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 16 

Choosing among spatially-distributed options is a central challenge for animals, from 17 

deciding among alternative potential food sources or refuges, to choosing with whom to 18 

associate. Using an integrated theoretical and experimental approach (employing 19 

immersive virtual reality), we consider the interplay between movement and vectorial 20 

integration during decision-making regarding two, or more, options in space. In 21 

computational models of this process we reveal the occurrence of spontaneous and abrupt 22 

"critical" transitions (associated with specific geometrical relationships) whereby 23 

organisms spontaneously switch from averaging vectorial information among, to 24 

suddenly excluding one, among the remaining options. This bifurcation process repeats 25 

until only one option---the one ultimately selected---remains. Thus  we  predict  that  the  26 
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brain  repeatedly  breaks  multi-choice  decisions  into  a series  of  binary  decisions  in  27 

space-time. Experiments with fruit flies, desert locusts, and larval zebrafish reveal that 28 

they exhibit these same bifurcations, demonstrating that across taxa and ecological 29 

context, we show that there exist fundamental geometric principles that are essential to 30 

explain how, and why, animals move the way they do. 31 

 32 

Animals constantly face the need to make decisions, and many such decisions require choosing 33 

among multiple spatially-distributed options. Despite this, most studies have focused on the 34 

outcome of decisions (1–3) (i.e. which option among alternatives is chosen), as well as the time 35 

taken to make decisions (4–6), but seldom on the movement of animals throughout the 36 

decision-making process. Motion is, however, crucial in terms of how space is represented by 37 

organisms during spatial decision-making; the brains of a wide range of species, from insects 38 

(7, 8) to vertebrates (9, 10), have been shown to represent egocentric spatial relationships, such 39 

as the position of desired targets, via explicit vectorial representation (11, 12). Such neuronal 40 

representations must, and do, change as animals move through space. Thus, while the 41 

movement of an animal may, initially, appear to simply be a readout of the decision made by 42 

the brain—and consequently not particularly informative—this view overlooks important 43 

dynamical properties introduced into the decision-making process that result from the 44 

inevitable time-varying geometrical relationships between an organism and spatially-45 

distributed options (i.e. potential ‘targets’ in space). 46 

 47 

Due to a dearth of existing studies, and with the objective to develop the necessary foundational 48 

understanding of the ‘geometry’ of decision-making, we focus here—first theoretically and 49 

then experimentally—on the consequences of the recursive interplay between movement and 50 

(collective) vectorial integration in the brain during relatively simple spatial decisions. We 51 
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employ immersive virtual reality to investigate decision-making regarding multiple (2 or more) 52 

options in both invertebrate (the fruit fly Drosophila melanogaster, and desert locust 53 

Schistocerca gregaria) and vertebrate (larval zebrafish Danio rerio) models. Doing so allows 54 

us to reveal the emergence of geometric principles that transcend the study organism and the 55 

decision-making context, and thus are expected to be broadly relevant across taxa. In support 56 

of this finding we also explore how these principles extend to collective decision-making in 57 

mobile animal groups, allowing us to gain insights across three scales of biological 58 

organisation, from neural dynamics, to both individual and collective decision-making.  59 

 60 

Modelling decision-making on the move 61 

Congruent with neurobiological studies of the invertebrate and vertebrate brain, we consider 62 

organisms to have an egocentric vectorial representation of spatial options (11–13). We then 63 

consider the collective dynamics of vector integration in the brain assuming there exists 64 

reinforcement (excitation/positive feedback) among neural ensembles that have similar 65 

directional representations (goal vectors), and global inhibition and/or negative feedback (both 66 

produce broadly similar results, see SI Appendix and Fig. S1) among neural ensembles that 67 

differ in vectorial representation. This captures, in a simple mathematical formulation, the 68 

essence of both explicit ring-attractor networks (as found in insects (7)), and computation 69 

among competing neural groups (as in the mammalian brain (14)). The animal’s relative 70 

preference for a target is given by activity of neurons that encode direction to that target relative 71 

to activity of neurons that encode direction to other targets, and the angular sensitivity of the 72 

