct comparison with 521 

experimental tests. Our model is within the class of widely-employed neural ring-attractor 522 

models (see SI Appendix), which like neural field models (53, 54), and attractor network 523 

models more generally (15, 16, 55), consider the collective firing activity of the neurons, or the 524 

firing rate, as opposed to the microscopic state of each firing neuron. 525 

 526 

In our model, the brain is composed of individual components, called “spins”, that, collectively, 527 

as a “spin system”, represent neural activity. Spin systems, which have been long-studied in 528 

physics due to their ability to give insight into a wide range of collective phenomena, from 529 

magnetic to quantum systems (56), were first introduced in the study of neurobiology by 530 
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Hopfield in a landmark paper (57) that provided considerable insights into principles 531 

underlying unsupervised learning and associative memory. In its simplest (and most common) 532 

formulation, as in Hopfield networks,  a spin system is comprised of entities, spins, that can 533 

each be in state 0 or 1, or in the terminology of physics either ‘up’ or ‘down’. Spin systems 534 

have consistently provided deep insights into complex collective phenomena, from spin and 535 

molecular systems, to neural systems, undergoing phase transitions (58, 59) (see SI Appendix 536 

for details and discussion).  537 

 538 

Here, the animal’s brain is characterized by a system of $N$ spins. Each spin $i$ encodes 539 

direction to one of the presented goals $\hat{p}̂_i$, and exists in one of two states: 540 

$\sigma_i=0$ or  $\sigma_i=1$. We do not imply that a spin is equivalent to a neuron, but 541 

rather, as we show via a mathematical derivation, that the collective properties of interacting 542 

spins in our model is equivalent to the firing rate in the neural ring attractor model (see SI 543 

Appendix for details). Consequently, we refer to the individual components with which we 544 

model our system as “spins”, and “neural activity” as a term to represent this “firing rate” 545 

equivalent. The energy of the system (for any given configuration) is given by its Hamiltonian, 546 

𝐻. 547 

𝐻 = −
𝑘

𝑁
∑𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑖≠𝑗

 548 

where, 𝑘 is the number of options available to the individual and 𝐽𝑖𝑗  is the interaction strength 549 

between neurons 𝑖 and 𝑗. Here, 𝐽𝑖𝑗  is given by 550 

𝐽𝑖𝑗 = cos (𝜋 (
|𝜃𝑖𝑗|

𝜋
)

𝜈

) 551 

where, 𝜃𝑖𝑗 is the angle between preferred directions of neurons 𝑖 and 𝑗, and 𝜈 represents the 552 

neural tuning parameter. For 𝜈 = 1, the interactions become “cosine-shaped” 𝐽𝑖𝑗 = cos(𝜃𝑖𝑗), 553 
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and the network has a Euclidean representation of space (Fig. S1). For 𝜈 < 1, the network has 554 

more local excitation and encodes space in a non-Euclidean manner (Fig. S1). System 555 

dynamics are implemented by energy minimization using the Metropolis-Hastings algorithm 556 

(similar to other Ising spin models) and the agent then moves with a velocity �⃗�  determined by 557 

the normalized sum of goal vectors �̂�𝑖 of all active neurons. 558 

�⃗� =
𝑣0

𝑁
∑�̂�𝑖

𝑁

𝑖=1

𝜎𝑖 559 

where 𝑣0 is the proportionality constant. The goal vector �̂�𝑖 now points from the agent’s 560 

updated location to the neuron’s preferred goal with directional noise chosen from a circularly 561 

wrapped Gaussian distribution centered at 0 with a standard deviation 𝜎𝑒. As in the mean-field 562 

approximation of the model, the timescale of movement (defined by the typical time to reach 563 

the target) in the numerical simulations was set to be much greater than the timescale of neural 564 

firing (the typical time between two consecutive changes in the neural states 𝜎𝑖). 565 

 566 

Collective decision-making model. We reproduce results from our neural decision-making 567 

model in a model that describes spatial decision-making at a different scale of biological 568 

organization (refer (40) for methodological details). To highlight the features that are key to 569 

producing the observed bifurcation patterns, we run simulations with and without feedback on 570 

the strength of goal-orientedness of individuals. 571 

 572 

Fly virtual reality experiments. All experiments were conducted on 3- to 5-day old female 573 

wild-type CS strain Drosophila melanogaster raised at 26℃ on a 12 hr light, 12 hr dark cycle. 574 

Experiments were conducted in a flyVR setup procured from loopbio GmbH. 60 tethered 575 

Drosophila melanogaster were exposed to either a two-choice or a three-choice decision task 576 