neural representations (angular difference at which excitation no longer occurs) is specified by 73 

a neural tuning parameter, 𝜈. The network then computes, spontaneously via iterative collective 74 

dynamics, a unique ‘consensus’ vector (‘activity bump’) that, along with some angular noise, 75 

represents the animal’s desired direction of movement (Fig. S2). This is then translated into 76 
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motor output (see SI Appendix for model details (15)). Stochasticity in neural dynamics is 77 

implemented here as the neural noise parameter, 𝑇.  78 

 79 

While capturing known, generic features of neural integration, our model is deliberately 80 

minimal. This serves multiple purposes: firstly, following principles of maximum parsimony 81 

we seek to find a simple model that can both predict and explain, the observed phenomena; 82 

secondly, we aim to reveal general principles and thus consider features that are known to be 83 

valid across organisms irrespective of inevitable difference in structural organization of the 84 

brain; thirdly, analytical tractability of our model provides deeper insights into the system 85 

dynamics; and, finally, our results are shown to be extremely robust to model assumptions, 86 

suggesting that it provides an appropriate low-level description of essential system properties.  87 

 88 

Deciding between two options 89 

Beginning with the simplest case, we consider the feedback between motion and internal 90 

vectorial-computation when an animal is presented with two equally-attractive, but spatially-91 

discrete, options. In this case the activity of neurons encoding option 1, 𝑁1 will be equal to 92 

those encoding option 2, 𝑁2 (Fig. 1A). Our model predicts that an animal moving, from a 93 

relatively distant location, towards the two targets, will spontaneously compute the average 94 

directional preference, resulting in corresponding motion in a direction oriented between the 95 

two targets. As it approaches the targets, however, upon reaching a certain angular difference 96 

between the options, the internal network undergoes a sudden transition in which it 97 

spontaneously selects one, or the other, target (Fig. 1C). This results in an abrupt change in 98 

trajectory, the animal being redirected towards the respective ‘selected’ target (Fig. 1C; see 99 

also Fig. S3A for the same phenomenon occurring for a wide range of starting positions).  100 

 101 
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Our model therefore predicts that despite the fact that the egocentric geometrical relationship 102 

between the animal and the targets changes continuously, upon approaching the targets, there 103 

exists a location whereby a further, very small, increase in angular difference between the 104 

targets will result in a sudden change in system (neural) dynamics, and consequently in motion, 105 

and thus decision-making. 106 

 107 

In numerical analysis of our model we find that irrespective of starting position, as the animal 108 

reaches the respective angle in space it will relatively suddenly select one of the options (Fig. 109 

S3A). While the specific angular difference at which this phenomenon occurs is dependent on 110 

neural tuning, 𝜈 (Fig. S3C), and the starting configuration (due to an interplay between the two 111 

timescales involved—for movement and for neural consensus, see Fig. S3B), it is always 112 

present as long as the neural noise, 𝑇 remains below a critical firing rate, 𝑇𝑐 (although even for 113 

𝑇 < 𝑇𝑐, these bifurcations may be difficult to see for small values of 𝜈 due to inherent noise in 114 

real biological systems; see Fig. S4 for simulations where vectorial representations of targets 115 

include directional error). 116 

 117 

To gain a deeper insight into the mechanism underlying the observed spatiotemporal dynamics, 118 

we constructed a mean-field approximation (see SI Appendix) since this has the advantage of 119 

allowing us to conduct formal analyses of patterns realized in the simulated trajectories. 120 

 121 

Geometric principles of decision-making 122 

The mean-field analysis of our model shows that below a critical level of neural noise, animals 123 

will adopt the average among options as they approach the targets, until a critical phase 124 

transition upon which the system spontaneously switches to deciding among the options (Figs. 125 
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1B and S5A). Thus despite varying in its exact location (Fig. 1B), the sudden transition 126 

observed is an inevitable consequence of the system dynamics and will always occur. 127 

 128 

Such sudden transitions correspond to ‘bifurcations’ in the mathematical study of dynamical 129 

systems. A bifurcation is said to occur when a smooth change in an external parameter, in this 130 

case perceived angular difference between the options, causes a sudden qualitative change in 131 

the system’s behavior, here corresponding to a literal bifurcation (or branching) in physical 132 

space.  133 

 134 

When dynamical systems undergo such a phase transition they exhibit a remarkable universal 135 

property: close to the phase transition, at the “critical-point” or “tipping-point”, the system 136 

spontaneously becomes extremely sensitive to very small perturbations (e.g. to small 137 

differences in preference between options (16, 17)). This is true of both physical (e.g. magnetic 138 

(18)) and biotic systems (e.g. ecosystems  (16, 19–21)) undergoing a phase transition. 139 

Correspondingly, we find that below a critical level of neural noise, the mean-field model 140 

exhibits a sudden increase in susceptibility as the animal approaches the critical point, 141 

immediately prior to the decision being made (Fig. S5A). Thus, as animals approach targets 142 

we predict they will pass through a window of space (corresponding to the critical angle for 143 

the respective geometry they are experiencing) in which their brain spontaneously becomes 144 

capable of discriminating between very small differences between options (e.g. a very small 145 

difference in neuronal activity being in ‘favor’ of one option; see Fig. S3D and SI Appendix 146 

for details). This highly-valuable property (for decision-making) is not built into the model, 147 

but is rather an emergent property of the inherent collective dynamics. 148 

 149 
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In many real biological systems, including the ones we consider here, the (neural) system size 150 

is typically not large enough to consider true phase transitions (which only occur for very large 151 

systems, as per the mean-field approximation), but rather ‘phase-transition-like’ behavior. 152 

Even though real biological systems are not necessarily close to the infinite size limit of the 153 

mean-field approximation, we see very similar dynamics for both small and large system sizes 154 

(Fig. S6). 155 

 156 

Decision-making beyond two options 157 

While the majority of decision-making studies consider only two options (due to both 158 

theoretical and experimental tractability (14, 22, 23)), animals moving in real space frequently 159 

encounter a greater number than this. Here we consider how animals will be expected to select 160 

among three, or more, options (possible targets) in space. First we begin with three identical 161 

options (𝑁1 = 𝑁2 = 𝑁3) since this gives us the clearest insight into the relationship between 162 

motion and decision-making dynamics. Then we relax these assumptions and consider 163 

differences between options (Fig. S3E) as well as a greater number of options (Fig. 2). Note 164 

that we do not modify our model in any way prior to introducing these additional complexities. 165 

 166 

Below 𝑇𝑐 (see SI Appendix and Fig. S7 for considerations when 𝑇 > 𝑇𝑐), we once again find 167 

that the direction in which the animal moves is a function of the angular difference between 168 

the targets. When relatively far from the targets, it moves in the average of these three 169 

directions. Upon reaching a critical angular threshold between the leftmost and rightmost 170 

option (from the animal’s perspective), however, the neural system spontaneously eliminates 171 

one of them and the animal begins moving in the direction average between the two remaining 172 

options (Fig. 1D and E). It continues in this direction until a second critical angle is reached, 173 

and now the animal eliminates one of the two remaining options and moves towards the only 174 
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remaining target (Figs. 1F and S5B). Thus we predict that the brain repeatedly breaks multi-175 

choice decisions into a series of binary decisions in space-time. Simulating a larger number of 176 

options (Fig. 2) and varying environmental geometries (Figs. S8 and S9) demonstrates the 177 

robustness of this mechanism in the face of environmental complexity and the more complex 178 

spatial dynamics that emerge as organisms undergo repeated bifurcations. 179 

 180 

Experimental tests of our predictions 181 

Since the decision-process is sequential and depends on the geometry with respect to the targets 182 

from an egocentric perspective, it can be visualized in the animals’ trajectories. Our theoretical 183 

studies make a key testable prediction: if neural groups within the decision-making ensemble 184 

exhibit relatively local excitation, and long-range/global inhibition, we should observe 185 

bifurcations in the animals’ trajectories as they choose among identical options; and that if 186 

animals face three (or more) such options, then the complex decision task should be broken 187 

down to a series of binary decisions. 188 

 189 

Since the geometrical principles revealed above are expected to be both robust and generic, we 190 

use immersive virtual reality (24) (Fig. S10) to test our predictions by investigating both two- 191 

and three-choice decision-making in three evolutionarily highly-divergent brains under 192 

ecologically-relevant scenarios: fruit flies (Drosophila melanogaster) and desert locusts 193 