(30 and 30 individuals, respectively) in the virtual reality environment. Each experimental trial 577 
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lasted 15 min where flies were exposed to five sets of stimuli—three experimental sets and two 578 

control sets. The experimental stimuli sets consisted of two or three black cylinders (depending 579 

on the experimental condition) that were presented to the animal in an otherwise white 580 

environment. A control stimulus with a single pillar was presented before and after the 581 

experimental conditions. We rotated all trajectories such that the 𝑥 −axis points from the 582 

origin, to the centre of mass of the targets. To visualise trajectories in the various experimental 583 

conditions, we created time-normalised (proportion of maximum across a sliding time window) 584 

density maps. We then folded the data about the line of symmetry, 𝑦 =  0 and applied a density 585 

threshold to the time-normalised density map. A piecewise phase transition function was then 586 

fit to quantify the bifurcation. 587 

𝑦 = {
0 𝑥 ≤ 𝑥𝑐

𝐴|𝑥 − 𝑥𝑐|
𝛼 𝑥 > 𝑥𝑐

 588 

where 𝑥𝑐 is the critical point, 𝛼 is the critical exponent, and 𝐴 is the proportionality constant. 589 

We also performed randomisation tests for each bifurcation where we conducted the exact fit 590 

procedure described above to data where the trajectories were randomised by keeping the 𝑥-591 

coordinates, and swapping the 𝑦-coordinates with values from other random events. 592 

Randomizations show that the resultant fit to our experimental data were highly significant 593 

(𝑝 < 0.01 for binary choice and 𝑝 < 10−4 for the three-choice case). 594 

 595 

Based on the amount of time it took flies to reach one of the available targets, we also classified 596 

individual fly tracks into one of two categories—direct tracks and non-direct tracks (60) (see 597 

Fig. S11A,H for details). In our model, the direct tracks were also accounted for by varying the 598 

directional tuning of spins. A high neural tuning (low 𝜈) results in more directed tracks (Fig. 599 

S14). 600 

 601 
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Locust virtual reality experiments. All experiments were conducted on 156 instar 5 desert 602 

locusts (Schistocerca gregaria; 57 individuals for two-choice and 99 individuals for three-603 

choice experiments, respectively) raised in the Animal Research Facility of the University of 604 

Konstanz. Based on our filtering criteria, 122 out of the 156 locusts were used in our analyses. 605 

Experiments were conducted in a locustVR setup procured from loopbio GmbH (27). The 606 

experimental procedure was identical to the one described above for flies, except now, each 607 

experimental trial lasted 48 min—three experimental sets (12 min each) and two control sets 608 

(6 min each). Analyzing bifurcations in locust trajectories using the same methods described 609 

above showed that the resultant bifurcations fit to our experimental data were highly significant 610 

(𝑝 < 0.01 for binary choice and 𝑝 < 10−4 for the three-choice case). 611 

 612 

Similar to the flies, the locust trajectories were also classified as direct, or non-direct tracks. 613 

However, because the locustVR system allowed the animals to stop and reconsider movement 614 

during the decision-making process, we added an additional category to classification of 615 

individual locust tracks viz. the wandering tracks (see Fig. S12A,J for details). 616 

 617 

Fish virtual reality experiments. All experiments were conducted on 1 cm ± 0.1 cm long 618 

zebrafish (Danio rerio) of age 24 to 26 days post-fertilisation raised in a room at 28 ℃ on a 16 619 

hr light, 8 hr dark cycle. 440 fish were tested in total. Of these, 198 fish were exposed to 620 

decision-making with two virtual targets, 39 fish were exposed to decision-making with three 621 

equidistant virtual targets, and 50 fish were exposed to decision-making with three targets in 622 

asymmetric geometry (see SI Appendix for more details). Experiments were conducted in a 623 

fishVR setup procured from loopbio GmbH (refer (27) for details). Once a fish was introduced 624 

in the arena, it was given 20 min to acclimatize to the environment. This was followed by a 10 625 

min control where it was presented a single virtual conspecific circling the arena in a circle of 626 
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radius 8 cm. After this, for experiments in symmetric geometries, the real fish was exposed to 627 

choice experiments that lasted 90 min with the virtual fish initialized with random lateral 628 

distances between them and random swim direction. To visualize the bifurcations, we 629 

normalized (proportion of maximum) and stacked the marginal distributions along the direction 630 

of the virtual fish’s motion for various lateral distances. For experiments in asymmetric 631 

geometries, the real fish was exposed to choice experiments where distance between the center 632 

virtual fish and its closer neighbor was 0.03 m and its distance to the other neighbor was 0.09 633 

m (Fig. 4). All experiments were conducted in accordance with the animal ethics permit 634 

approved by Regierungspräsidium Freiburg, G-17/170. 635 
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Figures. 671 

 672 

Fig. 1. Geometrical principles of two-choice and three-choice decision-making. (A) Schematic 673 

of the binary decision-making experiments. This simplified representation shows that a sharp 674 

transition in the animal’s direction of travel is expected near a critical angle, 𝜃𝑐. (B) A phase 675 

diagram describing the ‘critical’ transition exhibited while moving from compromise to 676 

decision between two options in space. The shaded area (also in E) represents the region in 677 

parameter space where both the compromise, and the decision solutions exist. (C) Density plot 678 

showing trajectories predicted by the neural model in a two-choice context. The axes represent 679 