(Schistocerca gregaria) deciding which among multiple vertical objects to approach (e.g. to 194 

perch), and zebrafish (Danio rerio) choosing with which conspecific(s) to school. 195 

Like many other insects (25–28), fruit flies (29) and desert locusts (30) exhibit a natural 196 

tendency to orient and move towards high-contrast vertical features (potential landing sites or 197 

indicators of vegetation) in their environment. We exploit this tendency, presenting multiple 198 

identical black pillars as targets in an otherwise white environment. We record trajectories of 199 
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our focal animals (solitary flies or locusts) as they choose to move towards one of these pillars, 200 

thus obtaining a behavioral readout of the decision-making process (see SI Appendix for 201 

experimental details; Figs. S11 and S12 show raw trajectories of flies and locusts respectively).  202 

 203 

As predicted by our theory (Fig. 1B and C), we find that, in the two-choice case, both flies and 204 

locusts initially move in the average of the egocentric target directions until a critical angular 205 

difference, at which point they select (randomly) one, or the other, option and move towards it 206 

(randomization test where 𝑦 −coordinates between trajectories were swapped showed that the 207 

bifurcation fit to our experimental data was highly significant; 𝑝 < 0.01 for both flies and 208 

locusts; Fig. 1G). In the three-choice case, the animals’ movements are also consistent with our 209 

theory; as predicted (Fig. 1E and F) they break the three-choice decision into two sequential 210 

binary decisions (𝑝 < 10−4 for both flies and locusts; Fig. 1H). For both animals, the observed 211 

angle of bifurcation (~110𝑜 for flies and ~90𝑜 for locusts) is much larger than their visual 212 

spatial resolution (~8𝑜 and ~2𝑜 for flies (31) and locusts (32, 33). 213 

 214 

Our zebrafish experiments consider spatial decision-making in a social context. We present 215 

virtual conspecifics (see SI Appendix for methodological details) that move back-and-forth in 216 

the arena parallel to each other as targets (Figs. 3A and S13A) and behave (Fig. S14), and are 217 

responded to (Fig. S15), in the same way as real fish. Because they are social, the real fish 218 

respond to these virtual fish by tending to follow at a (relatively) fixed distance behind them 219 

(Fig. S13E). Our data are best represented within this moving frame of reference (the virtual 220 

fish; Fig. S13). Theoretically we predict that for two virtual fish we should see a single 221 

bifurcation, where the real fish will suddenly switch from averaging the target directions to 222 

deciding among them (i.e. swimming predominantly with one of the virtual fish), as a function 223 

of increasing the lateral distance, 𝐿, between the virtual fish (Figs. 3B and S16; see SI Appendix 224 
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for details of model implementation). The existence of this bifurcation is clearly seen in our 225 

experiments (Fig. 3C). When considering three moving virtual conspecifics, the model predicts 226 

that real fish will spontaneously break the three-choice decision to two binary decisions, and a 227 

comparison of the theoretical prediction and experimental results demonstrates this to be the 228 

case (c.f. Fig. 3E and F). Although detailed models considering the specifics of each system 229 

would be expected to provide additional quantitative fits (at the expense of losing some degree 230 

of generality and analytical tractability), our results are broadly independent of the model 231 

implementation details. Thus, we find that the key predictions of our model are validated in 232 

fruit flies, desert locusts and larval zebrafish in distinct, yet ecologically relevant contexts. 233 

 234 

Our results demonstrate that, across taxa and contexts, explicitly considering the time-varying 235 

geometry during spatial decision-making provides new insights that are essential in order to 236 

understand how, and why, animals move the way they do. The features we have revealed are 237 

highly robust, and we predict that they occur in decision-making processes across various 238 

scales of biological organisation, from mobile neural groups (individuals) to animal collectives 239 

(see Supplementary Fig. 17, Supplementary Fig. 18 and Supplementary Information), 240 

suggesting they are general features of spatiotemporal computation. In addition, while here we 241 

investigate relatively simple decisions allowing us to reveal the geometrical principles at work, 242 

this framework—and the fundamental features outlined here—can readily serve as a general 243 

foundation for future investigations of more complex aspects of spatial decision-making. 244 

 245 

A link to collective decision-making 246 

In the two-choice context, our results of individual decision-making are reminiscent of 247 

collective decision-making in animal groups (fish schools (34), bird flocks (35) and baboon 248 

troops (22)). In order to draw a formal link between these two scales of biological 249 
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organization—decision-making in the brain, and decision-making in animal groups—we 250 

consider a model of collective decision-making (36) with equal number of individuals 251 

exhibiting preference for each target (see SI Appendix for methodological details). Consistent 252 

with our above results, we find that even in groups, animals must reduce multi-choice decisions 253 

to a series of binary decisions (Fig. 4). Thus, our work provides a first evidence that similar 254 

principles underlie decision-making in distinct systems across multiple scales of biological 255 

organization. Furthermore, by presenting social interactions in a decision-making context, our 256 

zebrafish experiments elucidate the neural basis of schooling allowing us to glean insights 257 

across three scales of biological organization—from neural dynamics to individual decisions, 258 

and from individual decisions to collective movement. 259 

 260 

Conclusions 261 

We demonstrate that, across taxa and contexts, explicitly considering the time-varying 262 

geometry during spatial decision-making provides new insights that are essential to understand 263 

how, and why, animals move the way they do. The features revealed here are highly robust, 264 

and we predict that they occur in decision-making processes across various scales of biological 265 

organization, from individuals to animal collectives (see Figs. 4 and S18, and SI Appendix), 266 

suggesting they are fundamental features of spatiotemporal computation. 267 

 268 
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We construct a simple, spatially-explicit model of neural decision-making to study how the 346 

brain reduces choice in the presence of numerous spatial options (adapted from (15)). 347 

Theoretical predictions obtained were then tested experimentally by exposing invertebrate 348 

(fruit flies and desert locusts) and vertebrate systems (zebrafish) to spatial choice tests in virtual 349 

reality. To identify unifying principles of spatiotemporal computation across scales of 350 

biological organisation, we also reproduce the obtained decision-making patterns with an 351 

established model of collective decision-making in animal groups. 352 

 353 

Neural decision-making model. We construct a simple, spatially-explicit model of neural 354 

decision-making that takes directions to different options (potential ‘targets’ in space) as input, 355 

and outputs a vectorial representation (‘activity bump’) of its desired direction of motion (15). 356 

Here, the animal’s brain is characterized by a neural network composed of 𝑁 neurons. Each 357 

neuron 𝑖 encodes direction to one of the presented goals �̂�𝑖, and exists in one of two states: 358 

𝜎𝑖 = 0 (“not firing”) or  𝜎𝑖 = 1 (“firing”). The energy of the system (for any given 359 

configuration) is given by its Hamiltonian, 𝐻. 360 

𝐻 = −
𝑘

𝑁
∑𝐽𝑖𝑗𝜎𝑖𝜎𝑗

𝑖≠𝑗

 361 

where, 𝑘 is the number of options available to the individual and 𝐽𝑖𝑗  is the interaction strength 362 

between neurons 𝑖 and 𝑗. Here, 𝐽𝑖𝑗  is given by 363 

𝐽𝑖𝑗 = cos (𝜋 (
|𝜃𝑖𝑗|

𝜋
)

𝜈

) 364 

where, 𝜃𝑖𝑗 is the angle between preferred directions of neurons 𝑖 and 𝑗, and 𝜈 represents the 365 

neural tuning parameter. For 𝜈 = 1, the interactions become “cosine-shaped” 𝐽𝑖𝑗 = cos(𝜃𝑖𝑗), 366 

and the network has a Euclidean representation of space (Fig. S1). For 𝜈 < 1, the network has 367 

more local excitation and encodes space in a non-Euclidean manner (Fig. S1). System 368 
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dynamics are implemented by energy minimization using the Metropolis-Hastings algorithm 369 