𝑥 − and 𝑦 −coordinates in Euclidean space. The black line (also in G) presents a piecewise 680 

phase-transition function fit to the bifurcation. (D) Schematic of three-choice decision-making 681 

experiments, where the central target is on the angle bisector of the angle subtended by the 682 

other two targets. (E) A phase diagram describing the first ‘critical’ transition when the 683 

individual chooses among three options. Once the individual eliminates one of the outermost 684 

targets, it can decide between the two remaining options, similar to the two-choice phase 685 

diagram described in B. (F) Theoretical predictions for decision-making in a three-choice 686 

context. The dashed line (also in H) is the bisector of the angle subtended by center target and 687 

the corresponding side target on the first bifurcation point. See Table S1 for parameters used 688 

in C and F. (G) and (H) Density plots from experiments conducted with flies and locusts 689 
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choosing among two and three options, respectively. Note that the density plots presented here 690 

are for the non-direct tracks, which constitute the majority type of trajectory adopted by both 691 

flies and locusts (Figs. S11 and S12). However, our conclusions do not differ if we use all, 692 

unfiltered, data (Figs. S11G,N and S12I,R). 693 

  694 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.05.26.445795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445795
http://creativecommons.org/licenses/by/4.0/


 695 

Fig. 2. Decision-making for a larger number of targets. Density plots of simulated trajectories 696 

for four- (A), five- (B), six- (C) and seven-choice (D) decision-making when targets are placed 697 

equidistant and equiangular from the agent. Thee axes represent 𝑥 − and 𝑦 −coordinates in 698 

Euclidean space. Geometrical configurations are also varied to place the targets on the same 699 

side of the agent (A and B) or in radial symmetry (C and D). See Table S1 for parameters used 700 

in A–C. In D, all parameters used are identical except the system size 𝑁 = 70.  701 
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 702 

Fig. 3. Decision-making in a moving frame-of-reference. (A) Schematic of the two-choice 703 

decision-making experiments conducted with larval zebrafish. In these experiments (also in the 704 

three-choice experiments depicted in D), the virtual fish swim parallel to each other while 705 

maintaining a fixed lateral distance, 𝐿 between them. We only consider data where the real fish 706 

swims behind the virtual fish, i.e., it follows the virtual fish (see SI Appendix and Fig. S15 for 707 

details). (B) Normalized probability distribution (proportion of maximum) of simulated 708 

positions of an agent following two moving targets, and corresponding experiments (C) 709 

conducted with larval zebrafish following two virtual conspecifics. (D) Schematic 710 

representation of the three-choice decision-making experiments. (E) Normalized probability 711 

distributions of simulated positions of an agent following three moving targets, and 712 

corresponding experiments (F) conducted with larval zebrafish following three virtual 713 

conspecifics. See Table S1 for model parameters used in B and E. 714 

715 

.CC-BY 4.0 International licenseperpetuity. It is made available under a
preprint (which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in 

The copyright holder for thisthis version posted October 25, 2021. ; https://doi.org/10.1101/2021.05.26.445795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445795
http://creativecommons.org/licenses/by/4.0/


 716 

Fig. 4. Decision-making with the targets in an asymmetric geometry. (A) Schematic of the 717 

asymmetric choice test presented to larval zebrafish. In these experiments, the virtual fish 718 

swim parallel to each other while maintaining a fixed lateral distance, 𝐿 between them. To 719 

create asymmetry in the geometry, the center fish swims closer to one of the side fish than the 720 

other (𝐿12 = 0.09 m and 𝐿23 = 0.03 m). (B) The upper panel shows the probability density 721 

function of simulated positions of an agent following three moving targets in an asymmetric 722 

geometry corresponding to the experiments. The simulated agent occupies a position of 𝑦 =723 
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±0.04 m while following the targets (𝜈 = 0.7; 𝜎𝜃 = 0.3). The lower panel shows the 724 

probability density function of the position of the real fish along the axis perpendicular to its 725 

direction of motion. As predicted by our model, the real fish considers the two virtual 726 

conspecifics closer to each other as a single target and adopts one of two positions behind the 727 

virtual fish. 728 

  729 
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 730 

 731 

Fig. 5. Consensus decision-making in simulations of animal groups follow the same 732 

geometrical principles. Results for two- (A) and three-choice (B) decision-making in a model 733 

of animal collectives. The density plots show trajectories adopted by the centroid of the animal 734 

group for 500 replicate simulations where the groups don’t split. The axes represent 𝑥 − and 735 

𝑦 −coordinates in Euclidean space. The black lines show a piecewise phase-transition function 736 

fit to the trajectories. For the three-choice case (B), the dashed line is the bisector of the angle 737 

subtended by center target and the corresponding side target on the first bifurcation point. See 738 

Table S2 for parameters used. 739 
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