(similar to other Ising spin models) and the agent then moves with a velocity �⃗�  determined by 370 

the normalized sum of goal vectors �̂�𝑖 of all active neurons. 371 

�⃗� =
𝑣0

𝑁
∑�̂�𝑖

𝑁

𝑖=1

𝜎𝑖 372 

where 𝑣0 is the proportionality constant. The goal vector �̂�𝑖 now points from the agent’s 373 

updated location to the neuron’s preferred goal with directional noise chosen from a circularly 374 

wrapped Gaussian distribution centered at 0 with a standard deviation 𝜎𝑒. As in the mean-field 375 

approximation of the model, the timescale of movement (defined by the typical time to reach 376 

the target) in the numerical simulations was set to be much greater than the timescale of neural 377 

firing (the typical time between two consecutive changes in the neural states 𝜎𝑖). 378 

 379 

Collective decision-making model. We reproduce results from our neural decision-making 380 

model in a model that describes spatial decision-making at a different scale of biological 381 

organization (refer (36) for methodological details). To highlight the features that are key to 382 

producing the observed bifurcation patterns, we run simulations with and without feedback on 383 

the strength of goal-orientedness of individuals. 384 

 385 

Fly virtual reality experiments. All experiments were conducted on 3- to 5-day old female 386 

wild-type CS strain Drosophila melanogaster raised at 26℃ on a 12 hr light, 12 hr dark cycle. 387 

Experiments were conducted in a flyVR setup procured from loopbio GmbH. 60 tethered 388 

Drosophila melanogaster were exposed to either a two-choice or a three-choice decision task 389 

(30 and 30 individuals, respectively) in the virtual reality environment. Each experimental trial 390 

lasted 15 min where flies were exposed to five sets of stimuli—three experimental sets and two 391 

control sets. The experimental stimuli sets consisted of two or three black cylinders (depending 392 
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on the experimental condition) that were presented to the animal in an otherwise white 393 

environment. A control stimulus with a single pillar was presented before and after the 394 

experimental conditions. We rotated all trajectories such that the 𝑥 −axis points from the 395 

origin, to the centre of mass of the targets. To visualise trajectories in the various experimental 396 

conditions, we created time-normalised (proportion of maximum across a sliding time window) 397 

density maps. We then folded the data about the line of symmetry, 𝑦 =  0 and applied a density 398 

threshold to the time-normalised density map. A piecewise phase transition function was then 399 

fit to quantify the bifurcation. 400 

𝑦 = {
0 𝑥 ≤ 𝑥𝑐

𝐴|𝑥 − 𝑥𝑐|
𝛼 𝑥 > 𝑥𝑐

 401 

where 𝑥𝑐 is the critical point, 𝛼 is the critical exponent, and 𝐴 is the proportionality constant. 402 

We also performed randomisation tests for each bifurcation where we conducted the exact fit 403 

procedure described above to data where the trajectories were randomised by keeping the 𝑥-404 

coordinates, and swapping the 𝑦-coordinates with values from other random events. 405 

Randomizations show that the resultant fit to our experimental data were highly significant 406 

(𝑝 < 0.01 for binary choice and 𝑝 < 10−4 for the three-choice case). 407 

 408 

Locust virtual reality experiments. All experiments were conducted on 156 instar 5 desert 409 

locusts (57 individuals for two-choice and 99 individuals for three-choice experiments, 410 

respectively) raised in the Animal Research Facility of the University of Konstanz. 411 

Experiments were conducted in a locustVR setup procured from loopbio GmbH. The 412 

experimental procedure was identical to the one described above for flies, except now, each 413 

experimental trial lasted 48 min—three experimental sets (12 min each) and two control sets 414 

(6 min each). Analysing bifurcations in locust trajectories using the same methods described 415 

above showed that the resultant bifurcations fit to our experimental data were highly significant 416 

(𝑝 < 0.01 for binary choice and 𝑝 < 10−4 for the three-choice case). 417 
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 418 

Fish virtual reality experiments. All experiments were conducted on 1 cm ± 0.1 cm long 419 

zebrafish of age 24 to 26 days post-fertilisation raised in a room at 28℃ on a 16 hr light, 8 hr 420 

dark cycle. 390 fish were tested in total. Of these, 198 fish were exposed to decision-making 421 

with two virtual targets, and 39 fish exposed to decision-making with three virtual targets (see 422 

Supplementary Information for more details). Experiments were conducted in a fishVR setup 423 

procured from loopbio GmbH (refer (24) for details). Once a fish was introduced in the arena, 424 

it was given 20 min to acclimatise to the environment. This was followed by a 10 min control 425 

where it was presented a single virtual conspecific circling the arena in a circle of radius 8 cm. 426 

After this, the real fish was exposed to choice experiments that lasted 90 min with the virtual 427 

fish initialised with random lateral distances between them and random swim direction. To 428 

visualise the bifurcations, we normalised (proportion of maximum) and stacked the marginal 429 

distributions along the direction of the virtual fish’s motion for various lateral distances. All 430 

experiments were conducted in accordance with the animal ethics permit approved by 431 

Regierungspräsidium Freiburg, G-17/170. 432 

 433 

Acknowledgements. We thank all members of the Department of Collective Behaviour who 434 

assisted with the project: Renaud Bastien for discussions and help setting up the VR 435 

experiments, Guy Amichay for providing control data of two real fish swimming together, and 436 

Paul Szyszka for showing V.H.S. how to tether flies. We thank the ‘Itai Cohen Lab’ for the 437 

fruit fly image used in Fig. \ref{fig:insects} and Andreas Poehlmann, John Stowers and Max 438 

Hofbauer from loopbio GmbH for technical support with the VR systems. V.H.S., L.L., B.R.S. 439 

and I.D.C. are also grateful to the animal care at the University of Konstanz including Christine 440 

Bauer, Jayme Weglarski and Dominique Leo for help in conducting the experiments. They also 441 

acknowledge the efforts of the scientific and technical staff at the University of Konstanz 442 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445795
http://creativecommons.org/licenses/by/4.0/


including Michael Mende, Markus Miller, Mäggi Hieber Ruiz and Daniel Piechowski. V.H.S. 443 

acknowledges the International Max Planck Research School (IMPRS) for Organismal 444 

Biology for the graduate school community and access to courses and resources. I.D.C. 445 

acknowledges support from the NSF (IOS-1355061), the Office of Naval Research grant 446 

(ONR, N00014-19-1-2556), the Struktur- und Innovationsfonds für die Forschung of the State 447 

of Baden-Württemberg, the Deutsche Forschungsgemeinschaft (DFG, German Research 448 

Foundation) under Germany’s Excellence Strategy-EXC 2117-422037984 and the Max Planck 449 

Society. N.S.G. is the incumbent of the Lee and William Abramowitz Professorial Chair of 450 

Biophysics and acknowledges support by the Minerva Foundation (grant no. 712601). M.N 451 

acknowledges support from the Hungarian Academy of Sciences (a grant to the MTA-ELTE 452 

‘Lendület’ Collective Behaviour Research Group, grant number 95152, and MTA-ELTE 453 

Statistical and Biological Research Group) and Eötvös Loránd University. 454 

 455 

Author contributions. V.H.S. and I.D.C. designed the study; V.H.S., D.G., T.S., N.S.G. and 456 

I.D.C. constructed the model; D.G. and N.S.G. constructed the mean-field approximation; 457 

V.H.S. and I.D.C. designed the fly experiments; V.H.S. conducted these experiments and 458 

analyzed the data with L.L. and M.N.; V.H.S., B.R.S. and I.D.C. designed the locust 459 

experiments; B.R.S. conducted these experiments and V.H.S. analyzed the data with M.N.; 460 

L.L. and I.D.C. designed the fish experiments; L.L. conducted these experiments and analyzed 461 

this data with V.H.S. and M.N.; V.H.S. and I.D.C. drafted the manuscript with significant 462 

contributions from all authors. 463 

 464 

Competing interests. The authors declare that they have no competing interests.  465 

.CC-BY 4.0 International licensemade available under a
(which was not certified by peer review) is the author/funder, who has granted bioRxiv a license to display the preprint in perpetuity. It is 

The copyright holder for this preprintthis version posted May 27, 2021. ; https://doi.org/10.1101/2021.05.26.445795doi: bioRxiv preprint 

https://doi.org/10.1101/2021.05.26.445795
http://creativecommons.org/licenses/by/4.0/


Figures. 466 

 467 

Fig. 1. Geometrical principles of two-choice and three-choice decision-making. (A) Schematic 468 

of the binary decision-making experiments. This simplified representation shows that a sharp 469 

transition in the animal’s direction of travel is expected near a critical angle, 𝜃𝑐. (B) A phase 470 

diagram describing the ‘critical’ transition exhibited while moving from compromise to 471 

decision between two options in space. The shaded area (also in E) represents the region in 472 

parameter space where both the compromise, and the decision solutions exist. (C) Density plot 473 

showing trajectories predicted by the neural model in a two-choice context. The axes represent 474 

𝑥 − and $𝑦 −coordinates in Euclidean space. The black line (also in G) presents a piecewise 475 

phase-transition function fit to the bifurcation. (D) Schematic of three-choice decision-making 476 

experiments, where the central target is on the angle bisector of the angle subtended by the 477 

other two targets. (E) A phase diagram describing the first ‘critical’ transition when the 478 

individual chooses among three options. Once the individual eliminates one of the outermost 479 

targets, it can decide between the two remaining options, similar to the two-choice phase 480 

diagram described in B. (F) Theoretical predictions for decision-making in a three-choice 481 

context. The dashed line (also in H) is the bisector of the angle subtended by center target and 482 

the corresponding side target on the first bifurcation point. See Table S1 for parameters used 483 
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in C and F. (G) and (H) Density plots from experiments conducted with flies and locusts 484 

choosing among two and three options, respectively. 485 

  486 
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 487 

Fig. 2. Decision-making for a larger number of targets. Density plots of simulated trajectories 488 

for four- (A), five- (B), six- (C) and seven-choice (D) decision-making when targets are placed 489 

equidistant and equiangular from the agent. Thee axes represent 𝑥 − and 𝑦 −coordinates in 490 

Euclidean space. Geometrical configurations are also varied to place the targets on the same 491 

side of the agent (A and B) or in radial symmetry (C and D). See Table S1 for parameters used 492 

in A–C. In D, all parameters used are identical except the system size 𝑁 = 70.  493 
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 494 

Fig. 3. Decision-making in a moving frame-of-reference. (A) Schematic of the two-choice 495 

decision-making experiments conducted with larval zebrafish. In these experiments (also in the 496 

three-choice experiments depicted in D), the virtual fish swim parallel to each other while 497 

maintaining a fixed lateral distance, 𝐿 between them. We only consider data where the real fish 498 

swims behind the virtual fish, i.e., it follows the virtual fish (see SI Appendix and Fig. S13 for 499 

details). (B) Normalized probability distribution (proportion of maximum) of simulated 500 

positions of an agent following two moving targets, and corresponding experiments (C) 501 

conducted with larval zebrafish following two virtual conspecifics. (D) Schematic 502 

representation of the three-choice decision-making experiments. (E) Normalized probability 503 

distributions of simulated positions of an agent following three moving targets, and 504 

corresponding experiments (F) conducted with larval zebrafish following three virtual 505 

conspecifics. See Table S1 for model parameters used in B and E. 506 

  507 
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 508 

Fig. 4. Consensus decision-making in simulations of animal groups follow the same 509 

geometrical principles. Results for two- (A) and three-choice (B) decision-making in a model 510 

of animal collectives. The density plots show trajectories adopted by the centroid of the animal 511 

group for 500 replicate simulations where the groups don’t split. The axes represent 𝑥 − and 512 

𝑦 −coordinates in Euclidean space. The black lines show a piecewise phase-transition function 513 

fit to the trajectories. For the three-choice case (B), the dashed line is the bisector of the angle 514 

subtended by center target and the corresponding side target on the first bifurcation point. See 515 

Table S2 for parameters used. 516 
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